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We study dualities between two complete lattices E and F, ie, mappings A:E—F
_satisfying A(iz}fxi) ;.S_“FA(XQ for all {?‘i}ielg E and all index. sets I, including the empry
set =g, We give characterizations and representations of dualities. 4, and some results on the dual
A*:F—E of A und on the associated hull operator A*A:ESE, in the general case and in various

particular cases. Among several applications, we devote special attention to Fenchel-Moreau conjugations.
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§ 0. I‘\’TRODULI ION

It is well-known that the theory of Fenchel-Moreau con)u"auons fe RX (@ ¢ RW (where X and W
are two sets :md ¢: XXW.— R is acoupling function) has important applications to duality in optimization {see
e.g. [20] and the references therein). An axiomatic study of these conjugations has been started in [17], where it

._ ha:, been shown among other results, that, for any sets X and W (throughout the sequd we assume, without

special menu‘on,'that X, W =), an operator fe RX 5 e RY is the gwcralued Fenchel-Moreau

comuoa'xon opvunor £ @ with respect 10.1( ecessarily unique) coupling function ¢ : XKW o5 Roif ‘and

only if for each index setI (including the em pty set 1=2) we have

‘ SR A)° = on } | (i1 € RY), ©.1)




(erd)® - fcf;d » - : (fe RX, deR); - ; 02

therefore, the operators f— f© satisfying (0.1), (O.2),jhave been called, in [17], "conjugétion operators”. We
recall tlm here R% denotes the family of all functions f: X —> R = [~o0, + oo]‘, inf and suAp on RX, BV ae
defined pointwise, inf =+ e, sup g=-w, and i, + are, respectively, the "upper addition" and “lowe'r'
addition” on R, ddm 2d ([10], [11]) by '

aib =asb=-a+b e (abeR), ' ©03)

a+ (+0)=+0, a * (=0) = ~o0 : (aeﬁ)’; (04)

also, in (0.2), we use the.same notation for the elements of R and the constant functions with values in R,

" The approach of [17] has been parallel, in a“certain sense, to the "axiomatic approach to duality" for sets, of
Evers and van Maaren [6], in which‘ a "duality” between two sets X, V-V is defined as a mépping A ZX ol
(.where S d-“ro:"s thé family of all Subsets of X), satisfying, for each index set I .(including I=¢g),

il g M4y 5 STy ek , 0.5)

er

B

which is "similar* (0 (0.1). Note also that there exist operators f eRX — fce RY, with useful applications to
'dﬁality in (.mtimiz;nion which 'satisfy onl (O 1), but not (0.2) (see [2] and § 4 below). :

ic aim of the prﬂsem mmr is to study the operators sansf)mo (0.1) and (0. 5), in the framework of
com )lpte lattices, both in the general and in some particular cases. We recall thatif E = (E, <) and F = (F <)
are two compkt; lattices, a mapping A: E~9P is called aduahty (or, a "polarity” [3], [12], [13]), if for each
index set 1 (including 1= f*) we have . ‘

o4 (llgflxl) = iseuy A (x) : - : ({xi}ief < E)i : : (Q~6)'

thus, foz E = (RX <)oo= (le, <) (thh the usual pomthse order), (0.6) bgLomes (0.1), while for.

EE 00 iR a0 oy s bLLomﬂs . 5).
In §1 we shall give, for two complete lattices E and F, characterizations and represemations of dualitie
A:E-F with the aid of an arbitrary "family of infimal generators” of E, in the sense of Kutateladze-Rubinoy

: L £ ¥ St
[9] I‘urthprmoxc we shall also consider the "dual operators” A :F — E (defined, e.g., in [13]).



in §2 we shall apply Lhé resultsof §1.t0 E = (AX, <) (with the usual pointwise order), where (A, <
is a subset of (R, <), which is a comiplete lattice, and to a suitable family of infimal generators of E; ﬁms, we
shall obt.nin characterizations and representations o.f dualities A : AX s 12 whercF is an arbitrary
COI’x;lpl_CiC lattice. Aliso, we shall consider separatcly the particular case A = {0, + oo}, ie., of dualities
A {0, + oo}X - F -

In»§:\3 we shall obtain characterizations and" representations of dualities A:AX—~> BW, where
(A, S) C R, <) and (B, <) Co@® S).are compllete lattices, and of the dual operators A Bw -3 AX, and
we shall apply them to the cases when i) A = {0, + oo} i) A=B = {0, +:oe}; ili) A=B =[0,1] (so the
elements of AX and BWY are the fuzzy subsets of X and W respectively); iv) A=B=R; v) A=R,
"B = {0, + o} (this will yield a solution of the problem, raised in [20], of the existence of a duality A such

%
that 44

= sup {we W w<f} for all feR¥); vi) A =R B={0,+w}, X={0,1]% W = R Iy
(which will yield, as a corollary, that every function f: {0, I}“‘—}R satisfying f= fAA# can be exténdad to a
'. 'polyhedrai.co’xwex positively 50mogénéous function f:R® — R).

‘ In §4 we shail introduce and study anew concept of "s‘trict duality” A :RXﬁRW, closely related to
the "7’-&91‘;jugaii0n" of Ben Tal and Ben Israel [2]. '

In: .§7 5 we shall first show that for éonjugations ciR> 5 RY, ie., operatbrs, éatisfying QU0
some of the results of [17] can be obtained as particular ca‘scs-'of the preccdingresults on dualitie$
A RX RY, _I’urthcrmore, in the partic.ular, case when X:v{O, 3% and W= CiX_;..XCI; ; whére
CCR ti =1,..,n) are unbounded from above and from bc-lc;‘.v, and @: XXW - R is the "natural cdupling
fu'ncliofx" given by Lhé"sgalar produc't,- we shall characterize the extended functions of 0-1 variables

salisfying f = fc(_‘lf’) P)*, Also, for X = {0, 1%, W = RD)* (the family of 2!l linear functions on R“)-and :
.' ¢ as before, .wc shall'g',ive necessary and sufficient conqitions in order that Bc f(.k@fﬁ{where BC f(ko) is the
subdifferential of -f: X—R at xge X, withrespect to ¢ = c(p). As consequences, we shall show that in a
resﬁlt df.Fujisﬁgc ([7], theorem 3.1) on_‘ submodular -functions f: X — f{,lwhere X is a distributive
sublaitice_ oE S0 1, the-assumpution of submodularity‘ of f is superfluous, and we shall obtain some t;esults‘

on the extension of arbitrary functions f: {0, 1}" - R U {+ e} and f: {0, 1}" - R to certain proper convex

functions ? en - RY;



For some further results on dualities, conjugations and coupiingz func'tions, and on relations between them,

see also [18), [21), [23].

. Finally, let us mention some notations, which we shall use in the sequel. For a complete lattice E,
whenever necessary, we shall df;x:ote}by supE (ini‘E) the supremum (infimum) in E; also, we shall denote
by + or (+<>0)F‘ (-ooof (-oo)E) the greatest (smallest) element of E and we shall adopt the usual coﬁvenu’ons

inf @= + oo, SUp P=~co, | . o ' : - . ©0.7)
where @ delliotes the empty set. For a function f: X — R, where X is a set, we shall use the notations

Cdom f={xeX|f(x) <+}, : . : ‘(().8)

L) = {xeX | (x)=0} . e ' ' 09)

§ 1. DUALITIES BETWEEN GENERAL COMPLETE LATTICES

We recall that if E = (E, <) and F:(F, <) are two complete lattices, a mapping A:E — F is called
é complete inf-anti-homomorphism, if for every index set I#@’ ;ve have (0.6). ..
. Rerlmr“/_c Lilea) Condition (0.6) for 1= means (by (6.7)) that
' B(+e) =-eo g e .
'Thus,va' duality A E —-)F is noé‘hing else than a éomp!c/e inf-dnti.-honwmorphism‘ satisfying (1.1)..In
paﬂic,'ula'.“, by (1.2) below, acomplete inf-anti-homomorphism A Qf E onto E is aduality;

* b) Each inf-anti-homomorphism A:E — F is antitone, whence

A(+oo) = min A(X)-. : ' SOSERRE R oy
LR xe E % . : ; : :
c) Considering .the complete lattice F 7= (F,Z). or the complete lattice E™= (E, 2), or both, our

lag———— complete sup-homomorphisms, and complete sup-anti-homomorphisms, respectively. .

e

E}cample 1.1. For any sets X and W, let E= (2X , =), the lattice of all subsets of X, ordered by~

and : <
containment (i.e., G, <G, if and only if G, 2 Gz)\’lc‘:t F = 2%, D). Then, conditions (0.6) and (1.1)

become, respectively,

ol Tesults 0N cOmplete inf-anti-homomorphisms also yield results on complete inf-homomorphisms,

W



sl 86;) e

iel
A@)=W. : ; : o (14)
Example 1.2. Tor any sets X, W and any subsets (A, <), (B, <) of (R, <), which are complete
Iattice's, let E = (AX, <), F= (Bw, <), with the usual pointwise order. Then, denoting A (f) by @ , conditions*

(0.6) and (1.1) become, respectively,

S heagew (i) €A%, wew) @)
e ' (wew) - as

if ACR isclosed for inf (ie., inf Mc A forall M C A, or, in other words, inf Me A forall 2#M C A,
and +e0€ A), then E = (AX, <) is Aa complete inf-semi-lattice, and hence é complete lattice [3], and infE =
= inf, + esf = + o0 in (1.5), (L.6). ‘

. We recall that a complete ;nf—am.i—‘hc-)momomhisﬁ c RXSRWY i called [17] a conjugation, if
g : <2 (fe RX, deR); w0
by (1.7) for d=+ eo, every conjugation e RXSRY is 4 dz;ality' (but; the converse is not true). |
\\Cc:rc‘cull that asubset Y of a complete lattice E is called [9) P Jamily ofi/ﬁ;rml gcncrators' of E,"if for
each xeE there exists Y, C 'Y such that
ety i ' e -

afamily of supremal generators of E is defined [9 similarly, with inf replaced by sup.
i Iy Of sup 8 ¥i P .

