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ON THE HOMOTOPY GROUPS OF THE AUTOMQRPHISM

GROUP QF AF - C* - AT GEBRAS

by

2 Victor NISTOR

INTRODUCTION

In this paper we study the hémotopy groups of the automorphism
group:of an AF = €* -~ algebra. Reéults on this line were previously\
obtained by J.Dixmier angbﬁouady [8] and K.Thomsen[Zﬂ . In what con-
cernes the computation of the homotopy/groups our results contain as
special cases these previous results.

Our methéd of computation reduces complefely the computation of
the groups7Tk(Aut(A)), k>0, to the computation of the homotopy groups
of unitaries (B ig an AP = OFf = algebra,vAut(A) is the group of
* - automorphisms of A endowed withrthe point norm topology). Using
standard results concerningﬂlk(U(n)) we succeded a complete computa-
tion for?Tk(Aut(A)) for a large class of AF:—C* - algebrash. If A
Ak simple, A#K (the algebra of compact operators on a separable Hil-
bert space) the results are as follows:7rk(Aut(A))ﬂHom(KO(A)/Zfl],
Ké(A)),7T2k_l(Aut(A))aExt(KO(A)/Zfll, K, (A)) for A unital (k»l) and
-

2k
is not unital (k71l). Note the similarity with results obtained by

(Aut(A))#H@m(KO(A), KO(A)),75k_l(Aut(A)k¥Ext(Ko(A), KO(A)) if A

JiCunte dmefer). alegthare exists a few points of resemblence in the
techniques used there by J.Cuntz and by us. If A is not simple the
results are more complicated depending in:a nontrivial way on the
ideal structure of A. In order to handle these situations we were
led to introduce the gruoups Homc and ExtC which take in account
the restrictions introduced by the ideals o KO(A).

The method of proof is the following. First we study?fk(End(A)),
the homotopy groups of the semigroup of all *~homomorphisms A-> A

endowed with the pointwise convergence. It turns out then that the



natural embedding Aut (A)-» End(2) induces'an isomorphism
Wk(Aut(A))wsﬂ*k(End(A)) for any k21, and this is the crux point of
the proof. The computation of'ﬂk(End(A)) requires the kﬁowledge of
-ﬁk(U(Aé)) (Aé is the commuﬁant of the finite dimensional C*-algebra
An in A). This type of questions enter in what is called "nonstable
K-theory" (see(¢ﬂ ,[h{}); in the same order of ideas we prove that
certain C*-algebras obtained ffom locally trividil fields of AFE-cr=
algebras an spheres satisfy the cancellation pPropriety for finitely
generaﬁed projective modules, and also we classify the positive cone
of Ko of these C*—algebras.

._ The: first section. contains géneral results: the isomorphism
‘Wk(Aut(A))maTrk(End(A)) for k21 and the reduction of the computation
ofﬂk(End(A)) toTTk(U(n)). In the second section we introduce the
class of ordered groups with large denominators and show that
Wk(U(Aé))ﬁKo(Aé) if Kb(A) has large denomiators. Also we introduce
HomC and Ext, and develop briefly their proprieties, showing that

KO(An)EHomC(KO(An), KO(A)). Next to a k=leop f din Rut(l) we ascoeci =
te as usual a locally trivial field of AF-C*-algebras on Sk+l and
show that for ¥ odd this defines an element: in Extc(KO(A),KO(A))
which is trivial if and only if f is inner. The final result is

theorem 2.12:

1. In this section We shall prove same general results about
the homotopy groups of the group of automorphisms of an AF-C*-alge-
bra.

For the basic results concerning AF-algebras and for the defi-
nitions not explained, such as ordered group, ideal of an ordered

group, the interested reader may consult f%] or [9] :

1.1. Let us introduce first some notations and fix some

conventions to be used from now on.
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a) Ki(A), i=0,1 will denote the K-theory groups of a C —algebra

A ( [3] s ). If A is o AF-C*-algebra 2 will denote the order on
KO(A), KO(A)+ will dencte the positive cone of KO(A) and >'(A) will
denote the scale of KO(A) ( [B]_,[Q] ). If f:A— B is a *-morphism
of C*-algebras Ki(fj:Ki(A)?ﬁ Ki(B) denotes the natural group morphism.

b) TL£ K is a Ci-glgebra M(A) is the multiplier C*—algebra of
A 5] )

¢} Let us:fix a-base point pd&Sk for kzl. If (X,x) is a pointed
topologic space a k—loop in X is a continuous base point preserving

function f: (Sk,po) > (X, x] . The elass of this function
in T, (X) will be denoted by [ f].

. d) Let A be a C*—algebra,Af denotes the algebra A with adjoint
unit,ﬂ':A+~a € is the gquotient map. X denotes A if A has unit and.
A" else.U(A) is the set of those unitaries UeéA' such that () =1
adn(x)=u X u* is the inner automorphism of A induced by ueU (A) .

e) Lf X, x).ds a pdintéd topological space X denoteé the
path component of the base pdint.

f) If A and B are C*—algebras HanﬂA,E) will denote the set of
all *-morphisms f:A —» B. We shal} topologise this set with the to-—
pology of norm-pointwise convergence. If i:A -» B, Hom(A,B,i) is the
pointed topological space (Hom(A,B),i). Endo(A).denotes (HomO(A,A),
id:). id denotes various identity morphisms.

g) If BcA are two C*-algebras B’ denotes the relative commutant
of - Biine A,

h) Let anmeN be abelian groupsj ?nm:G ~» G_ , m>n an. inverse

m n

sistem of homomorphisms. Let & : 1T Gn«» T Gn given by
neiN nelN

S (6L ) )=

n’' nelN (Xnuyh,n+l(x

1
'n+l))neN' We shall denote by ﬁiﬁ (Gn’Tnm)

the cokernel of this moprhism. Of course iiﬁ(Gn’%hm):kerg'

If‘ynrm:xm°ﬂ Xn' Mz 1S an inverse sistem of topological spaces

o f . g 5 :‘l >
£i§(xn,ynm) is the subspace {(xn)n N xy fn,n+l(xn+l) of gz&xn. It

has the induced product topology.
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i) From now an A will always denote an AF-C*-algebra,

A=UA_ and a_=a'"e ® A(kn) 29 peing face E i
= e S - r B eing factors o ype pnj.
Also we shall denote bytxmn:Ko(An)—a KO(Am) the natural morphism in-

duced by the inclusion imnéAnmﬂ Am, for mn. The inclusion Anma A
: 5 o : o
will be denoted by i, and Hom (An,A,ln) by Hom (AWA)'
j) Other notationms: I=[0,1], Ik=[0,1]x K, SA=C_(R,A). B_ is the
standard n cell, Sn—l=8Bn.

k) By "ideal'we shall mean "closed twosided ideal".

1.2. Let us denote by{)n andxpnm the mappings\Pn:U(A)n» Homo(An,

2

' : o
A)'\Pn(quadmlAn.’4Jnm: Hom Am,A)-a Hom (An,A),%;nm(f)zf‘An.

Lemma (U(A),?h, HomO(An,A)) is a loeally trivial prinecipal

o - S . o : : :
U(An) bundle and (Hom (Am,A),q,nm,Hom (An,A)) is a fibration.

