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ON THE PERTURBATIONAL DUAL PROBLEM CORRESPONDING
Ty AW UWDERTUQBATIOWAL DUAL PROBLEM

Ivan Singer

INCREST, Department of Mathematics, Bd, Pdcii 220,
79622 Bucharest and Institute of Mathematics, Str.
Academiei 14, 70109 Bucharest, Romania,

Distinguishing hetween a problem and its instances, we
redefine the oerturbationél dual problem correspondéding to an
unpevturbatlonal dual problem, by means of explicit Fcrmulas,
instead of "the scheme" of "formal’ replacvmentc of LS} We show
the relations between some maln perturbational dual problems and
the perturbational dual problems corresponding to scme main un-
perturbaticnal dual problems, -

€0, INTRODUCTI

In the paper [5] we have constructed a unified theory of
dual optimizaticn problems, which ‘enccmpasses, as particular
cases, . the kncwn dual problems. In this theory, we have defined
a general concept of a dual problem and then, for any “unperturn'

bational® dual problem (i.e., defined withbut assuning a pertur-

ct

bation of the primal problem), we have defined, via a certain

"cormal replacements", a corresponding ‘0ertur“~
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"scheme" o
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es [5), p.%6) that this scheme
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is given "similarly to the idea of universally defined multifune=

un
tions [4]". This has permitted to obtain, in 5], new connections

between the unpe rbational and rturbational version

of

0}
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n
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various known classes ©f dual problems (€.9., DLagrangian du:

sse
sutrogate duals, etc.).

and complements to these parts of 150, Instead of using the abcv;
a

mehtioned “"scheme" of "formal replacements e shall define here
the perturbationzl dual mroblem correspending to an unperturba-



tional dual probiem, by means of explicit formulas, This new
definition will not only shed an additional light on the "scheme"
of (5], but will also. reveal the hecessity of a certain condi-
tion (formula (2.14) below), which was only implicitly assumed

in [5). Finally, we shall show the relatlions between some main

- perturbational dual problems (namely, Lagrangian, surrogate énd
~.Tind~Wolsey~type) and the perturbational dual problems correspond-
~ing to some main unperturbational dual problems (namely,
'Lagrang;an, surrogate, and Tind-Wolsey-type, respectively),

While in our previous papers, in which we have studied the
:dependence of optimization problems on their parameters (see e.qg.
[5), and the references therein), we have used the éame term
"problem", both for a problem and for an instance of ‘a problem,
in the present paper we shall find it important to distinguish
between these conceptes (Following e.g. [11, [21); since this
will lead to @ deeper understanding eof the parameters of dual
optimization oroblens. Also, an eésential feature of the dual
'~problems considered in [5]'is.that their constraint set aﬁd'ob—
‘:jeCtive'fuﬁction (and hence their value, etc.) are “universally
defined" 'in the sense of [4], i.e., thev are-defined, "by the

same formula", for a whole collection of instances, where each

instance is cbtained by svecifying particular values for -all the

. problem parameters. One of the basic methods of [S] has been to

discover cowreﬂt lons between dlffcrcnt instances of the same
=
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problem, or, of two different problems. Roughly speaking, an
instance of the perburbatloﬁal dual problem - (O ) corresnondl ng
to an unperturbational problem (Q) and - toia pertLrbutwon p.of
.the primal .problem, is defined by means of an instance (invol-
ving p) of the unperturbational dual problem (Q). o

We shall dencte by Ens the family of all sets. For'any
GeEns, we shall denote by % the set of all functions h:G-R,
where R=[-»,+»] is endowed with the usual "upper addition" +
and "lower addition" + of Moreau (see e.9. [51; p. 80). For -ny
F,%eEns, and x_<X, we shall denote the set FX{x_}cFXX by (F,xo},

O ! ’1\ ‘{
and we 51 11 use the canonical embedding R ,XR fQ/", given by

- ; F _ .‘ e
(v,w) (x,y)=v(y)+w(x) (veR , weRY, veFR, xeX). (0.1)




Finally, we mention that for GeEns and heﬁG, we shall use the

notations inf h(G)=inf h(g), sup h(G)=sup.h(g),
L eEdd : geG

§1. PRIMAL AND DUAL PROBLEMS. SOME URU“QTURBATIONAL
DUAL PROBLEMS

For our purposes, an instance of an infimizatiOn problem will

“be the "task" (PG h) of computing, for a given ordered pair (G h),
4

whére $#GeEns and heRC, the number

aG;h=inf h(G), , - . (3. 1)
called the "value" of the instance (we shall not be concerned here
with the related questions usually subsumed under the same generic
name, e.9., that 'of finding the "optimal solutions™ goeG, etc.);

An infimization oroblem is a set.dJ of instances of an infimization

problem; the "constraint set" G and the "objective function"

" h:G+® are called ‘the parameters of. the infimization problem, and

each instance is cbtained by snec1fylng partlcula* values -0f these

parametels & ani b Thus, . v ; :
J= {(DG e e}, coaide 0 ol

where v denotes a set of orderod palrs (G,h), w1th @#GEmns ‘and
heR :

-An instance of a sunremization vroblem and a supremization

. problen J are defined similarly, replacing inf by sup in (1.1).
BEare 3 W s ’
The (instances of) infimization and supremization oroblema'

are called (lnstﬁnce“ of) ovntimization nroblems.,

s

In the sequel, instead of "problem (l.A), w1th (PG h) of the

form (1.1)", we shall 'also use the ferm "srohlem of the form (1. )",

or, briefly (when this will -lead to no confusion), 'bproblem {1.1)% >

and we shall proceed. similarly for supremization pzecklems, too.

Remark 1.1, a) The above definition of a primal infimization

problem is slightly different from that of an "optimization prchblem
given .in (2], p.4, definition-1.1: indeed, din the latter, tis

G =03
parameters are a set G and a function heR (not Ehh,and the

Fh
P
=
L]

bt
e

~problem ds to find a g‘ooallv ootimal sclution goes o]
(which, however, need not exist).
. b} The parameters G and h of problem (1.2) are not indepen-

dent, since h must be defined on G, but we shall not write hG




instead of h, in order to simplify'the'notations. Similarly,

in _the sequel, when this will lead to no confus ion, we shall omit

-~

some of the narameters, leav1ng only those on whlch we want to

concentrate.

c) Often the parameters G, h (or, one of them) are defined
with the aid of: other objects, which, in turn, may be regarded
as parameters of problem (1.2). Note also that one may fix some
-0f the parameters of a given optimization problem and consider
only the instances obtained by letting the other parameters vafy.

Let us give now-a definition of dual optimization problems.

=P

Definition 1.1. a) By a dual nroblem to a (primal) infimiza-

tion problem (1.2), we shall mean any supremization problem of
the form : : ;

aGrhr¢l¢=sup U(W), | i : ; . - : (1t3)

where (G,h)e0 (with 0 being the same as in (1.2), which we shall
understand throughout the sequel, withou* special mention),
bel Ens\g) , B#H=0(G,h)eEns, o:(G,h)-R=RY(CN) (g njeo) and

o
u~@G }eR
_the sequel we shall consider the values @G h(w) weW) . An instance

(we use the notatlon ©. ., instead: of @(G,h), since in
p
“of a dnal problem (L e3ds obLalnea by Qoec1fvlng particular
values for all the problem parameters G, h, ¢ and o. ’.'
b) Given a (primal) - lnflmlzatlon problem (1.2), for each

(fixed) parameter © as above, we snallienlh flea) i

--a w—dual problem- -to prokblem: (1.2). An,zﬂg ance of a ¢-dual proo“er
~€1.3) is-obtained by specifying the values of the parameters G, h
and ¢ : :

e} leen a (primal) infimization pvoblem (X.2),; for each
(fixed) ordered pair of parameters (¢,¢) as above, we shall call &

(1.3) the (¢,on)~dual Drob7€m o problem (1.2). Bp instance of the

g

(Y,@)-dual problem (1.3) is obtained by specifving particular

values for the problem parameters G and h.

k. 1,2, a) The parameters Goand h of oroblem (1,3) are

the same as for the primal problem, while the parameter ¢ is a

H4
hlel -assigns a "dual constraiik

=
o
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vector field", whieh, Lo
¢0, assigns a "dual objective function", U=Q h:W=
3
=y(G,h)+R (where, by remark 1.1 b}, we write W=0L instead of
: - :



-where W'=y(G’,H?), and u'*@

bR

fuwéwé,h,V)‘ For each instance (P ,) of (1. 2) there exists a

unique instance of (1,.3), thlng the same (G’, h' )0, called somc¥

times (see e.g. .[2], pﬂ78)_ a dual problem to the given instance
(Bosys sbiy namely, : ' : ' -
G';h

BG:,h,'wr®=sup WEGIE)- '11_>.:_ ﬁ':-~ ‘ _ .v(l,4)f'

S Some general relations between -
various properties of the parameters J,o and corresponding proper-
ties of instances of (1.3), will be given elsewhere.

"b) In the sequel, we shall usually consider dual problems in-
volving more parameters (hence, thsy will be subclasses of (L300

le.g.,.dual proklems

Boo b oSy - | 3.5

where FeEns, F2G, FeR® is an extension of h {i.e., E{G=h),'and
W=y (G,F,h), u=0(G,F,h); according to remark 1.l1. b), we simplify

the notations for these pronlers, writing (G,F n) lnstead of

(G;,h,F,h), Note that, f or "constrained" tlmlzation, a set F2>G
; . = '_".‘F . - R %
and a function:he R° with hiyish, appear already 44 *he formulation

G
of the primal - probleﬂ (see e.g..remark 2.1 d), with F=R ),de noted,

althouah SEale (0 l) only G and

in this case, by (LG’F’H),

]G are used; then; of course, it is natural to define a dual
problem, to such a primal problem, by (1.5), with the same F and

.h as in the corrccoondlnq 1nstance oF the prlmal problem. We shall

- proceed in this way in §2, where we shall consider onlv con-

strained primal infimization problems (PC o Ll) .- However,
¥4 IR

in tnm sectcn we shall agopt ‘the more genora7 pownt of v1ew that
= P =T - :
a set F2C and a function heR need not appear in any 1nstance of

a primal problem (P ) ,even if we consider a dual problem of the

G,h
form (1.5); then, in some cases, it may be useful to select from
(1.5) the class of instances with F=G and h=h, reducing thereby
(1.5) to the dual problem (1.3) {(we have proceeded in this way

i

in {6], in order to express some min-max result

|-_J
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optimization as unperturbational Lagrangian duality theorens) .

P

The above general concept of a dual problem enccmpasses bcetl
the "unperturbational" dual problems (i.e., the dual problems
defined directly, without assuming any perturbation-of the pri=

mal ‘preblem) and the-"perturbational" ores (1.e., those defined



e

with the aid of a perturbation of the primal problem)., NOw we
shall redefine three main concepts of uhperturbational dual: pro-
blems (considered in [5)), in a form showing that Lhey are jndeed

dual problems in the sense of deflnltlon l 1%

Definition 1 2. a)sBy &xunrﬁrtulbat40n61 Laqranqldn dual pro=- -

a2 RBEH S Sy rsumn

blem to a (primal) infimization problem (1,2), we shall mean any

supremization problem of the form

‘. AI A' : o ‘. % = .
G,F,H,@X,(szsup (W ), : ) (1:.6)

where FeEns, F=2G, Re®’ is an extenglon of bl e iR a=hl,

Wk=wk(G Fyh) ds a non«empty subset of RF satlsfylng

inf w(G) <+ _ Grewly, il
A
and>uxzmé P, mERN is defined by
uk(w)~ A ﬂ)~1nF{ﬁ Y 4= (v)} +inf w(G) (wewk). (1.8)
, °6,F,R o ~ :

Anvinstance-of problem: (1.8}~ (1.8) is ootaln d by sneCLFylng the

values of the parameters G, F, h and @k (whence also WA ml and uk).
b) Given a (primal) infimization problem (1.2), for each |

(fixed) fuﬁction wk as above, we shall call (1;6)—(L{8) E&gﬂg§g§£~.

s 5B
Lurbatxonz] Y*=Lagrangien.dual oroblem to (1.2). Epiinstance o

the unverturbaticnal ¢k Lagrangian dual problem (L.6)={1.8) is
"obtained by specifying particular values fpr}thé parameters G, F
and h.

gggggy 1.3 .al In.the serminology 6f definition_l.l, an unper-
turbational Lagrangian (respectively,‘wA“Lagrangian) dual problem
” *of (L8
cal linear)
Y}, the alge-

:braic (respectively, topological linear) dual of F, then (L2} 3=

; e R P ;
is a @}Maual (respectively, (¢*,0")-dual) problem, with ¢

.

1.

b) When F is a linear (respectively, a topolcg

,F,h)zWA:F“ (respectively, Fi

v

space, if one takes ¢

satis ficd. For exampleo and applications of some other multi-fune-
e ;. see. e.g.. [5land the referendes stherein,
) The letter M stands for: Lagrangian.

Definition 1.3. By an unperturbational suryocate dual crablem

A P e 10 T e BN LI -

o a (primal) dinfimization p ?voblem (1.2), we shall mean any supre-

7o




‘mization problem of the form
- gl ey -
BA B; 5 h,w«,A,w” sup uA(W 1 — . (;.9)
where FeEns, F2G, Rek, Bl =h, #%=yf (G,P Me®, A is a multi-
~function which assigns to each triple (Q,F,w) (ngQ), with G, I
and w° as above, a set A CF, not depending on ﬁ,_and 

o G’

. =W ;
uAf$G,F,h,A€R is dgflned by

5 (w)ﬁiﬁf K(AG,F'Q) e @)

o
Bylwl=0n & 5

An instance of problem (1.9), :(1.10) is obtained by specifying

the values 0of the parameters G, F,-H,wd and A (whence also WG, @U

and ud).

