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ALVOST LINEAR SPACES WITH INNER PRODUCTS
by
G. GODINI

1. The normed almost linear spaces were first introduced
in []f}, where we showed that they constitute a natural framework
for the theory of best simultaneous approximation in a normed
linear space. An example of a normed almost linear space is the
set of all nonempty, bounded and convex subsets of a real normed
linear space (see Example 2.7 below). Weakening the axioms of a
linear space but increasing the number of the axioms of a norm
on a linear space in such a way that these spaces to generalize
the normed linear spaces, in {:1] —[ 5] we began to'deve}op
a theory for them, similar with that of normed linear spaces.
Thus, we defined the dual space of a normed almost linear space
(where the functionals are no longer iinear but a2lmost linear),
the ﬁounded, linear and almost linear operators hetween two such
spaces and we obtained in this more general framework basic results
from the theory of normed linear spaces. The main tool for the
theory of normed almost linear spaces was given in [ 4] (see
Theorem 2.2 below) Wheré we proved that any normed almost linear
space can be "embedded" in a normed. linear space (here the
embedding mapping is not one-to-one in general). This result
permits us to use the technigues of normed linear spaces 1o
prove certain results in a normed almost linear space. For example,
we showed ( [4] , Corollary 3.3) that on any normed almost linear
space.there exists a semi-metric [ with good properties.

In the present paper we study the almost linear spaces X




Y

with an inner product Sl a'concept.which generalizes the
inner product on a linear space., The inner prodﬁct generates

g norm on the almost linear space X but, in contrast to the
linear case, such a space may be not strictly convex or smooth.
The main résult (Theorem 3.5) shows that any almost linear space
with an inner product can be "embedded" in an inner product.
linear space and as a consequence we can define a semi-metric 5}
on X such that §,(x,y) £ 9(x,y), x,ye X. Now we can use the
techniques of inner product linear spaces to solve certain
problems in our more general spaces. Unfbrtunately, some other
differences between the " inear" and "almost linear' case appear.
For an element x€ XN\ %O} it is possible that for no yé XN %O%
to ha?e x#,y (i.e., (x,y) =0). However, when’Xl is a complete
linear subspace of X then X = Xl(jIX2 ; where X, is an almost
linear subspace of X such that X L X, (Proposition 3.9). Another
unpleasant fact occurs for the dual space ¥% gince it is possible
that no innér product on X¥ to exist such that (£,8) = Hf”2 1
for each fex® . That is why we study a certain almost linear
subspace of ¥ which has some properties similar with the linear
case and when X is a Hilbert space this subspace equals ™ .
Examples are scattered throughout this paper to clarify the

discussed problems.

5. Besides notation, in this section we recall some
definitions and results from our previous papers. As in these

' papers, we assume that all spaces are over the real field R.

fe denote by B, the set §her: Mzof.

An almost linear space is a set X together with two

mappings s:XxX —>X and mReX—>X satisfying (Ll)-(L8)
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below. We denote s(x,y) by x+y (or x+y) and mn( A,x) by Aex
(or Ax). Let x,y,z€X and X,fbé?R. (Ll) x+(y+i)=(x+y)+z :
(Lz) XAY=Y+X (LS) There exists an element O € X such that
x+0=x for each x€X ; (L4) lox=X 3} (LB) Qox=D 3 (L7) Ao(fwx):
:(}\r)ex 3 (LS) (A-»}A) X= kx+f~x for )xg)u, ¢R, .

Let Vy = § xeX : x+(~1ox)=0} and Wy = § x X 3 x=-lox§ .

These are almost linear subspaces of X (i.e., closed under

addition and multiplication by reals), and VX is a linear space.
Clearly, an almost linear space X is a linear space iff X = V
iff Wy = §0 3.