Proof. The second assertion follows from the first.Indeed sin-
¢e a locally trivial bundle has the homotopy lifting property (f&ﬂ ;
[2{]) we may lift a homotopy on HomO(An,A) to U(A) first and then
descend it on Homo(Am,A).

Let us prove now the first part.dr)n is obvious surjective and

the . function U(A)*U(A)9(u,v)--zf'Z,(u,\/')=u—l

veU(Aé) is continuous (we ha-
ve denoted, as usual, by U(A)*U(A) the set of those pairs (u,v) €

UAA): x U Q) such that\yn(u):¢n(v)). Also z(u,.) and z(.,v) are énto
| for any fixed w and v. This shows that (U(A),?n,Homo(An,A) is a pring
cipal U(Aé)mbundle.

Let us show that there exist a croos section for%!n defined in

a neighbourhood of in' Let V be the set of those %JGHOmO(An,A) such
that“q7—inn< 1. If e and f are two selfadjoint projections such
that {e-f{{< 1 then fe has a polar decomposition (efe3z (1-le-flj)e).
Denote by ©(f,e) the partial isometry arising in this polar decompo-

1/2.

sition, thus fe=6(f,e) (efe) It follows that 6(f,e)e(e,f)=f

k

and ©(f,e)=06(e,f)*. Let (eij) be a matrix unit for An. The required
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L E 5 ok k o
cross sectio .s def d s = : y D i
s section is defined as follows u(?) 2% 'WQ@lfG(V(ell),ell)eli |
k=1 i=1

(see[Q] ). Since U(A)' acts transitively on Homo(An,A) a local cross
section exists in the neighbourhood of each POLhE. é
1.3. Lemma. Endo(A) PSies ‘1,homeomorphic to the inverse limit ?
- T s ;
lim (Hom (An,A),kPmn)- i
!
i
. E
Proof. Denote byq%(f) ? :End® (A) -—— Hom® (An,A) then i

?nz'hﬁ”?m for .any n<m. Sinece each of(l)n is continuous they define a
contlnuous function llch :End® iy 1im(Homo(A ,A),?’ )
E n mn

? is obviously one-to-one and onto. <p is a homeomorphism from the

very definition of the topology on Endo(A).

1l.4. Lemma. Let K be a finite cell complex, f:K-a-Endo(A).

Then there exists a continuous function gsIK ~>EndO(A) such that
glﬁl}x K=f and g (tox)e Mut () feor any 0&E<] and xek:

Proofi Denote: by Bn the standard n-cell, Sn—l: Bn' By induction
on the number of cells we reduce the problem to the following: given
f:{lgx BnL)IEBn-waEndO(A) a continuous functiqn, to extend this func-
Eion to a continueous funetion g oh IB, such that g(x)eAutO(A) for
any xeIB N(§13} x B U IdB ). But since the pair (IB. 8 S x B IO B ]
is homeomorphic to the pair (IBn,{l}x Bn) it follows that we may sup-
pose that K itself is a cell, K=p,,

Since Bn is contractible and (U(A),? ,Homo(A ;A)) is a fibration

there exists @m:Bn'9 U(A) such that £ Let @O(x)=l¢

e

Using that U(Aﬁ).is connected and B,, contractible we may choose drcon:=
tinuous function @ :IB_ - U(A!) such that @ (t,x)=1 for xeB_,
t&[0,1~l/m} and @m(t,x):@;_l(x)@m(x) for tﬁ{}—l/(m+l),i), xéBn, m=.
Set as in [i] g(t,x)=ad Gl(t,x)ez(t,x)...@n(x,t) for t£1l - é%i‘and
glax)y=£(x).



We have to prove the continuity of glt,x). It is enough to show

m e

that (t,x) = gl(t,x) A is continuous. But g(t,x)‘A =ade e |
m jiie < =S es e ﬁ%
m

which is obviously continuous since ej are continuous.

155: Theorem a). The  natural inclusion j:AutO(A)~a»Endo(A) indu-
ces isomorphisms??k(j)fﬂk(AutO(A))~>7Tk(EndO(A)), kil

b) There exists a short exact seguence of oOyups:

e o) e o
0-Lim" () , , (Hom G ) (e e B e

1im (, (Hom® (2 ,A)) Ty (ff ) = O )

S

cYﬁo(Aut(A)) is isomorphic to the group of the automorphisms of "

the scaled order group (KO(A),ZJA)).

proof. a) follows frém lemma 1.4.
b) follows from a), lemma to 1.2 and 1.3 andiﬁé}
theorem (4.8), pag.433.

There is an obvious morphism Aut () —» Aut(KO(A),zz(A)). The

kernel of this morphism is AutO(A) (EZ] , theorem 3.1). This morphism

is surjective by a theorem of Eliott ([ﬁd]). This proves cC). .

1.6. Remark
ILet us note that a nontrivial element of %i@ltvz(Homo(An,A)),
Wé(?nm))c7Tl(Aut(A)), for a certain AF-C*-algebra A dis - implicitedss

contained in the construction of proposition Sl Of f?] J

B —— SR

1.7. Remark
Using the exact sequence of a fibration we obtain if A=K (the
algebra of compact operators on a separable Hilbert space)ﬂ"k(ﬂomo(An,
o o = o - = i
A)) 4§03 for k#2 and;lZ(Hom (An,A))gguz(Hom (An+l,A))L.Z, the ! isomor

phism being induced byTrZ(Yn,n+l)“ i



Tt follows from theorem B9 that7r2(Aut(K))&aZ and'ﬁk(Aut(K))ufog

for k#Z; This-also follows from results from [&3 .

2. Tn thissection we shall ‘golfunther dntoe the structure OFf
the homotopy groups of a certain class of AF-C*-algebras, a class

which contains, for example, all simple, won type I AF-C*-algebras.

9.1 e shall need Ehe following results concerning the homo-
topy groups of the unitary group U(n)=U(Mn(€)). >
Denote by i and j the following functions i,j:0(n) —> U(m)

ifw=w® L v j(u)=u @ ..oY® Ip (i is defined for mzn, J is defined

n

for p=m-n£20, u occurs l-tinmes) .

Proposition ([}3]) ﬁk(j):@ﬁk(i) and?Tk(j) is an isomorphism for

k/2¢n. Also

2 n odd

my (Un)={ k/2<n
0 n even

2. 2ubefinition. Let (G,Q+) be an ordered group. We shall say
that G has large denominators if for any ap0 and neN there exists

beG and meN such that nbga ¢mb.

2.3. Proposition. Suppose that A is simple, infinite dimensio-

nal, A#K then KO(A) has liarge denominators.

proof. Let e#0 be a projection, a=fel, replacing A by eMn(A)e
for some large n we may Suppose that a=[l]. Let keN. Denote by

L () : . .
e @ Bo- B, Then
Fnjak

gince A is simple it follows that J=A or J=40%. But A/J has only

JeJ._ and hence J=0J_ is an ideal @ TG
n m SEGOL

finite dimensional irreducible representations, this shows that

J£50% 1s possible onlivasist A=K, Tt follows from the above diiscutions
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that leJ=A. Choose n such that lGJ Let (etj) e a matris unit fonr

: : k
oy Aéj) with Aéj) finite dimensional factors. b= 5\ {ell:} Wlll
= } o
satisfy the requirements of definition 2.2.

