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A FORMAL REPRESENTATION OF FLOWCHART SCHEMES
by

Virgil-Emil CAZANESCU, Gheorghe STEFANESCU

This paper is included in a sequence of papers (beginning with [5,6]) where we
intend to give a new foundation of the algebraic theory of multi-input/multi-exit
flowchart schemes. The main new feature of this approach is the use of a new operation
modelling cycles, called feedback [14, 15]; more precisely we believe that the basie
operations on flowehart schemes are compuasition -, (separated) sum + and feedback %,

which pictorially look as follows
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In the present paper the natural formal representation of flowehart schemes in

terms of composition, sum and feedback is studied: we introduce an algebraic structure

(called flow) such that the algebra of flowechart scheme representations, obtained using
= statements in a double ranked set and connections in a flow is a flow having a universal

property similar to the universal property of polynomials.

In order to motivate our representation of flowchart schemes let us consider the
following example. The flowehart scheme in Figure 1 (a) may be rearranged as in Figure
Lib).

In order to obtain the scheme in Figure 1 (b) we use the following method:

a) we put all the statements in the first picture in an (arbitrary) linear order; in
our case this linear order is x (top), y, z and x (bottom). (This linear order, ineluded in
an artificial way, generates the difference between a flowchart scheme and one of its

representations, namely a flowchart scheme is the set of all the representations




/
Y. .
= ~
il 1 e
r / \g,
b i B
v Uy
frr
. = 4
z | x 4 - s \jl,
v X
2 N
A\
(a) - (b)

Figure 1. The standard forme of a flowchart scheme

obtained putting different linear orders oh the statements of the scheme.);

b) we draw the rectangle f and its extermal connections as follows: the arrow 1,
giving the input into the scheme; the arrow 2, giving the output from the scheme; the
arrows 3 which connect all the exits of the statements to f; and the arrows 4 which
connect f to all the inputs of the statements; : :

e) we draw the arrows inside the rectangle f is such a way that the connections
are the same as in the first picture.

Putting [n] = {1,2,..‘,n} for every nonnegative integer n we remark the rectangle

f contains a function
f:[n+ o(xyzx)l—>[p + i(xyzx)]

where n =1 is the number of the inputs into the seheme, p = 1 is the number of the exits
" from the seheme', o(xyzx) =5 is the sum of the exit numbers of the statements and
i(xyzx) = 4 is the sum of the input numbers of the statements. :

Thus using Figure 1 (b) the flowchart scheme in Figure 1 (a) is represented as the
ordered pair (xyzx, f) or as the formal expression ((11 +x+y+tztx)e f)’f‘4, where f is
the function which maps 1,2,3,4,5,6 into 2,3,4,5,3,1, respectively. The type of the
scheme is correlated with the type of f. For example, for a partial scheme the
rectangle f is a partial function and for a nondeterministic scheme f is a relation.

Notice that our representation differs from all representations of. flowchart

schemes in [1,3,9].

In the sequel we use a more general framework. The monoid M is the monoid of
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sorts. Its neutral element is denoted by A . The monoid % is the monoid of statements.
Its neutral element is denoted by & . We assume that i: X-M and o: X-»M are two
monoid morphisms.

The particular cases of interest are: the monoid M is freely generated by the set
of sorts (in the above one-sorted example, M is the additive monoid of nonnegative
integers) and the monoid X is freely generated by the set of statements. For every
xe X, i(x) gives the number and the sorts of the inputs of x while o(x) gives the number
and the sorts of the outputs of x. '

In this more general framework we have to work with representations of sehemeé
as ordered pairs. The caleulus using formal expressions (in the particular case when X is

a fre[%generated monoid) is briefly presented in [15].
g oy
Q

Now, the algebra of formal representations of flowchart schemes can be defined

as follows. Let B be an M-flow (ef. definition 1.4 below). For a,b €M we define
Fly plasb) = §(e,0)] x € X, £ Blaol),bi(x) ] -
An element (X’f)eF]‘X,B
with statements in X and connections in B.

(a,b) is said fo represent a flowehart scheme from & fob

The basic operations on scheme representations together with their pictural
motivations are:

a) For (x,f)€ FlX,B(a’b) and (y,g) eFlX’B(b,c) the composite is

() + (9, = (g, (8 + T2 * KNG Liga(Le * Hheriled

b) For (x,f)éFlX’B(a,b) and (y,g)(—;FlX,B(e,d) the sum is

(x,0) - (y,8) = (xy, (1, + ceolx) + 1 ))E+ )1, + i(x)ed + li(y)))



Tl we have by definition 1, = EB(la) and aeb = Eglae b).
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e) For (x,f) €Fly B(ba,ca) the right feedback is
23)
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d) For every f&B(a,b) we define Eg(f)€Fly pla,b) by Eg(f) = (€,f). Hence in
9

X,B
Using these operations we prove that Fly o is an M-flow, preserves the M-flow
9

structure of B and has a universal property (theorem 2.b.5 below) similar to the
universal property of the polynomials ring R[X] over the ring R. We emphasize that the
role played by (integer, rational, real, ete.) numbers in the case of polynomials is played
in the case of representations by some classes of finite relations (bijections, injections,

ete.).