Example 1.3. For the ‘complcne lattice E = (2X, 2), where X is a set, the family Y of all singletons

" {x}, Where xeX, is a family of infimal generators of E, since

6= Ux : ' et (1.9)

xe G
Exa}nple 1.4. For the complete lattice E = (AX, <) of example.1.2, let us define, by abuse of notation,
the function

Ry + ) (X)) =% 0 X) +a=a, if x'=x -
el {x} Do R @.10)

k"



Then, by [17], proof of 1emma 3.1, we have

X ‘- . -
£= 0% g 00 e . (1.11)
and hence i '
Yy ={xg +alxeX, acA} . e : (1.12)

is a family of infimal generators of E. If (A, <) isclosed for inf, then (+ oo)A =+oo in (1.10). (and hence

x{x} f a coincide es wu the usual one) and inf® = inf in QUIEDY

Proposition 1.1. A subset Y of a complete Ialt;'ce E is a family of z’zy‘fmal generators of E,if and
only if ' .
x=inf {ye?lxéy} | - : ~ (x€E). 1.13)
Proof. If we have (1.8), then XS fye¥iix S v} whence x = inf ¥o= inf e ix<yiop
s0 (1.13) holds. Conversely, if (1.13) holds, then, for Y, = {yeY | x <y}, we have (1.8). ] .

Corollary 1.1. If Y is a family of infimal generators of a complete lattice E, then

{yeY|x<sy}# g : ; LR (XeE, X < 400) ‘ (1.14)

Proof. If {yeY|x<y} =g, then, by (1.13) and (0.7), x = inf g= 4 oo,

Th-eorem “1.1. Let E,F be two complcre Iattzccv A; h-}Fa mappmg and Y a famzly of zrfmal
génerator; of E. The fol/owmm!alwmn!s are eqzuvalmt '

1'°.. A _z'sa(z'ual[ty.

2°'. For every index set I(mcludmg 1=¢) we have

A (mf y) = sup A7) - : v.(_{yi}idg e (1.15)

_ ;T/zese statements irr.:ply |
3% We have ~
A = sup {Ay) ] yeY, x<y} . TR s
Proof. The implica:tion 1° = 29 is obvious. .

2% = 3% Assume 2° and let x e E, {yitic; ={yeY | x<y} € Y. Then, by (1.13) and (L.15), w




obtain :
A=A (inf{er | x < y}) =sup {A(y) |yeY,x sy}

20 M 3% = 1° By 3% A is antitone, i.e,

Xoxde Boox =y e N = AN : e = alab))

C E. Then, since mf X; < x; (iel), we Invc, by (1.17), A (1an)>A(X)(lLI), hence
jel ;

Now let {x;}; 1€

A (infx)) 2 sup A (x); ' S ' , =
1c 1 i€ . o - .

note that this holds for any A:E - F satisfying (1.1'7) (we. do not need Y). For the opposite inequality,

observe that, by (1.13), we have

x = inf Y; (D, inf x=inf Y, | ' : (1.19)
where : N : .
Y= {yeY |5, Sy) (1), Y, - {er]iiEnIf x= gk : (120
We claim that ' /
inf x; = inf u Y; = inf {yeY [Aiel x. < v), 1.21)
el jel ! TR

'Indeed, since Yi c 'L) Yj e e 1), we have

inf Y, 2 inf UI Y,z inf Y, (i€D), e : _ 1.22)
je = S : .

whencé, by (1.19), we obtain

inf x; = mf inf Y inf A\ Y. .= inf YO = inf x; ,
el el el el

. which proves the cléim (1.21): Then, by (1.21);:2¢ and (1.17) (forx' = x;, x" =y),

A Ginfx) = A (inf fyeY |3 iel, x;<y}) =
1€

It

sup {A(y)l)eY Jidel, x;syks

IA

sup {A(y)ler 3 iel, A(y)<A(x WS su'i) A(x ),

- which, together \vith (1.18), yields (0.6). =’

Remark 12. a) In general, 3° o5 1% Indeed, if E is a complete lattice, then Y =E is a family of

. infimal generators of E, and AtE—-F is ‘antitone if and only if we have (1.16) with Y = E. However,

there exxst antitone mappings A: E — F which are not dualities, e.g., any constant mapping




AR = yeFAL=) (. . ay
b) Th-a-abovc aroument also yvields that.afor B, F. and .Y as in théarcn_x 1.1, and for A:E —F, the
foll.owing statements are equivalent:
1% A is a complete inf-anti-homomorphism.

Z Wc have-(1.2), and for e»ery I+;‘0’ we have (1 15).

s o e 750 e e e e it e e o o s b £ VTR e+ o e S

These statements imply

B e Attt AT g e e —— e e o Lo

3 We have (1.16) for all xe E, x<+o00 If +00 €Y, thén we have (1.16) for all xeRE

)<M_ (including x = + o).

Indeed, the implication 1' = é' holds by remark 1.1 b). Now, 'assume 2' and let xe E, Lad o
{S'i}iel - {yeY| x<y} € Y. Then, by (1.14), we have I¢¢>; whence, by (1.13) and (1.15), we obtain (1.16)
for x<+‘oo.'If +oe Y, then {yé”;’ | 4+ 00 <y} = {400}, 50 (1.15) ﬁolds also for x = + oo; thus, 2" = 3.
Finally, the proof-of the implication 2' ‘M 3' =1' is simi'}ar to that of the implication 28 (M 3% = 1; of
theorem 1 Note that here we need to assume (1.2) in 2| Qince otherwise \.eve obtain (1.17) only for
x'sx" _<+<>o (if +o¢ Y) and (; 18) only for X; < + oo (i€ I)s as.an cxamplb, onecan take Y EN{+ o}
%md .

A)=Y,€ R+ oo} .if xe B Xm0

e (1.24)
=400, If X =+ 00,

which sat15fy (1.15) for aﬂ 128 and (L. 16) for all x < + oo, butnot 1' (and A dovs not satisty (1. 2)) Notc also
e than, again, 3‘ -74%1', even when + o€ Y, since there e-x1st’ antitone mapppmgs A:E— F which are. not
- comp ctp inf-anti- homomoxphxsm (see-e. g [15), Ch. I, § 18, example D).
c) = Sumlarly, from the sx,bscquom results on dualities one can obtam conespmdmo results on inf-
antiﬁomomor’phisms, which we shall omit (wi.th the exception of remark 2.1 b) below).
We recall thatif E and F are two compiete lattices, the. "dyal" A F > E qf any mapping A:E-—)F'
is defined (see e. g. [13]) by
A0 - inE B | Aty r) ‘ | . @eh). (1.25)
It.is well-known (see e. g.'[lfﬂ]) that if A is a duality, then At is a2 duality, téo, and for any x€E and

zeF we have the equivalence



-

A Sz e A'@2) <x. : ‘ ‘ (1.26)
In the sequel we shall use
Proposition 1.2. Let E, F be mvo complete lattices, A:E - F a dudlity, and Y a family of

infimal generators of BE. Then

A'@) = inf {yeY
Proof. By (1.13) and (1.26), we have

A*(z) =mf{y€_Y ‘ /f(z) <y}=inf{yeY l Aly) £z} (zeF). "
Finally, ’we recall that if E and F are two complete lattices and -LA:E—%F is a duality, then

A'AE ——>.E is a "hull operator" (see e. g. [6], [23)).

$e 2. DUALITIES A A% F :

Lemma 2.1. Let E= (A% <) and Y, € E beasinexample 1.4.Then, for any fe AX and g +

+aeY, we have

fey s ba e fosa ; S o - uy
5 ; Prooﬁ ~This is an cbvious consequence of (1.10). - :
Thgzérém 2';1. Let X be a set and let (A, <) € R, <) and v.Fbe .complcré Iml;'ces. For' a ma.pping
AAE o) F,‘ the following statements are equivalent: A
18 A is a duality.

ol _There exists a mapping T : X XA = F, satisfying, for every index set 1 (including 1=¢),

I (x, igfif‘ ) = sup e ' (‘xeAX, S 2.2)

~and such that ; '
f8< sup Ik, f)) SalaEha ey
xe X : 3

Moreover, in this case, T is uniquely determined by A, namely, we have

T (x,8) = Gyy +0)° & g (X, aeA) .