2.4. Proposition. Suppose KO(A) has large denominators. Then:
a’ Ko(Aé) has large denomﬁgtors, mzl.

b) The natural morphisms Wk(U(A))_» Kl(SkA) are isomorphisms.
c) The isomorphisms of b) give a commutative diagram with

exact raws:

x O %
0~*ﬂék(Hom (An+l,A))~a R n+lya K (A)"’ﬂék l(Hom (A

°(a ,A)) —= K (B]) — K (2) .~>7r2k_l(Hom°(An,A)') - iy

+1,A) )— O

0-¢7§k(Hom

L ® : ; 5
d) llm( T 1 l(Hom (An,A)),Wék_l(?nqn+l))—0.

Proof. a) Suppose that A is not unital, 1€M(A)NA.

Let (ek.) be a matrix unit fer: A . Dencte by e .the ThRLEEOLE A
ij n n n
An easy computation (see[zi]) shows that Aé is isomorphic to
iy k
(l-e_)A(l-e_) + @ﬁ ek Aek , the isomorphism being (p(a @)@ma =
n n lnaghe i iigee ] (P s
k=1 k=1
km k k
=a e e . Iet J. be the ideal generated in A by (l=e ) e
e k1 K : X n
" m
" K=0 and by ek for k»0. It follows that K_(A')= LN (J ) @ & K. ((Toa)
It i o k=1 k

since eiAe?l((l—en)A(l—en)) is a- -full korpetr in Jk(Jo)’ Lo preve

this use(ﬁ] . simce KO(J) has large denominators for any ideal J o fF A

,it follows that Ko(Aé) has large denominators.

For A unital the proof is similar.

b) We shall use repetedely proposition 2.1. There exists a cols
k

mutative diagram of isomorphisms lim’ﬁk(U(n))~@-Kl(S €)
[ -

,/
RO (8" ) (see [13])



- g

For each 2 denote by e its unit. Let { >k/2 and fn such

O

|
|
|
|
|

et fo[fn]g[en]sm[fn} for some mel. Replacing (A.) .o by a subsequen-

ce and the fés, by same equivalent projections we may suppose that

fneAn Replace again A by enA

+1°

o) Mr. and rl,.o.,rj> {;}k/Z. Then T

Vg

morphism and we have isomorphisms T

kK
U Kl (s7A)

e .
Tl

k

k

(U(A) )2 1inm

It follows Ethat AﬁzMr @

1

k ] 1 =] s
(U(An))w@ Kl(s An) ig an iso

(U(a_))= Limk, (s*A )

g

k

(recall the convention made for U(A) in a0

c) This follows from the exact sequences of the fibration

U(Aé)w% U(A) = Homo(Ah,A) and from the commutativity of the diagram

U(al, )= U(R) — Hom® (

An+l’

% | |

A)

s o
U(An) —> U(A) — HOm (An,A)

(Note that Wék+l(U(A))&:KO(A) and

2

k(U(A

))={0§ Dby b))

d) follows form the surjectivity of Fbk~1(¢%,n+l) as apparent

from..c).

The previous lemma shows that it is important to know KO(AA)

and, in view of theorem 1.5 to compute also the morphisms KO(A£+1)

.“»KO(AA). The following definition and definition 2.9 are an atempt

to give a satisfactory framework for our computations.

a

D5, Do fani tionns biet Hl,H2

be ordered groups, i:Hl»vH a positi-

2

ve morphism,(F:Hlvaﬂz a group morphism. We shall say that ? is com-—

patible with i if - fok ‘every XGHl, xz0 there exists meN such that

ami(xkg?(x)smi(x).

We shall denote by Homc(Hl,Hz,i) the set of morphismsC?:Hlv»Hz

compatible with i. In the same spirit as before Homc(Ko(An),Ko(A),

Ko(in)) will be denoted by HomC(KO

EndC(G)._

(B

n

(3)) and Homc(G,G,id) by



_.’IO e
This definition is suggested by the computation of Ko(Aﬂ) in
the proof of proposition 2.4.a).
2.6. The following proposition gives the baéic proprieties of
Homc needed in the computation of‘ﬁk(Aut(A)).

Proposition. a) Let H,,H, and Hay be ordered groups, i1:H1w~H2,

12:H2-aH3 be positive morphisms. Then there exists natural morphisms

- .
11:Homc(H2,H3,12)-9~Homc(Hl,H3,12ull) and 12*:Homc(Hl’H2’ll)‘bHomc(Hl’

*
H3,12c1l) given by 1l($)=%Nll and 12*(?)=120%>J

Tol) ESEaE Hl'HZ and il are as before and H2 is a simple oxdered

group and 1l(x)%0 for %20, %#£0. then Homc(Hl,H2,11)=Hom(Hl,H2).

14 ~ 3 S
c) -Stppose Hn’ neNiand H' are ordered groups; jmn.Hn—» Hm are

positive morphisms for n¢m and H=lim(H ,j ). Also let i:H-»H" be -an
, e I n :

°

order morphism. Denote by in the composition Hn’a H > H' then

*

e

& 8 AR (P ) s i bt ol
Homc(H,H ) llm(HomC(Hn,H ’ln)’ Yon

Proof.lal Let %fHomc(Hz,H3,iz), $55Homc(Hl,H2,il) we have to
prove that %Luil, izo?aeHomc(Hl,HB,izoil). Let xGHl, x20 then il(x)aO.
Chose m such that -m iz(il(x))g%Jil(x))&miz(i(x)). This proves the
first part. Chose m such ‘that -mil(x)éﬁgx)gmil(x), sin@siz preserves
the inequalities we obtain the desired conclusion.

b) Since H2 is simple and il(x)ﬁo, il(x)¢0 for =70, %20 9t fal=
lows that il(x) ig an.order unit for Hy namely for any yc—H2 there
exists an meN such that-—mil(x)Sygmil(x) (see[g9 }). This concludes
the proof.

c) Denote by jn the positive morphism Hﬁﬁ%H)jn defines a mor-

3. it fol lows

5
phism jn:Homc(H,H’,i)u» Homc(Hn,H’,l Yoo mSinee e .

n m®Jmn”
Tk k ; - : -
that e Bl and hence 57 colect to define a morphism f:HomC(H,Hyl)

),35 ). Let ¢e Hom (HH',i). If £(9)=0 then

; S
nallm(HomC(Hn,H 0 o

< n

S 5 ’ . =k e
(ngn~0 for any n and hence @ =0. LetcpngH@mc(Hn,H 'ln) such that

s

—>

n
1 = ly i ~ o + 57 = ; EaNE « 1 [ 2 ’ i )
jmn($m)—§h~ This means thaL(chjmn ?ﬁ' Deflnec?.llm H —+H' using the
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universal property of the inductive (dizect) lLimit: cf;& Hem(H , H.) .

We need to check thath)is actally in Homc(H,H’,i). Let x€¢H,x20. Then |

there exists n and xneHn, xn:;O such that an(xn)=x. By the assumption
that ’>neHomC(Hn,H’,ioin) it follows that there exists meN such that

-mi(in(xn))‘ér({)n(xn)&’mi(i (x,)) and hence -mi (x)s «io(x)g;mi(x).