1. FLOWS

In this section an algebraic structure (called flow) is introduced; its basic model




is the algebra of flowehart scheme representations, presented in the introduction. In the
acyelic case (i.e. the restriction of this algebraic structure to composition and sum) this
algebra is weaker than a strict monoidal category which extends Sur (the theory of
surjective functions) used in [9], in two respects: (i) an axiom used in 2 strict monoidal
category [11] is weakened; (ii) the present algebra should extend only Bi (the theory of
bijective functions). In the cyeclic case, the axioms used for feedback are the
translations of those used for iteration in an algebraic theory with iterate [4] - see the
Appendix below.

Let M be a nonoid and € a category having as objects all the elements of M.
Suppose © in endowed with an operation +, called sum

+ 1 ¢(a,b) x € (c,d) —> (ac,bd)

defined for every a,b,c,d in M. Consider the following axiom used in & strict monoidal

category which relates composition to sum
cS. x+flg+y=xg+fy forxe €(a,b), g€ Elb,e), f € Lla,b") and ye € (b'ye?) .

Sueh an axiom is not valid in the algebra of scheme representations, mainly since in
passing from left to right’ the linearly ordered vertices in f are permuted to those in g;
however, the restriction of CS to the case when f or g has no internal vertices is valid.
This comment may also be applied to the axiom B4 below.

A category ¥ as above is said to be an M-wsme (weak striet monoidal category)

if + fulfils the following axioms:

Wi.(f+g)+h=f+(g+h)

W2 fely =f=1, +1

W3l k1 = Lot

W4. CS restricted to the case f or g is an identity.

A striet monoidal category (as defined in [11])is equivalent to a weak strict
monoidal category which fulfils CS. :

In an M-wsme only (a copy of the set of) identity functions can be obtained from
the distinguished morphisms 1., but in order to define operations in FIX,% bijective
functions must be embedded in € . For this we add some distinguished morphisms
asrbe § (ab,ba), called "block transpositions" and some equations:

Bl.aob-bear= 1ab’

B2. abeed = (1a +bee + ld)(a@e + bé——)d)(le +aed+ 1b),

B3.aed =1 72 a,

B4. asb - (f + g) = (g + f) - ced, for every €% (b,d) and ge € (a,e).

An M-wsme is said to be an M-birel (bijective relation) [6] if the distinguished
morphisms aeb fulfil B1-B3 and if CS and B4 hold when f and g are of the type a=-b. In

[6] it was proved that bijective functions are embedded in an M-birel.
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1.1. DEFINITION. A schematic M-birel is an M-birel B fulfilling for every
f €B(a,b): '

cedt f= (lcd + f)ced + ‘}_b), a particular case of CS, and

s
5!

asc-(1 +f=(E+ 1@) - bere, a particular case of B4.

¢

Proposition 1.3 below shows that a schematiec M-birel is an M-birel in which C8
and B4 hold with a weaker restriction: f or g is of type a<b.

Note that a sehematic M-birel which fulfils CS is a strict monoidal category
which extends Bi. Hence a schematic M-birel is more general than a strict monoidal
category which extends Sw, as used in [9]. ‘

Let B be a schematic M-birel. A composite of morphisms of the type
1y tbee+ 1, is said to be a bimorfism. We define a relation C on morphisms of B
(giving the pairs of morphisms which satisfy CS) as follows:

@O i nie =t
where f€B(c,d) and ge B (a,b). Computing rules for C may be found in [6]. A similar
relation may be introduced giving the pairs of morphisms which satisfy B4. Lemma 1.2
below shows that both ways give the same relation. '

Note that for f€ B(e,d) andg&B(a,b) we have

BS. as e - (f+g)= (].a +filo & 1d) - b&r d.

* 1.2. LEMMA. In a schematic M-birel B, for every f&€B(e,d) and g€B(a,b) the
following conditions are equivalent:
a)g Cf,
b) assc - (f+ g)=(g+ ) bexd,
c)eoa-(g+tf)=(f+g)-deb and
i C g

Proof. Using B5 and B1 we deduce that a) is equivalent to b) and c) is equivalent

T
S |

to d). The equivalence of b) and ¢) follows from B1.

1.3. PROPOSITION. In a schematic M-birel if f'€ B(a,b) or fé&B(e,d) is a

bimorphism then f'C:f. Hence, by Lemma 1.2 assc - (f + ) = (' + f) - bexd.

Proof. By Lemma 1.2 only one case, say {' is a bimorphism, is to be studied. The
axiom CS restricted to the case g=a<b shows that aeb C 1 * £, therefore
1u aeb & 1. C f. Since hCf and W Cf imply hh'Cf and every bimorphism is a

composite of morphisms of type 1o+ a&b + 1, the result follows. |

e
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1.4. DEFINITION. An M-flow B is a schematic M-birel in which a right feedback

_;’éa : B(ba,ca) =>B(b,c) for a,b,ceM

is given, fulfilling the following conditions.

@ The feedback is context-free.