Prooi".' 18 =i 02 GleetsE = (AX, <) and Yy be as in example 1.4. Then, (1.15) becomes

A(y)< 2} ' GEF). (1.27)"




(im . +a )) = %gyz '(X{"‘i} s a-‘)A j \{(A,a), el C X/<A) 2D

which for x, = xe X (iel) and T of (2.4), yields

i

T, igff" 3) = (e * m(A a)/‘ : (mfI Uy 1 Ta)t

(2.6)

= A
= “?;2%(%} +a) e fcugls T (x a) (xeX {a, }lCI &
Finally, (1.16) and (2.1) yield
A 5 A H
2 = sup {(4g3 + 2 | xe X, ach, £+ a} =
= sup {(X{x} ¥ a)A | xe X, aeA, f(x)<a} (feAX),
‘whence, since A is antitone, we obtain 2.3 .
2° = 19, If 22 holds, then for any set I we have, by (2.3) and (2.2),
E £ib oA ;
inf f) = sup I'(x, inf™* f(x)) = sup st I'(x, f.(x)) =
(1c1 E‘( ( icl i ) xe X 1éI)I ( I(X))
= Su (o filx - sup f2 : f.-QIAX.'
' 12% XEPX ( (- ) i(:}l.i i : ({fihier ¥ )
Finally, to prove the last statement, assume that T is as in 2% Then, by (2.2) for I =9, we have
Tk, 4oty =mee S R B X))

~ whence, byA(2.3.) for f=x{A }ir a of(l.lO),

(X{x} P = sup I(x L x) + a) = I'(x,a) i (xe X, ae A)'. " a

 Remark 2.J. a) Alternatively, one can also give the following direct proof of the implication 1% = 2%

If 10 holds, then, for T défin@d by (2.4) we have (2._6). Also, by (1.11) zmd 12, for I‘ defined by (2.4) we obtain

\

e e s B ta) 5 AR
= (inf Oty #1069) sup Gty + 00) SRt 5 fe6

by As %n-rémnrk 2 b), one can prove again a corresponding result for complete inf-anti-homo-

mofphisﬁns A. However, -in thié case, if A: is'not a dL}aiity, then, by a= ix;f"x{a, +ooA} (ae f‘;) and (2.2)
(forl;eg;), we only have .

: r(k, a) = sup {T (x, a), T(x, + =)} (xeX, a€ A), 23)

whence, by (2.3) for fsx{x}i a of (1.10),

10



°

T(x, 2) < (pyy + a)® < sup T, 2) - (xeX, acA), 2.9)

Sup

so we can only conclude that sup I'(x, a) (as A) are uniquely determined by A, namely,
P(x,a) = sup (.4 + a)A
4 xe X i}

(ac A). (2.10)
XE. 2
As an example, one cantake A to be aconstant mapping, say fAEyoe F\[-e0} (fe AX) and T" to be any
mapping such that each partial mapping I'(x,.):a— I'(x,a) is constant on A, say I(x,a)=Yx)
(xe X, ae A), with y:X - F satisfying SUR YX) = ¥,
- xe X ;

One can replace (2.2) by convenient equivalent conditions, using

Lemma 2.2. Let (A,<) € (T’:, <) and F be complete lattices

. For a mapping h: A — F, the following
Statements are equivalent: :

10, For every index set 1we have
h(iigfIA a) = sup hiz;) adiar & A 2.11)
\“ - . 3 S
28 h is antitone and cli "level sets”- e
S, = {ac A | h(a) <y} R gy
are closed for inf (ie., infA Me S (h) forall g#ME S b) -and+o® =infhge s ). '

If A_QT( is closed for inf and closed (i.e., closed in 'ﬁ,-for the natural topology of R), or

equivalently, if A € R is closed and contains + o, these statements are equivalent 1o -
R h is antitone and all Sy(h) (yeF) are non-empty and closed.

Proof. 1° = 2° Assume 1% Then, applying (2.11) to {a;, a5} C A, where al'S'az, it follows that h is
antitone. :

.f3u1'tl1er11xc)}e, let yé F, g+MC Sy(h); Then, by (2.11),

h(ian‘M) = sup h(a)<y,
S ae M

SO Ain‘fA Mesy(h). Finally, by (2.11) for I=g¢, we have h(+ ooA)=-ooFSy (ye F), whence inf® L=
s ieie S,(h) (ye ). =
29 =3 1°, Assume 2°, and let {2 et €C A I#¢. Then i’anA ajé a; (iel), whence, since h Is antitone,
P Je



we ;meiu
Il(igflA a;) 2 fé“i) h(a). 5 : . - : ‘ (2.13)

In order-to prove the opposite inequality, note that fory = sup h(a) € F we have ‘aie Sy (h) (el
: : : b ie i : ; g
whence, since Sy (h) is closed for inf’A, we obtain inf A 8, € Sy (h), that is,
Q ie 1 i
- A : g : w‘ : . . ; : e
h()ix;fI 3)SY, = 1sc_u? h(a). , . — (2.14)

‘Furthermore, by 2°we have + o = inf’d";z)’ € Sy(h) (yeF), whence h (+ ooA) = ooF, i.e., (2.11) holds also
for I=¢.
Finally, assume that A & R is closed for inf and closed.

2°=3° Assume 2% and let yeF, {a,} c Sy(h), lim a, =ac A, If there exists n, such that a,
n—oo : )
then, since anoe Sy(h) and h is antitone, we have y2h(a, )2 h(a), so ae Sy(h). Gn the other hand, if no

<a

T8y

such n, exists, then a = iné‘ a, and hence, by (2.1 1) (forI = {1,2,...}), we obtain h(a) = h (i?xf a,) = s;xlp h@ )=y,

SO ae Sy(h).

B .0 o ‘ .

3 =2". Assume 3~ and let yeF, ,@%Mgsy(h). Then, since inf MecA andASy(h) is closed,
' e . e ' | ' ‘
we have inf M=inf MeSy(h). Finally, since h is antitone and Sy(h)#sd)'say aeS_(h)

3

agtw , we have h(+c<eA)<h(a)<\/, S0 +°°A€S (). ==

Combining theorem 2.1 and lemma 2.2, we obtain

Theorem 2.2. For X, A-and" F as in theorem 2.1, and for a -mapping A AS ——) f*‘v,'l.’.ze followin-g '
statements are cquival-enr:
I A is a duality.
?9. ' Thgre exists a mapping . " )-{XA —> F, such that all ’;pal'licll mappings". .I_“(;(, Jia—=T(x a) (xe X,
s from Ainto F,' are antitone, and all level sefs ‘ . :
S),(f(x, N ={acA|I(x,a)<y} : eXyeY) - ‘ - (.2;15):
are closed for ian,ana' such that (2.3) holds. . o .
If AC R is closed fbr' inf and closed, ihese statements are equivalent 1o
3 - Sameas 2 wilh"'c.’osedjbr infA? replaced by ''non-empty and C]oséd“.

Moreover, in these cases, T is uniquely determined by A, namely, we have (2.4).
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‘Remark 2.2. By (2.7), formula (2.3) of {hc'*orems 2.1 and 2.2 can be replaced by the equivalent formula

o wup Tl fx)

xedom [

Let us consider now the particular case when A = {0, + e} (which is closed for inf and closed).

(fe %),

L @2le

Theorem 2.3.Let X be a set and F a complete lattice. For a mapping A {0, + oa}X — F, the following

statements are equivalent:

10 Aisa duality.
22 There exists a mapping . X —> F, such that
fA

==l Y{X
xe c‘fo’(,)

where () is the set (0.9).

(fe {0, + w0},

Moreover, in this case, ¥ is uniquely determined by A, namely, we have

Y(x) = (X{x})A

(fe {0, + %)

- 217

(2.18)

Proof. 1% =2 2° Assume 1%and let ' XXA Z> F be as in theorem 2.1, with A = {0, + o}, Then, by (2. 3)1 '

(27 (2.4)_ (with a=0) and (2. 18), we obtain

o Iix, f(x)) = sup I'(x,0) = sup 7¥y(x
x_g( (x, f0) xeué(f) ( ). xel’g(f)Y()

- 2% = 1% Note that, for any set [, we have

ety Lleg
Ldinf £) H G ()

Hénce, if 22 holds, then, ‘by (2.17), we obtain

(inf f-)A. = SUp Y=o

L up . WX =
ie 1‘ : X€e t;(% £) xe iL(;_)l 5if)

. : A
=20 sup x)= sup f:
iel xe (fiy( iepl 1

(fe {0, + 0o}%).

'({fi}iel < {O: g m}x)-

(£} S {0, + 15,

(2.20)

Finally, to prove the last statement, assume that v is as in 2°. Then, by (2.17) for f= Xixp We obtain

13




-Ar: .l -"':"" : : ) ' {3 'ﬁ
Ctexy) - &1;})3(?) ¥(x) | ‘ (xe X).