Remark 1.4. One can make, for defintion 1,3, similar observa=x

tions to those of remark 1.3 a), and the lettéer ¢ stands now for

: i (©] . .
surrogate". Fixing one or both of the parameters ¢ ,A, one obtains

"wc—surroqate dugt", a PA-surregate ‘dual® o, and lthe (wc,A)wsur—

‘rogate dual problem", respectively. As an example of a A-surrogate
)

eF I inf el
dual problen, ke AG Bou {yeFlw(y)zinf w(G)} (wel

+ for other
examples, see e.q. [5] :

Definition 1.4, By the unperturbational T-dual problem tao o
(primal) infimization problem (1.2), we shall mean the supremiza-

tion problem

e T - e e '
2 =g : 1.13

BG'F’h'QJ‘L"(D’C ue u (W‘ )p - : ; ( ’ )

o : _ T .
where FeEns, FQG, HER*, hl =h, and where WT=wT(G,F,h)6R and -

=T -
u wG 5 h €R are deﬁlned by

i - w13 o
W=y (G,F,h)={weR" |w<h}, ; e
: Bear :
=inf w(G (weW ™). (Lol3)
p (w) = G F, h( V) 7(G) ). :

An instance of problem (1,11)~(1.13) is obtained by specifiying che

o S = T TR oo
values of the parameters G, F and H (whence alsoc o°, W ,0 " and U Yo

Remark 1.5, One can also define a more general concept o
RO -]

unperturbatienal t-dual vroblem, replacipg R dm (1.12),; by.a.
: =, =F ' 2 U, - : ' ==
set W'=p(G,F,h)cR , such that W =y (G,F,n,o)={W¢§'iwsn}#¢ (then,



s mG FE,0 int (1.13) s dnfect, the ﬁarﬁiéulér case whéﬁ.F is a
-linear space containing G, and W’*FAr (the algebralc dual ef- 1)
has been considered in [5], remark 2.9 £).. - The chter T is used
here to indicate the connections with the dual problems studied by
Pind. and Wblisey 171 (see [5], remark. 3. G c)) '
§2. THE fERTURBATIONAL DUAL PROBLEM CORRESPONDING
~ TO AN UNPERTURBRATIONAL DUAL PROBLEM :

gt}

into & . family of (instances

- It is well-known that each embedding of (an instance

a primal infimization problem,

of) "perturbed" infimization problems, permlts to define (an ins-
tance of) a dual problem to the glven (1nstance of) primal problem,
'with-respect to the given embedding. Such a dual problem has been
called, dn- 5], a 'perturbational" -dual problem; since it is

- defined with respeet to.a perturbation of the primaliproblem. Lew
us first redefine three main ccncepts of perturbational dual pro-
blems, showing that they are indeed dual problems in the sense of
definition. 1.1. '

Definition 2.1.'Let each instance (PG - E)cﬁ a (constrained)
primal infimization problem (see remark 1.2 b)) be "embedded"

dnte-a family.  of instances ' -

~of "perturbed" infimization

problems ,
. €X1 2 : i - : ; LS 2nl :
{(PG P, h)]x ' 2 ' - (2.1)
- with (PG F ~) being the task of combutlnq
& , . 3 :
= ) < = s 2.2
o, F, 5 inf o(y,x) f(x)= G v, b(,{) Cakmedly €252)
yeF :
: G,E,H .
3) (=¥ » is a set el turbations" xeX =X e% ds
where X XG,P,h s set (of "perturbation e B
a "marked element" of X, and P=Ds p q.ﬁ‘xﬁ> is 2 function (caliled;
st o =

"merturbation function'), such that

‘h(y) if yeG _ .
) =< : : S (2.3

p(f‘/rxo T :
e ]fm if yeF\G.

d . 3 - -~ -
By @ perturbatioral lagrangian dus! wroblem 0

1%

problem (P,r;),with respect to the "verturbation triple” (X,x.,p},
Soro——e gL, %

P e T

we shall mean any supremization problem of the form



B nk nk - =sup unk(wnk)’ g o (2.4)
G,F h i\ e 'Xin e i e
Wheme o - oW HXWJQTGpF h X,x_,p). is a non-empty

subset ox'Ry, satisfying

w(xo)%+m : ":'fwéwnl), :'4 (2y5)
AW mb;lmx x o
cand u "wG,F,ﬁ,X,xo,peg is denged by
X 5 : i £ s aE )
(w)= inf - A{p(y,x)+=w(x) Hw(x ) (weWw ™) . : (2.6)
(v, x)eFXX : :

An instance of problem (2.4)-(2,6) is obtained by specifying the
values of the parameters.

"Remark 2.1, a) When X is a linear (respectively, a topoleogical
linear) space, if one takes w“k(G B X‘x ,D)_Wnk

2la o i . 3 ; z : \
X}, thern (2,55 4 satisfied, for any X eX for other Y "s, see

=y (respectively,

[5] and the references therein.

b) Often X is called the sgt of "parameters (instea& of
"perturbations™) xéX, but we shall not use here thisiterm, since
it might lead to confusion é.g, ith the same term for G and B of
problem (1.2) ). . .

c) The letters mnmA stand for: pefturbatioﬁal Lagrangian. '

d) An instance of linear programming can be defined (Sae ciiep
[2), p.5 and [3], p.301) by taking ’ v

: G={yeRniy20, u(y)=0}, h:H[G', ol : 2. 9)
where u:R™R" is anaffine operatér and F:R"™R is a linear func¢tion,
Then, for F=Rn, X:XC F=Rm and

: >
e : e m .
hiy)s for yeR o, xeR, y20, ulyl=% = :
ply,x)= ' (2.8) .
4o otherwise, '

. Let us mention that, often one wants to

o}

we have (2.3), with x =

e}
find a cPst renresentation (2.7) . of (the Fiz:i set) G, in seme
k8 X m’ n 3 o f
‘sense, e.g., via an A':ﬂé F=R (and u’:R >R ) with the smallest
i ol 2

possible m’, in order to obtain a dual problem for .which W =



S
has the smallest dimensien. For vazious ontlmmzatlon problems,
‘there are alsoc other criteria for choosing X,xo'and p (see e.qg.
[5] and the references therein).

TTA o ] i
e) Fixing the parameter ¢, one obtains "the perturbational

wnk4naqraﬁgi?r dual problem to problem (1.2), with respect to

(%,%,) "

5% nt & )
Deflnl tieon 2.2, By a nerturbatlonal A~surrogate dual problem

to an infi ation u”ob]em (P wtth regspect to a Dprturbation

=)
h
triple (X,xo,p) (as in deflnltlon 2 l), we sha11 mean any supre-

mization problem of the form

2 no
6%65 i e =sup Wg (W™ ) (2.9)
: G,F,h,¢ rAr@ rxrxorp
- where _ ¢#W“O=wno(G,F,E,X,xo,p)gﬁx ek e

a multi- functﬁon which assijn%, to each triple ((F,xo), FXX,w)

Tt 52
(wed 7)), with F, %X and W as above, a: set A r ),EXX,WQEXA'

no_ no : Pt e e
not dependﬂng O Dy and uZ *@G r,E, A X, % 'peR is defined by
o
o : e : : t[{e] ot
(red = B : ’EV] e 2010
wy (w)=inf p(A(F,x ),EXX,W) ' (w ) : ,( )

An instance of problem (2,9), (2.,10) is obtained by specifying

B T e

the values of the parameters.,

Remark.2,2, One can make, again, some remarks corresponding

* to those of remark 2.1, and the letters no stand for: perturbatio-

nal surrogate,

Definition 2.3. By the DOrtU“‘“ulOﬁjl T-dual problem to an

: v . - a o
ion proplem (P with respect to a3 merburbat on t“LQ}e

infimizat

BRI S SRR T I’:.t‘;:u»:;‘zk £ S G AP G) F‘;}T/ L R o P
: I ) hial oy o -] Ny 7oA

(X,x ,p) {(as in definition 2.1), we shall mean the supremization.

k

N

problem

m : gl

B > =gup - W), (250008

goc0 R s T

omE N
omta e bR, X,

are defined by




o 11 o

TSNS SHENRD

T fwel hicpilupe) (yemdls 0 o s
unr(w)ﬂw(xo) : : (wewnr).3 - S ey
An instance of problem (2.11)=(2.13) is obtained by_specifying'

\

the values of the parameters,

Remark 2,3, Similarly to remark 1.5, one can also define a more

general concept of perturbational t-dual problem, The case when ?X
is replaced, in (2.12), by X¥ , has been considered in [5], remark
3.6 ¢), The letters mnt stand for: perturbational T(=dual).

Let us redefine now the concept .of "the perturbational dual
problem corresponding to an unperturbational dual problem" 5,
using expllclt formulas instead of the "scheme" of "formal repla-
cements" of [5],

Definition 2.4, Assume that the (primal) infimization problem

m o

(

DIODlLAS ag in - definition 2,1, and let (1.5) be an unperturbatic=

Grg)lo embedded into a family (2.1) of perturbed optimization

nal dual problem to (lbfh

) such that y=0(G,F h) and the pertu:bafian
teiple (X,xo,p) satisfy (for all G, F and h) '

(0,00, 3%, £SO (F,x ) XK, p) (BK), =
. where: f=f, . #:¥>R is the "value function" (2,1) and b{{x,}, X, f)c T
: n with resPcrt

vxpv%-] rhational (—‘ln(Jl "\T‘Q‘J*O"ﬁ to (Ph - )\ to the vors

QYRS ACERTHITART . W W RS QTR T TN T UL T RS T B SR TaaoTm T T e BB Gane. Bttt

iﬁle (X,xo,p), corresoonding to nerWPM (1 5%, we: shall

€ wTE . | W Tv' U = QLI P Do o T

mean the supremization problem

e S =sup W, e e
GeFoh,u,0 lxixdlp '

: e SRS LS e o TE e v
where W =y FG,b,h,X,xo,p)gR. anl 1 "vG P T %, (%P :W >R are defined
by ; :

Wi=Q({x },X,£), : _ e e

u“(w>=w(F (0,w) e g

l:'co) v BB

O SRR AP IR

An . instance of problem (2.15)=(2.17) is obtained by specifving the

Vd&u s of the parameters,



s

Remark 2.4, Definibtion 2. 4 should be undcrotood as follows.

" Consider the primal infimization problem (P ), that is,

: '(_F'XO)-’pl (F’Xo)

bl | : St
Then, since (1.5) 1s Tunivers allv d flned" in the sense men—
tioned in §0 (i.,e., well defined, for all values of the parameters),
: A :
A - a %3 = X 3
for any ZeEns, Z«(foo), DeR p{(FpXo)~pl(F;XO)' we may consider
the instance ;

Bl x ) 818, 0,000 1 H) o | ¢

of (1. 5), where W/=Y((F,x ),Z,E)gﬁz', u'—tQF x,, i -W +R, Applying

thls, in Ddrtlcular, to Z=F%, B=p and (O,W“)QW’ (see (2.16), (2.14D,{

AT woepWe get the wight havd eidesiof (2.109 5 (2.15)., '
(0,w™) -

We shall give now some relations between the perturbational

dual problems defined in the first part of this section and the
perturbational dual problems corresponding to the unperturbational
dual problems of §1,. ) e G : S 5

Theorem 2,1, Assume that the primal infimization problem (P =)

A T O R R T R T - QA AT SRR RIS . BRkR G R T GO T » G Rt G - G BN | R G et = SN O ROt i )
S R A N 3 Ly nert oo Tt o Ty
is embedded into a family (i.l) of perturbed .infimization problems,
| SRR T HAT XSS R T TR LR T N O TR AT tiatiba QY e 64 . mm WA T O U R B A D el Bt GEIRTR R L B Cre e @ G SR VD e o sara

as in dﬁflnltlon 2ok,

G DY RTREE ST 8t o I8 % QR XY, TR . n .
= £ £ : e S
a) wlE a MU1“"~_ancu¢vw which assiag ans, to each triple
:
z

[t o 1: e OPUTE el QUTNTTURI TR SIS A P e e §17THN Bau-lik fea e NQ WA G DR SR TR 60 DR el ZD T T i o s,
oy

SR ST S 20O SRR O AT

A e H . S
(G F,h) as in:(Zwl), a non-empty set Wo=ie,; h}qg g Batisiving

(1.7) and (2;14), then, choosing

S S RED

. -wnkz(wk)u i diz : : . : . ; '(2920)

JTLA A =il
and taking W', 3 and B as_in definition 2,2, we have (2.5)
BRI R R YRR mwm:‘ s LW - WO WA LR - <. T Y TR RN R TP B B W TP Y S -
and :

T pING (W s Avrr o :

(“7 3 P S e 0 i (B™) =B . (2421}

Thus, bk 6erturﬁatiohﬁl dual problem fo (P =), with-respeot &to
Wﬂ&:m&!’:ﬂo’m“m\:"‘h‘ WA D WG B G T @ e Gl GRS O @, fmﬂl W TSR P G e S J) ’ h O BT D Do TR D RSV e asven. Qe