* :
2.7. Lemma. Let A be a unital AF-C =-algebra such that KO(A) has

large denominators. Also- suppose that AO=C{1.

a) There exists isomorphisms /Sn:KO (Alfl) s Homc (Ko (An) "Ko (A)) and

a commutative diagram

A’ Fom » Hom (K_(A ),K_(A))
o m ORI m o
Ko g =
l Hhes s Homi(7, ;@Ko (A)) =4 o msn
._n a{'\:’n \ v
o n > Homc(Ko(An),Ko(A))

(j:An’1 ~->»Ar’l is the natural inclusion a11d‘3<pq ig dg dnmahal 1))

b) There exists morphlsms/u 2 (Homo (An,A) ) -—= Hom (KO (A (A))

k n/)Zé’Ko

and € : F‘ k= l(Hom (A SR Yy i Bt ( K / K A)) and a commutative

diagram with exact rows:

G (HomO(An,A))-—a»

Sk U Ar’l))w.x'rr (U(A)) —=T"

I @)
FZk—l( ( 2=l Sk l(Ho:m (A, /R)) == 0

14 v 1 /

S

(§ ST el UHAT )Y — Homd(K (B ) K (A)) is the composition

77_2]{—1 (U(AIII) )~—>>KO (Ar’l)uas HomC (KO (An) ,KO (A)) ~» Hom(KO (An) ,KO(A) ) 5

Proof. Tt follows:form-the proof -of proposition 2.4 .a)stheat
k. I
KO(AI’Il) is a subgroup of KO(A).@:Hom(Z ,KO(A)):L/ Hom(KO(An) ,KO(A)).

The previous isomorphism maps KO(Ar’l) onto the set of those morphisms

: 4 =l 2 .
T:Ko(p‘n)"_"} KO(A) such that ?(Lell- ) belongs to the ideal generated

0 ~=Hom (KO (An) /%, K, (A) )—Hom (KO (An) Ky (A)) ~»Hom (Z 2 (A) S Ext (KO (An)'/Z Ky (A) )= 0




e by[:e§l3’ namely the set of those a K_(A) such that there
; = i ke k . e
exists m&N such that m[elikdgm[ell]. This shows that Ko(An) is iso

norphic £o Hom (K (An), KO(A)).

We shall prove that«{ :[ (3), the other.relations are si=

mat e, LetC%mn=(apq) the matrix representation of the morphism

: ko,
X K (A)—= K (A) (lépsk,, 1€9sk,). Let ([e], v 0jeR ) T

Homc(KO(Am), K (A)) 1.e.Le]éKo( l) (we use the notations introdu-

(Le] 0,-0),
ceds in the‘proeof. of 2.4.3)%). Suppos ﬁan represented in A’ by
Pang :
£ = l fel for ‘a projection f equivalent to[ej(eij a matrix unit

Lo g1 i

(0]

of Am). We want to £find the class of this projection in Ko(Aﬁ)’

Let~(egt) bée a matrix unit.of A . We may suppose that the matrix

) and (e?j) are compatible in the sense that each of

for,

T k
e is a sum of some of eij' To be more precise in such a sum ell

: r
units (eSt

st
. &l - Let[:gj be the

appear a, . projections ffom' ek
Pk Pk

LI gy
th

Pt ’ e B Bh r * o

r component in KO(An) of fl’ this is the r component of an(Le],

) HomC(KO(An), K (A{l;/
(Tgl is represented by > e h ei and hwis a - -projection equivalent &@
s=1

e k ot e e T B i = :

g. It is elear now.who' is h: h ellflell 12§] eilf ey 7 ay, terms

Ciiaay

occur in the sum and hence[g]z[h]: alr[ﬁ]: alr[el. It follows: that

there exist a commutative diagram

&

S .
—

KO(A$)w4»KO(Am)fg>K (B)<om (K_ (A ) /K, (&) <= Hom (K, (A ) K ()
lrgq) L2 @1 2 il i
@ﬁQ@%%)@&Hmm@ﬁﬂ%mew%@W%m)

e Mg s ot

This diagram gives the desired conclusion.

bl let f:Szk”l, pomalU(Aé),l be a 2k-1 loop. We identify Skal
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. .
to 3B2k.-Choose g:B, —>U(M, (A)) an extension of fef toB, .add

defines a morphism An—>C(B K ® A)j Since -f ta=

M, (A)) —> C(B

20! 21!
kes values in U(Aé), the range of the previous morphisms is actualy
X - 2k e 2k :
in C(BZk/asz - K@ A2 elS 7, K ®AD). Denote by qf.Aﬁ~aC(S = Ko A)

g2k e

the morphism{/(a)(x):a ®. 0 (the upper left corner

the previous defined morphism and bytP:An—a(Z(

embedding by constant functions). Using a Klinneth theorem ([?5},L43])

k

or b¢y direct-computation KO(C(S2 ; A)nyO(A) @® KO(A), the first sum-

mand being KO(%)(KO(A)) and the second being the kernel of the mor-

2k 2k=1

phism Ko(e):Ko(C(S ,A))~9~KO(A) induced by the evaluation at S /

/5?51 (the point obtained by collapsing S2k—l'=-9B2k to.a point),

it follqws that Ko(?f) = KO(?)defines a morphism S([fD: KO(%T)_
—Ko(y): KO(A)_a'ker(Ko(e))cz KO(A). This morphism depends only on

theucloss ‘of & <in (U(Aé)). This shows that Y is a well defined

2K=1

functioen.
Let us show that S is actually a morphism.

Denote by f % g the operation of concatenation of loops and by

2k 2k

G: ST SZkVS fa SZk/ecuator the obvious morphism. Note that there

exists a homotopy commutative diagram :

e cieF. Am K) - *

T Sesvs a0 L™ ae K
' ‘P;.C(S ;A K) “
A Frg = ‘ole?E B )

The corresponding diagram of Ko—groups looks as follows:

( ()"AaA,S(Cﬂ) K A @ KO(A)\'%:' i e (A)KO(Oj?K (A)SK_ (D)
K (A i -

. i ﬁo o e) (@] (@]
(‘W K () & K (A7,

(i, § ([£x4]))

K_(3) > K_(2) ®K_(3)




..,.14_._

il(XIY):(XIYIO)I iZ(X'z):(Xw

e -

O(<r*) (e, yp2) = (58, v t2) -

This gives the desired conclusion.