Remark 2.3, {\\'
N

One can also give the following direct proof of the implication 1° = 2° with ¥

of (2.18): We have

f=%e (fe {0, +=}%), @.21)
where, for any set M € X, |
Brs) =00 i xeM, = : ' | (2.22)
= 4 o0 if xeM. '
Hence, by 19, we obtain -
f{‘ = () = (r, (Dx{x,&ﬁ‘ - S Gep)® (fe {0, + o)), (2.23)

& 3 DUALTEIES A AW

Theorem 3.1. Let X and W be 1wo sets and let ASC R, < and B,<YC R, <) be complete

: . -y . : S . : e v
lattices. For a mapping A: A5 BV, the following statements are equivalent:

1r ' A isaduality.
o There e'):iszs‘ a mapping G : X>_<W><A — B, satisfying, for every ‘irzdefr set 1,
G(x, w, llgfIA 31) = isc.uPB ‘G(x, .w, ) St “(.xe X, v'«e -\AV,.{ai}iGI <€ 'A‘)-, (3.1)
- andsuchthat .~ e ; ; .
o (W) = s Bt C (feAX, weW), G2)

-Aio}eox*Cij, in this case, G is uniquely determined by A, namely, we have
G(x, w, a) = (x, o )2 (w) (xe X, we W, ac A). (33).

Proof. 1° = 2°, If 1° holds, and T': X XA — B¥=F is as in 2 of theorem 2.1, then for G : XX W XA~

- B defined by

14




G(x, w, a) = [(x, a) (w) . ' (xeX We Rk de A) 3y '
- we have (3 1) and (3.2) (by (2. 2), (@ 3) zmd since the sup in Bw is defined ponthse)

22= 19, If G: XXWXA - , B is as in 29 then for I': X XA - BW.p deﬁned by (3.4) we have
2.2) and (2.3), so we can apply theorem 2.1, implication 2° = 1°

Finally, (2.4) and (3.4) imply (3.3). =

Combiﬁing theorem 3.1 and lemma 2;2 v(applied to bhx,W (8)=G (x,w,a)and F= (B, 9 € R, S)) o, we

obtain e o . ‘ : =

Thédrem 3.2, For X, W, Aand B asin theore;n 3.1, and for a mapping A: A-X - BY, the following
- statements are equivalent:' v ot ‘
1% A ‘is a duality.
22 There exists a mapping G: XXWXA _é‘ B such that all partial mappings G (x, \;v, Jia—>
: = G (x,w,a) (xe X, we W), from A into B, are non-increasing ard all level sets
s, (G (x,w,.)={acA|G(x,w,a) <y} o (yeB) . B '
are closed for ian, and such that we have (3.2). 5 '
‘ If A €R tt.v closed for inf and closed, .zhese statements are equivalent 10

30.' - Same as 2°, with '_’all {evel sets  (3.5) are closed for mfA "replaced by : all Q(x, w, .) (xe X, we W)

are lower semi-continuous and G (x ,W,+°°A)='O°B (xeX, weW) .~ : - -

" Moreover, in these cases, G is uniquely determined by A, namely, we have (3.3).

RemarL 3.1. Similarly ‘to remark 2.2, one can replace 51.9( by 3up ; in formula '(3.2) of theorems
xe dom : -

SIand 32

In the pamcular case when A = {O + oo} we obtam

'Théorlem 33. Let Xand W be two sets, and let (B,<)C (R, <) be a comple lattice. Fora mapping
A: {0, + oo}x —BY, the following statements are equivalent:

1% A isaduality.
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20, There exists amapping @ XXW — B, such that

fAw) = Z‘d&{)(g)(x, W) , : (fe {0, + oo}x, we W), 36

Moreover, in this case, ¢ is uniquely determined by A, namely, we have

9%, W) = (g ) - eXweW) 3.

Proof. 1° = 2° If 1 holds and y: X — BW _F is as in 20 of theorem 2.3, then‘ for (p:XXW- 5B
defmcd by:. . | .
O(x, w) =7 (x) (W) (xeX, weW), ‘(3.-8)
we have (3.6) (by (2.17) and since the sup in BY is defined pointwise). ‘ :
2= 191 @ XX.W —~) B isasin?2% thenfor y: X — BY - F defined by (3.8) we have (2.17), so wek
can apply theorem 2.3, implication'2 ¢ = 1° - |

Finally, (2.18) and (3.8) imply (3.7). "

" Remark 3.2.

One-can show that the particular case B = {0, + eo},0f theorem 3.3, is equivalent to [18], theorem 14
which srtates that if X and W are two séts, then for a mapping A :. (2X, 2) = (?.W,Q), the Afollowing
stalemér;ts are equi m’erzz' - v :

'- 12 A i duahty

| 22 There exists aset* Q& XXW such that

- A(M) = {weW | (x,w)e Q (xeM)} ' : M € X). - : (3.9.)
-ijoreover in this case, Q is uniquely déténnincd by A, namely, we have 4

Q=0 WE XXW|we A({x})} : 15 : (3.10)

Indéed it i~well known that the mapping §:f— §(f) is a complete lamu: 1somorphxsm of {0, M,O}X onto

_ (ZX 2), with inverse (; (M) =1y MEX). “Hence, inone direction, to each duality A: (ZX 2)—> (2W,g)

thu’p corxmponds the duality &: {0, + oo}X - {0, +°o}W defined by @ = a() (Fe {0ires] ) and to
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cacil @: XXW - {0, +=} =B thcr?: corresponds Q= § () &€ X XW; in the converse direction, to each duality

. A {0, + <><>,}X - {0, + oo}W there corresponds the duality &: (ZX; 2) = (’ZW, 2) defined by &(M) = (;((XM)A)
(M &€ X) and to caéh set Q&€ XXW there corresponds t.he mapping q) =X KXW {0 ) b,

‘We shall use the notation U = {0, 1]. We recall that, given a set X, each fe UX is called a fuzzy subset of

X, and a fuzzy subset f; is said Io. contain a fuzzy subset f,, if f; <f, in (UX, <), where U is endowed - with tﬁe

natural"ordcrs induced by (R,<) and <on UX is the usual pointwise order (see é.g. [24]). Although the set

U, _é) ¢ (R, <) is neither closcc} for in.f, nor éloséd for sup, it is a complete lattice, with + Sl 1,~eoU ———_0,

and we have »
sup” M = sup M, infY M = inf M : (@+M C U); 3.11)

“ also, U is closed. Hence, from theorems3.1 and 3.2, we obtain

Theorem 3.4. Let X and W be two sets and let U= ([0, 1}, ) & (R, €). For a mapping A: UX - UW,
the following statements are equivalent: .
1% A is aduality.

2% There exists a mapping G : XXWXU — U, satisfying, for every index ,Set 1%,

Gl ) =Sip G wa). . } - (ch wew, {a Je€ U :(3.12)
Gx, w, 1) =0, Sl o _ (.13)

and such that
A (w) = S\&G(x w, 1)) : C e (el we D (314

‘_ 3%, There exists a mapping G: XXW/(U—%U satzs")mé (3.13), such_that all pamal mappings
Gx,w,.): U > U (xeX, weW)are non-increasing and lower semi- continuous and such that we have (3.14).
3 Moreover, in’ these -cases, G is uniquely determined by A, namely, we have (3.3) with A =U (where

X{x} $ae UX isdefined by (1.10) with A =T, ey

Remark 33. Theorem 3.4 can be also deduced from the particular case A =B =R of theorems 3.1 and

3.2, using e.g. the homeomorphism y of [0, 1]-cnto R = [-00, + o] defined by

w(a):tg(m-’%) S0 el D), ()=, - 3.15)

17 : S 1\,



and the observation that A X5 UW isa duality if and only if there exists a (unique) duality & RX HR¥™

such that ‘ =y : :
oyl oo : (fe U%); | (3.16)

indéed, then, for G': XXWXR > R corresponding to & by theorems 3.1 and 3.2, the mapping G : XXW XU -
— U defined by
Gx, w,a) = (y} o GY) (x, W (a)) i = (xe‘X, we W, acU) S (3.17)
has the properties stated in theorem 3.4. ' :
Returning to general (A,5), (B,S) C (R,%), letus c_onsider now the dual ope}ator A BW - A_X defined

by (1.25), that is,

* X ? o ; : :
g = infA {fe A% | A< g) (geBW). s (3.18)

Theorem 3.5. Let X and W be two sets, (A, <) € (R,<) and (B, <) & (R,S) two complete lattices,

A A% 5BV a duality, with dual &% : W — A% (of (3.18)), and G:XXWXA—>B,G :WXXXB—A

the mappings corresponding to them by theorem 3.1, i.e., the unique mapping G satisfring  (3.1), (3.2), given

by (3.3), and the unique mapping G satisfying, for every index set 1,

Gt xinfP by = supt G x, b) ' wEWxeX. bl CB), - Bi9)
; iel ie i : ilie
gd ()= sup™ G*(w, x, g (W) (ge BY, xeX), _ " i320)
; vreV : : - =t e :
given by
; A , :
G* (W, %, b) = Gy $ 0 (0 e eW,xeX,beB) - B20

Then,' we have

*.,

G* (w, x, b) = min {ac A | G (x, w, 3) < b} _ (weW, xe X, beB). (322

Proof. Let ?1 and T, be the families of infimal generators of E =(AX,<) asd F-@BY,5)
respectively, provided by example 1.4, that is, Yl of (1.12) and
Ty={Xg FblweW,beBL - : (3.23)