(X,x_,p), corresvonding to an uncerturbaticnal Lagranaian dual oro-

ARSI G NI BT by W ST, B S E € Gl ARes e 00000 TG G S e BT NETR 6 BT @ R Gt OGO e

‘e . - . L ] A g & £ ~ . T S
Brem o (1,0) featisfuipa (2148} 1a-5 sertirbadkiaes TLaara neian
| A e i i SRRt - D T L M O S U B O W GTRRE  TR W, B GEERE TN ETTI e, Gl €500 SR g b ﬁa.a-au..m erunt
dual preblemw wo(1,2), with resvact to (X TR ol
RN TP AU 00 Lo SaPIEN, AT LT - AT s W SR I P ST e T QAR b AR, X R
. . - S - % 3 g
) ~Tn “ﬂV+J(h1uL, if P and X are linear spaces and x =0; omds i £
CGRTI L = T et T e m;uo o U AR Gt B L AT O

— : ; i s :
WA:¢A(G,F,h):F§, e ﬂl(u,l,n,Y 0,p)=X" (as in remarks 1,3 b) and

TGNV DA 0 N G de L v e e

=1



2

2.1 a)ly then we have' (1, 7, =02, 14) and (2.20), whence also" (2,21},

AR AR S e PR SR LR e TR e

Promf By dp Lnlt¢on 254 (w1th ¢“u"ﬁ'W%wk),'(2.20) and definie

L e )

tion 2.1, we have

K

(W) T (UA)”(,,ﬁ,h X xo,p) = (e r “fl,x ,p)~w - (20221

whence, by (2.16) and (2.14) (with ¢=¢ . W=W )p we obtain-
(OiWnA)=(O,(WA)H):(Opwk({XO}pX;f))gwk((prO), EXY,p). (2.23)

Hence, since (1.7) is assumed to hold for all G,F,h and
WA"UX(G BB, apélying 1k o G F E and Wk replaced, reqbeétiVQTy,
by (¥, X ), FXX,p and w (LB, x ), FXX,p), and taking into account
that - (by (Qul))

inf (0,w) (F px )= (%) S Ry C o
we obtain (2,5), ;

Furthermore, for each we(”k)“ Wnl we have, by (2.17), (Te8),
(0,1) and (2.6); ' ‘ : z

(uk)_(W)m@?ﬂ (0,w)=

\(T
(FXZ P

= inf ¥p(yix)%m(05w)(y,x)}finf(O,w)(F;xo5=.

(y,x)e FXX
= inf  {p(y,x)dew ) Trw(x ) =u" (w). ol )
(y,x)€FXX : : :
Finally, from (2,22) and (2.25), we obtain
(8™ M=sup (ul)n((wk)“)#sup pPRa Ry

b) Under the aqsumbtlons of b), there hOldu, célearly (1.7)
Also, by (0sl), we - have

(0,0 ((07,%,£))=(0,xH c @xx)F =0 (7, 0) ,EXX, D)., (2.26)

that is, (2.14). Finally, from definition 2,1 and (2.16), we obta.n

nk(_ = A &

¢™(c,7,h,%,0,p)=H = (fol,x £) =

n(wk)'(G,F,R,X,O,p),

i.e., (2.20), whence also (2,21) (by part a) above).



e

In the Situatiop o theorem 241 b) ; if X=F ang

X_=0, thenAfor p:pGFFFE:EXF+? defined by

o

‘Remark 25

I oy a2

o]

S h(y) 1L vecuy
Ply,x)= .
+w g yéF\(G+x),
We have (geq e,g,.[S],'corollary 3,87

T _ 2,20

wnkxwki W”krwk, unkzuk , Bl

SO the perturbational Lagrangian dual Problem (with Tespect ¢q the
above (X,xopp)) Coincideg with'the unperturbational Lagrangian dual
Problen of-definition 1.2, More generally, Often one Can regarg 5
(notznécessarily Lagrangian) pertqrbational dual'problem, With reg-
Pect to some COncrete perturbati§%¢%x,x0,p) (such that after the
'computations, P does not Qecur explicitly), as an unperturbational
dualvproblem, However, 3, alsg important to interpret (2:28) ;
in the Opposite direction, i.e,, asithe observation that, for
%igggr spgggg, an unperturbational Lagrangian dual problemvisAa :
Particular perturbational Lagraqgian_dual Problem (i.e., With reg-
Pect to 4 suitableAperturbati%§§%x,xo,p)). Such g Temark remains
also valig for'other unperturbatiqnal dual Problemg (e.g,, for
Surrogate duality o) and for ‘the dual Problems (mentioned above)
defineq initially without tphe adig of ‘any Perturbationp and thus 3
appearing as unperturbationai ones, but being essentially'pertur~ L
bational for Suitable P, which does not appear explicitly (ecg. oa
in the Case 0f linear programming duality); actuaily, SOme natyra]
dual Problems of this lattey tyve have been - the maipn modalg

for introducing perturbational dual Problemsg (see &g, [3]),

hat the orimai Problem (p

‘T’Vf"ww\‘u Y &W.&/\‘bm-iwf‘h ey o, Ty, VoL R T o PO pi = TG ey Gbudlsy o, s *Er G" F: Il -
o - - .. Fag > do o S g 1 Sy [
15 embe e O e (2,1) ot SEXtusbag == SASIOR droblenms,
mﬂu‘?&t"ﬁhd}&"h.’t L R s =gy g T speny, e €% % LN Lo S P R YETN ST, G&e’i:r.‘.nh!!aﬁ TESaR e Rpwg R r'w.ﬂw l!\*‘:b'wm'!" W e hal o TSN t
B % b
: SAafFd e . {
as in defintion 2el e . V
%Q‘Mmhﬁ'ﬁw"mnnhwm‘ e -
e O .
a) 1f U] s to ea trinle
vy 2 ﬁ-'w'!“ N Ty E'NQ""I’W*,‘?‘“&M M.
.
A ~ DHemnte = . i e ¥l e
(G,Fr,h) AS w5 A non ) set Wy Syl h)l e r S3tisfving
m‘?‘(&.‘m&:‘:m =7 G T En, o Rt L By L T g, koot ey e,

2.14) and. & ig a multimfunction Yiich asgy O @ach trinle
f
O Ty \‘u’l";n"."rhkl‘—&!'itm"w W - T Vamota; o LR RS R R Chead g g1 L B By . L, g g s SR W, W
O ! % =~
3 7 T S+ c oy nengs 5] than lricer
(G ¢ I‘ ? W ) (VJ SN ) ¢ :}%A?\l&:~";; AG § E : i W - ! é&?ﬁ-ﬁg %L.L-;'.;‘n:k:‘:u‘u;)..-» 2..53 =2 ’ ma'-a\;;fm‘eu.ag a;‘n?i ,c»r)a-'w-ve\j-
G0 (o) , . o g
s ; : 2Oy : ]
- =4 (QE,Y) (we(w™) sy (2,30) J
F,xo),PXK,w (F,xq),RfX,(O,w) < - |
~ 5



no ol s
and ju}lnq W , HK Eﬂﬁ Bga as in dof3n1t¢on ? 2 we have

[T B AL A 2 T T e R e D RAOCR € G TR e R R G

G)ﬂ iifes o’

=W, (u) -vu~ ' (Bo)“ e

e . L e

Thussthe

GRS PSSV LR AT B T

({,x Dy cory
COETrE

U”“'%1ﬁw“1 dual nroblem to (P m) wwxh roanoct Lo

PrAOYE B BRI G e S GO B Tt B SR €4 R U B GF ©F AT TR e BT T R BT T G g

covonding to an unverturbat xOﬂJW surrogate dual pro-

SRtig «u«‘(m WAL DT R Bl e R FTTN G 2 € BN Rt AT U G YIS0 PR G S e"‘m Tt G B O BSRE e R U Rp S Griv st

‘blem to (1.2) (ugtisfvinq (2.14)), is a verturbational surrogate

p— S BRR
CUTA RSN L o X S e D O B D Do @4 GRSt s

dual problem to (1.2), with resvect to (Y,“ Hons

ke B By BT TR R h Cha e G20 ¥ PP GE AT € IRPYRT P RER s =
bl fnmertdenlar, 4 F ¥ ahd X aweil] near spaces and % :0, and
e L re T T4 LT A SRR e et G B 50 g e or Qe OIORm s B GG O e Ao
. 7o

1 1=y (G,,F,‘.)w W =y (G,Fpﬁ,x,o,p)=xg, then we have (2,.14)
and {2.29), whence also (2 31).

R T ISR

Proof; a) By definition 2.4 (with u=¢°, w=w®), (2.29) and

defﬂnltlor 2.2, we have

(w ) -~(u ) Fie Wb % ,p) =" (@ e s p) =1y O L (2.32)

ofa.

Furthermore, for each we (W) =09 we have, by (2.17); (Laley
(2:20) and (2,10}, '

(O )= inf p(A

() ™ (a0) = @(*,x i (F 5 Yo BN, 00 )

Sy A
ol p(A(F,xO)pEXX;w?zuZ (w) « o - ‘2'33)
Finadlyy: frem (2:32)-and (2.33) we obta in

i) ﬁﬁ.) o

ot e CE A
(BA) sup(uA) (W) )= sun Wy (W B i

b} Theiproof of bl s simdilar to that of “theomem 2.1 bl (e

plaging A by. g,

that the primal infimization problem (v

R TR SRS N LI M. GRS R W N B e i s, W G W L B Bitle B OTREINCS SOk, ) )

(2.1) of merturbed infimizaticnh preblcasy
Qo TN QT AP A Qo N ) TR TR &y LN s e G A N e e Bkt GG e e 2
i s Aya ) 4+ 4 e Sy it ’ £
Zhen, o the sl tisbano bl coclifiaele - Ined 1o (k)
M ™ FEUTY L. B Wara-i s Wingly VL CETG @RI Qe R Qa0 DR . e ilaites GOV YO e

e an, Witoand g ae dn dofind tiow

"&1&:{5’3(:;3 ' e ) ¢ TR W TR TRt TS IR 0. Qi AN B S

2.3, we have

USRI e T T D

(¢T>E:¢HT' (WT)HZWRT, (HT)H:HKT' (BT)ﬁzﬁﬂT : > ; (2‘34)

- & L 43 - s
Thuc each vert T-dual “VD”T’" teiil2 Yuith resvecte co
*_A’-: T Tk BT m&':«F‘ WL AT S e e e TRV - W G R T G‘ F h -W*WM-’QFUN“@"W~W:
: = o :
"gol . Lthan the "P“*gfr**‘f*«7 cduzl pDroblen o
& ' T."’l A‘ﬁk‘ﬂrn%‘l‘w\d St Mﬁ«m&?'&ﬂ""#«‘um@ . Nt B0 WNIC L e QTN S AL O W B e A PV e O R TR e @ A e T TR

G.F ﬁ)' Wit lesbeas oho (k,xo,p)f corresvonding to the Unpertur-
{ frontll s :
} blem + P ")

1 @Rl emaro ( G,th s

TSR SN T DA e ST




Proof, For any welr we have; by (1.12); (2,20 apd (0.1), the

PRI

equivalences
_ T : ;
S wey ({Xo}px,f)<$w wsf e w(x)glnw (y,x) (xeX)

=5 (0,w) (Y, x)<ply,x) (yeF, yck)é#&(O,w)Sp:

3 (0, w) yew?t ((F X )gEXXpP);

so y° satisfies (2,14), Also, by definition 2,4 (with y=¢%, W=W'),
(2aliE) g L ) cands (20 100 are t olbad g

(WT)KZ(wt)n(G,F,E,X,XO,p)=wr({xo};X;f)z{weﬁx[wsf}=

={weR |wep(y, ) (yeF) 1=0"7(C,F,B,X,x_ ,p)=H"" . (2,35)

Furthermore, for each we (W) "= ye have, by (2;17)F (1.13),

(0.1) and (23 ),

Taall R ey : s
(1-” ) (W)""@(FFXO) ;FXX;p(O"'J)

=inf (0,w) (F,xJ=w(x )=n""(w) .. s aliay sl

- Finally, from:{2.35) and (2.36), we obtain

: et > T o T T
(8% "=sup (017 =sup W (T =p"T

‘Remark 2.6, Other dual problems, e.g., of [5], can be treated

GRS BO fn, G LIERRTIIRS

similarly.
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A GENERAL DUALITY APPROACH TO MIN-MAX RESULTS IN

COMBINATORIAL OPTIMIZATION, VIA COUPLING

FUNCTTIONS. IL: FURTHER RESULTS

Ivan Singer

Department of Mathematics, INCREST, Bd. Picii 220,
79622 Bucharest and Institute of Mathematics, str.

Academied 145 70109 Bucharest, Reomania

We apply the duality approach of E4}, Via coupling functiens,
to some combinatorial min-max equalities which are not of the
("allwéardinality covering-packing") type studied in [4], namely,
te min-max equalities for "B=colourings" , "A-cover packings™,
“weighted B-packings" and "weighted A-covers" in incidence tribles
(A,B,g), non~bipartite matchings, flows in networks and matroid

intersections.