In an almost linear space X we shall always use the notation

X’

\ ox (in particular ~lex) for m( A ,x) (for m(~1,x)), the notation
Ax (in particular -x) being used only in a linear space. ‘

A normed almost linear space is an almost linear space X

together with a norm it X — R satisfying (N1)~(N4) below.
Let x,7y € X, WE:WX and A &R (-Nl) M x+y i -< W+ iyl s
- (N,) M xl=0 iff x=0 ; (1\13) mAextil = [ Al wxw s (N4) UtxulL UL x+with «
Note that Wixi 20 for each x &X. We denote by Sy the set
(xex s mxu=15. |
Let X,Y be two almost linear spaces. A mepping TiX —2Y

is called a linear operator if T( )\10 X1+)szox2) = )\f‘l‘(){l) +

+ XQOT(Xz) y x5 € %, kj‘efi, i=1,2. When X and Y are normed almost
linear spaces, a linear operator T:¥ —>Y is called a linear
isometry if e GO = xiif for each x & X. Here we note that

a linear isometry is not always one-to-one (see examples in

the next section).

9.1. REVARK. ( [4] , Remark 3.1)y If T is a linear isomeiry
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3 X 7 o . il : ’
of X onto Y then T(VX) = Vy s T(WX) Wy and the restriction

i

T!VX is one-to-one.

5.2, THEOREM. ( [41 , Theorem 3.2). For any normed almost

linear space (X, li-lll) there exist a normed linear space (E,l«l)

and & mapping wiX —» E with the following properties s

(i) B = w(X)-(X) and ew (%) can be organized as an

almost linear space where the addition and the multiplication

by non-negative reals are the same as in K.

(ii) For z e E we have
Wz = inf {mxuauym s xyeX, z =wx)-wm}

and (w(X),H#l) is a normed almost linear space.

(iii) w is_a linear isometry of (%, W-01) onto (e« (X),u-i).

2.3, COROLLARY. ( [41 , Corollary 3.3). For (X,U-ll) the

function f(x,y) =] w(x)-w(y)ll , x,y&X, i 8 semi-metric on X.

The proof of the following lemma is contained in the proof

of (4], Theorem 3.2, (iv), fact I).

2.4, LEVMA. Let (X,Hi-fll) be a normed almost linear space

and x,y € X. If w(x) = w(y), then for each & » O there exist

xg A u, € X such that (i XML MY i< £ and X4y, +Ug =YX AU,

We define now the dual of a normed almost linear space X

A functional f:X >R ig called an almost linear functional

if £ is additive, positively homogeneous and the restriction

UG- OR———— S
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leX 2 0. Let X1$ be the set of all almost linear functionals

oni K. Define the sddition dn X# by (fl+f?)(x)=fl(x)+f2(x), xé X
and the multiplication by reals & &R by (kef){x)=f(Aox), x €X.

#

The element 0 &€ X is the functional which is O at each x e X.

Then X# is an almost linear Space. For fe X#f defime M £l =

= sup §1TCGI 3 WxW €13 and let X" = §rex™ o Mzl < oo},

Then X% is a normed almost linear space ( [1] ) called the
dual space of X. The dual space %" dedfol e Ad eh (a0,
Let E be a normed linear space. For a subset A < E and
feé E* we denote by Int A (el A, resp.) the interior (closure,
resp.) of A in the norm topology and sup f(A) = sup {_f(a): a.éA.},
inf £(A) = inf § f(a) s+ aeA .
We conclude this section with some examples from [ZL] Al o2

which will be used in the next section.

= 2. !
2.5, EXAMPLE. Let X = § (%,8 )eR°: «,p & R § . Define

the addition and the multiplication by non-negative reals as
in R2 and define also -lex=x for each xe€ X. Then X is an almost

linear space such that X = WX .

2.6. EXAMPLE. liet X = {(oc',(s)eRz £ >o}u{(o,o)} r
Define the addition and the multiplication by non-negative reals
as in R2 and define -lex=x, x€X. Then X is an almost linear
‘space such that X = Wy .

2.7. EXAMPLE. Let (E,ll+fl) be a normed linear space and
let X be the collection of all nonempty, bounded, convex (and

closed) subsets A of E. For Aj,4,6 X and M € R define Ay +A,=

=flota nm ah, b el BN TE Sooliln ik VY, Sty =dda niees

e,

s
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and. 0 in X is the ‘set {(3} . Then X is an almost linear space.
For Ae X define WAl = SuPa<;A“a“ . Then (X, W) is a normed

almost linear space.