Fla. (f 4%g = (f(g + 1) 48, for f €B(ba,ca) and g €B(c,d);
F1b. gt 4% = (g + 1.)0) A8 for f€B(ba,ca) and g€ B(d,b);
F2a-weak. 1, + EAN = {1y £)4 8, for £€B(ba,ca) and d€ M.,

@ The M"vectorial” feedback can be expressed in terms of the "scalar" one.
F3a. f £8P = (£ £0) 42 for £€ B(cab ,dab).

@ Particular blocks can be shifted on feedback.

F4weak. (f(lc + g))r‘i\a = ((1b + g)f) 'I“d for f€ B(ba,cd) and g€ B(d,a) restricted to
bloeks g of the type u&v.

@ The feedback acts on the distinguished morphisms as follows:

F5weak. lafﬁa =1
F6. acal? = 1.

The following proposition complets the formal motivation for the verbal

conditions.

1.5. PROPOSITION (properties in an M-flow). The following hold in an M-flow B:
F2a.g+ 4% =(g+ f)A8  for g&Ble,d) and fE€B(ba,ca);

Fob. 42 + g ((1b + doa)f + g)(lc + ace) P, for feB(ba,ca) and ge Bld,e);
F3b. £ £} = f;

F4. if f C g then (f(lC + g)) /}a = ((1b + g)f)’fd, for f& B(ba,cd) and g € B(d,a);
Bt afe=d

Proof. F2a. g+ f4%=(g+ 1014+ £48) = (g + L Dt

~ (e 1 Y N AR = (o R E,

F2b. (42 +g=(E42+1)01,+g) =bod1,+ £4%) doc 1, +g)=

= ((berd + 1)1+ Ddoc+ 1)1, +g+ 1)1 =

= (1, *+ d9a) baexd (1 + f) doca (1, + aexd (g + 1N =
= (1, + dealf + 1)1, + 21, * awe)4? = (L # dea)f+ o)l aoe)t?

F3b. 4> = (£+1, )4 = £+ 1,4 =141, =1
Fa. (f(1, + gD M = (f(1, + dod e e

= (£ +1 (1, +aod, +g+1 )4 %=
d da
= (£ + 1)1+ @1, +doa) 429 = (1 + doally, + )f + 1) T =
(1 + g+ 1)1, +avalt + 1) A4 = (@ v, +avatIDAI= (0, v 0D 10




5‘,(f+1a)/.&a:f+1af(~a:f+1;\ = f,

In an M-flow B we define the left feedback
{*a_ : B(ab,ac) ->B(b,c)

for every fe B(ab,ac) by
F7. 131 = (boa . f.asc)tl

1.6. PROPOSITION. (properties of the left feedback). In an M-flow B the
following hold:

Fla' (48f)g = ’f‘a(f(la + g)), for f€ B(ab,ac) and g€ Ble,d);

F1b', g( 18f) = 'T‘a((la + @)f), for f € B(ab,ac) and g€ B(d,b);

F2a'. 1 8f + g = A4(f + g), for f<B(ab,ac) and g€ B(d,e);

Fob',g + 4% = 4%(acd + 1 LE + Deoa+ 1), for f€ Bab,ac), g €B(d,e);

F3a', $8Pf = 4B 48f), for f€ Blabe,abd);

F3b', AN f =1y |

F4', if £ C g then A%f(g+1 ) = 4%+ 1,)0), for f€B(ab,de), g€ B(d,a);

B5t AR w )= f;

F6', 1 ava = 1.5

F7.f 4% = 4%aob - £+ coa), for £€ Bba,ca);

F8. (£Pr) 42 = AP(£42), for fe B(bea,bda).

Proof. Easy, using the definition of the left feedback and the corresponding
properties of the right feedback. We only prove F8:

(be)'f‘a— (caob-f.boda)f ffa (cab - f - boda) ’T‘ab:
= ((1 + bea) caob -« f - beida (1 + aob)) 4 ba -
e Jfbed+ 1, )1\%" (cob (£18) bed)'f‘b 2B 49,

The concept of M-flow may be introduced using a left feedback and taking
«Fla' - F6' in proposition 1.6 as axioms. Using F7' in proposition 1.6 as the definition of
the corresponding right feedback and an easy computation one can prove that such a
structure is an M-flow.
Also, the concept of M-flow may be introduced using both feedbacks. We
mention the following equivalent axiomatic system {Fla, Flb,‘ F2a-weak, F3a,
F5-weak, 6, F7 and F8}.

1.7. DEFINITION. Let B and B' be two M~-flows. A functor H : B~¥B' is said to be

an M-flow morphism if

a) H(a) = a for every aeM,
b) H(f + g) = H(f) + H(g) for every f€ B(a,b) and ge Ble,d),




c) Hla«>b) = a« b for every a,be M and

d) H(f #8) = H(f) 48 for every f € B(ba,ca).