§0. Tntreoduction

t 4

in [4} we have proposed to study min-max equalities in combi-

natorial optimization, i.e., equalities of the form
min h(G)=max p (W), ; (0.1)

where G and W are (non-empty) finite sets and h:G—> R= (-0, +m),
K:¥W2R, in conjunction with the "Lagrangian duality equalities?
min h(G)=max min @(g,w), ~s852)
WEW g€eG
where @:GXW-*R is a function, called "coupling funetmon' , satice

fying the "bounding" and "dual bounding" inequalities




HE e el

h(g)p€(g,w)zu (w) (9€G, weW), (0.3)

and we have given some applications to "all-cardinality" min-max
equalities (0.1) "of covering-packing type" (i.e., inm which both

h and p are the cardinality function and the elements g of G and w
of Wiare "coverings", and, respectively, "packings", in some sense).
In order to give a unified framework for appiications, we have in-
troduced in [4], for-any "incidence triple" (A,B,g) (i.e., any
triple consisting of two non-empty finite sets A, B and a binary
"ineidence!" relatﬂnag@A){B), the concepts of an "A-cover" {(for B)
and a.”B~packing” (fér A); namely, a subset g of A is called an

A-cover (for B), if for each bé&B there exists acg such that aQb,

and a subset w of Bis called a B=packing (for A), if Ffor each ael

there exists at most one bew such that agb. In these terms, the

min-max equalities "of covering-packing type" are the equalities

(0.1} with
Gothe: collection of dll Recovers: g, (0.4)
W=the collection of all B-packings w. (0..5)

Also, in L4] we have introduced, for any incidence triple
(2,B,¢), four couplifg functions q3:2A><2B—»z+ (1=1,2,3,4), ofwhi 0
the most important one has been %3 (which we shall use also here),
defined (on 2A)<2B, which is larger than GXW, for reasons.explained

in b0y By

Pylyw)=]{(a,bleyXwlagb}|  (ve2?, we2®, (0.6)

S
where , for any (finite) set M, 2"I

denotes the collection of all
subsets of M, and |M| denotes the cardinality of M, and where Z.

denotes the set of all non<negative integers.




In the present papér (announced also in [4], %0), we shall apply
the duality approach of [4] to other min-max equaiities (0.1), which
s are. not of "all cardinality covering-packing type', introducing ofher
coupling functions,

In §1 we shall introduce "B-colourings!, for an arbitrary in-
cidence triple (A,B,Q), and we shall study an all-cardinality min-
=max-eguality (0.1} for mihimum cardinality B-coleiirings, which ig
not. . of covering-packing tyvpe (i:e. . in which G and W are not thoée
@ FE 0L 4 )05 ) veaBesthis end; we shall construct a new incidence
triplev(A',B',Q‘) and sets G' W' with G&G', WeW', such that the
initial equalities (0.1), (0.2); will become "eguivalent” to an all=
wcardinality covering~packing type min-max equality and; respectivély,
to the Lagrangian duality equality for this new system, with the cou-
pling function %5 of - (0:6): ~{for A',B‘,g')); to which we shall then
apply the results of [4}. We shall also give some applications to
Rénig's edge colouring theorem in bipartite graphs.

In 82 we shall introduce "A-cover packings'; for an arbitrary
incidence triple (A,B,Q), and we shall study an all=cardinality
min-max equality (0.1) for maximum cardinality A-cover packifigs,
which is not of covering-packing type. To this end, we shall use a
similar nmethod to that -of §1, which will be somewhat simpler, since
Qe shall not need to change the set W. We shall also give some appli-
cations to a theorem of Gupté on edge-cover packings in bipartite
graphs.

In §3 we shall consider "weighted B-packings", for an arbitrary
incidence triple (A,B,g), and we -shall study a min-mex eguality (0. 1
for maximum weight - B-packings, jointly with the Lagrangian duality

h de-

: : B
equality (0.2) with a suitable WzWS:(Z+)A)<2 =l where (Z+)
notes the collection of all functions g:A-—>Z . We shall also give

some applications to qurvéry's weighted matching theorem in bipar-

T I AT R TR

o e R e R S

TR s e e e




Eite graphs.

In §4 ye shall Consider "Wweightegq A~covers”, for an arbitrary
incidence Lripla (A,B,Q), and we shal) Study g min-meay Cquality (Gsg
for minimumn Weight chovers,

el B
:2 )\(Z+) =

C applications to
S Weighteqd CoOVering +

jointly with the equality a2
Suitable @29%

Egervdry:

tite»grdphsﬁ Note that
one can apply the resultg of §§1~4 to other incidence triples (a,B
as well,

In §5 ywe shall study Edmondg '
(0 Tie

with Suitable (G,h,w,u

)+ joi
€quality 60523 with W:WB Of (0.6)

Min egt theoren (01 ) i net-—
with Suitable (G,h,W,u

equality (.29

)i jointly With the i

agrangian duality
: : prs U U

With a Coupling function P ?y:2 }((R+) —ﬂR+z[o,+wL
all arcs

8 of the network,

U denotes

vhere
the collection O:F

and where no
incidence triple ig used in the defi

Nition of ?3.
Finally, 1o §7 e shall give similar resulte for Edmondsg ' ma-
troig intersection theorem, with g Coupling function =
7

S o e e denot

: S &
Per (2705 S
€5 the common ground s

set of the two ma-
and where, again, no incidence i

troids iple ig used in the defi-
Nition of q%.

Let us mention now Some Complementsg

to the Notations ang Tesults
of [4], which we shall neegq in the Sequel.
For-an incidence triple (A,B,g), denoting, as in [4],
¢la) ::{bEBIaQb}- (aen), (0.:7)
Q"’(b):{aeAJagb} (bep) (0.8)
g ,A
et us Note that rgen

is an A-cover (for B) if ang only if

e ino



.." -

9Ne ' (b) #g (beB) ;

in order to Gnsure the existence OF chovers,
[4], that

(0.9

We shalj assume, a-

@“7 (b) #¢

‘Furthermor

€, note that wGZB is a B pPacking (for K) a4 and on
i
=1 =i S
Q (bT)/\g (b2)~¢ (b1,b25w, b1%b2). (0,11
Qgﬁinition Oil. Let (A,B,Q) be an incidence triple. For any ac¢
wWe shal) call the number ]o(a)/ the degree of a, Similarly, Tor any
DEB weishat oo ys lo™" by the degmea ws 4,
For any subset

Moof » set S, we shall denote by XM the charac-
teristic function (calleqg also "incidence function”,
Veotorh) of M

”incidence
1. defineg by

1 if seM
Kb ) =
i 05 18 dievn

(0272
For any function £:8 >R, we shall denote by supp f the “suprort'of £ 1 o
the sef:
Supp fz{sasff(s)#o}. (0. 13
For two functions i

7,f2:S-vR, wWe shal) Write fjsz B2 f1(s)<f2(e
forasay oo

The following =

heoren Collects Some re
the term

sules o 16l o use here
"optim

al SOlutigp" ad of the term

inste "optimal eleme
[4]) i a slightly improveg

nE o
form.

gneorgm O.l‘ Let (A,B,?) angn incigence
ae in (0.4)

_tniple anqmlgz G, W gg 7
e A0wg) Furthermore, assume that the Min-masx equality /
; -ﬁl«lllllmilli__.l,llil,l_llill_l_,ll_l,lll_ll.ll____l_mli,l_l_l iiiii :
(0. 1) lﬁi%géxijiiEﬁ-}lhy):!g’ (gegy) , R(w) = |w| (wew) , 1.8., that
min 9] =max lw|,
geG WEW



and let ¢,:GXW-R be the coupling function (0.6). Then
en tn .

a) We have the Lagrangian duality egquality

min |gl =max min ¢, {(g,w). (0.15)
geG WEW geG  ~

b) Fox agzl(go,wo)66>(w, the following statements are equivalent:

e go(EG is an optimal solution of the (primal) minimization

problem

(p) min g, : ' (0.16)
g(—_G .

and wOeW is an optimal solution-of the (dual) maximizaticn problem

Q) max |wl . &
weW

2°. Bach aeg is incident with exactly one bewO and for each

bewo there exists exactly one AEW such that & and beare incident.

3%, The number of ‘incidences between g and W 1s

::lw ‘. ‘ (0 ..1:8)

WB(go’wo):{gol o

Proof. We have a) by [4], theorem 1.2 a).

b} The implication 1° =»2° holds by [41, theorem 2.2 ; and
the implication 2° 2=538° is obvious (see [4], remark 2.4 b)). Finally,
the: inplicetion: 3% ="F (even ]go|=§wO{:$1°) holds by [4], theorem
1.2 d) (note also that the implication 1° = 3° has been given in
i4], theorem 2.1).

Finally, for the simplicity of some applications, by‘a Ygraph'
we shall mean, as in E4}, a finite simple graph, without isolated

vertices.

§1. B-colourings

Definition 1.1. Let (A,B;g) be an incidence triple. We shall

call B-colouring an assignment of a colour to each beB, such that

: : = =1 ; 2
any b1,b2cB with b1%b2’ 0 1(b1)f‘\Q ‘(b2)#®, have different COlOulbf




Remark 1.1. The B-colourings can be identified with the parti-
tions of B into B-packings. Indeed, by the charaeterization. (0. 11)
of B-packings, for each colour ¢ @if “a=B-coloming, Llhies et {bGB‘ B has
colour c§ is a B-packing, so each B-colouring is @ partition of B
into B-packings; and, conversely, if for each B-packing o belonging

3 ) : e
to a partition of B.iwtoe B-packings, we assign the same colour ¢, to

(ol Ao, then we-cbtain a B-colouring.

a1l beg, wWwith cy,#

o

We shall denote

G=the collection of all partitions g of B into B-packings, (1.1}

W.:{g(a)]aéA}. 3
Remark 1.2. Tt may happen that a1#a? and g(a1)=§(a2),'but this

will -cause no coORLUSION in (.2, since for each weW We . can Bl
(arbitrarily) an element a€h such that w=Q(a).

We shall consider the min-max equality

min lg}= max ]Q(aﬂ . (13)
geG qa)ew e

e is'an_"allwcardinality" mip=max eguality (L.e., in wiich
hoth the primal and the duai objective functions are the cardinal ity
functioné), but, in cenkrast with the situation-of L43, the elements
«of the constraint sets G and W of (1.3) are not A-covers and B-pack-
fbgs. pPherefore, iniorder ke arrive-at the situation=of [4], we
shall censtruct now .a new inecidence triple (A',B',Q') and sets G'
and W', preserving the extrema of the cardinality functions and the

optimal solutions.

Let

A'=the collection of all non~empty B-packings a'(for A), (14)
BA-E, - (1.5)
a‘g'b &5 bea'. ' (1.6)

B | ' '
Demark 1.3, a) We hewe-A''c 7= and aldo- (ae b ), kkw/la':B, Sies
= . a'ch'




(By&') d4s o hyporgraph and, moreover, the incidence Q’ Of 160
that of [43,

Example 2. 3.

b) g'GZAr is an A! Ve if and 1 only yluigmigwgwcozg}lnq of Bb
Bmp&(%]ﬂgf Hence eVery geG (of (el cas o Al-cover ang conver-
sely, eVery A'-cover a generates, in the usual way, ap element geg
such that lg|< |g] {Ef o 1M1’ 7,M3,...}, define g by eliminafing
from {M1 MM, ,r-.a'3\(z»11u;-@2) b s o thie SIPLy Sets). mhye ¢
G'=the collec

tion of al} A'~covers gt

Gl
then cegt and

min fgf = min el (1.8)
geG g'eg! ~

C>w%?B}S%Bﬂﬁ§§£L&EA'(&guJaggﬁﬁﬁﬁﬁa%Ah

i 1 S AT ot z s 5 71 Qt o
b1,b26w Fiora ? b7, a Q b2 Amply b1~b2) if aqgmggly il Lh(le EX sty
a €A such ! _th

at w! rcﬂa Jos Hence, every %(a)ﬁw is a B~packing forn 0
and, Conversely,

every B-packing w'

pla )ew (whence fw!l < hyao)[). Thusy if

for A% je Contained in Some

W'=the collection OL= Al IR

~pPackings w! for At=
={w'€2B ] :‘JaOEA,

{4

Wl e mle )

(1.9)
then Wew' ang
2 ax (Q a)l = max e, (1.10)
? a)ew wilew!
Let ‘us

also Consider,. a5 in [4], example 2.3 (using now Q' of
{{
{1:6)) the Coupling funection ¢ .-2

Pisd XooPilp mne o by

¢y (g, w) =] (a ) €g Xw|bear ) | lgeatl 0By - o 1)

tEoposition 1.1. For G,u,g,y: B0 e 2bove, we have

: - 2] 5B 2
min %g(q,w) min %g(g w) (we2™), (1.1
geG gleGl -~

"



i i S S

Sorle e et e Ul Sl

— 9 -
max min P (g, ola))ls max min Edag! W) (1.13) ¢
gajew geG i wleWloutegh = g
b
Proof. By :G¢G' , we have
; e S LB '
min @ lg,w)e min 2 (g’ ,w) (we2™) . (12 14)

geG g'eG' #

On the other hand, for each g':{ai,a&a‘ ..}GG', the partition

S

geG of remark 1.3 b) satisfies aé\aagaé, aé\ja%Ua

¢5(g.w)=|{{a' ,blegXw|bea'}|<

<{a'/breg' Xw|bea'}| =9 (g w) (we?

whence we obtain the opposite inequality to (1.14), and thus the

equa ity FE 120

Furthermore, by WsW', we have

Z

)<

nax min q%(g‘,g(a))g may min l%(g',w').

ga)gw geG! w'eW' g'eG'

"On the other hand, by (1.9), each w'eW' is a subset of some

Q(aé)ew {(where aoeA), whence

¢3(g',W'):]'Ua',b)ég'><w‘]b6a'}}s

¢[{tat/pieg! Xola )| bea'}| =0, (g" gl )  (g'eG'). (1.17)

#

min- @ gt i b adn Folaly ota Y
gléGl 3 g'EG' 3 g O

Thus, for each w'¢eW' there exists Q(aO)GW such that

whence we obtain the opposite inequality to (1.16),

equality

3

max 17155 ) R 5 (o £ 58 g(a)): max min t%(g',w'), ()

gamw Gle G w'eW' g'eG'

aé,..., whence

By _ @i

(1:k6)

and hence the

which, together with - (1.4.290 (for w=§(a)£W), vields (1.13). 5

By the above, the min-max equality and the Lagrangian duality

eguality for G, W' of (1.7), (1.9) . d.e., the egualitias



min |g'f =max jw'l, : : (1.20)
g'eG! w'eW!'

min |g'l = max minie gl )y : ; (T2
glec’ Wiel!t geq! :

become now, respectively, (1.3) and

minlgl= ‘max min qg(g,Q(a)) " o (S OO
geG g(a)éw gcG :

Hence, since the bounding and dual bounding inequalities (0.3).

hoeld  for. -Gt W' @ and since Gc¢G', We¢W', from theorem 0.1 we ob-

3.'

tain

Theorem.1.1. Assune ‘that the min-max eguality (1.3} holds and

let qg be the eouplisig Funetion 1.1} . Then

a) The Lagrangian duality equality (1.22) holds.

b) . For any (gO,Q(aO))6G><W, the following statements are equiva-

dents:

155 Ges is a minimum cardinality partition of B inio B-packings

and aOCA is an element of maximum degree.