Note that 5([f])([1])=§5([f])= the index of the loop f regar-

ded as an element of Kl(SZk-lA). Hence, if f is homotopic to the

constant loop Py in U(A) then 5K[f]) factors to give a well defined

morphism KO(An)/Z ~>KO(A). This iS/A([f]) under the identification

O & . ’
T{“Zk (Hom™ (An,A) )= ker(n“2k_l (U (An) )»Ter_l (UCa) )) -
Let us define now &. Let f:SZk_l,po—a-U(A),l be a 2k-1 loop.
f defines a unital morphism An~9-c(82k—l,A). This morphism is the

Busby invariant of an unital extension

{1) 0— SZkA—-—>E ———>An->0

Denote by 1 the units of E and An as well. This gives an exten-

sion of groups

O—%'KO(A)-anKO(E)/Z —_— KO(An)/Z —> 0
(Z %0 ewbedded on m—>m[4]).
The class of this extension in Ext(Ko(An)/Z, KO(A)) will be
denoted by &([f]). We may show that & is a gfoup morphism as we did
» for & or as we shall do for E in theorem 2.11 , However we shall
confine ourselves to note that this will follow if we shall show

that the diagram

(Homo(An,A)) esisl g
J/z i l/‘é
Hom (Z, K (A) )— Ext(Ko(An)/Z, KO(A))—>O

is commutative. To show this observe that (1) becomes a trivial ex-

Skal

tension after tensoring CO(BZk’A) by Koo Rl fEingieteon An«avc( _9:A)



=D

SZk“l

; : *
e el ,Mz(An to C(BZk,Mz(Aﬁ is wgiveniby a lifting of £ @& £..

This .shows that our extension of groups is isomorphic to

2k

Dpoet L - S >
0>k (S°A)->K (S M<DQJ@&%%JBngwH%u%%CD"O

and hence it is the image of the morphism Z N%KO(A) which sends 1
to —SO([EJ) in Ext(KO(An)/Z z KO(A)) (this alsq justifies the appea-

rence of the sign -1).

The first row is exact since it is a segment of the ‘Jong cxack
sequence of homotopy groups of alfibration ({é?}). The second row is
a segment of the Ext-exact sequence of homological algebra ([k%] ).

The following lemma shows how we can use the preceding lemma

in the nonunital case.

: *
2.8: Lemma, Let A besa nonunital AF-C -algebra. There ‘exictes omn

exact sedquence

= e} s o S { +y @] -
O*MZK(Hom (Ah,A))wvHomc(Ko(Ah),BO(A ) Homc(é,Ko(A )) uzk(Hom (Ah,A)) > 0

Proof. There exists morphisms

+ + x RS :
?ﬁzﬂomc(Ko(ﬂn)’Ko(A )~ Hom(Z,Z)==7Z and

?Z:Hom(Z,KO(A+))~¢hHom(Z,Z)ezZ

given by ZJZ%Z[l}:KO(A;) and KO(A+)«% KO(C)fﬁZ. It follows
4 L = " S ) o€ 1~ 3 hE
that KO(An) Kelcfl and KO(A)“_kar'WZ as easely seen from the proof
of proposition 2.4.a) (we have an argument similar to that given in
the first-paragraph of the proof of lemma 2.7.7 }. The rest ds an

application:of proposition 2.4.¢c).

2.9 Defindtion. Let Hl’H2 be. ordered groups, i:Hl-ﬂvH2 an or-

der morphism. An exact sequence of groups



] : 0 — H > T

in which E is an ordered group, # is a positive morphism, will be

called compatible with 4 4if

Xe=
(AN
1671

Eh)eec B s s > 00, e e Yer 7&? are such tha (y)=m(z)20 then z20 if

ll
and only if there exists m20 such that -mi(x)gz-ygm-i(x) in HZ'

As in the usual case, two compatible extensions El and E2
be called isomorphic if there exists a positive group morphism

‘?: El«4>E2 and a commutative diagram

0°—%H ~*>E —> H —-ﬁO

(2 9.1) ’ “ J/‘f )

0-—=H -wE ~—H, == 0

2 1

It follows that ? is necessarily an isomorphism of ordered

groups.

The set of isomorphism classes of extensions of Hl by H2 ; COM=

patible with i, will be denoted by ExtC(Hl,H2,i).

An- extension ‘B - compatible with i is called trivial 1if there
exists a positive lifting for ﬁ'.‘Note that in view of our definie
tion two liftings differ by an element of Homc(Hl,Hz,i).

Tt fis not true that:a trivialsextéension: in Extc(Hl,H2,i) is
isomorphic to Hl ({)H2 as ordered groups.

We will need only the following results about this Extc.‘

H be orxrdered groups,

2.:1.0 .. Propesit ton ' a) Let Hl,H 3,

ij:ijQijQ jQﬁlQZ,BE be order morphisms. Suppose that the ideal
generated in Hj+l by 1 (H Jids Hjége§1,2,33)

Then there exists functions

wi




»...17....

*
11:Extc(H2, 3,12)~a»Extc(Hl,HB,lzvll)

19*:ExtC(H2,H3,12)~¢Extc(H2,H4,13012)

]

* * : :
with the property that llm13*=13;bll as functions from

EXtc(HZ’HB’lZ) to ExtC(Hl,H4,13é12011)

b) Let El’ EZ&ExtC(Hl,HZ,l), d:H -w>Hl @>H1 d(a)=a @ a,

il
o: H, ® H,—>H, cla,b)=a+tb then ) & E,GExt  (H@H, H @1, ,i%i), and
* *
d (g Eq ® E, ))=¢; (d (‘El @)EZ )EExtc(Hl,HZ,l) defines a group

structure on EXtc(Hl’HZ) with the trivial extension as a neutral

element.

o} ‘Let B xel; Hd,

.1 and H-be.as in proposition 2.6.e) tlhen
mn’En POk :

there exists an exact sequence of groups

ST ; * # : : 34 -
0->1lim (HomC(Hn,H’ ,1n) I fExtC(H,H’ ,i) — llm(E}d:C (Hn,H’ ,1n) ,jmn) — 0

<lv-———-
M, -
Proof. a) Let O-%>H3u~»Eﬂ~¢H2»~»O be an element of Extc(HZ,H3,%£

*
Define 11([E]) to be the class in EXtc(Hl’ H3, 12011) of the exten-—

sion
0 —> HB —3 I .ﬂ..ilHl i Hl--«-s 0
g o S
Here Bty By mgkan;) |mtx)= iy (b))}
___M"M

g(x/,hl);o if and only if x70 and h z0.

13*(LE1) is the class in ExtC(HZ,H4,13c12) of the extension

; : i
0 —2Hy—>E & Hy/e nay 1, (1)~ 2 ~2 0

The order on E,=E €>H4/( has as positive cone Py

@ ile B
the set of the’ classes of elements (x,h4), xeE, x20, h4&H4 such that
there exists m20 for which =* —migﬁizém%x)QhAQm iBQizmjﬂX). Denote



R s

# ,«AK
by s, h ) the class of an element (x,h4)eE C)H4 in Elo We shall
N

oi Let (x,h)ﬁEl. There exists positi-

2

ve elements xl,xzéE sueh: that X=X =X Also, since the ideal genera-

show that ]eaﬂxﬁ (i of ot ) .

ted by i, oi (HZ) 3L T8 H4 is the whole of H4, there exists x.30 such

- - - i <h¢i _ oi + g + = -, 2
Lhai//iéjlz(x3)ﬁh$13 lZ(XB). It follows that (x,h) (X2+h3,h)

~(xl+x3,0) is the difference of two positive elements. If (x,h) &

Pl iy ( ) then Tl(x,h))=ﬁ7x)ﬁE+m(“E+) (E, is the positive cone in

+
E). This shows that Plfi( —103
N //\ éJ A%
ettt das s as(sr o h )CL “such that (%5 ,h;) is positive and
gl e 5 1k
h=ﬁ1xl)=ﬁ7x2). Suppose that (Xz,hz) is also positive. Then we may
suppose that xl,XZ?O, —miz(h)gx2 xlgml (h) and -m 130i2(h)£hj§
v 3§ 5 N P
m ijei,(h) for some meN and j%§1,2% . Then (x1,hy)=(x,,h,)=
S s o o .
=(O,hl~h2+13(xl~x2)) satisfies -3m 13012(h)&hl—h2+13(xl—x2)gi/~\
i
3m 1,01, (h). Conversely, if -m ijei,(A)$h¢m i,0i,(A) then (xy,hy)+
7N N

+(0, H) is positive from the definition. Since i U l,hl)):'f?‘(xl),

ﬂi((x2,h2))=ﬁﬂx2) it follows that (El’Pl) defines an element of

Ext o1

c(Hy Hy dqeis).