3, Let X be an almost linear space. An inner product on X

is a function (*,*):X %X —>R satisfying (Il)—(i7) below.

(I;) (x,x) >0 < dedeN S0 )
(1) (x,y) = (y,x) (x,y €X)

(I3)  (x+y,2) = (x,2) + (y,2) (x,y,2 €X)

(14)- (Aex,y) = Alx,y) (o e Xy X en )
(L) o gm0  (xeX, wely)
(L) e, ey =Gt y) (x,yeX)

(T o s ool Ay )

As the following simple example shéws, condition (I7) is not

a consequence of (Il)-(I6).

3.1. EXAMPLE. Let X be the almost linear space described

in Example 2.5. For x=( )‘1")2)6}(’ y‘:—.()al,/wz).éx let (xk,y) =

= )\1)'/1+2)s¢}b_a+ )\2;4»2 + 2 )‘2}”1 « Then (*,*)!X xX ~> R satisfies |
(Il)—(I6), but (17) does not hold e.g., for x;(l,o) and y=(0,1).

Note that in this example there exists a norm ll.Illl on X such

that | (x,y)l g mxmmym, x,yex (e.g., for x=(4,,4,)ex,
define Wixil = 2( Ay+ A,)).

3.2. RENMARK. Let X be an almost linear space with an

inner product. Let x,yé¢ X, véVX , WeEW, and }\ €R, We have:

X
il 00t = e
(s (epthio )

(dii ) (=ikew)

Il

(}\ox,y)
)\(X1V>

i
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(iv) (x,v)? = () (v, %)
(el ) =0

As in the case of an inner product linear space, when X!

is an almost linear space with an inner product, we define

(3eil) H_lXng_ = (x,x) (x €X)

It is easy to show that X together with this norm is a normed

almost linear space.

3.3. REMARK. Let X # §$03 be the normed almost linear
space described in Brample 2.7. 3

(1) There exists no inner product on X such that (A,A)1/2
= sup, ., It all for each A€ X. Indeed, suppose such an inner
product exists and let a& Sy . For A =§ dat -1 X 2 1}« 58
and B = {ﬁi} € Vy we have by our assumption (A,A) = (B,B) = 1
and by Remark 3.2 (v), (A,B) = 0. Then (A+B,A+B) /2 = »1/2
and SUD, ¢ 4B Well = 2, a contradiction.

G et X, be the almost linear subspace of X defined
by X, = {_AéIX: Int A £ ¢ }l) %Oi and let f¢ Sgw . For
A,Be‘:X:L define
(302) (A,B)f = sup f(A)sup f(B) + inf f(A)inf £(B)

Then (A,B)f is an inner product on Xl . Here we note that if
we define (A,B)f as i (3.2) ifor 4,B6 X and wel sed WA, B) =
= sup {/(A,B)f ¢ fe SE*} then (¢, ):Xx X—> R satisfies (Il),

(12), (14)~(I7). When dim E = 1 then (-,*) is an inner product
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on X. Even when E is a Hilbert space, dim E 21, simple examples
show that (13) is not satisfied and we were not able to determine

an inner product on the almost linear space X,

In the sequel, if otherwise not stayed, we- shall always

consider an almost linear svace X with an inner product equipped

with the norm given by (3.1).

3+.3. LEMMA. Let X be an almost linear space with an inner

product and let Xq 9%, € X. If OJ(Xl) = al(xz) then (Xl,u) = (xz,u)

for each u eX.
Proof. Since OU(Xl) = aJ(x2), by Lemma 2.4, for each & > 0
there exist x£ ,x; yUg € X such that xl+x£+u2 ='x2+x£'+u.E and

ivxga +Hlx Il <« € . Then for ueX we have (X1+X£"+u£ yu) =

= (x2+xi+u£,u) and so l(xl,u)-(xz,u)[ = l(xé,u)—(xg,u)( £

< vl Cu A+ =) < €llulll, whence the result follows.
The main result of this paper is the following :

3.5. THEOREN. Let X be an almost linear space with an

inner product (°,+). There exist a linear space H with an inner

product .. and a mapping T¢X —>H satisfying the following

properties

(1) T(X) is’'a convex cone such that H = T(X)-T(X) and

T(X) can be organized as an almost linear svace such that

the addition and the multivlication by non-negative reals are

the same as in H,

(ii) Leye igan inner vroduct on the almost linear space
I

T(X) and < T(x),T(y) > = (x,y) for x,yeX




Gy el Tine e isomeﬁry o X onto T(X).