2%, REaeh"B-packing a'e contains exactly one element beola_ )
paciiing aiey, glag

and each beg(ao) belongs to exactly one B-packing a'ego.

3°. The.number of incidences between' g égg'g(ao) is |

Pola ot 0= g s |eta) |- (1.22]

Corollary 1.1. Assume that the min-max equality 12 3)holds. Then

a) Given. any minimum cardinality partition qoz{a',...,aé} of- B

into B-packings, from each B-packing aiego one can select an element

bjeag , in such a way that {b1,...,bq}:g(ao), for some aOeA of maxis

mum degree.

: : 2 ; » - 2 il 2
- > \ = 4 = £ max 1 & = o ) 2 Z s
b) Given any a eh-of marximnum deqree, for each bl & (f(do) ‘lb,] ; ,qu

one can select a B-packing aieA', containing bi’ in such a way that

g —{a' ...,a‘} is & minimum cardinality partition of b into Brpackings.




. 1 1 e

- = & : = x e Ay z : e = fmat f
Proof. a) By [4], corollary 2.2 &), from each aleg laj,,..aq}
(eGeG') one can select an element bigai, in such a way that w'={b4,..u
, i
..efbg} is ‘@ meximum cardinality éelement of W', But, by (1.9), eveny
a2
makimum cardinality element w' of W! is of the form Q(ao), for some
aOeA of maximum degree.
b) By E4], corollaryi2.2 b), for each bieq(ao):{b1"'“’bq}
(eWcW') one can select a B—packing CiGA', containing bi, in such a
.way that gé:{c%,,..,cé} is a minimum cardinality element of G'. Then,
i O P ~pnt 3 t Yo a J = 7 1
since cicA (ises; c; is a B-packing for A), we have [ciﬂQ(aO)%g1,

whence, since biecinQ(aO) (d=l ey We abtain

byge] = . il el el ‘ (1.24)
- ST : Ty A L Ao Viesiglt
Hence, for g {aT,...,qq}éG, where.a% Cl dé cz\c‘, aj c3\
\(C{L)cé),,a. (see remark 1.3 b)), we 'have
bieai#@ : =t ag@)s (1..25)

proposition 1.1 and theorem 1.1 a) can be strengthened as follaws,

Theorem 1 .2.7 Por G, @ and-@, of Clat), (I T sapd elkoll) ity ol
= ey =

qg(g,w):{wgz min| q%(gl,w) (geG, wezB), (1.26)
g'eG

Proof. Let'g:{a%""'aé} be any partition of B into subsets

(not necessarily. B-packings).and let w€2B. Then, by (1.11), we: have

%B(Q,W)=lwnaif+...+Iwr\aé|=!wlc

=

4], remark

Finally, since for each b€B we have {b}GA' (see |

{
|
L

2425 b)), frem E4}, theorem 2.4, we obtain the second equality in

(126 )

Remark t.4.%he first equality of {1.26}) shaws that @ fﬁ\/ is
316G AM

f her Mhpdnpd a1 coupd dngs Funetion of [4], formul a3k

One can apply the above results to various incidence tiplies



e TS

(A,B,Q). In order-to give an example, let’us recall (see e.qg. [3},

theorem 3)

"K6nig's edge-colouring theorem". In a bipartite graph 9= (V=vV'uv", E),

the minimum number of colours needed to colour the edges of 4% so that

_no two intersecting edges have the same colour (or; equivalently, fhe

minimum, cardinality -of a partitien of B into matchings) is equalite

the maximum degree of ¥, i.e., to max [|d(v)]|, yﬁggg-&(v)={eeElv&e}
vev

(veV) .
As has been observed in [4], §3, for :the incidence triple (A,B,Q)

defined by

A=V, B=Bc2 NG agh ¢ aeb, : . (li27)

the B=packings coincide with the matehings - of 9 alse,iclearly,
Q(v):é(v) (VeVile -Hence, - For G, W of  (I),  (T.2) - the min-masx equality
(1.3) is now Kb6nig's edge-colouring. theorem, and thus, from theorem

Tk and corelilary 3.1 we obtain

Theorem 1.3. a) We have the Lagrangian duality equality

min lgl= max ming

3(g,5(v)) . (1.28)
geG - $(v)eW geG :

b) For any (go,é(vo))€G><w, the following statements are equiva-

lent:

e gOEG is ‘a minimum-cardinality partition .of ¥ into metchingoy

and voev is a vertex of maximum degree.

2°%.-Bach matehing dego contains exactly one edge eeg(vo) and each

edge eeg(vo) belongs to exactly one matching a@go.

3°. The number of incidences between g and é(vo) is

¢y (g, 0tV ) ) =g il (1:29]

Eorollary 1.2. a) Given any minimum cardinality paptition

R SR




go={ale o By OF 5 into matchings, from ‘emch matehing @seg. OnD £al

. ¢
selecgwagwgégg eicag, in such a way that {éw,am.,eq}:o(vo), for some

VOGV of maximum degree.

: O 3 ix S e : i el e o Al o3
b) Given any vOaV of maximum degree, for each biuo(vo)m{c1pﬂg,qq}

s v a5

one can select a matching aaex, containing e, in such a way that

g ={aH,...,aé} i8ad minimqmwgardinaiiﬁy partition ofeh into matchings.

§2. A-cover packings

Qefinition ool ledk (A,B,g) be an incidence triple; We shall

call A-cover packing-a packing of A-COVELS {for B). Into ZA, sl

a collection of pairwise disjoint A-covers.

We'shall denote

=] : s :
G=10 (b) | beB}, . : {2¢1)
W=the collection of all chovef packings Ww. (2.2

Remark Ll gimilarly to remark 1.2, the faeck that the mapping
b~%Q“1(b) of B onto G is not one—to—~one, will cause no confusion in
(2.1)5 since for each g¢G we can fi% (arbitrarily)_an element béB

such that g=qm1(b).

we shall consider the min-max equality

min |¢ (b)| =max by (2.3)
Qi1(b)€G weW - ;

Phie ol an-Yall cardinality" min-max equality, but the elements
of the constraint sets ¢ and W are not A-cCoOvVers and B-packings.
Tﬁerefore, we shall construct now a new incidence triple (A‘,B‘,Q')-
and a new set GY, - preserving the minimum of the cardinality function
and the optimal solutions (we shall 'not. need to change W) .

Let

e (20

LSO

i

&

)

e S




i G

B'=the colleétion of all A-covers b' tEor B,

aq‘b‘<;yaeb‘o

Relarke 2 . 2. @) olle have B‘CZA and b'#@ (b'eB'),;JHJ:A,ﬁo(A?E)-ﬁ a
‘ﬁf}t

hypergraph and, moreover, the incidence Q of “(2.6) issthat of [4],

example 2.2.

A

bl gt¢2 is anif-cover for ' B' (i,e., for eacl bleB ™ there caxioe

aeg' ssuch that acb']) if and-senly. if these exists bOeB stuch that

=1

o'=

Q (b ycg' (indeed, 1f such.an element bo exists and if b'e€B', then,

b 00 290 b’nq“1(bo)#®, and any aﬁb'ﬁQ“1(bo) satisfies a¢g', so g'

is an. A-cover for B': on the other hand, if no such bO exists, i.e.

if for each beéB there exists an element abeQ“1(b)\g', then for p'l=

={abeeB}€2A we have b'eB' and a, ¢g' for ati abeb', 50.g' is nofk an

il

A-cover: for BlY). Hence, every Q (b)e G is an A-cover ‘for B', and, cens

versely, every A-cover g' for B' contains some ~1(b )e G (whence
W g Q o

|§“ (b < 1g'l ). Thus, if

G'=the collection of -all A-covers.g' for B's
A - =
={g'e2”|3p_eB, ¢ (b leg'},

then G¢G' and

min |Qu1(b)|= 1000 (T8
— ] 1
g T(b)eG gEe G
1 J
c) w’<52B i a Bl=packing (i.e.y b%mbé=¢ for all b',biew',

if gnd only 1f it d5 an A=cover nacking. "Thus, by (2 20

W=the collection ©of all B'“=packings.
let us slso consider das-in [4}, example 2.2 (using now ?'

(2.6)),; the coupling. functien ¢3:2A>(2B-»R defined by
' : S B
¢3(g,w)=i{(a,b‘)eg><w| aeb }] lge2 oweld ).

Proposition 2o Bos CaiGl Bl and %g as above, we have

(2.7

Do

1 1
bi#b))

(2.9

of

(2. 10)

A




S 2

mEn oo g . min (¢ (g" ) e =
QMTUﬂcG giel

Proof. By 6B we have

Y
(b) ,w)> min (g, w) (we2®

gl(Gl

min ¢ (ow1 3 (Zadi)

¢ byeg
On the other hand, by (2:7), -each g'eGg! contéins Some Qw1(bO)EG

(where boeB), whence

qg(g',w):I{(a,b')eg'}{w}aeb'}];
L A bow) (we2®'y, o3
z H § ik e el 4 =
whence we obtain the Opposite inequality to (2. 02) . ey thus the
equality (20 1

By the above, the min-maxy equality and the Lagrangian dudllty

€quality for G', W of (227) 5 L2229, Lee 4 he edqualitieg

min |g'| =max lw| , ; : (2.14)
gleg! WeEW :

nin |g'f =max mln q7(q W), (2.15)
gleg! Wel. gleg? :

. becone now, Tespectively, (2e8)ang

min |gl=max = min ¢ (Q“1(b),w)‘ (2.16)

geG WEW (i?(b)éG

Hence, since the bounding and dual bounding inequalitjeg {023

hold for G',J,,3, and since G¢G', from theorem 0.7 we obtain

Thoorem 2 1 AS%umo cEhat the min-max oﬂuallty (2.3) holas and

e Rt o S OO e R S

igg W3 ggwggg_couplingmﬁggggigg (2 . 109 Then

a) The Lagzuhq1dn dUdllLV equa]ztv (2506 holds.

b) For. any (g (b ),w )eGXw, the followwnq state ments _are equi-

Valent:

e

e oo S



w0 =

18 bO@B is an element of minimum degree, and W is a maximum

cardinality A-cover packing.

25 Bach acgml(bo) belongse to exackly one A-coven b'cwo and ‘each

: : = :
A=cover b‘ewo contains exactly one element aeq (bo).

. : . = ;
3°, The number of incidences between Q (bo) and W, 1S

%g(g"T -1

(b_iw )=l (b if=|w|. \ C e

corollary 2.%. Assume that the min-max equality (2.3) holds. Then

a) Given any bOeB of minimum degree, for each aiEQ—1(bo):

=

ives pa . Y one. can select an B-cover bleéB!', contaiming a.;, 45 such
’ 7 g
1 o i soa it e

a way that wo={b‘,...,bé}»is a maximum cardinality A-cover packing.
X 7t

b) Given any maximum cardinality A-cover packing w =ﬂf,¢”,b'},
s - o) g

=1
jay that {ai,;,.,a_}xg

. (b ), for some b B of minimum degree.

Proof, Pgrt a). . follows from GG and ta], corollafy Zu2als

b) BY [4] 7 coroliary 2.2 b)), freon each biewo={b*,...,bé} (cW)
one can select an element aiebi, in such a way that g':{aT,...,aq}
is a minimum cardinality element of G'. But, by (2.7}, every minimum
cardinality element g' of G' is of the form Q_1(bo), for some boeB
of minimum degree.