Note that if in (2.9.1) we suppose only that q) is . a greup
morphism then it follows that(? is actually a morphism of ordered
groups. This shows that the natural function EXtC(Hl'HZ'i) —

Ext(H

is injective and hence that Extc(H Hz,i) may be iden-

l,H2) T
tified with a subset of Ext(Hl,Hz). This proves the rest of a) and
B,

Let En and ﬁmn be such that the diagrams

0 H = I > H > 0
n n
b e |
0 ~—>H'—>E —>H_—>0

are commutative,%§mn positive, then

0“_%HLWM%%ig(En’ﬁ%n)“A9}im({n’jmn)“Mao
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£ Fa i ‘4 i i aa ot heh s 16 24l i o W
Ech(Hn,H ,Jn) is LEn]. This gives thg surjectivity of.Extc(Hn,A ;

Lk

)il J

mn

represents an element [E]E;Extc(H,H’,i) such that itsdimage in g
|
i
. e
J |

> 1 7 B T 3
n)-v~i&@(ﬂxtc(ﬂn,ﬂ s

Let 0 > H'—»E —H —0 be an extension such that if jn: i

* S i

:H —=H is the limit morphism then jn(LEQ) is trivial.This means that.
: E

there exists positive liftings Eﬁ:Hnn%»E such that 7ﬁf&n=jn. Lek us

observe that € o] =¥ &Hom (1 I f we ise cthe iEtings 2l the
n+ljjn+l,n “ﬁlHomc(anH’jn)‘If we choose cther lifting z, then

© 4 (

l i —pl=2 3 = W % : 2
R &éAé%+l°jn+l,n z (2! -z ).It follows ‘that(Z

wp T — @ 4 2 ; . @ 4 ;
1 @n+l) Jn+l,n n n+lyjn+Ln‘

) and (&

=ie ’ : et v s . = T
e Mn+lajn+l,n ﬁh) differ ain me Homc(Hn,H,l Joby an

neN neN e
element in the range of g.(see 1.1.h) ). This givesithe rest of the
statement.

Let us observe that if Hl and H2 are unperforated then any or-

dered group representing an element in EXtC(Hl’HZ’i) is unperforated.

We shall denote by Extc(Ko(A),KO(A)) the group ExtC(K (a) .,

@)

KO(A),id).

2. AL, Tenia. let fes o L o Kue (Al be o 2k-l doopt snd cigho

e AP S T S AN S A3 T A s

*
that KO(A) has large denominators. Let Efc:C(B A) be the C -alge-

2k

bra of those functions @ : —» A such that(?(x)=f(x)(a) for some

e
azﬁi?)ebA and any xeSZk—l. Then the semigroup V(A) of projective
finitely generated modules over Ef has cancelation. If KO(Eﬁ+is
the positive ‘cone of KO(Ef) then Ko('rr)(KO(Ef)+)=KO(A)+ (mr dis Ehe
quotient map Ef-«yAJ. More of that, KO(Ef) represents an element

in'Extc(KO(A), KO(A)),

Proof. We refer thesreader for the notion of topological stable

rank and for the theorems used in this proof to[ﬁgl.

There exists an exact sequence

0 => SZkA — Ef?_z.) Aar ()
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We denote as in{ﬁ@] by tsr(B) the topological stable rank of
* x &
a.C —algebhra B It coincides with the Bass stable rank (ﬁME),
We know that tsr(SA )s$k+l and hence tsr(lim SA )sk+1l. Also
n b N>
tsr (A)=1 and hence tsr(Ef)gk+ln Analogously tsr(eEfe)$k+l for any
projection eeEf. Let €185 be twe projectiens in K @}Ef such ‘that
[ei}={e2]. Replacing A by some M_(A) we may suppose that wle, ) mw (e}
&A. Since close projections generate the same ideal and'ﬁ%el) and
ﬂ%ez) are equivalent consider the ideal J generated by ﬂ%el) and
. o . % TEe o 8} g
identify e and e, with two Eunctiens %l and ?2 in C(sz,J)ﬂ Ef.
Then there exists a commutative diagram

Gty o e

‘L 2k &

0 ~—»S A —E -~ A — 0

: 2k
Since KO(J)~@>KO(A) and KO(S J)~—aKO(S

2kA) are injective 1€

follows that K_(C( J)N Eg) —> K (Eg) is injective and hencele; §

Box
and[é2]represent the same class in KO(C(BZK,J)G Ef). This shows that

we may suppose that ey and e, are full prejectionsiim Ec. %

{
i

Let n=k+1. Choose a full projections e & A such that n[é]&ﬁ)@q(gﬁy

We may suppose that eEAp for some large p. Also: it follows from pues |
|
positien 2.4.b) and ¢) ‘end from lemma 1.2 that there exists a loop .
% ¢
.0f unitaries g such that f‘A =adg\'A .- Leth be a ldfting of ig@d o
p p
0

: ; e
ar undtary ‘in C(BZk’MZ(A))' Then ad, ( 00

o ):eO is. a projectieontin

M, (E such thatTT(eo):e. Similarily we may find a projection

5 (Eg)

e'eM, (E for some darge.r; such that n[el + KO@T)([G']):KOVW)([éil){

f) ’

We show now that we may replace e&%e’ ?y some other projection e”
i ‘ L,—’ngu = 2k

such that (l)(n—l)Leo']+[e”:l=(:éi}° Indeed xz[eﬁ - nkeé&—[ei% o (8TA).

Since e is full p=e @irle’) is also full and this means that the

St N . ; : o
mapuzkwl(U(er+l(A)p))m@wKo(5A ) is surjective (use proposition

S uahiE)e STet g be (k=10 leop. in: U(pM (A)p) representing x in

2k

Totll]

RS

5 A). Using g we may twist e @ e’ such that the new projection
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e" satisfy (1). Indeed, let h be a lifting of g @ géé o a unitary

ITnaCUB

= nE

S nces e sty i A,eo Perialce F g din Hf and hence

2k,Mzr(A)),yf’zadh( g 8 e It feil Lown- that (n"l)Eej o [q3 =
- L

el z oAl : A ES ; : :
(ehg) ® gE, @ (emf) and (elﬁf) &;(ekf) are  lsemorphic asi right

ﬁf - modules for some meN. We may use now the Warfield can_cellation

theorem ([ﬁg],&&a) to conclude that (eEf)n"l‘&7qE} and elﬁf are
n=i

actually -isomorphic. The same argument shows that eZEf and (eI;E)f <5

® qgE, are isomorphic and hence we obtain that[ei}and{eé]are equivalent

projections. \
We have already proved that any projections in A has a lifting

in Ef. This shows that Kotﬁ)(K (B

o f)+)=KO(A)+.'TO prove that

Oi—> KO(A)"fﬁ KO(Ef)=%>KO(A)-aO

is an element in Extc(KO(A),KO(A)) we have to prove 2.9(b).