Proof. Let E and «w be given by Theorem 2.2. We first
notie, that s X;,y; € X, i=1,2 are such that ou(xl) = 6v(xg) and
ou(yl) = UU(yZ) then (xl,yl) = (xg,yz). Indeed, by our assumptions
and Lemma 3.4 we get (leyl) = (x2,yl) and (y19X2) = (y2,X2) ;

whernce (xl,yl) = (XZ’yZ)' Let us define for zizfadxi)—cw(yi)é E,

X174 € L= oD
(303) < 211227 = (Xlrxg)*(xl’Y2)"(X2 1yl)+(Y11yQ)'

We show that <+,*>!ExE —3»R is well-defined by (3.3). Suppose

x!,y} € X, i=1,2 are such that
(3.4) 75 = @(x;)-w(y;) = ¥ (x))-w(y]) (i=1,2)
and we prove that

(3.5) (xl,xg)—(xl,yz)-(xg,y1)+(yl,y2)=(Xi,¥§)~(Xi,yé)~(X§,yi)+
| +(y1,73)

By (3.4) we get

(3.6) o (x;4y]) = w (x+y,) (i=1,2)

By (3.6) for i=1,2 and Lemma 3.4 we get

(3.7) (%0477 s%p+¥8) = (x]+yy ,23+7,)

1

(3.8) (x{+y1 2¥5+75) = (x9+7],5,+73)

(3.9) (3470579 47]) = (Xp4¥5,y747])
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If we add side by side the above three equalities (3.7)~(3.9),/
simple computations show that we get (3.5). Consequently,

L« >IE®¥E—>R is well-defined by (3.3) and it is easy to
prove that <:,«> is a Hermitian form on E XE such that .

< 2,2> 30, 26E. Let M= § z€E: <2,2%> =03, H = E/M and
qu be the canonical mapping of E onto H. It is well-known that
fqr the linear‘space H the following function on HXH is an

inner product §
'(3-10) <w1(zl)y%<22)> = <Zl’zz> (Zlé E, i=112)

We show thatuH together with the inner product defined by (3.10)
and the mapping T = ailul gatisfy all the reqﬁired conditions.
Clearly T(X) is a convex cone such that H = T(X)-T(X). We
organize T(X) as an almost linear space where the addition and
the multiplication by non-negative reals are the same as in Hiy

while for T(x) €& T(X) we define
(3.131) -leT(x) = T(-lex)

In order that this be well-defined, we must show that for x,ye X

such that T(x) = T(y) we have T(-lex) = T(-ley). Since

W (w(x)) = w, (w(y)), there exists me i, m = bd(xl)—a’(yl)

for some X1 ,¥1& X, such that w(x) = ew(y)+m . Let

m = w(-—loxl)mw(—lcyl)éE. By (3.3) we zet éf@l,m1> =< mym =0,
A B my & M. Since a;(X+y1) = QJ(xl+y), by the propertiesAof cw

we get w (~lex) = uJ(~lOy)+ml y ..y T(-lox) = P(-ley). Clearly
T§X==»T(X) is a linear operator and by (3.3) and (3.10) we

get £ T(xl),T(xz);> = (xl,xz). Hence T is a linear isometry
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of X onto T(X). It is immediate that < «,* >:T(X) ¥ T(X) —> R

satisfies (Il)~(17), which completes the proof.

The following example shows that the linear subspace M

of E defined in the proof of Theorem 3.5 can be # { g .

3.6. EXAMPLE, Let X be the almost linear space given
by Example 2.5. For x=( >*l,>\2)éX, y=(}»"1,f’2)éx, define
() = }1+ kz)()~l+/~2). Then (*,*):X¥X —P R satisfies
(1,)=(I,). We have E = R and for z=(A, A,)€E, izl =1% bald b
Here w is the identity mapping on X. The linear subspace M '
of E is {(xl,)\z)é Re )\1+ >*2 = 0?] and we have dim H = 1.