When we work with the left feedback, the last condition is replaced by

?af = PH(f) for every f& B(ab, ac) e

In the sequel the category of M-flows will be denoted by FIM

The concept of algebraic M-theory [6] is the extension of the concept of many-
sorted algebraic theory to the case when the objects in the category form an arbitrary
monoid (not a freely generated one as in the case of/sorted algebra'ic theories).

maky

1.8. DEFINITION. An algebraic M-theory T is said to be with iterate, if an
iteration

T, T(a,ab) —= T(a,b) for a,peM
is glven fulfilling

10. (1 + g)) = f10‘ for every f € T(a,ab) and ge T(b,c),

L. f<f)> = £ for every f € T(a,ab),

12. t17 = (f(<1 Lol ) for every f€T(a,aab),

I3. (Uf)T = g(f(gr + 1 ))]L for every ge T(b,a) and fe T(a be).

For a free monoid this concept was introduced in [4] using another set of axioms
(see [12] for the equivalence of that axiomatic system with this one - 14t used in [12] is

a particular case of I3 above).

1.9. THEOREM. Every algebraic M-theory is a schematic M-birel. If T is an
algebraic M-theory then T is with iterate if and only if T is an M-flow.

Hisde fa M Suppose T in an algebraic M-theory. We recall that + is the usual separated sum.
For a,b€&M we have by definition

as»b = <0b + 1a’ 1b + Oa>.
A routine computation shows that T is a schematic M-birel. The remainder of the proof

P

may be found in the Appendix. We only mention the definitions
B350 ) 5 Bt N1, for f€ T(ab,ac) and
t = 19(ava - f), for fET(a,ab). ]

As every w-continuous S-sorted algebraic theory is an algebraic S*—-theory with
iterate, theorem 1.9 gives a lot of examples of S*-flows. We are only interested in two
known examples of this type.

The first one is anA (the ADJ group uses the notation Sum , [1]) where
A= {As}sés is an S-sorted set. If a€S™* then [a| denotes its length and for icllall
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.th

the i letter of a is denoted by a; . Let A_ = {(x,i)] el falll, xeAa_Q . For a,be §*:
i

' the morphisms in Pfn,(a,b) are those partial functions f from A, to Ay which
It
j

anA is an  -continuous S-sorted algebraie theory, hence Pfn, is an s™-flow.

preserve sorts, i.e. f(x,i) = (y,j) implies a;=b

This is the standard semantic model for the deterministie S-sorted flowechart schemes.

1.10.PROPOSITION (feedback in anA)., For feanA(ab,ac) and (x,i) éA'b we have
(20)x,0) = (x,1) with (x,iNEA,
if and only if
there exist n > 0 and (Xl’il)’ «oos(x,i )EA such that
(x)0dy ) = f(xk_l,ik_l) for every ke[n + 1],

where (x_,i ) = (x,lal + 1) and (x_,;,i 1) = (<, Ja] + i),

The second example is PStrg. For every ahEsE

I PStrS(a,b) is the set of all partial functions f from [|a}] to [1b]] such that

A
J liE,

£
We may think of PStrS as a particular case of anA,ﬁs is a singleton for every
s€ S. This viewpoint leads to the following corollary.

f(i) = j implies a; = b

1.11. COROLLARY (feedback in PStrS). For f& PStrS(ab,ac) and ie[]b|] we have
(A20)@)=j where j<l]e]]

if and only if
there exist n > 0 and il,i2, o ,ine[la]] such that
x = {3, _;) for every k€&ln + 1],
where iO: lal +1i and in+1 =il R T i |
1.12. COROLLARY (scalar feedback in PStrS). Let fe PStrS(sb,sc) where s€S.
For every ie[|b{] and j&[ |c]]
fl +1)=1+j or

(4150)) = j if and only if

@+ 1)= 1 andifl) = 1+

Let Ing be the subcategory of PStrq which consists of all injective functions in
PStrg.

1.13. PROPOSITION. If f € Ing(ab,ac) then 4%f€ Ing(b,c).
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1.th. COROLLARY. Ing is an s*-flow. E3

Let Bis be the subcategory of Iﬁs which consists of all bijective functions in Ing.
1.15. COROLLARY. If f¢ Big(ab,ac) then 47f€Big(b,e).
1.16. THEOREM. Big is the initial $*-flow.

Proof. By corollary 1.15 Big is an S*-flow.

Let B be an S™-flow. In [6] we proved that there exists a unique functor
H: BiS-é»B such that H satisfies the econditions a,b and e from definition 1.7.

We still have to prove that H( 45f) = 2SH(f) for every fe BiS(sa,sb) where sé€S.

If £(f) = 1 then there exists g€ Big(a,b) such that f = 1+ g, therefore $of=0. 1
conclusion 4 SH(f) = Ts(ls + H(g)) = H(g) = H(4°0).