Let e.,e &MI(E

1785 such that KO(W)([él1)=Ko(ﬂ1({?2j):Cé]. Then,

f)

as we did before, we note that ey and ‘e, may be identified with func-

2
tlons?Dl,%b:B2k«e J,J being the ideal generated in A by 'j'r(el)°

. = : : 2k : >
Hence Lei}— LeZJ is an element of KO(S T Conversely -1 £ XQKO(Ef)

is such that Eei]— xeKO(SZkJ)*'V'Qﬁ‘jf KO(S2kA) then we may find

. i3 6‘" T z: -
a2k-1. loop g in U(ﬁiel)Mr(A)ﬂ%el)) such that o ([g])= x —fbil, Using
this g we may twist e, to obtain a new projection eZ&Ml(Ef) such
that (eélw tei}=x = ey < Fhis concludes the proof.

*
Note that Ef isalecally triyial field of Al=C —-algebras.

*
2.%2.: Theorem. Let A be an AF=C ~algebra such that KO(A) has

large denominators. Then there exists a commutative diagram

with exact rows:



D
1)
I

ey

s = b

(%4
O~oﬂ2k(Aut(A))~ﬂ EndC(KO(A))»Jyﬂom(A,KO(A)ywﬁ}L

; LS e oi' X
l M . \ \Ei .
r‘v o o St /

( 4

- Hom » Hox ] —=Hom (% ,K_(2))—>
0 - Hom K / Hom(KO(A),KO(A)) ,Hum\i,ho(A}) Ext (K o /Z Ko Aﬁ{
Ext (K (A) K (A)) wits ()

Proof. Let us suppose first that A is unital.

) s V] ) s ne

EndC(KO(A)}mﬁsHom(KO(A),KO(A)) and ExtC(KO(A),KO(A))wﬁExt(KO(A),

(%4

KO(A)) are the natural maps. M is defined analogously with./A of
lemma 2.7.b).." B associates to X&ﬁgk_l(Aut(A)), x=ff} , the class
in ExtC(KO(A),KO(A)) of the extension

(@i . e
OAKO(Q A) --ﬁvKO(E

constructed as in lemma 2.11. (We identify using Bott periodicity

el Tih T KO(Szk

o A)).

Let 1 denote the units of Ef and A as well. The extension of

groups
0 —K_($*®A)— K_(E.)/2[1] = K_(2)/2[1] — 0
e ol e o

will be denoted by El(x_)°
We prove now that E and El are group morphisms.

Denote by f % g the concatenation of loops. Also let d:A-»ABA,

d(a)=a @ a and ¢~ SZLA @ S kA»ﬁSZkA the map induced by CO(R2k) @
@ CO(R2k)iMCO(REk) @ CO( ) th (R 2]\). There exists a commutative

diagram of extensions:

2k

i > G &1 et - 0
0~ S /i\‘z:.)—- B %f ¥ g ,ﬁz‘i o
038 @Zk]\ﬁ'l52 A #}%. — A -—>0

0 - C:VZkZ\Q.S A —» I f+Eg e APA 20



Since Ko(ﬁﬁ(a,b):a+b and KO(A)(a):a @ a we obtain that the
extensions E({f*gj) and Qé(f*g}) are the Baer sums of the extensions
E([f}) and E([gj) and, respectively, of the extensions El([f]) and
By (Lg]-

The commutativity of fhe diagrams follows by the naturality
of the definitions (compare with lemma 2.7 and 2585

We have to prove the exactness of the upper row.: Consider -the

commutative diagram

0 0 0

{ { o :
waﬁWZKU?m(AH~9iggm5kﬂbm B r2)) Ty ()20

/ v 3
0-0->Hom_ (K (&) K (8) )L (Hom_ (K, (& ) K (8)) ;0. ) —»0

[ o !

0~ 0~= Hom(Z,Ko (A) )< Hemi(Z:, B (D)) =720

\ .
0->Lim (7, (HorC (B ,a) T (Y )y (Aut (A)) —>Tim ¢, (Hon®(A,,8) 7T () )10
= 2 i el o : "2k-1 N7 1 0k~1 o

\ = b *

. l T~ 17 ')* (N
Ov*%i@ (I““b(xu«ko(An)’KO(A))’L%m)“QLXtC(Ko(A)’Ko(A)) 0 =0 .
i i b | .
0 ; 0 0

In this diagram the first row is exact due toltheorem 1 .5.b and
to proposition 2.4.d). The second row is exact due to propositicn
2.6.0) . 1t follows al=o. from ﬁheorem L.Sub) that  the fgmﬁh row is
exact. The Tifth: row ie exaet due to proposition 2.10.¢. This shows
that in the previous diagram all fows are exact. We want to show

* that the middle coloumn is exact.

lLet us first ebserve that the composition
Hom(Z,KO(A))Mﬁﬁék_l(Aut(A))w%Extc(KO(A),KO(A)) is zero. Indeed if
f is a 2k-1 loop in Aut(A) then there exists a 2k=1 Loop g dn Uln)
such that f-adg for g a 2k—-1 loep in U(A). Let e be = projection in
Mn(A)ﬁ Choose a lifting:h of g @8 g @ ., & g@ gl e, @g* Eo. a
continuous function h:B2kwﬁbU(M2n(A)) (g appears n-times and g*
also n times), then Z (fef = adh(e) defines a positive Lifting fen

Nl e e



e A ,1 s

(3)

Let us deneote by Hs the i-th cohomology group of the j~th

coloumn, j&gl,2,3} v iﬁgl,...FS}. We want to show that H(2)=O for

it
¢ e (o SR e ; poos Gl G e el 3
any liwﬁqe..,ﬁg. s LS obviious  ehat Hl —H2 «—HB ~§O§. Also H{ Lr

H;3L{O} by direct computationsusing lemma 2.7. §
The computation of other cohomology groups requires the use :

5 et = .
of the lim exact sequence (see{;&?f). There exists an exact sequence

(we omit to write the morphisms definiqg the inverse systems):

im 7 TO — 1 . 7 s
O-éa%i@/bk(Hom (Ah'A)) "éﬁ@ HomC(KO(An),KO(A))"'*
w1 imeHem s (K (8w K (A (HomO(A. A))§;lhﬂlﬂ" (Homo(A A) )
s ctoimeloh Pl e a1
T - el G o
m?%é@ Homc(ho(An),Ko(A)) }%ig Homc(Ko(An),KO(A))/ﬁzk(Hom (An,A))~>o.
(1) ¢ (1) 1
We obtain so UE&:H4 ~ ran(®) and that H.g e %iﬂ Homc(Ko(An), %
= O 7
KO(A)/ﬁZK(HOm (An,A)o E

: 2oL |
There exists also a lim~ exact sequence obtained from the exact

@)

sequence O~¢Homc(Ko(An),Ko(A))/ -A@Hom(Z,KO(A)y ; (Hom

- T (A ,A) )0
= ) D el
M el ot Al) . .