As in the case of normed linear spaces, a normed almost

dinesr copace X dsg called strictly conyex if the relations x,7e X,

woxi=Wylll , x#£y imply that Wix+y il < Wxll+ Myl , and X is

called smooth if for each xéSX there exists a unique fé& SX*

such that f(x) = Nxll (the existence of at least such an f is

guaranteed by [[47] , Corollary 3.4). The above example shows

that,'in'contrast‘to the linear case, when X is an almost linear

space with an inner product then X is not always strictly convex

or smooth. Clearly, if X is strictly convex, then the same is

e (X) (the converse is not always true, as simple example shows).
3.7. REMARK. Let X be.an almost linear space with an inner

product. If ew (X) (in particular X) is strictly convex, then

in Theorem 3.5 the linear space H equals E and T = e ., Indeed,

we shéwkthat the linear space M given in the proof of Theorem 3.5

is.{O} . Let mgM, say, m = w(xl)nw(xz), Xy 3%, € X. Since

o T s 3 e i
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im0, by (33 and_(I7) we get H{x1“§2+lﬂx2ﬂi2 == 2(xl,x2)§§
< ZEﬂxlm HEXQUI and so 1uxluixlﬂxéﬂiz - Then'(x1+xz,xl+xé)m4%rz
and so Il u»(xl)+&!(x2)ﬁ zt{cu(xl+x2)u = il xl+x2Hl = Zg o Sinee
gieu(xl)ﬁ ={Eau(x2)ﬂ = and e (X) is strictly convex, it follows
m!(xl) = uJ(xz), i.e., m=0, which completes the proof. Let us

note that if we replace "strictly convex" byv"smooth" in thé

above remark, the conclusion is no longer true. Indeed, let

X {(d,@)éXL e¢>0, >05v {(0,0)] . We organize X

as an almost linear space with an innef product as in Example 3.6.

Then X (=w (X)) is smooth and M £ £ 03 .

An immediate consequence of Theorem 3.5, using also the

definition of T given in the proof of this theorem and (I6)

is the following;

3.8. COROLLARY. Let X be an almost linear space with

'an inner product. The function f-.:XxX—> R defined by
ik

(3.12) £ Gy) = Ne(x)-1(y)hH (x,y€ X)

is a semi-metric on X with the following vproperties:

fuxm -y | £ €4 (x,y) (x,y€ X)

€4 (x,v) =11 x=v il (x6X, vev,)

£ (x+z,y+2) = ¢, (x,y) (x,y,2 €X)
fl(kox,koy)==lklflbmy) e e R)
Lo }*ofl.( MNex,y)=0,( b ex,y) (x,y7€X, )so";-“O)

fl(er) ;‘,’_F(Xy'.Y) : ' (x,y € X)

where f’ isidefined 1 Corol lapy 2,3,
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On an almost linear space X with an inner product there

exist two semi-metrics £ and 5?1 y which are not equal in

general (use Example 3.6). In the sequel we say that X is

complete if it is complete with respect to the semi-metric f’l

Clearly'_fl is a metric on X iff T is one-to-one. Hence by
Remark 2.1, §q is a metric on Vy « Note that even when £
is not a . metric on X we can use sequences instead of nets.
Naintaining the same definition and notation from the
linear case. for two elements (or two subsets) of X to be
.orthogonal, when X # VX it is possible that for some xe&X no
element y€X N 0} to satisfy x1ly (use Example 3.6 where X
is also compléte ; this may happen when in éddition ~f1 is
a metric on X as one can see in Example 3.11 (ii) below)

Consequently, when X is complete and X1 is an almost linear

subspace of X which is §q-closed (i.e., closed in the topology

generated by the semi-metric ~fl)’ we can not hope to find an

orthogonal complement X2 such that X = chjiXZ (i.e., for each

Xx€ X to exist unique x;€ X, , i=1,2 such that X:x1+X2). This
is however true when Xl is a closed subspace of VX as the

next result shows. Note that WX.LVX by Remark 3.2 (w).