If £f(1)# 1 we begin with some notation: f(1)=1+j, f(1 +i) =1, a = a'sa" where
|a'|{ =i-1 and b =b'sb" where lb’.l =j - 1. Since there exists heBig(a'a",b'b") such
that -

= (1S + a'és + 13")(565 + h)(lS + seb' + 1b,,)
we deduce that 2

A5 = (@os+ 1)1+ h(sob + 1)

therefore

ASH(L) = (a0 s + 1) Ases+ Hh)sob +1, ) = H(45)., @

b" :
1.17. COROLLARY. Let B be an $*-flow. If f&B(ab,ac) is a bimorphism then
A?f is a bimorphism. &

2. THE ALGEBRA OF FLOWCHART SCHEME REPRESENTATIONS

In this section we prove our main technical result. This result shows in particular
that the axioms used for feedback in a flow (or equivalently, for iteration in a theory
with iterate) capture precisely the facts needed in order that the natural interpretation
of flowchart scheme representations preserve the operations. Note that from this
theorem large parts of the proofs of the main theorems in [7, 12, 13] regarding the flow

structure of flowchart schemes and the preserving of the operations follows directly.

2. 8. SYNTAX. We have seen in the introduction that a flowchart scheme

representation is an ordered pair. We split these pairs and we obtain two functors useful



for our goal. The category of monoids is denoted by Mon; recall that Fly denotes the
category of M~flows.

2. a. 1. The functor @ : Mon ~~>F1M
Let X be a monoid and let & be its neutral element. The M-flow Q(X) is defined

by
@lab) = {(a,x,b) [x €X} for every a,be M,
composition: (a,x,b) (b,y,e) = (a,xy,e),
identity: 1, =(a, &,8),
sum: (a,x,b) + (e,y,d) = (ac,xy,bd),
block transposition: a<>b = (ab, & ,ba),

left feedback: 4%ab,x,ac) = (b,x,c),

right feedback: (ba,x,ca)}? = (b,x,c).

If h: X->Y is a monoid morphism then the M-flow morphism Q(h): Q(X)=Q(Y) is
defined by Q(h)(a,x,b) = (a,h(x),b). '

2. a. 2. The funector K : FIM = FEM
For a schematie M-birel B we define a schematic M-birel K(B). The morphism of

K(B) are defined for a,be M by
K(B)a,b) = {(f,i,o) ‘ i,oeM, fe B(ao,bi)}.
For (f,i,0)€ K(B)a,b) and (f'i',0")€ K(B)(b,e) we define the composition by
(£,i,0) (flilie) = {f & 10,)(1b + jeo)(f' + li)(lc + i'e i), ii',o0").

A routine computation shows that composition is associative.
For f& B(a,b) we define IB(f)GK(B)(a,b) by

Io(f) = (f, X, N).
We mention the following computation rules:
(f,i,o)IB(f’) = (£(f' + 1,),1,0)
(D00 = (£ + 1,)1',i%,0)

It follows that L= IB(Ia) is an identity morphism, hence K(B) is a category.
For (f,i,0)€ K(B)(a,b) and (f',i',0") € K(B)(e,d) we define the sum by

(£,i,0) + (f,i"%07) = (1, + coo + 1 ) + £)(1 +ied + 1,),ii'00').

‘We mention the particular case
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IB(f) #lhiNel) =i(f £l el),

A routine computation shows that K(B) is an M-wsme.

For every a,be M we define
geér b = IB(a@» b).

S0t s easy to show that K(B) is a schematic M~birel.
Let B be an M-flow. We define in K(B) the feedbacks by

2 8(£,1,0) = (421,i,0) for (f,i,0)¢ K(B)ab,ac)
(Bie)d = (((1b tooaf(l, +ae i) £81,0) for (£,i,0) € K(B)(ba,ca).

A routine computation using the left feedback shows that K(B) is an M-flow and
IB : B ->K(B) is an M-flow morphism. v

If H:B->B' is an M-flow morphism we define the M-flow morphism
K(H) : K(B)-» K(B") for (f,i,0) in K(B) by

K(H)(f,i,0) = (H(f),i,0).

It is easy to show that K: Fly ~>Fly, is a functor and that I : 1p; —» K is a natural

transformation. M

2. a. 3. The M-flow of flowchart scheme representations

Let B be an M-flow and X a monoid. Suppose we are given two monoid
morphismsi: X« M and o: X~ M.

The cartesian product Q(X)x K(B) is an M-flow. The operations are performed

componentwise. For a,b €M we define
P(a,b) = §((a,x,b), (£,i(x),0(x)) | x € X, (£,i(x),0(x)) € K(B)(a,b)§ .

Since P is a subset of Q(X)X K(B) which is closed under composition, sum, feedbacks and
~ contains 1a and a<> b for every a,be M, it is an M-flow.

The function that maps ((a,x,b), (f,i(x),0(x)))€ P(a,b) into (x,f)eFlX,B(a,b) is an
isomorphism with respect to composition, sum, feedback and constants 1a and a<¢» b,
therefore FIX,B is an M-flow.

~ We recall that EB(f) =(& e FIX’B(a,b) for f&B(a,b). We mention the following

computation rules
(x,f)EB(g‘) = (x,f(g + ]‘i(x))) for (x,f)€ FlX,B(a’b) and g &B(b,e),
EB(f)(x,g) =i(x,(f# }O(X))g‘) for f&€B(a,b) and (x,g)e FIX’B(b,c) and

Ep(f) + (x,g) = (x,f + g) for f& B(a,b) and (x,g)€ Fly plc,d).