Since by (0.10) we have A¢B' (see [4], remark 2.2va)), from el

theorem 2.3, we obtain

Theorem 2.2. For W and ¢, of (2.2), (2.10), we have

|yl =max @, (y,w) (ye2®). (2.18)
wewW

Remark 2.3. Corresponding to the first equality in (1.26), we

have now

q _
ol e Hp{b'“‘.Jﬁﬁgw,yg&Jb Y - )
L =
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Indeed, if W:{b;,...,b&} is any collection of pairwise disjoint
q

subsets of A (not necessarily A-covers) and ygkw}bg othien, by (210
deliod

(PB(y,w):[ynb%]-k. : .+]ynb(‘11:lyi :

One can apply the above results to various incidence triples
(A,B,Q ). In order to give an example, let us recall (see e.qg. [3},
ceorollary 3 a))

=

"Gupta's theorem". In a bipartite graph $=(v=v'uv",E), the maxi-

mum cardinality of a collection of pairwise disjoint edge-covers is

equal to the minimum degree of 9, .k LOCmEE {5(v)].
VEV:

As has been observed in [4}, §4 ., for the incidence triple
(A,B,g) defined by

A=EC2V\¢, B=V, QQV<@@ vee, (2.20)

condition (0.10) is satisfied and the A-covers coincide with the edges

—-covers of ﬁ; also, clearly, Q—1(v)=5(v) (veV) . Hence, for G, W of
(213, (2.2) - the migsmax egqualkity: (2.8} isinow Gupta's theorem, and

thus, from theorem 2.1 and corollary 2.1 we obtain

Theorem 2.3. a) We have the Lagrangian duality eguality

min |8(v)| =max min ¢ L Slr)  w) (25218

S(v)eG weWw o(v)eG

b) Feoxr any (B(VO),WO)GG)<W, the following statements are eguiva-

}enp:

is -a maximnumn

o vOeV is a vertex of minimum degree, and woew

cardinality edge cover packing.

22, Bach edge ecé(vo) belongs to exactly one edge cover cho ;

and each edge cover b%wo contains exactly one. edge eeS(vO).

3°. The number of incidences between S(VO) and W is



by o )= oty Blimipe ] ~ e

Corollary 2.2. a) Given aby VOGV of minimum degree, for each

ei€5(vo):{e1,...,eq} one can select an edge cover b;eBﬁ containing e,

in such a way that woz{bH,v..,bé} is a maximum cardinality edge cever

packing.

b) Given any maximum cardimality edge cover packing wO:{bH“..,Qa},

from each edge cover b&ewo one can select an edge eieb; , In sieh e

j way that {@1,...,6 L=zg(vo), for some vOeV of minimum degree.

§3.Weighted B-packings

Definition 3.1. Let (A,B,p) be an incidence triple and yeZB a
N 4

twedght function” eon B. 'ie shall say that gc(Z+)A is @ generalized

r=cover (for By with: respectste: ¥, or, briefly, & »=hscover (Fom LB

iE L
;ZWWMWJgWa);vUﬂ (beB) . (3.1
aeq—1(b)

We shall denote

Gy=the colillectionsof.all. vwR-covVers. J. (32 20)

Remark 3.1 aidhegset G, 15 infinite, since

g'eG, =» geG, (gelz, ), rapals (3.2

in particular;, by (353) e GVC(Z+)A, we have
A \ 15
ng,+g,€6 (g1éGy,g2€(Z+) 3 neZ+\{OJ). (349
b) For the particular weight function

% (bl = : (beB) , (3.5)

the characteristic function g:le{O,W}A of a subset M of A satisfies

if and-enly dfeM ds Bn-A-cover: indeed, by (0.12) and O 80

XMGG%

condition (3.1) (for v=>b) becomes

:> 1:|{aeM!aQb}!>1 (beB) .
acgw1(b)mM i
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¢) For v Of (3.5) and any gc(Z+)A, we have

geG% <:?'Ksupp gEGn) &> supp ¢ is an chqver ’ ‘ (360

N

Xsupp 5 : (3.7}

Indeed, for any gG(Z+)A we have

= dfrgla)z

(a)= ' (3.8
Asupp g 0 "if g(a)=0 ,

which implies (3.7) and which also shows that g satisfies (3.1) with
Y=y it candenlye if S0 does 1 ; hence, by b) above, we obtain
o) Lsupp g
{(3.6]).
d) For any weight function ve(Z;\{O})B, we have the implication
geG, = supp g is an A-cover. (3.9)

'Indeed, for any yé(Zs\{O})B we have 16<y, whence Gg;Gy ;- Whiilelhs
: - o
by: (8:6): vields {3.9)%
Now, for an arbitrary weight function yEZB, we shall consider

the primal optimization problem

min h(Gy), _ (3.10)

>where G e thelset HJ.2) and h:Gy——%Z+ is defined by

h(g)=2_g(a) (gee ), 3.0
ach

the dual optimization problem
max »(W), s e
where W is the set (0.5) and »:W—Z is defined by

»(w)=2_ »(b) (i (3.13)
bew

the min-max equality
min h(Gy):max »(W) , (B k)
and the Lagrangian duality equality

min h(G,)=max min q%(g,w), ' (el 15
weW chw :
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where P >(? —Z%_ 1s the coupling functien defined by

(g,w) > Vi .9 (a) ,(ge(z+)A, we2B) . (Saiiic)
bew acqm1(b) _

Remark 3. 2.8} iBy (3;11), (018 ) " Bailb ) (3 1t amd (3,03 e

have the bounding and dual bounding inequalities

hig)= :> »/’ :>' :g(a)=%g(g,W)2
acA bew = :
aeg (b)
>  Y(b)=»(w) (geG,,, weW). (3.4 7)
bew

b} By (316} [0.40) and (0.6) we have

s Asupp g'" s Asupp g ') =

B e i)

_l (a,b) € (supp g) \<w]agb}i q‘ supp g,w) (gé(Z+)A, we2B). (3.18]

¢l iBoriv=w. [0 {235 » "©f (3.43) becomes the cafdinality func-

" tion »(w)=|wl (weW), considered in [4].

Propeositioni gl &) gc(Z+)A is a w-A-cover (i.e., geG;) it and

enly if
. 1bE)zvib) : (beB) . (3. 119}

b) WGZB is a B-packing (i.e., weéW) if and only if

@5(K{a}'W)<1 - (a€h). (8- 208
N

Proefal By (3. 16}y we have Ws(g,{b})=ﬁi;w~mwdg(a),'so (3.19)
acg ! (b)

coincides with (3{1)‘

b) This follows from (3.18) (applied to g=x{a})

m

Remark 82 TE B:{bi""’bm}’ then, defining u:(Z+)Aa(Z+) by
_ Sd i SR
ulg)h=aPotion k) o sifile, (b FI (ge(z )™, (3.2
wecan alse write (3.19): in the ‘form
A

s S (B0 e b , (ge(Zed s (3.22)
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in connection witﬂ (3.4), note also that
i & A 2
u(g1+q2):u(91)+u(gz) (g1,g2€(5+) = (3.23)

Theorem 3.1. Assume that the min-max equality (3.14) holds and

let ¥. be the coupling function (3.16). Ehen

AL 5 ==

a) The Lagrangian duality equality (3.15) holds:

b) For any (qo,wO)GGv><W, the following statements are equivalent:

15 o and w_ are optimal solutions of (3.10) and (3.12), respec-

tivelz.

27, Ne have

supp g et ./ oy (3.24]
- bew
o
‘<""""—‘M'—'”"’i
b0 go(a):y(b) (bew ). (3.25)
e E o
ace (b)

Proof. a) This follows from [4], theorem 1.2 a).

b) By [4], theorem 1.2 d), (go,wO)GGv>(W satisfies 1% »f-and
only if
h(go)=‘P5(qO,wO)=v(wo), A (3.26)

that is,; if and oply if

Zg'o(a):? > > :90(61):‘2:3)(13) ) : (3. 20
acen ocwo aégw'(b) bewd

Now, by - (0.11)si(for w=wO€W), the first equality in (3.27) holds
if and only if we have (3.24). Finally, byed 3. 1) i g:goéGv), the

second equality-in' (3.27) holds if and only if we ‘have (3.25).

Theorem 3.2. Assume that the min-max equality (3.%4) holds for

e of {3.5) . Then,; fOr -any gOeGy , the following statements are equi-~
o

valent:

125 9, is an optimal solution of (8. 10) (with v=>b).

G A : T ! :
275 906{0,1} and supp g, is a minimum cardinallity A-cover.




=5 22 =S

. O e IO = .4,1 4 A
Proof % a8 a¢ gO(C%:\\O,1}

- : 5 A
exists a ¢A s hat A )y her Hepak op
Xist docﬁ uch that go(wo),2 Then , .for goC(/+)

= P =g
(@]
(a)= ,f

\\_go(a) if aEA\iaO},

;. then; since G,, =

(6]

and fTor any:-beB we have, by (3.1) (with gei v=)b),

\ 1
1
ba e
...'] e
ae (b) =
g Aﬁitw L9, (@)
aeg (b
SO qoéGRD. Also, by g (a )»2 and (3.28), we have h(gé)zgiAgé(a)<
o A g (a)=h(g ), #s0 g . is nokt an optimal solution of (3.10). Thus
ach

- A
1 :?gbe{0,1} , whence Sl
B Yo

o of [0 0], dhen, By 10 end a0

|supp go\zz%ﬁxsupp . (a)ZZidgo(a %

(@) aceh

whence, by (3.6) and [4}, theorem 1.2 4}, supp go_is a minimum cardi-

nality A-cover.

29— 190 S f e lids o dthel, By.-g

:.«_....4 g (a) :é‘-«-—u /‘1\. 8

achA < ach =Her T
-y (a)¢) _gla)
a€A e aen

One can apply the above results to various incidence. triples

(A,B,Q); In order to give an example, let us recall (see e.g. L3

B 450)

55,

= 1=l
bew
o)

o:xsupp go

i =4
lf.aoeg (b)

i ao¢?~1(b) :

(3.6)

(a)=|supp golé}supp gl=

(z )

+.

defined by

Now, let woew be any optimal solu-

and

(geG, ).
o




"Egervary's weighted matching theorem". Given a bipartite graph

) ; e : : 15 . :
J=(V=vtpVv",B) and a weight function »eZ , the maximum weight of a

: : ' e — ; : oV
matching is equal to the minimum of g{v}, taken over al}l ge(Z+)
vev
satisfying
gv')+g(v")zr(e) (e={v i, wilel) . (3.29)

We can write this theeremin the form (3.14}), by choosing

A=V, B;EC2V\¢, aQb<x>acb, : (3.30)
Gv as. in (3.2), and W to be the collection of all matehings w; indecd
since Q~1(e)={v',v"} tor alloe=(v! v")eE, cohdition (3.1} becomes

(3.29). Thus, since the min-max equality (3.14) is now Egervary's

weighted matching theorem, from theorem 3.1 we obtain

Theorem 3.3. a) We have the Lagrangian duality equality (3.15).

b) For any (go,wo)éGv><W, the following statements are equiva-

lent:

Jo T and w. erc.optimal solutionszef (3.10) one (3. 12), iec=

2°. We have :

supp qo.c;\\“_._m,/ {v',v'}, ' _ (3.34)

(v',v”):ecwo

gO(V'5+gO(V")=?(e) (e=(v',v")éwo) = : (3.52)

The inclusion in (3.31): (apnd hence in (3.24)) may be strict, as

shown by

. = t (e 1 i i ny L L S
Example 3.1, Let V'~{v1}, \Y ~{v1}, b—{e1—(vi,v1{j (singletons) ,

1):)b(e1

have 12 .and-2° of -theérem 3.3 b) , with strict inelusien in (3:31)

S= (VW E)y e J=15 go(v%)=1, g (v;):O, wo:{e1}. Then we

O

(since v;4supp go).

Corresponding to theorem 1.2, there holds now only the following

Teau i




el o

_____ L0ERE S G Lot end iy With (a,p elio,
| (3.30), nghezs
{ Y(W) =min %’(g w) (wew) .
f qCQ 5

Proof, res w:{e1=(v{,v”)

a0 o} e Then,
is bipartite and sinc

Since ﬂ:ﬂ”UV”J
LW s e matching

the Vertices y¢

L t St -
,i ,V,I 7o e 1 ‘,‘/}3 a
all distinct. Hence,‘the System of P linear Cquationsg
gO(Vi)+qO(V£)=3%ei) (Bt (3.34)
with 2p unknowng Gty g (v") o ag (v o go(vg), is GOmpatible. o)
there €Xists gOGGy satisfying (3 34 . Then by (3.2)mﬁ(3.29),
él P
v(W)=;§N)4ei) = (g v )+go(vg))=¥g(gO,W)s
i=1 i=1
WR
— (g (v )+g(v”) Vs g (gec ), (S.360
— o
which Proveg (3.33) (with the min attaineq el g:go)
In particular, from (34359 Eor y=>b OF r(3 S5) we Obtain by
(8. 18y and (3.6

JWI:<{’3(supp 9o 1 W) =

Mm@ (supp g,w) (wel) , (3436
56 3
g ”
: |
Since py (358} <ang [47, theorenm 3. 2, we have (3.36} evep for |
all weZL, i natur

al to ask Whether 3. 339
all we2E. The answe

above remaing valig for
B negative,

48 shown by
g§amgl@ 3152

)

Zeey. Lok 11 {vj,v2} V"= {v”

1 e i 1 1" - i 1
2}’ }-""'ze (V Iv»’ ) ’ (V 2)[
e ' n = r 1 (R i o /.
e (V2,V1), 04 (v Vol St UVIE)  (=the complete biowrtitc graph
K2 5) s w=geE LU T e T ;
Y =N @ = ) 2 P J m ;9 ~d o
v(&7) 1(62) >(o3) 1, >(o4) 2., (337

Then, the €quationg (3.34) become



g (vleg (ulet, o (3.0
g o dig (vok=iy (3.30)
g bapleg el _ (3.40)
g, vi)+g (v5)=2, (340

i.e., a linear system of four equations with only four unknowns. But,

by (3. 38 and (3.39) . we: have go(v“)wg (i) =0, while w340} and (35 de0

1 oyl
yield go(vqy—go(v;):~1, so the system of equations is incompatible.