3.0; BEOROSINON: - et T e s alibet Lireas space with

an _inner product and let %y be a complete linear subspace of

Vy . There exists an almost linear subspace X, of X which is

-~ &3 “- ), ) e e
§ y—closed such that iy < L Xl.L £, and X 1 @X2 .
Proof. Let H and T be given by Theorem 3.5. By Remark
) ; e N et b 1 « 2] Ty o -
T(Xi) C:VT(X) and 1(&1) is a complete linear subspace of H.
Consequeritly, there exists a closed linear subspace H? of H

such that T(X;)LH, and H = T(Xl)(:)H2 » Clearly, I(W,) =

)

&

®

e



Sl

o 4 - - e e M +h e 4 IS
= et G T §xex:r(x)en,§. By the propertie
of T given in Theorem 3.5 and Remark 2.1, it follows that Xy
is an almost linear subspace of X such that iye X, XlJ,XZ

and X = Xy @ X, . Noreover, X, is f’1~—closed,
The remainder of this section is devoted to the study
of the dual space of an almost linear space with an inner

product.

A 3.10., PROPOSITION. Let X be an almost linear space with

gn inner product and led %‘X =Y (X = x¥ be defined for x &X

by (‘{»’(x))(y) = (x,y), yeX. Then Y. is a linear isometry and

(33030 M), W = () (x,y € X)

is an inner product on the almost linear space \J/(%). Conseguently,

the norm on‘\y(x) is the same with that generated by the

irmer puoduet (3.03).

Ezggi. Clearly, for each xe X, \F(x) is an almost linear
functional on X such that ]H\y(x)“)=luxul. Using the properties
of the inner product on X, it is easy to show that‘%ﬁX-%>X*
is a linear operator. Hence W(X) is an almost linear subspace
of X¥ . We show now that (3.13) is well defined. Let X, ¥, € X,
i=1,2 be such that W(x;) = Y(x,) and Wiy ) = 6 ). men
for each ye X we have (xl,y) = (xg,y) and (yl,y) = (yz,y).
Hence (xl,yl) = (xz,yl) = (y2’X2) whigh shows that (3,13) is
well defined. The fact that (¢, )!W(X) x Y(X) ~> R defined
by (Bal) i 20 inner product follows by the properties of %F,
Remark 2.1 and (Il)-(17) for (+,*):XxX —>»R . The last
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assertion of the proposition is obvious, which completes the

proofs

When X = Vy it is known that W :X—»X" is one-to-one
and if in addition X is complete then Y (X) = X* . These asser-
tions are no longer true when X # VX . In this case it is

A :
possible to exist no inner product on ! o such that for each

e tolhme (BT = WEl 2

« This may happen even when T
is one-to-one and X is complete. The condition ‘y(X) X
does mot imply that T is ome-to-one. These will be seen in the

following simple exampless

1l UERANETES. (G090 Let X and (s +) besgivediag in
Example 3.6. We have H = R with the usual inner product and
Bllet i) ) = «+p, (x,p)eX. Let fe Sy# be defined by
Bl )= stinp, [, 6 ) e X, Then for each.xesX we have
M) =i, de., Hliatmot one-to-one.

(dde) " Tet X = {(«,p )eRzz 0L f £« } . We organize
X as an almost linear space similarly with the space described
in Example 2.5. If x; = (ﬁjj ﬁi)§§X, i=1,2, define (Xl,Xz) =
= 0(1j12+ @1(52 o Dhens (e ) i on dnner produek omel. The
space H given by Theorem 3.5 is R2 endowed with the Fuclidean
norm and T is the identity mapping on X. Clearly T is one-to-one
and X is complete. Suppose there exists an inner product on
X* such that (f,f) = N(ful? for each fe x¥ . Since X = WX
it foldiows. Shat X = W and so (f,2) 2.0 for Geer” .