We deduce that Ep: B—> FIX B is an M-flow morphism. We collect these facts as the
,B
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following theorem.

2. a. 4. THEOREM. If B is an M-flow, then FIX g Is an M-flow which preserves
>
the flow structure of B. 3 '

2. b. SEMANTICS. Note that for an M-flow B the strueture (B,-*,].)\) is a

monoid .

2. b. 1. DEFINITION. Let B be an M-flow. A monoid morhism I: X-=B (B having
the above monoid structure) such that I(x)e B(i(x),0(x)) for every xe X is said to be an

interpretation of X inB. #&

Suppose the monoid M is freely generated by S. Consider an S-sorted set A giving
the sorted set of memory states in the underlying computing device and an
interpretationI : X »anA.

Let H :PStrSe»anA be the S*~flow morphism defined for fG.PStt'S(a,b) by

H(f)(x,1) = (x,f(i))

where i€ [ |a] ] and x(—:Aa‘.

Let F be a flowchart scheme represepted by x, 1) E'F]X,PStr (a,b) (or by the
lx!)f)f‘l(x) ). The program () obtained by
interpreting via I the statements of F computes i

formal expression ((1a EEp b %

(1, + 16D H1%)
which is equal to the C.C. Elgot semanties [8]
O < A0HT,1, >

where j 5 (it Oo(x)) «f-beilx)and t = (0, + lo(x)) o f « bexi(x).

&

2. b. 2. The standard interpretation. For every x€ X we define the interpretation
E¢(x) € FIX’B(l(X),O(X)) by

E (%) = (%,i(x) > o(x)).
It is easy to show that L}\ is an interpretation in the sense of 2.b.1.

A routine computation proves the following two propositions.
2. b. 3. PROPOSITION, Eg(f) C EX(:{) for every f&B(a,b) and x € X.

2. b. 4. PROPOSITION. If (x,f) € FIX R(a,,b) then
i

(x,0) = (1, + Ex ER) 41X,
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Now our main technieal result is the following

2.b. 5. THEOREM. If H:B-»B' is an M-flow morphism and I': X=»8' is an

interpretation such that
Fi(f) € 1)
for every morphism f in B and every x in X, then there is a unique M-flow morphism

ami:r1, B

X,B

f

such that EX(I,H)f = [ and Eo(LH): =H,

B

Proof. If (]f,H)f exists and has the above properties, we deduce from proposition
2.b.4 that

() (I,H)f(x,f) = ((1a + (x)) H(E)) £ilx)

for every (X,f)Q-FIX p(@;b). This proves the uniqueness of (I,H)f. Therefore we define
‘)
1,1, by (+).
If (x,f)€ FIX,B(a’b) and (y,g)e_FIX’B(b,c) then

1,0y, =
=((1, + Uxy) HUL+ lo(y)) (1, +ix)eoly)) (g + 1jy) Ao i(y)ﬂ"}i(x))))”\i(xy) =
= (1, + IGNH(E) + Iy) (1 + i) o(y) (H@) + 15, (1, + i(y)eito)) A1) o

= (1, + VR + 1y ) (1, + i) (1 + IR + 1) G, + it AT -
= (1, + IxNH(E) ((_(15) + I(y))}]’(g))/’\l(y) L X)))/'T\I(X) o
= (1, + NI - (1 + wyEnt’Y = m'len - ly,e.

If (x,f)&F1
; .
(

X,B(a’b) and (y,g)éFlX’B(c,d) then

(LH) ((x,f) + (y,) =

= (g *+ 6D H(1, + coolx) + 1) (£ 4+ 8) (1, + i)es 0 + 1y AT =
= (1, + cOi0 + 1)) (L, + IGNH(D + (1, + UYWH(E) (1) + iGdewd + 1, NAOIHO) -
= (@1, + coit) (1, + D +(1 + IHEMEY) @, + i ™ =
= (1, + 1HEN + @+ eV = gmlien + o miv.e.
If (x,f)e FIXQB(ab,ac) then
14800 = (1, + 1NHEARNAR = 43+ 1rm A = 420,m 0.

If f& B(a,b) then
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LEL ) = (1, + K& HEHE = Ha)

(o

therefore (I,H)J‘(]_a) =1, and (I,H)f(aeb) = a¢rb.

If x€X then

B () = (145 * 160 1ol = (01000 + 1, WX =10,

2.c. THE FUNCTOR FL The pair of monoid morphisms i: X=M and o: X->M
may be replaced by only one monoid morphism h: XM x M defined by h(x) = (i(x),0(x))
for every x € X.

The usual definition of the category Mon/MX M is:

a) the objects are all the pairs (X,h) where X is a monoid and h: X+Mx M is a
monoid morphism;

b) m : (X,h)=>(Y,g) is a morphism in Mon/M xM if and only if m: X=Y is a
monoid morphism such that mg = h;

¢) the composition is performed as in Mon.