Then.,'by (3.21), proposition 1.2 (for Y = Y ), (1.10), lemma 2.1 (for (BW, <)and Ty), and (3.3), we have :

18
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G* (W, %, b) = (Xpp A (1) =
i ngh Xyxy )+ al xeX, as A, (Xpe) + )l < Yty +b} =
= inf® {ac A | ey + 0 (w) < b} =
~ inf® {ac A | G (x, w,a)<b}  (weW, xeX, beB). ‘ (3.24)
But, from (3 24) and(3.1) we obtain .
i G (x,w G*(w, x, b;)»—sup {G (x, w, d)|acA G(x, w, a) b} <b,

so the last infA in (3.24) is attained for G (w, x, b)e A, which proves (3.22). =

Remark 3.4. One can aiso giv-e a direct proof of theorem 3.5 (which does not use proposition 1.2), By
: 'showing that for the mapping H: WXXXB — Adeﬁned by
H(w, %, b) = inf® {ac A | G(x, w, 2) < b} . ‘ (we W, xe X, be 15), : 305
the inf® in (3.25) is attained for G*(w, x,B)e A and we have H = G* of (3.19) - (3.21). We omit the details.
Let us éonsider now, for any duality A: A% BW, the hull operator Afa: AX o5 A% As usual, we shall

3t :
denote A A (D) by fAA for any fe A%,

Lcmma 3.1, Under the .assumpuars of theorem 3 S, for any fe AX we W and be B we have the
equivalence :
B(w)<b e G (w,.,b)<f. , ' : e L - ey
Proof. By Alemma 2.1, (3.21) and (1.26); we obtain ‘ -

B b e B2y db e G (., 0) = Ly LhR =6

S ,Thebreﬁx 3.6. Un'der the assunzptions' of theorem 3.5, we have
(A8 =supAX (G*(w,. by | weW, beB, GXw,, D) <1} (feA). il e
: Proof By (3. 20) (for g = By, (3. 19) md lvmmq 3.1, we obtain :
fAA x) = sup G (w, x, fA(w)) = sup G*(w, x, inf® {beB | fA(w) <b}) =
= su sup {G (w, x, b) | be B, f‘\(w) <b}=

we W

- sup™ {G"(w, x, b) | be B, we W, G’ (w,., b) < f} (fe A%, xeX). =
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The following problem has been raised in [20], section 3.3 : If X aset and Wg;'ﬁx, does there exista
duality A : RX -5 R such that
el o €W |wsf, : (7, 3.2
= fpow) = SUP {we w < f} (feRE) (3.28)
where fZ{(W) is the "W-convex hull" of f,in the sense of [4]? Itis well-known that if W +R G W, then the

Fenchel conjugation ¢: X — BY of [10], [11), (4], defined by

f“(w);sup({w(x) +-f(x)} = . (feR¥, we W), (3.29)
xg 2 ' s :

satisfies (3.28); however, this assumption is not satisfied e.g. when X is a linear space and W = X#, the family of
all linear' functionals on X. Returning to the general case, in [20] it has been observed that if we define
A:RX SRV by
fA. =X{weW|w<f} : ) - (fe ﬁX), (3.30)
then fy W) is a "mixed" second dual of f, namely, we have
A\ct : i
f;i(W) = () o (feR); (3.31)
; Wherc ok R RX is the dual (in the sense (3.18)) of (3.29). A solution to the above problem can be obtained
e : e S LW BW Bt . ;
by regarding A of (3.30) as a mapping from R™ into {0, + o} ™ (instead of R™). Indeed, Wwe shall prove
Tl_le(irexxx 3.7. If X isasetand W G ﬁx, then for A X 5 {0, '+oo}w defined by (3.30) we have
@), :

Proof. Let A = R, B= {0, + }. Then by (3.3), (3.30) and lemma 2.1, we have

G(x, w, a) = (X{x} + B)A (W)= LiweW ; W<y .{x}; a} (w) =

= L{weW | w(x) < a} (w) : (xe X, we W,-ae Ryioa - ' (3.32)
whence, by (3.22), o | :
- G¥(w,x,b) = 'min'{agﬁ | et wiycay 3 503 = :
~ { min {aeR | w(x) € a} = w(x) =0 (3.33)-
—oo  ifb =4 oo,

Therefore, by (3.20), :

% 2
s sup G (w,., g(w)) = sup {we W | g(w) = 0} (ge BYY, (3.3%)
weW |
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whence, in pqmcul ar, for g = fA we obtain, by (3.30),

A" _ cup [we W | f2(w) = 0} =

PmmﬂﬁmBlJbrA:RK»Bwc#@jmﬂwweB={Q+wLwﬂc:§X%§Wcf@l%ﬂwhme
fﬂ(w)=imqbeslf%w)Sb} : = GéiX,WE“O( _ (3.35)

Proof. By B= {O +o0} and (3. ”9), for each fe RX we have

inf {beBl|f (w)sb;=

= inf {be {0 + oo} | sup {w(x) + »f(x)} < b} =

{oifwsf
+oo if3x € X, w(x,) > fx,), -
which coincides with f2(w), for 2 of (3.30). e

As an application of theorem 3.7, let us prove

Theorem 3.5 La X = {0, 137, let W— ®RY” IXCRk, where (R™ is tl;e family of ali linear
functzonals on R and let A: R¥5 {0, +oo}w be the duality (3 30). For afunctzon feRX denotzng
D = dom _f, the foliowing statemenls afe equivalent: : - : .
L

'h 25 Either fE;—Go,or f has tlzefollo‘wing properties: -
W) fe@®U ) '
@) 0<fO);

(i) for any 7\&'2 0 (xeD) such that xg‘ﬁ A, xe€X, we have } A, xeD and .

Xe ; ‘
f A X A, f(x . - . (3.36)

5 (2.;5 ) PRMCOY | - 2 .
Proof. 1% = 2°. Assume 1° and assume that f—oco, so there exists x €X such that f(x))>=-ce.

Then, by (3.23), we have
4 3
-0 <f(x,) = e (x,) = sup {wixy) | weW, w<f},

whence
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{weW | wsf}# & S _ » (3.37)
and hence, again by 1° and (3.28), we obtain
% 5 ;
f(x) = 28 (x) = sup {w(x) | we W, w<f} >-o0 (xeX),
50 (i) holds. Furthermore, by 19, (3.28) ,— W = R")" |y, and (3.37), we have
O f0)= P (0) = sup (w(0) | we W, w< f} =0,

that is, (ii). Finally, if A, 20 (xe D) are such that 5: A, x€X, then, by 1% (3.28) and W = RY Iy we obtain
_ : XE
= ¥* ; ' ;
f Ak et Zxx =5 A veW, w<fy<
(xgﬁ "x) (xe‘) x ) o {)z;l) X L W } ]

%
S? A, sup {w(x)[weW,wa}‘:%l AN (x):}%k f(x),
Xeﬁ X Xe X X€E X
so (ii) is satisfied.
* & ¥
2% = 1% If f=-oo, then pAA < f=-o0, whence = fAA"
Assume now that fe RX satisfies (i)-(ili) (them, by (ii), f#E-o). We claim that (3.37) holds. Indeed, by

X ={0,1}" and (i), for any sufficiently-large k the function wkeW defined by

J

n . i
wy(X) =~k 2_, g, ' S : ; (x = {ﬁj}{’e X} (338)

—
p—t

satisfies w.'k(x) <f(x) (xeX\ {O}), which, together with (ii), impli?s that wké {weW |w = f provipg the claim
337, Furthenﬁore, by (iii) (for A, =0,xeD), wehave 0&D and £ (0)0; note also that, by (ii), this yields
©£(0) = 0. e 2 oo heaa g
: ~ Forany x € X we have, by (3.28), (3.37) and linear pro_grammiﬁg duality theory, :
. . . ;
24 (x ) = sup {w(x,) | we W, w(x) S f(x) (xeD)} =

= inf {';(;,Dxx f(x) ngﬁ o Ay 20

5 owen (3.40)

e

‘Indeed, the first program in (3.40) is feasible by (3.37). If x,€ D, then the dual pfcgram,-i.e.,the second one in

(3.40), is also feésible, since for A, =1, A =0(xeD\ {x,}), we havez, A, x = x; hence, both programs
: 9 xeD. -

admit oﬁtimal'solutions and have the same value (e.g. by [22], theorem (1.7.13) (ii)). On the other hand, if x €D,

then, by (iii), we have

: {(xx)xeD{gb hy X =% A 20 (xeD)} =2, | (3.41)
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i.e.,I the second program in (;3.40) is not feasible. Hence, we have -again (3.40), with all terms being = + e
(by inf & = fie and e.g. [16], p. 114, th‘eorenﬁ 5.1). This proves the claim (3.40).. -
Now, if x €D, then, by (3.40) and (iii), we obtain
84 (x ) > inf {f(;};;Dxx X) ’xz:f) A x=x, A 20 (xeD)} =
)2 B8 ), . et e
? whence FXA&(XO) = 1(x,)- Finally, if XoE D) -th'en%%ﬁg%bove proof of (3.41), we obtain fAA#E (Rg)="too= f(xo).-
We recahll (see [14], p. 172y that a function f: X — R, wh_ere C REs called polyhedral convex, if_ thére
e;ltist f'u’fin'e functions y; = w; +d; : R”_% R (we RYY, d;eR; i = L k; Kk <+ o9), such that g(x) = insaékwi()()
(xe X). A function f: RP— R is called a) proper ([14], p.- 24)if fR™) c RU {+ e} and f%+ « (ie., f(x) < +.<>o

for at least one x); b) positively homogeneous, if f (A x) = A f(x) for all xeR™ and A20.