. Hence, by (3.29) and (3.16),

4

y(w) =‘>__W vie . )sb<2 (g (v-i)’f-g(vi)):%%(g,W) (geGy) e (3.42)
i_.

5 18 5

whence (although G is dnfindte), since qg(g, w)eZ+ (gEGy), we obtain
the strict ineguslity

yiwl<min 9. (g,w) . i (B3.43)
5 :
geG

§4. Weighted A~covers

Definition ‘4.1 Tet (A,B,g) be an incidence triple and VEZA a

hweight fanction"-on A. We. shall say that we(Z+)B is a generalized

B-packing (for A) wilth respect €O y,-or, briefly, a »-B-packing

(for a), if

(OS):§;_mdw(b)<>4a) (ach) . (4.4
béga)

We shall denote

Wy:the collection of all v»-B—-packings w. (4.2

Remark 4.1. a) We have

A
1 A sy =YK o3 (810 . a i .
w ewy,_gwcwy (wc(4+) SR ) (4.3)
however, in contrast with the situation of  remark Badial):, the tset =W
jg ofinite by (4.1) and since A and B are finite).

. P tap
b) If a »-B-packing exists (i.e., if Wy#@), then, by Wyc(z+)



S e DA
and (4.1), we must have »20, whence

A : :

well-k oy g )
also by (3.7 ) - fapplied &g w-&(Z+)B) and (4.3),; we have

. hany 1T . -

WCWM<Q/Xsupp WCMV ;i ' .,(4'3)

¢): Bor the particular weight function

y1(a)=1 : (aen) , (4.6)

the characteristic function w=XN6{0,1}B of a subset N of B satisfies

eW if and only i€ N is o B-packing: indeed, by (0.12) and (0. 7%
1
eondition (4.1). (for y:v1) becomes

> _1=|{penjagn}|< (ach) .

be g')(a)/\‘N

N

d) By .6y -and (4.1), fer each WéWv we have 0<wgl, whence, by
. 3 1 ‘ y

B

we(z, )™, we obtain wG{O,1}B. Thus,

quc{o,i}B , . o (a0

wib)=_2_ X, (b) = |supp w| (weW . ), (4.8)
%%ﬁ % ‘supp W : ¥

and, by e¢) -above,

: = v s is = <ing. : :
wcwy1ééf{supp wth’ < supp w 1s a Br-packing (4.9)

Note also that for any weight function ve(Z+\iO})A we have » <Y,

whence W_ CW
o
Now, for an arbitrary weight function ye(Z+) , ‘we shall censiiden

y

the primal optimization problem

min-v{G) » (4 ACH
where G is the set (0.4) and »:G—Z is defined by
S~ it - (g¢G) , (4.11)

aeg

the dual optimization problem




max u(wy), (2
where Wy is the set (4 .2) and u:W~m»Z+ is defined by

w(w) =) w(b) (wew,,) , (4.13)

beB

the min-max equality

min »(G)=max u(wy), (4.14)
and the Lagrangian duality equality

min s »G)=max = min ol W), (405

WEW,, g€t e
»
where ¢6:2A)((Z+)B~»Z+ is. the coupling function defimed by
AN TS A B
@G(g,w)nwwy et Wi (ge2, welZ )] (4.16)
aeg béQ(a)

Remark 4.2. adeiBy 0 e A )y o BA 0G0 (0. D) acinie A i 3)e, e
have the bounding and dual bounding inequalities

v(g) =_>::_v(a)2'\j t._,._.,:W (b} =4 (g,w)>

acqg aeqg begun
;j?jw(b):u(w) (geG, wewy). 417
bebB
) By c L6 (051 2) tamd (0.6), we have
@ (g, % oo g (b) =
6 supp w v beg(a) supp w
: =5 5 A S
=l{}a,b)eg>&supp w}aQbII:%SRL supp W) lge2iiwelz, ) - (4.18)

G) Bor ey lof e R, v ieE el 1)

thon ilg)=lagl (gee), congitdened: in ra

Proposition 4.1.7a) gEZA is

becomes the ecardinality Tunes

B
b) we(z, )~ 1s a

an A-cover (i.e., g€G) if and only if

(beB):. (4.#9)

y-B-packing (i.e., wewy) if apnd only 1if

laei)s (4. 2:0)



Proor. a) This follows fwon (L7118 fappliod £O v'y(}l\‘
i _ :

J
b) By (4.16), we have W6({a},w)x/> ,MJW(b)' so (400 coljneiden
)L&) ct

el (et

Remark 4.3. If A={a 2 1, then, defining u':(s,)°=(z,)" b

n..__,.—f._._.. _.\,.—-‘:-a-_a A 5 L( 1 e R 1’1 i - 4 = 7 B o g - o J-{ y

bl e Logpens B g we(z 1) (4.21)

\6 }A/|~f JLierR l.6 Lll 3 J : & 7 . .
we can also write (420 in the form
B
u' (wig{r(a) (@)} (we(z,)7) . (4.22)

Theorem 4.1. Assume that the min-max eguality (4.14) holds and ek

P be the coupling function (4.16). Then

b) For any (go,wo)6G>(Wy ,the following statements are eguivalent

feee g and W are op{ nal‘golutipns of 4 008 agg'(4.12), respec-—

Eively.

2°. We have

AT e AL

supp w_c{bes | g N ()] =1}, e
Ef:j‘vo(1>)=y(a> (aeg ) - (4.24)
bcg(d :

Proof. a) This follows from [4], theorem 1.2 a).

b) By |4), theorem 1.2 d), ¢ €G and w_eW,, are optimal solutions
of (4.10) and (4.12) respectively, if and enly: i£
wlg V=R tg W =il ), (4.25)

that is,. if and only 0

}_._:23'(&)'-"'2_““>”.wm:wo(b>:Zwo(}>) : (4.26)
aeqg, aeg hLQ( beB

Nowr, by A4:0): (for w:wO), the first equality in (4.26) holds i
and only if we have (4.24).
Furthermore, since gOCG, we have

B=L_J gla), (A2

a C (]
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and hence: the second equality in. (4.26) holds if and enly if

> g s e e —

gl

beB beb
whieh, by (0.9)  (for q:go) and woe(Z+)B, is equivalent to (4.23).

Remark 4.4. Corresponding to theorem 3.2, we hevie now thet S0

y:}H of (4.6) and for any woewy , the followinq'Statements are equiva-
: 1 : :

lent:

155 W is ancoptimal solut on of (4.12)-(wit§ y=71);

2%, Supp W is a maximum cardinality B-packing.

Indeed, this is an immediate consequence of (4.13) and (4.7)-(4.9).

One can apply the above results to various incidenee triples
(A,B,Q). In order to give. an. example, let us recall (see e.qg. el

p. 450)

"Egervdry's weighted covering theorem". Given a bipartite graph

A 5 ; e : £y e : ,
ﬁ:(v:v'uv”,b) and a weight function veZ~, the minimum weight of an edge

; : R Vv :
cover is egual to the meximum of > wie), taken over all we(Z+) satilss
eech

fying

(0w (v') +w (v") g »(e) (e=(v',v")CE). (4.29)

We can write this theorem in the form (4.14), by cheosing

A=E € 2'\@, B=V, agbe bea, (4.30)
W as in (4:2) and G to be:the collection of all edge covers gy dnde

e
)’
since g(e)z{v' v"l for all e={(v!,v")eE, condition (4.1) becomes (L2 H§

Thus, since the min-max equality (4.14) is now Egervarv s weighted co-

vering theorem, from theorem 4.1 we obtain

Theorem 4.2. a) We have the Lagrangian duality equality (A5

b} Fexr any (go,wo)eG)<wv, the following statements are equivalent:

1S aige S-and W are optimal solutions of (4.10) and (4.12) respee=

= O e i o e et e

i
2°. We have

i e i : ' ;
supp w, ¢ {veV | Jeeg  unique, such that vee}, (4231

wo(v‘)+wo(v")=>we) (e=(v',v")ego). (4532}
The inclusion in (4.31) (and hence in (4.23)) may be strict, as
shown by

Example 4. Let $=(v'uV" ,E) and ¥ be as in example 3.1, goz{ei},

e R SR
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WO(V{): - WO<V¥>:O° Then we have 1° and 2° of theorem 4.2, with strict
"

Epclusion” in: (4.351) (since v1¢supp wo)c

Theorem 3.4 above and 54], theorem 4.2, suggest the guestion,
whether fo; wy and q% of {4.2)  ands {4, 160, with (A,B,Q) ef (d.30),
we have

v(g)=max @6(g,w) . {geq). (4. 38
well,)

The answer is negative, as shown by

Example'4.2.'Let A= iunY, B) and » . be as in example 3.2, and let

ey

9,°E€G, so y(go)=//

f mearmmcemnnrd

»(e)=5. Then the system of four linear eguatiens

ecg,
wo(v{)%wﬂ)(v¥)=1 ; (4.34)
wo(v{)+wo(v5)=1, ; (4:..85)
wo(vé)+wo(vq)=1, LEas : (4.36)
wo(vé)+wo(v5)=2, » (4 30)

is incompatible (see example 3.2), whence, by (4.16) (for gzgo) and

(4.29),

g
max @ (g_,w)=max Swvi)+tw (v} < 5=»(g ) ;
weW iy weW,, i=1 =1 . i sk =
o S J
aetually, a direct -inspection shows that max @G(go,w)=2. Note also
N WEW,,
that,; in this example, V(go):min ¥(G) =min EM* yie)=2 (attained for
geG ecqg

g':{e2 ,e3§€G).

§5. Non-bipartite matchings

‘Let us first recall some definitiens (see e. M
J=(V,E

(e}

«

~ b

An odd-set

an arbitrary (not necessarily bipartite) graph
Nev- (i.e., a set'of vertices containing an odd numbel of elements) is

said to cover an edge €€, if

e has one vertex in N, when |N|=1,
e has both vertices in N, when  [N|z>3. (518

A family g:{N1,...,Nq} of .odd—-sets of vertices is said to besan

odd-set cover, if each ecE is covered py at least one Ni(q.

The capacity of an-edd-sef NeV is, by definitiony the inumbe

oD, 24, e

:
|
i
J




> 1 LN =

e ™ T = (
L&%ml, if |N|p3,

[G3]
N
N

and the capacity of a family g:{N1,...,Nq} of odd-sets ©fverticos i

defined by

GE g -
c(g):c({N1,¢&.,Nq})= _c(m;). - (5.8}

]

¢
Now we can recall (see e.g. [1], theorem e

"Edmonds' matching theorem". For any graph d=(V,E}, the maximum

cardinality-of @ matchinq is equal to the minimum capactiy of an odd

set cover.

We can write this theorem in the form of a min-max equality

min c(G)=max |wl, (5.4)
WEW -
where
G=the collection of all-odd—-set covers g, : (5.54)
W=the collection of all matchings w. o (560
Let
A=the collection of all odd-sets of vertices, (5% 7))
B=E, : (5.8}
Nge<$$N covers e : (NehA, ec€EB) ., (5.9)

Remark 5.1: &) The incidence triple (A,B,Q) defined by (5.7)= (589

is an "extension" of the incidence triple (V,E,e) considered in £4], 83,
since VcA (if we identify each veV with the singleten dviehr), B-E and
vge<:9vee (where we identify each edge with the set of its two endpoints)
Moreover, we have BC2VC2A and b9 (beB) ; but g?ébfA, so (A,B) is a set
system (with ground set A), which is not a hypergraph; also, the ineis
dence Q of {5.9) does not coincide with the incidence e. used (fox a
hypergraph (A,B)) in Ldl, texample 2.2

b s@liean iy g62A igan A-cover 1f Znd ‘enly i it an oddssen

coyer, so-thevset G of (5.5) coincides with the set of all A-covers.

e) w€2B is ‘a B-packing if and only 1f it is either the emply sof

¢, or a singleton ibl, whiene ;beB. ~Indeed s ithe "if" paik has been ob-

served in L4], remark 2.2 b), and the "only if" part 4= obvious when
(V)sZ. Binally, it ViS3e then neredge set we2B wibEh wisn =2 sl

Eepacking . (forsi), since. for:the odd~set N=V. (when |[|V]| s odd), recs
pectively, N:V\{VO}, where VOEV is arbitrary-(when |Vl is even), and

for any Cq eyCw, 01#e2, we have Nge, (=1 2).. <Thus , aliEheugh sevieny
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B~R§gkigg~;§wgmmgygpigg, the set W of (5.6) is considerably larger
than the set of all B-packings.
Let us also consider the Lagrangian duality equality

mim ¢ (G =max min‘%(g,w), : (5. 5B0)
weW geG

‘where, by (0.6) (for the incidence triple (A,B,Q) o5 ) =59

-

%g(gfw):]~ﬂN,e)eg><w|Nge}| (geZA,we2h). . (5.01)

Remark 5.2. We have the bounding and dual bounding inequalities

>q7 g,w >lwl : (gGG, WEW) . (528

Indeed ;- by 0515k (5 9),. (5. 1) and. (5.2), for auy:odd=ge Nl

and any matching weW we have

qg(N,w = |{eew|N covers e} gcn), (5.43)
whence, By (54 4% Sand (5531,

‘3(g W)SZZN,J(V3(Ni’W)S gi»wc(b%i)zc(g) (g:{N1,...,Nq}52A, wewW) , (5.14)

and, on-the other hand, by the definition. of odd-set eovers,
lwi< P (g, w) e herae wezly, (5.15)

Theorem 5.1. a) We have the Lagrangian duality eguality (5.10).

b) For any (g ,w )eGXW, the following statemernts are equivalents

P go:{N1,...,Nq}€G is an opitimal solution of

cIndn c(G),-~~ Pt ls ﬂ_mﬁwif (5l

i.e., a mninimun capacityiedd=set cover., and woéw is a maximum cardina-

lity matehing.