The functor

Fl: (Mon/Mx M) X F1 _)FIM

M
is defined for every morphism m : (X,h)==(Y,g) in Mon/MX M and for every M-flow
morpism H : B=B! by

= f
Flm,H = (mEY,IIEB,) 5

Notice that if (x,f)e Fl B(a,b) then, using Proposition 2.b.4, we deduce that
b

Flm,H(X’f) = (m(x),H(f)).

APPENDIX. SOME AXIOMATIC QUESTIONS

In this appendix we prove that, via a natural bijection betw\een feedbacks and
“iterations, the axioms used for feedback in a flow are the translations of those used for
iteration in an algebraic theory with iterate. This proves in particular Theorem 1.9.

Let T be an algebraic M-theory considered as a schematic M-birel as in the
comments following theorem 1.9. We .recall the notation: Oa is the unique morpism in
T(X,a) and aVa = <14,1,> for a€ M (computing rules for ava may be found in [6]).

We now define to applications it: Fd—It and fd : It+Fd, where Fd is the set of

left feedbacks defined in T and It is the set of iterations defined in T. The iteration -

T = it(h) is given by
7 = 4%(ava - f), for f&T(a,ab);

the left feedback 4 = fa(h) is given by

& B MR edios A A Y TN e L e S SRR T




- 17 -~

(e ’ : S
A% = (0, + 1 N8 (1, + 0y + 1 DY, fo £ € T(ab,ac).

Before the promised translation we repeat the axioms. The axioms required for

iteration in a theory with iterate are:
I0. (f(la + g))-i~ = ¢t g, for £ € T(a,ab) and g& T(b,c);

I1. f<_f+,1 bz f'i', for f T(a,ab);

b
I2. (f(<1a’1a> + lb))Jr e fH, for fe T(a,aab);
13. g(f(g + 10))T = (gf)T, for f&T(a,be) and g€ T(b,a).

The axioms required for feedback in a flow (over an algebraic theory) are:
AQ. /?‘*a(f(la +g)) = (4¥f) - g, for € B(ab,ac) and g& B(c,d),
Afa. 86k 149 = AR + 14 for feBlab,ac),
Alb. 4%aca = 1

A2. ’I‘abf = d‘b( A81), for f &B(abe,abd),

A3a. 43((18 +g)f) =g- 4%, for feBlab,ac) and ge B(d,b),

A3b. 13((g + 10)= /Fb(f(g +14), for f€B(be,ad) and g€ B(a,b).
Note the change of notation (A0 = F1a', Ala = F2a-weak', Alb = F6', A2 = F3a',
A3a = F1b' and A3b = F4' in Proposition 1.6), the absence of F5 which is superfluous if T

is an algebraic theory ( /rala =1, , the unique morphism of T(A, X)) and the use of F4!

A 9
(we have f C g for every f and g in an algebraic theory).

THEOREM (equivalence of axiomatic systems for iteration in theories with
iterate and feedback in flows). Let T be an algebraic theory. The above correspondence

(fd,it) satisfies:

Part 1. If 4 fulfils A3a and A3b then fdGt(4) =4 and if T fulfils I3 then
rifan= 1

-

Part 2. a) I3¥ A3a + A3b;
b) I3 + I0$>A3a + A3b + AD;
‘) I3 +10 + 125 A3a + A3b+ A0 + A2;
d)I3+I0+12+11&A3a+ A3b+ A0+ A2 + Ala + Alb,

where X<&Y means: "if T fulfils X then fﬁ(f) fulfils Y and if 4 fulfils Y then it(4)
~ fulfils X"

COMMENT. This theorem reinforce our belief that feedback is more natural than

iteration. More preisely, the passing from scalar to vectorial iteration is expressed in

}j&%’&lﬂg%
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terms of iteration by the "pairing” axiom [7,10],
>3 T boood -f P —{” + (“‘1- -t 5 al -
P. <t = <flele<t ’1hc>) ,],C>,(g<1 ’1bc>) > for f& T(a,abe), and g€ T(b,abe),
simplified in [12] to 12 and I3. The corresponding axiom written in terms of feedback is

£8P¢ — £DCABE) for e T(abe,abd)

which clearly is much more readable and usable then the above one. In addition, the

axioms corresponding to the Elgot fixpoint equation
=<t s

are
(s + 14)= A8t 4 1, and Magsa = S

also much easier to verify and use. This seems to be the first significant simplification
of the Elgot fixpoint equation (in Esik's axiomatization of iteration theories [10] this
equation appears in an involved way in the pairing axiom, while in Arbib and Manes [2]

1t is unnecessary since the iteration is computed by an infinite sum). [

Proof of Theorem. Part 1. Using axioms I3, A3a and A3b we prove that the
correspondence between left feedbacks and iterations is bijective. |

Suppose the iteration fulfils I3. The new iteration 4%avaf) of fe T(a,ab) is equal
to the old one f1, Indeed

4 &(avaf) = (0,+1,)(aVa- £(1_+ 0 lb))_IL =
= (0, +1,) aVa (£(1, + 0, + 1, )aVa + 1, )T = 1.