Corollary 3.1. a) Under the assur}zptions of theorem 3.8,f0r a mapping feRX the following statements

are equivalent:
i ¥
e el
2°,  .Either =400, or f can be extended to a proper "lower semi-continuous convex positively

: = i
homogeneous function fon R
b ._.Every function f: Xk satisfying 19 can be exten_ded: to a polyhedral convex . positively

A
homogeneous function fon R".

 Proof. a) 1° = 20 If 12 holds and f%_too, let

A p A ~ z : : : .
f(x) = sup {W(x) [we(za“;‘;'wjx <f} (xeR"), (3.43)
: ) , , :
fihens et 00 o o ofdSEa lower semi-continuous convex positively homogeneous function,

e o A ARE 2
and, by W=(Rn),ﬁﬁlx , (3.28) and 19, we have f| =f"" =f Hence,by f£400 we have £ +00.

e o S S T .nu.,_w.w_..~_,,...‘_..mm_..-_.,u,mv.m,,,_. s ;\. < et e 2 A, 5 S = a
Finally , i there exists X, € Ri‘\ such that £ (x,)= ~00,then )by [3,43)) Swe(®) (W ‘X Si%:

=g ,whence,again by (?9.43)) f=-0m, and hence £ ‘;?lx:—-—m ,In contradiction with
our assocmption .Thus, f is proper g "

28 =18t __f=400,then , by theorem 3.8, fAA°_ f. On the other hand, if # %o, then,
. = 7 -. 1 * i
byi2z, f = flx satisfies conditions (i)-(iii) of 2¢ of theorem 3.8, whence ey

b) If f: X —>R satisfies 1% then, by linear programming duality theory {see the above proof of theorem

3.8), foreach x € X =D the ..sup in (3.40) is attained, for some w, € W. Let
e 2 v . (6]



f(;): max \gxo(x)' e : (xR ). o : - (3.44)

X eX
where w Q(R“) is thc umquclmeAr functional such that w | pes
o 5 L s ol o
C:Ihf:n f is poly Ldldl convex 'md posmwly homoﬂuu,ou% and, smce w, <f, we have ﬂx<f but, by (3 Lfb:)
: o

A

(3.40) and _10 > f(xj > w,0=f(x) (xeX), whence fly = f. u

§ 4. STRICT DUALITIES A : AX 5 BV,

Definition 4.1. Let X and W be two sets and (A, <), (B, 5) & (R, <) two complete lattices. We shall say
that a mapping A: AX = BW is a strict duality, if A isa duah‘ty,'such that for thé mépping G: XXWX-A - B
defined by (3‘.3); and for each (x, w) € XXW, G(x, w, .) is a strictly decreasing mapping of A orto B(x, w) =
- [G(x, w, 2) |ac A} C B. |

Let us consider the case when A=B=Bx,w)=R ((x,w)e XXW).

Theorem 4.1. Let X and W be two sets. For a mapping A: RX 5 ﬁw, the following statements
are cquvalen! I

12 A is a sirict duality, with B(x, w) =R ((x,w) € X)’W)

28 There exists a mappmg F WX X XR -—)R such t/zat for each (W, X) cW XK, F(‘vl %, ) isa

strictly decreasing mapping of R onto B (whence F(w, X ) +w) and SUCh that

) —ms&u?m Bl w i) . S (B wew), @y

- where_. 1'7* : XXWXR - R is the mapping defined by '
56 v = F, %, ) (@) (xeX, we W; ae;ﬁ). D
{«“fiareovcrv, in this case, F is uniquely detérmined by A, riame&y. ; A
F(w, X, b) = G(x, W, .)“_‘ (b) : ' (weV, xe-X , beR), @.3)
_where G : XXWXR 5 R is the mapping defined by (3.3).
: Proof 19 = 20 If 12 holds and G : X)(W)(R—e R is as in definition 4 1 then for F:WXXXR-R

defined by (4.3) and E* of (4.2), we have G =<F » whence, by (3.2), we obtain
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fA(w)_zngF*(x,w,f(x)) s . (feRX, we W), b. ey
XE 4 : . : : ;

But, for xc\\domfw*“xa\c f(x) = + oo, whence, by (14 Ly and (3.3), we obtain (4.1) .
20 = 1% If 2° holds, then all partial mappings F*(x, w,.) (xeX,weW), defined by (4.2), are
non-increasing and continuous and satisfy F(x,w,+w)=-00, whence, by (4. 1) and theorem

3.7-, implication e appliied to G=F",it follows that Ais s duality.

Fxmlly, again by (luorun 32,6 = F s given by (3.3), whence, by 4. 2) we obtain (4.3). =

Remark 4.1. Letus mention the following related concept of [Rl=let X, W & RECA.BC R and et
E:WXXXB—- A be a mapping with the fqlldwing- properties: (i) the mappings F(w,., b): X—> A and
Fosx,0) WXB — A are continuous; (i) (w, b) = F .(w,. ,b) is aAo'ne~to-one mapping of WX Bonto 7 =
= {F(w,-, b)l(w, b) eWXB}C AX; (iii) for every convergent sequence (W, bn) c WXB, (W bn) —> (;vo, boe

e R'XR, we have either . Li‘qwf(J A, b )=t 00 (x€ Xyor (w, b e WX B; (iv) for each v, x) e WXX,

F(w X, )1§ a smctlv decreasing n;appmg of B onto A and the mapping F' XXWXA — B defined by (4.2)
has the properties, commondmo to (i)-(iii) (but, it is not as,sumudnzt (AX ) (BW <) are complete 11.1“10(.,5 for
-examplc., 1f A=B=R,thecnteog A)‘ 3\’) In t‘m case the mg 1ppmo 3 B - W of (4 1), 4.2), wnh fc—: AX
callcd,'in[ 2], "the 7 -conjugate of £ anddtis dvnotf’d by frf Thus if A=B =R, then,since each smctly

~ dccrmsing mapping h of R onto R canbe idcnufxcd with its umquc extension to asmctly u;reasmg mapping

h of R onto R (h (£ 00) = 3 ), 1t follows that A(he mappings fes f7 of (2], with A=B =AR; are "particular
cases of strict dualities. -

For 6 of (3.21),}t Alu,x)= 30 (ur, %, ) | be B (0 WXX).
wwith B, w)=R &,W)EXXW),
 Theorem 42 Let X and W be two sets, A RX 5 BWY g strict c!.talzly, and F:V XX XR-> R the

" mapping corresponding to A (by theorem 4.1). Then the dual A*RWY 5 RX (in the sense (3.18)) is a strict
with Alw,x)=R. ((w,x)éWXX)»

duahly\f’a'for the mapping F' X X W AE — R corresponding to A* (by theorem 4:1). we have (where s
defincd by (4.2)) : = : . . l. _
ot : L ' (@.5)
Proof. From (4.3) it follows that

G(x, W, a) = F{w, X, Jla) (xe X, we W, gen) s (4.6)
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(where G is defined by (3.3)). Furthermore, At s a duality, and for G defined by (3.21) we have, By (3.22) and
since each Flw, X, ) (weW ,x e X) is a.srricly dccfeasing mapping of R onto R,
G'(w, x, b) = min {aeR | Faw, x, )" (@) < b} =
= F(w, x, b) : (we W, xe X, beR), . 4.7,
whence, by (3.20), we obtain
* ae : s
¢ (x) = sup Flu, %, g(w) ! (eeRY, xe X) . ey
we W ; G
But, by (4.2) and our assumptionon F, each F*(x, w, .) (xe X, we W) is a strictly decreasing mapping-of
R onto R. Hence, by (F*)* = F, (4.8) and theorem 4.1, implication 2° = 1% it follows.that A* is a strict
- duality,iwith A(w,x) = R ((Lu);g)é\ XX) and that the Lorres(&om(njf mapping F’ satig-
fies (4. J) 2

§ 5. CONJUGATIONS ¢:R¥ » RV

In this section we shall consider conjugations ¢ : RX 5 RY, defined by (1.5) (with A=B =R)and (1.7).

Let us first show that some results of [17] can be deduced easily from the preceding results.