28 iHorweach, T 41, ..,ql we havo

,{eéwO]NiEe}]:1, i E ]Ni1:1, (5:17)
|20 e
Heew [ aehlione s = i Nl 23, (518
and there holds
Ny - _
lw [ =|{iln eq s Ny )=1}] @ —5 - (5.19)
- : Niego,jNi];3

proof. -a) This feollows. from [4], theorem 1.2 a),since the mins

~-max equality:-(5.4) is now Edmonds' matching theorem.

by By 4] theerem’ 1, 2:d}, (go,wo)éG><w satiefies 1% if and oulys 8

e RS L
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New., by (5. 43) and (5. 14), the Firct eguality in (5.20) holds

for go:{NT"“°’Nq}EG ifieandsonly if

c(Ni)§Q§(Ni,wo) ' Ciwlea, v ya), (528

which » bye i B, 2050 (5 03] and (5.1), is equivalent to (o), (518
Bingdly, by (5.3),. 1(5.2),.the equality-[wolsc(go) 15, 20) holae 1
and only if we have (5.19).

Theorem 5.2. For G and ® OET(5.5), (5:11); we have

|w] =min qg(g,w) (wc2E). (b.22)
geG
Proof. If |V|[=2n-1 for some ny»l1, then for go={v} we have 9,€G and
E 5
Pylg W) =|w] (we2™) (5.22]

which, together with (5.15), yields (5.22). On the other handy, 1§

|VI=2n for some n31, say V={V1,...,v2n}, let

4 :f :’( 1

Moo dihpyosit o5 <o b N=idwo ok (5.24)
and,. for any w62E\¢, let

'w1:{ecw]N1?e},\M_m\_mﬂ_m_"ﬂ,, wzz{eew}N2ge}, ' (5225

- = 2 = e : = e
SO w~w1Uw2. If n=1, then N1~{v1}, sz{v2}, and, choosing go—{NTJ, we
have gOEG and: (5,23) (since E consists of the single edge e=(v1,v?)),
whilch, . together wisth (5.18), yieids (5.379), Pinally, 4k ne2" &q jN1];3,

then for any we2\@ we have, by (5.25), (5.9) and (5.1),

w1:{e6w]e has. beth vertices in N1}, (5.26)
w?={e€w]e has one vertex in N1 and one in N2}, (5207
whence w1ﬁw2:®, ]w|:2w1!+§w?§. Henge, ‘choosing

Io=1q+ Np}s (5.28)
we obtain gOfG and
3 ¢ ( = T
(Pg(golw) @3(go'w’i)+'(’3(go'w2) !W”"‘wzj }wll

which, together with (5.15), vields (5.22)

Remark 5: 30 The "universal® (i.e., independent on w) element goéG

of (5.28) need not be an optimal solution of problem. (5.16), as. shewn
e.qg. by,ﬁ:the union of two disjoint triangles, since then c(go)=3>2:

=min c(G).

§6. Flows in networks

Let us. first fecall some definitions (see e.dq. [1], [SJ, [2J)~ A

network is a . directed graph D=(v, Uy, together ‘with a funection il ol



R

fefm) is ' called "the capacity of u', for each arc Vel & “sourcel

: w:UM—%R+ (win) is called "theflow in'u", for esch arc uel), such Fhat

(0g)w(u)ge (u) ‘ el (6.0
w(u)=0 (wedT (IS e ), s )
@%fﬁfa;\u(u):ﬂ;E;;;;gw(u) : AveVidr sk ), (6.3)
W () ues (v) . '

where Sf(v) (respectively, §” (v)) denotes the set of all arcs leaving
(respectively, having as "positive" endpoint) the .vertex v.
The value ‘of a -function WG(R+)U is the number

g s g

T

u(w)=4::irwm_w(tu ! (6.4)
ues (r)

A cut in a network &= (%= (V,U), c,r,s) is an "r-s-cut" of the di-

rected graph H=(V,U), in the sense used in [4], 87, d.e., a sct of

arcs g=b,U\P of the fornm

g=P,V\P={u=V v, €U|v cP, v, eV\P}, (6.5)
where
YEPCH . SEV\B: : (6.6)
The capacity of a set of arcs geZU is the number
elgl=— olbul L. 2 (6.7)
uecy

Now we can recall (see e.q. [1}, Pa i3 theorcms 22 “Ehe

Max flowsnmip jcuf theoren': In any. network f=(0=07, V) o irs)eu the

maximum value of a flow is equal to the minimum capacity of a eclut.

We can . write €this theorem in the form of a minsmax eguality

min c(G)=max p (W), (6.8)
where

G=the collection of all cuts g=P,V\D, (6.9)

W=the collection of all flows w. ' ' (6.10)

Let us also consider the Lagrangian duality equality

min c¢(G)=max min %3(g,w), \ (6. 15h)
: weW geG
‘where ?7:2U>((R+)U«7R+ is the coupling function defined by
€, (g,w)=2>_w(u) (ge2”, we(®,)Y). (6.12)
ucg

Remark 6.1. a) One can also define an incidence relation g between

: : Sy
arcs uey and functions we(R )~ , by



H

(&%)

3
§

UQW &= uesupp v, : (6. 13

and (using {4}, definition 2+1) one can extend it to.an ipcidence rela=

tion between sets of arcs gEZU and functions wc(R+)U, by
gow <=y g/ supp WED. ; (6,149
Roee < ; % S ] : ol Al '
Then, since for any . gée2 ™ and we(R+) we have

I ksupp N E?g vsupp U(l):}gﬂsupp Wi, : ¢6.15)

we obtain
) v A
gow = ¢ ( Geleivn w);‘O : (6.16)
However, here we shall use only L47 1. (not dnvolving dincidence).

b) ¢, ¥ and p satisfy the bounding and dual bounding inequaldities.

/
Tndeed, by (6. 7). (6. 1) and(6:-12) ;- we: have
clg)=p clu); 2 w(u)=4 (g,w) (e ey, (6.17)
ueqg Uu€g .

and, on the other hand, firom WC(R+)U and the well—-known formula (see'
e, L%] P 326)

sy

i e s

ﬁz;Nmﬁwﬂ“m:(1):u(w)+,mmmwwﬁ.w(u) (g=P V\DeG, wew); : (6.18)
ueg=p VAP UeVAP, 1

e foldows that

@ (g W) =2 W () zu (w) (geG,wen) . (6.19)
ucqg

Theorem: 6.1. a) We have Lhe Lagrangian duality eguality (60405

b)--For -~ any (go,wO)EG>(W, the following statements are equivalent:

o W v s Y e
1 f_go PO,V\loeG is an optimal selution of

min c (G), (6.20)

e, A mininum.capactiy cut; and woew ig an optfimal selution of

max w{w), , (620

i.e., a maximum value flow.

2°. We have

wo(u):c(u) (ucgo), (6.22)

wo(u):O (uéV\PO,PO). (6.23)

Proof. This follows from [4]., theorem 1.2 a), since the min-max

d)

equality (6.8) is now the max flow-min cut theorem.
]
J

b). By L4‘, theorem: 1.2, (go,wo)cG><w satisfies 1° if and only 18

clg, )= (g w ) =uiv ). | (6.24)
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News; “byi(6.d.2)5 (6.1).and {(6.7), the first equality in (6.24)
holds if and only 1f we have (6.22).  Finally, by (601200 (6 .18} ang
WC(R+)U, the second equality in. (6.24) holds if and enly if we haove

e

Remairk b, 2. a) The main pact.of theorem 6.1 b) is essentially

known: dsee exg. [ 5}, p.i326,; corollary 2 al),
b) As in the corresponding results of the preceding section,
involving functions, conditions (6.22), (6.23) can be also expressed

in terms of supports, namely,

supp (c~wo)gU\go ' : (6.25)
supp waU\'ﬁgi‘\?‘ﬁj ; » (6.26)

jw| =min ¢, (g,w) (WewW) . (6.27)
geG

groof. Let

g =TT N =8 (1) . ' (6.28)

Then g €G (since re{f}, SEVN{r}) and; by (6.12) and (6.4), we hiave

5 (g 1) = e w (1) = (W) ) (we(R*_)U) ' {6.20)

which, togebther with (6.19)5 iyields (627 )%

Remark 643.. a) The funiversal" di.e., independention w)icilL gOéG
of (6.28) need not be a minimum capacity cut.
b) Concerning the problem of finding other possible coupling

functions ¢:GXW—~R, note that for the "naturally defined" coupling

function
e g,w) =2 w()-=__w(a) (g=B,V\BeG, we(r,)") (6.30)
ueg uevV\P,P
we have, by (6.18),
m%(g,w)zu(w)- ; (geG, weW), (6.31)

SO @%,G)<w coincides with the "trivial'" coupling function of [4],

formula (1. 379

§7. Matroid intersections

Let us first recall (see e.g. {3}, theorem 24)

"Edmonds' matroid intersection theorem". Let<Mﬁ:(S, 31) and
gmzz(s, 32) be two matroids (on the same ‘ground set S, with colleetions
Jd

and .d. - of indépendent sets., respectively) , with Eanifi functions r

% ’] ,,,,, o 2 - SBA B8 L e i 20 i ]
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and r, respectively. Then the maximum cardinality of a set in 81032 is

egual teo

min Sr. (S j+risnst)} . : ‘ ()
S'cs ! e 2" J

We @an write this theorem in the form of a min-nmax equality

min h(G)=max |w], (7.29)
weW
where
: G=theicollection of all pairs g=(8", S\S‘)} where S'¢S, (7.3
st a8 (=St S92 X0 (7.4)
Wz(%/\cjz i Sl
Let us also consider. the Lagrangian duality eguality
min h(G)=max min <%(g,w), (756
weW geG 3
@ (B %
where q%:(2s><2o)><,°—+z+ s’ the coupling function deiined by

95 (g,w)=]wns!]+r, (8") (geil@m ity 2® X% e . o

Remark 7.1.-  We have the bounding and dual bounding inequalities.

Indeed, if we531, then w/\s‘e£j1 (S'EZS), whence

hileipsin 8 ) e (8")pr, (wns')+r S"):]wns‘}+r2(8"):<%(g,w)

5l
1 i S S £
‘ {g=(s',8")e2”X27, wed ), (7.8)
and, on the other hand,
(g,w);{wﬂs'l+r2(wﬂ(S\S‘)):|me'|+
+lwn(s\s')| =|w] (g=(S',8\8')€G, we J ). (1+9)

(P8

Theorem 7.7. a) We have the Lagrangian duality equality (7.6).

bl Bor. any (go,wo)éG><w, the following statements are equivalent:

N go=(SO,S\SO)éG g an optinal solution OF

F B EE s eeas e (i 10)

and wocw is. a.maximumscardinality set in 31032

2%, We. have

r1(SO)=r1(wOf\S )Y : (7.11)

(W mBXE ) ) (1od2)

equality (7.2) is now the matroid intersection theorem.
b) By (4], theorem 1.2 d), (g ,w_)eGXW satisfies 12 if andenl g

1f



h(go):qé(go,wo):[w (72033

o"
Now, by 7 .5)-agd (7:8) , the first equality-dnathalahaholdee i
ond only. ifwe have (P Ll Pinally, by Ui}y (Tb) enatil. %), the

A

gecond equality in (713} holds Af and only if weihave (/L 129

Theoren. 7.2, Fok G and -9 of (ls3) and (7.7}, ye have

8 Sl
|wl=min ¢¢(g,w) wed,). (7. 143
geG . :
e Det
9= (5,412 2", (7. 153

Then gOéG (since @=S\S) and, by (7.7), we have
qé(go,w):\wmsl+ r2(¢):]w| (w(EJz), (7.16)

which, ‘together with: (7.9), yields (7«14},

Remark 7, 2wa) The universal paix 9 of  (7.15) needinot be an

optimal ssolution of-problem (71.10),

b) Concerning the problem of finding other possible coupling
functions ¢:6XW-—+R, note that for the "naturally defined" coupling
function :

@é(g,w):r1(wms')+r?(wn(S\S')) (g=:A8"' .8\ e G, wezs), (7

we have, by (7.5), the equalities

@é(g,w):[wns‘]+!wm(S\S')]ilwi (g=(s! ,s\8" ) eGy well)., (7. 158Y
SO q% coincides with the "trivial" coupling function of [4], formula
(37 ). Parthermore, forsthess. . 0 o oo . coupiitng fuhat i en

¢ (9,w) =r; (wns ') (9= (5',5\S")eG, we2®), (7120

we have wé(g,w)é}wl (geG, wcf),an& wé does not -satisfy the "duel bounds

ing inequalities™.
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