0-»1im Hom (K (A)) K (A))/

: o
o ngubﬁbthU)«aH@n@rﬁﬁA)félumr (Hom™ (A_,A))—>

& 2Kk I

limlHDmC(KO(Ah),KO(A))/HM

= 2 2k

—Y Oo

uka(An,A))

S L B S SR SR

This shows that H§3) is isomorphic to the cokernel of the map

s ; : sl . - v 2 O wl
éiﬁ Homc(KO(An),KO(A))x,>£;E Homc(Ko(An)’ho(Av/Wék Hom (An,A)). From

; o2l . 4 ;
the previous lim™ exact sequence this cokernel is isomorphic to

cy () w3 e i
ran(e) and hence H4 “mH3. Samilarily H4 Eikﬁﬂ (HomC(KO(An), |
i | i

ke 0

< O T s N
Zk(Hom (An,A)) 5

We have to show that the previous isomorphisms are induced by
the connecting homomorphisms in the long exact sequence of cohomology
groups:

W el e
3 j j



Lekbcuseprove. finrgt abhak Hzéﬁ Hél) is the connecting morphism

. G e O ; - pa e
Il o cLet xw(yn)néNc;llm J’ J(Hom (An’A))° Each X, 1s represen

ted by an ynGHom(Z,KO(A)), namelye by a (2k=1)- loop  of Unitaries fn

In- e ssueh Ehat adf

i a0 \A okt Tollows Ehat Yo Y. come

i i)

from an element Z QHom (h (An),KO(A))O The class of (Z.,2

ll

: : l,
,,,,, ,Zn,b,.) in iﬁg Homc(Ko(An)’Ko(A))/W;y

with the image of x in llllHom (KSR ) A

(HomO(An,A) coincides

e @R o (HomO(An,A)) piden

2k
: 23 o)
both compositions llmﬁék l(Hom (An,A))«@rHé lﬁillm HomC(KO(A ),KO(A))4

gmonreen e n

<
(3132H(4)”“ lim'Hom (K (A

/7 4 5 c o‘&h

2k
K Ry 0,
e} Fék

i&?HéBLﬁaHé4) is"an isomorphism.

(Hom® (A_,A) ) and lim 5, (Hom™ (A ,A))—>H

(Hom® i n This shews that_the connecting map

Let £ be .a k-1 iloop dh: UlA) suchy that itz iclace “in

LimTT

jse=0s i Then' ad et idn llm e
el o l

@]
(Hom® (@A) £ (Hom™ (A_,A))

2k

and ‘is represented by the following element: for each n there exists

a loop Ko i U(Aé)‘such that a@ﬁ]x and a@ﬁ% 5 AEe homotopic.
“n n
Also adﬁjA and ad§\4j\ are homotopic. The resulting homotopy
Ay

from ad/'+]

and ad&}\A defines a 2k-~loop in HomO(An,A). Denote
B n

the eclass of this loop by.y . Then the clase of adff) in ii@%ﬁ}k(&mP(A -

n
e
A)) has as representative (Lyn})nﬁf xo defines an element of
i ’ p 7 N o > & 4 g gelc =)
:U2k_l(U(An))ALHomC(KO(An),KO(AD such. that % and An+l regarded as

elements of Homc(KO(An),KO(A)) have the property that X1 ([il)—

=[f]: X ([i]) and hence x e o is actually in the image of

n+1

O A > ; 25 B
‘Wék(Hom (An,A)) in HomC(KO(An),KO(A)). It follows from the definition

) repre-

that x - X, corresponds to y . Since ( x_ .4 = X/ MEN

n+l

(AY)ain llmlﬂ HomO(An,A))

2k(

sents a@ﬁ‘x HEN & éim Homc(Ko(An)’Ko

it follows that we have a commutative diagram



- 26 -

gk 39 Y2 H%‘)

]1jﬂ1f"21 (Hom (A JA) )

This shows that the connecting morphism 53 is an isomorphism. The

nonunital case is similar requing also the use of lemma 2.8 and of the

- : SR e + -
isomorphism ﬁig. Homc(Ko(An),KO(A))uJ%ig (Homc(Ko(An)'Ko(A))°

2. 135 Corollatve Eel A be.a simple AF”CX—alqebra, A infinite

dimensional, A#K.Then,if A is unital

Ty (Aut (A) )2Ext (K_(A) /2[1], !
T, (Aut (A) JxHom (K (A) /z[l}, Ko (A))

andsy- E oA die net-uhital

Tr2 k=1 (

(Aut (A) )*Hom (KO (A) ,KO ERE) o]

Aut(A))HExt(KO(A),K (A))

Ty

Broof. lUse theoram 2. 12 and propoéition i3

2.14. Remark. a) Suppose that A is not unital. Let A be an

*
*AF-C =—-algebra with KO(A) with large denominators. Let o denote the

uniErof A - Let us suppose also that l~en is a 'full projectionizin

+

AL then it is easely ‘sSeen that'ﬁk(U(Aé))ﬁﬁk(U(A)) s ssurjective

for any kzl (see lemma 207.a», This shows that Endc(K (A) )=+ Hom (Z,

(0]

KO(A)) is surjective and hence ﬁ}kml(Aut(A))&:Extc(Ko(A),KO(A)).

b)) TERA s unidEal sthen ﬂ2k l(Aut(A)) can be identified with

isomorphism classes of compatible extensions with order unit

(1) 0 =2 Bo(A) ~2(Boae) == (K_(A) j1])




is an exact sequenge 'ag in definition 2.9 and u is & positive ele-
ment®in. B sueh that filu) [i Two such extensions {Elfuj),{El,uz)

are isomorphic if there exists a commutative diagram

such that ? is  a positive morphism (and hence necessarily an iso-
morphism of ordered groups) and ?(ul)=u2. The extension in (1) is
trivialif there exists-a positive Lifting 7 for W such that
il )=

We associate to a loop f representing X&mT

2k~1
f) with {11&KO(Ef) as order unit: . It turns

(Auti(r)s)s thed elass
of the extension KO(E

out that there exists a commutative diagram

Homc ( ) -*Hom (7, h ),nfék l(Aut(A))wﬁExt (A))—=0
H H | U |
Homc (KO " ( (A) )—>Hom(Z, K (Rn))- ‘-’»E}’L (K (A) ,KO (A) ) EXt K KO (A))=0
iM%%é)

(ExQﬁKouw,KbUﬂ) the group of isomorphism classes of extensions

as-in (1), called . compatible unital 'extensions).:

The morphism Hom(Z,KO(A))w$Ex£§(KO(A),KO(A)) sends the morphism

N nu to the class of the trivial extension

0 —»K, (A) ~>Ez2K_(A)—> 0
“«‘.’:

with ordered unit t([ll)+u. It follows easely that the second row
% “ ;
is exact and hence 7 (Aut(A))&iExtC(KO(A),KO(A)) from the fiwve

ZRk=1

lemma.
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