- e

e ThC(;x'cm 5.1- (117], theorem 3.1). Let X and W be two :vets. For a map'ping c:R¥ RW the
followi):;g ;flatemcnts are equivalent: l .
12 W .cisa conjugation.
2°.  There exists amapping ¢ XXW.— 'ﬁ,_such that
W) =¥S€U§.{(p(x, w) +~f()} : (feRX, we W) o sy
- Morecover, in t.his casé q) is uniquely determined by c, .name_ly, we have
o(x, w) (7{x}) (W) it = (xeX, ch) - )

Proof. 1°= 29, If 12 holds, then c is a duality (by the remark made after formula (1.7)). Let G : XXWXR =

- R be as in thtorun 32 (with A=B=R and T A). Then, by (3.3) and (1.7), we have

G(x, w, a) = (x{x}) (W) +-a : 4 (xe X, we W, acR), (5.3)-

whence, by (3.2), we obtain (5.1), with ¢: XXW — R defined by (5.2). Thus, 18= 02
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The proofs of the implication 2° =» 1% and of the last staternent (on ) are simple and can be found in [17]. «

Remark 5.1. a) By (5.2) and (5.3), we have
| ox, w) = G{x, w, 0) : : (xe X, we W). (54)
b) By (5.3) and (5.2), we have .
G(x, W, a) = Q(x, W) + -2 - & (xe X, we W, aeR), ; (5.5)
B of (5.1 is a strict duality (i, G satisfies the condition of definition 4.1)if and only if
(p(XX\_,V) c R. This happens e.g. for W C R¥ and Q(x, w) = w(x) (xe X, we W) ; i\g\%‘gse, if we replace ‘Ti by
. A = [0, 1], then c: AX 5 RWY s still astrict duality in the sense of definition 4.1, with B(x, w) = w(x) + (-A)

(xe X, we W),

= R

We recall that if c: B% —RW is a conjugation, then, by [17], theorem 4.1, the dual operator ' T y RX

_ (in the sense of (3.18) above) is again a conjugation.

Theorem 5.2 ([17], thcorem 4.2 and coroll‘ary 43). Let X and W b;z ?wo sets, C: RX ﬂi\va
'C'onjugz_zlicin, with dual conjugation c*:RW——)'RX, and let o XXW - R and (p*:-WXX--T:»-R b.c the
(rl&pping& qsso'ciarea' o ¢ and cft respectively, by theorem 5.1. Ther}_

(X{W})C*(X)ﬂp*(w, X) = ¢ (x, W) ' ' . (xeX, weW). ' e : (5.6)
f’x_‘oof. Applying‘(S.’Z) to X, Wand c rcplaced by W, X and ¢ ’resi)écti'v'ely, we qbtain the r;irsf eqﬁality .in (5.6).
: Furthérmore, if GIXOOWXR SR and G*:WXX)_(Ti — R are the mappings .associated to.c and é*
respecti\'cly, as in theorexﬁ 3.'2, thén, by (5.4)? (3.22), (5.3), (5.2) and [11], corollary 3 ¢) and formula (2.1), we

" obtain

i

@ (W, %) G (w, x‘, 0) = min {aeR | G(x, w, a) S0} =

1

min {acR | ¢ (x, w) +~a< 0} =

min {aeR | ¢ (x, w) €a} = (pl(x,_w) (xeX, weW). =

Remark §2. 1f @ (XX W) C R, one can also give the following proof of theorem 5.2: By remark 5.1 b), ¢

is a strict duality, whence, by (5.4), (4.7), (4.6) and (5.5), we_obtajn
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<p*(w,v»x) G*(w, %, 0) = Flw, %, 0) =

- Gl w, YO = (R ) (xe X, we W).

Now we shall consider the particular case when =0 1% W C1X---><Cn, where C; € R (i=1,.,10)

are unbounded from above and from below (c.g., W=R", or W = 78 the set of all points in R® with integer

coordinates) and @ is the "natural coupling function” on X XW, given by the scalar product, ie.,

b gia

n :
j (X, W) = W(x) = D & (x= {@i}I‘ e W = {n; }‘i e W). 5.7
i=1 :

Thus, the functions feRX are now functions f: {0, 13" TR (ie, extended functions of 0-1 variables, of

extended "pScudo-boolean" functions [81). Note also that (5.7) identifies W with a subset of (Rn)*, the family of all

: 5 . A 5
linear functions on R", and that the conjugatons ¢ and ¢ are now given by

£0(w) = max (w(x)-f(x)) (fcRX, we W), (5.8)
xe X ;
c* : B W :
ot ()= SU{) (w(x)-—g(w)) (geR", xeX). ; (5.9)
we W : :
‘Remark 5.3. By (5.8) and (5.9), we have
fc = ?%lw ) (5.8I) .
where T (respectively, ) denotes the extension of 'f (respectivély, g) to R etch
that ﬂ o ('E]Jl . =+o0), and = i the usual gonjugation OperaEon of convex analysis.
CRONX e o el e e A

Theorem 5.3. Let X = {0, 13", WG.R" and cbe as above. Fora functz;on, feRX the following
. statements are equivalent:
19, s,
20, fe RU{+=hX U {-w).
" Proof. 19 = 2% If 1° holds and if there exists x,€X = {0, 13" such that f(x)) ==ee, then, by (5.8) and 1°,

sup (w(xg) 1= £(w) = 2 &) e

whence; since w(x,) € R (by (5.7)), we obtaiﬁn € = 4+ oo, Hence, again by 1° and (5.9), it foliows thoat vf=
S OO)C*E Zoa
20 =3 19.If £ = ~o0, then, by (5.8) and (5.9), " = 1.
Assume now that T& (R U {roo])X, 50 KIS R U {+ o}, and let x, = &) e X={0, 13", Then, for
. : ;

each Ae R, A < f(x ), there exists. Wy = {ni‘ o n)” } € W such-that
. . n .

2



....... o ' if £°9 =0, A 51

A< min :
ni x = {E }nr{ : n B
i le -2
f(x) < + o0 =12
. : x_. f()\) i : 0 : : 2]
n?‘ 2  max { max1 ———~n—-—-—~————— ,0 } if E,iz 1, + (S0
: Xl =k : -
TE7 0 e g

SEesan ' : : ;
where, in R ,.< denotes the natural-partial order .and < megns: < and #

Lot = {'éj}i’ e 40, 130, x 2, f00) = wieo. If x;t X then, by (5.7), - (5.10) and (5 11),we have

W (=10 = 2o & ~F00) = 2t -f00 =
i=1

i
n : ;
< () =it Z ’n’f—f(x)sz11).‘53‘?“'7&=wk(x0)~?x.
- Belaboi ot o el D ‘
i i

If x<x,, then {i]2% = 0} < {i | & = 0}, whence, by (5.7) and (5.11),
i : i ;

Wy () = f(x) = Z 7 - 2 : ﬂk_—f(x) -
e g0yl el §i=0 -
S Ea. ) e :

-89 min. mh-f0s
J=1 ) ) E:o.:l» g_:O !

1

o |
g - (=)0 = D MO A= w(x) -
: E2=1 ST : :
1

-Fimlly if x = x._or f(x) = + e (or both), then for any w,€ W there holds Wx(x)— f(x) < wy(x,) -\. Hence,
< ’ ) :

for each AeR, A < f(x,)), there exists w,€ W such that
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Ic(w;\‘)-—— max (wx(x)—-f(x))Sw#xé)-)&. ; (5.12)
: xe {0, 1}" -

Consequently, for each Aeé R, A < f()ﬁo), we have - .

. : * . 3 2 i ¥ - = 7
2 Tl e i ) .—_ws'éxcv(w(xo) — W) 2 wy(x ) -f(wy) 22, . (5.13)
and hence f(x ) = {CC*(XO). Thus, since x € X was arbitrary, we have 1% =

Remark 54. We recall (seee.g. [5], theorem 3.6 or [1], p.332) that, if X, W are arbitrary sets and
¢: RS RY s any conjugation (5.1), for a-function fe R% we have f =" if and only if fis the supremum of a
family of “"elementary functions” {@(., ;) fdi}iel' The set {fe R £= £€%Y is usually denoted by T'i(X, W) (see

(113, 51, (1)),

e e e e i e e e e e s < o = A o e e S S R e S i el ke

Corollary 5.1. Under the assumptions of theorem b3y if xocX, then the following

statements are equivalent:

i E:ther‘f( ) = ~o0, Or fé(RU{%OO})X

S e A~z

8 Proof. o i f(x,)>=co, then, by 1% s (xo)> — oo . Hence, by theorem
: 2% . *
5.3, applied to f°¢ (which satisfies 1° of theorem 5.3, i.e., £9C = (f

a‘ ey : :
- ; : X
" we have £¢ P\u{+ooJ X , whence, by F;fcc , we obtain fé-(RU{+00}.)

cc® e,
) ) y

29 = 1% 16 k) = mea , theny by F3F°C , we have —eo= f(x ) = FE© (x.). On the
other hamd; it f E(RU{+4‘0})X, then, by Atheorem 5.3, we have f =.£¢ , whence

-',f<xv> BaRee (L

We recnll that if X and W are two sets and c¢: R%: }\W isa LOHJU”JIIOH (S 1) then the subdifferential ch(xo)
of f: X—s Ratx e Xis the set defined by

' 0,f(x) = {we W 0(x, W)-0(xy W) S 1(x) +~T(x)} | .