Suppose the feedback fulfils axioms A3a and A3b. The new feedback
(0a + lb)(f(la 0 10))1L of f& T(ab,ac) is equal to the old one 4%f. Indeed

s ab s : =

(0a + lb)(f(la & Ob H lc)) = (Oa + ].b)(’f‘ (abVab f(la + Ob + 10))) =
a= Aab o £ | e { =
»= 4 ((1ab + Oa + ],b) abVab f(]_a + Ob + 10)) =

e 5 s
St 0 1 O+ L ke - )= 291,
Part 2. a) Suppose the iteration fulfils I3. The proof of A3a is

A, + =0, v 1 (1, + L, + 04+ 1 )T =
= (0a + l.d)(la ) (f(la £ 10)(1a +g+ 10)) =
=g(0, + 1) (t1_ + 0, +1 ) =g - 42

The proof of A3b is

$e+ 100 =0, +1) (g +1 )00, +0_+1 )=

- ) & T._
=0 el e L) (f(la+ gt )eed o 1d)) =



e 1g o
A% 2 T - /g\ﬂ { < .
= (Ob it ],C) (flg + ].d)(l.b ) ]‘d)) = 4 ({{g 4 1d)) .
Suppose the feedback fulfils A3a and A3b. The proof of 13 is
(gDt = +P0vb - gf) = AP((g + ) - aVa - £) =
=g« (g + 1)-aVa-f=g- Foava - flg + 1) = glf(g + 10))1'-’
b) If 10 holds, we prove AQ:
Al = : ; it
boE(, +gh) = (0, + 1 )00, + 0, + @) =
= (0, + 1 )(E(L, + 0+ 1) g = (430 -
If A0 holds we prove 10: :
(£1, + g0 = A%aVa - 11 + g) =A%aVa - g = flg.
Hence we have the equivalence I3 + 10<>A3a + A3b + AQ.

¢) We prove that the adding of 12 is equivalent to the adding of AZ2.
Using in turn I3, 10 and I2 we prove A2:

AP A8 = (o + 1) (0, + 1 E, + 0, + 1, 1T, + 0+ 10T =
S0 M 0wl DTt 0 v ) =
i (Oab g ]'c) (f(la ke il Dot ]‘d))TJr =
5 (Uab . 10) (f(la B lpagt s S lE 1d)(qabc’labc> i 1d))T 5
= (Oab * 10) (f(]'ab & Oc S 1d)).f 4 'i\abf :
; Using in turn A3b, A2 and A3a we prove I2:
(BT 4 5 1b)>‘f =4%ava - f-(aVa+1.) =
= 48%(aVa + 1) - aVa - ) = A48+ aVa) - aVa - ©) =
= A%(ava - A%aVa - 1) = {17,

-

Hence we have the equivalence I3 + 10 + 12 A3a + A3b+ A0 + A2.
d) We prove that the adding of I1 is equivalent to the adding of Ala and Alb.
Using in turn I1, I3, again I1 and 10 we prove Ala:
8. - ] B
e e = el U el A R0 B L)) :
= (0 + L+ L0, + 0 + 1, <UE 1L, + 0,4+ 1)y 1o =
G : T =
5 (Oa : ]‘bd)(f(ia & Ob : 1c) 5 ]‘d) < (]'ab i Od)((f * ]'d)(la % Obd . 1cd)) ! 1cd>
= ‘ + =
=0 L B 0 el )y, 0 P> <UL o Dl £l 0L ol i

o : . : y il =
= (oa . 1bd) <(f(1a L0t 1c) 5 od)<(f(1a + 0, + ].c) + od) o 0 1d>
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- o e
= (0a+ 1bd) <(f(1a b0, + 10) i+ Od) . oe + 1.d>

= (Oa

= (Ua

= (Oa

= (13

= ((1a + Oa)a<->a)Jr = (Oa +1

3 : v T E &
Ll O s e 0l e =

4 (1 Wi L A
BLMEE 0 1)) sl = e
Using in turn I1, I3 and aain I1 we prove Alb:
W : _ B
Placa=(0,+1 aea(l, +0,+1.)

: o : i 3
- ]_a) aea(ly+0,+ la) (aeally* 0e 13)) -

_ ; i oo
e (1, + 0 )aera (1 =10 13)) ,1a>

a
T a 5
. (Oa+1a) S, + L i, .

For the converse, using in turn A3b, A2, A0, Ala, again A0 and Alb we prove

Ad. 1%(ava - f) = FB((f + 13)(]‘3 + bes a)aVa + 1b)), for f&T(a,ab).

Indeed,

FA(E+ 1)1, +boa)ava + 1) = ((@Va + 1) +1,)(1, + be>a)) =

A S ava s ) boa)) = $8(4%aVa- )+ 1) bera) =

= A awa (st 28aVa - 1) = ( 1%a & a) - +8(aVa - £) = }¥ava - ©).

Finally, using in turn A4, Ala, A3a and A0 we prove Ii:

£< fT,lb> =t (4 %ava-1)+1,)bVb =

b)

= £ (AO((F + 1,)(1, + be a)ava + 1)) + 1) bVb =

= A%+ O+ 1)1, + Dea+ 1 )aVa + 1)1, + bYb)) =

= 8((F + ) abVab) = 4%ava - f) = T,
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