Some authors (see e.g. [1], p. 332) define (5.14) only under the additional assumption f(x )eR; however,
" since we shall consider only @ of (5.7) (which is finitg), this assumption will not be necessary. It is well known

(see e.g. [1]; p. 332) that if 3 f(x ) # & and f(x )R, then " (x;) = f(xy).

oAb e A O B SO S R RS SR SRR e U SOl et e ol
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A P e g e s

Remaris Sib. Biiciis fhdc_ohjugation (5.8), then ¢ is.the natural coupling function
(5.7), and hence, by (5.14), we have

2 flx,) = af”-(xo)mw’, | : e (5:1k#)

~ n ) . g 5 .' : ~t
where f:R —»R is as in remark 5.3 and ’éf(xo) is the usual subdifferential of f at x .
: canic

The()rem_., 5.4. Let X =10, '1}“, W< RYand ¢ be as in theorem 5.3, and let feﬁx and X.E Xis leé.
following statements are equivalent:
. ‘Q 7
1e, ch(xo) £,

/’/—TMN\‘\
D f(xo)eR and f(x)eR U {+e} Sl (XEX\{XO}).

S oo B e Lt e

Proof. 1° = 22 By (5.14) and (5.7), we have w;)e acf(xo) if and only if
wo(x)- WolKs)s f(x) i ~f(x0) 2 ; : e X, (5.15)
with. wo(x)-—wo(xc)eR (xe X). Now, if 2° does not hold, then we have either f(x,) €R, in contradiction with
(5.15) for x = x,, or f(x") = -0 for some x'e X\ {x }, which, again, contradicts (5.15).

o = 1°. If 2° holds, then, since f(x )R, the argument of the above proof of theorem 5.3, implication

20 =3 (5.12), works also for A = f(x ), whence fc(w[( o))<“f(“o) (xo) f(x ), and hcnce by (5.8), we have '

Wiy )(x) f(x)(wf(x )(x )~ f(x ) o ‘ e '(XE)\)t ' (5.16)
Consequcntly (considering the cases f(x)e R and f(x) = + o), we obmm . .
: “f(xo) (X)M“f("o) (xO)Sf(x)j ~f(xy) ; 2%, o (XEX.)’-_ . | (é_.r,')
o Wf(x )e a,f(x ) :
. I\cmark S.6. Rgcpntly %ups‘ube has shown ({71, theorem 3.1) that if X is a distributive subiattxcc of
{0, 110, W= ®RY, and c: R )R"’ is the conjugauon (5.8), with {O )% rcplaced by X, Lhen for every

submodular function f: X— R we have

f(x) = max. (w(x)ufc(w)) s o (xeX}. : (5.18)
we(R ) : :

From [hu above it follows that in this xesult the assumption ofy bmouzz’aru» of f issuperflous, even for

(R“) rep!med by WEC (R ) of theorem 5.3. Indu:d by theorem 5.3 (extended, with the same proof to any
‘ distributive sublattice X of {0, 1}™), for every function f: X - R we have ‘

f(x,) = fccﬁ(xo) £ su%‘/ (w(xo)wfc(w)) : : ek (5.19)

so it femains to observe that, by f‘(wf( 0)) <w{,xo) (xo) - f(\( ) and (5.8) we et fc(wf(x S wfxo)(x )~ 1(x,),

whence the sup in (5.19) is attained for Yix )
: s

31



e e e

From theorems 5.3 and 5.4 and corollavy 5.1 ,we obtain

Corollary 5.2, a) Under the assumptions of theorem 54, the following statements are equivalent:
“ - ? :
1.. acf(xo) # D, :
5 ;
ek S f#:-—oo and f(xo) < 4 oo,

*
cc

B i f @gf(xo)eR.

feRuresy and F(x_)eR.

b)  For feR%, the follbmv:ﬁg statements are equivalent:
12, There exists x € X such that d.f(x,) #4.
At A 1o fT+oo.. :

¢) For fE_It{X, the following statements are equivalent:
12 ‘acf(;o‘) 20 (x,€X).

-2°.M L e

"Remar arl/ 5. By remark 5 5 the ctatcments of coroHary 5.2 a). are equivalent to

0 :

6°. 2F (x ) ;5.

Let us prove now the following result, corresponding to corollary 3.1:

Corollary'5.3. a) Every function f:X = {0, 13® = R U {+ e} can be extended to a proper lower
semi-continuous convex function fon R™,
& # » % % . : ; ; <
b)  Every function f: X = {0, 13" = R can be extended to a polyhedral convex function fon R™.

P Proof. a) If =+ o, one can take, for example,

>

4{x {c;} eRY[ 3] & w1y (5:20)
: - j=1 J
If f4+ oo, define RO R by
?(x) = .sup. (vv(x)»tc(w)) ‘ : : (xeR™M). (5.2i)

we(‘{)
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where §:R"— TR is as in remark 5.3 and ?‘E}’(wo) is the usual subdifferential of

A y . 3
Then f is a lower semi-continuous convex function on R™ and, by theorem 5.3 and formula (5.19), we have
% . A 5 : i A
fly = f, whence f + e (since {4 + o), Finally, if we had f(x ) =~c for some x e R", then, by (5.21),

; : :
similarly to the proof of thgorem 5.3, implication 1% = 2%, it would follow that f =-co, whence fz=~co, in

- A i
- contradiction with our assumption on f. Thus, f is proper.

b) Assume now that £:{0, 1}" — R and, for edch x,¢ X = {0, 117, choose Wf(Xo)E W as i the above proof
of theorem 5.4 (in fact, any w, € d,f(x,) works, with a similar argument). Let

: 0

A : -

f(x) = max (wf(x ) (x-x,) + f(x,)) (xe RM. (5.22)

n :
Xoc 0S8 s

Then f\ is a ﬁolyhedm! convex function on R™ and, taking X, =X€E {0, 13" in (5.22), we obtain

> : S

f(x) = f(x) : (xeX = {0, 1}M). (5.23)
On the other hand, by {C(Wf(xo)) = Wf("‘o’ (x,) ¥f(x0) (see remark 5.6) and (5.19), we have

%(x) ‘ max (“'f(x (o) fc(wf( )< Supy (wx)=fCw)) = f(x) ~ (xe X),
% oo %)

whence, by (5.23), we obtai >, =f, ‘

Remark 5.8. Corollary 5.2 b) has been obtained, with a different method, in [19], theorem 4.1 (see also

[19], remark 4.2b)).

: : o : : % == = ‘
Now we shall interchange the roles of X and \v, considering the conjugation ¢ R d efined by

G 9) i.e., the conjugation with respect to the coupling function (p*: WXX =R of (5.6), with (p of (5.7).Then, ¢

~ for dny subset X of R™ and any subset W of (R“) the subdifferential d_+g(w, )ofg Wy Rear w,eW becomcs

c*g(w )— {xe X l w(x)—w (\)< u(w) +- (w ) (we W)} e (5.24)

Rema'rkw5_.i. We have

“@

C

We shall prove the following result, corresponding to corollary 5.2 a):

({®'d

E e, ' | | )

at w_.
0]
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Theorem 5.5. Let X be a finite subset of A
and _ :
above. Ior W el arge rY , the following statements are €
12 ac,,g(wg) f{b
6
20 g~ “lw )=g(w )eR.
o 0 :
" Proof. Observe that, by . (5.8), we have
g(w,) = 25 C (wp) = max (w () =£% ()
xe X | :

. adolyif

) = Wolxy )" Gy ) '

1° = 20, If 1° holds, thea gt (o )eR (since

ac*g(wo) =0).

Now let w € W and x € E)C*g(wo). Then, by (5.24) »
_and g(wo)eR, o ‘
: SWE )= g(w) € w(Xo) -glW,)

whence, by (5.9), we obtain (5.26) with x%'= X

g8 = 15 e ho‘os lq W, e W and let
have g
(5..9) and (5.24), we obtain yw ea o(w b

s e

Remark 5.10. B\/ remark 5.9,

30, 3G (w )X 5.

B e L X be 8 fmlte sub%et of R WV oa subqet of (‘% )

Corollary 5. L.

e TS

o cxzﬁw-—*'fix be -as_above.

O 'bci\g ('wo)#ﬁ (7WOEW) : 7

‘ W
e g=gc € and g€R .

P

SR il By remark 5.3 (o1,
i R 2

bwequ'lvalen_} to
5 : '
Ad >
3 ’dg(wo)r\X#,J (woew)

___ there exists X € X such that
s

we have g

the statement% of theorem

=W
- Foria fupction aeR
FOF e

remark 5.10), the st statcn“m
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quivalent:

ro-é W, gw e R would imply, taking w =

(we'W),

*
C 2
(X\N )6R, \""hence, by (5 9) we qet g(W)éRUﬁ‘OO} (W(\/(,)

2

W a subset of RMY", and let et o X be as

(5.25)

(5:.26)

W, in (5.24), that

X CX be as in (S”S) Then, by q(u )ER and (5,26) we

(w)eRuiFo} (weW) . Thu's, by (s.éh)

Hence, by glw, YR, (5.26),

s Of

5.5 are equivalent to

corollary 5.y
MW"L'

the fo]loW|nm ctatements are equivalent:
e MW#MWM,*_MM

are

ezt
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