Let T, € Syx , i=1,2 be defined for x = (% ,f )€X by f(x)=x-p
and fé(x):Zl/Zp . Note that fi% \y(X), i=l1,2. By our assumptions

we have (fi,fi) =1 il Dhand (fl,fg) =l > 0. Let




e

f=(2 ’2/2)f + f, . Clearly fe Syx  and so (£f,f) = 1. Then
1= e 1/2/2):E‘] ' f2,(21/2/2)f1 +£,) = (3/2)+21/2/»a, which

is impossible since P 20,

(iii) Let X be the almost linear space given in Example 2.6.

Define for x, = “i0fy ek e 2. (Xl,Xz)‘z F]_FZ . Then
(#0) deanvinner product on X. We have il :'{ }?fo T XER },
where f  is defined by fo((w:,@ Y =f 4 (%,8 ) eX. Clearly,
X"4 =‘¥(X). Here H given by Theorem 3.5 is R with the usual inner

product, T:X=>H is defined by T(( e« S £ (o ) b e X

and T is not one~to-one.

3.12, PROPOSITION. Let X be an almosgst linear space with

an_inner product. The mapping T (given by Theorem 3.5)‘1§

one-to-one iff the mapping Y (given by Proposition 3.10) is

one-to-one.

Proof. Suppose T one-to-one and let xl,xgéjX such that
e i) Tet £, ¢ H" , i=1,2, be defined Tor hé&H by
fi(h) = <T(xi),h‘> + For héH, h=T(x)-T(y), x,y € X we have
£1(0)= < 2(x)),2(x) > = L 0(x),2(y) > =(x9,%)=(xy,y) =
= (Wi )= (W) (3) = (P @)= (W) (5) = £,(n),

3 vy f,=f, and so T(xl) = T(Xz)° By our assumption it follows
that xq=x, aﬁd S0 \P is one-to-one.

Cpnversely, suppose \P oné—to~one and let xl,xzeax such
that T(Xl) =

x,). Let feH® be defined by f(h)= < T(x,),h 7 :

1
h &€ H. Then for each x &X we have (‘V(xl))(x) = (xl,x) =
= T(xy),1(x) > = <T(x,),T(x)> = (‘¥(x2))(x) and so

V’(Xl) = QJ(Xz). Hence X,=X, which proves that T is one~to-one.

3.13.  REMARK. The above proof shows that for %y 9%, & X
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we have T(xl) = T(Xg) sl \P(Xl) = %J(xz)f

3.14. REMARK, 'Por- the almost linear space q}(X) with

the inner product given by Proposition 3.10, the mapping
%giy(i) is one-to-one. Indeed, let fl,fgéékP(X), Say, fiz‘y(xi),

£ e & A RN L : = & ; o )
x,6 X, 1 1,2, such that y\y(x)(fl> };§%Xﬁ(f2>' For each
_ sl K ) p § e E '} Nt
xex we have (Y (£, (P& = (£, ¥ ) = (e, ) MG =
= (x. yx) 0= £aulzx), i=l,2. By our assumption it follows that

i i

fl(x)sfz(x) for each:xé}@ Ll fl:f2 .

Let us define for each x €X the following funetional Qx
on the almost linear space \W(x) with the inner product given

by (3.13)3

(3.14) Q. () = £(x) (f e Y(x))

It is easy to show that QX is an almost linear functional on

kP(X) and

(3.15) Mt i ==l

3,15. PROPOSITION. Let X be an almost linear space with

an inner product and let Q:X-mw?\P(X)% be defined by (3.14).

We have *

(3~16) Q Z\%)\‘y()() \§/ A

and Q is a linear isometry which is one-to-one iff T is one-to-one.

(QX,Qy) = (x,y), x,y€X is an inner product on the almost linear

4 234 $9

e
A

.
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subspace Q(X) of WY(x and the norm on Q(X) is the same with

that generated by this inner product.

Ezgof. Let x € X and £ €W (X)), say, f= \y(x) for some
x ¢ X. Then ({‘) e =G ). Leb T :=\!j(x ), Then £ (x) =
=(x,9%)=0Q (i) and (W (xy (£,)) (£)=(£,,1)= G ‘%’(X))“
w(x S = Q (f) which proves (3.16). The last assertions followl
%6

now by Proposition 3.10, formulae (3.15), Proposition 3.12 and

Remark 3.14.

3 16 PROPOSITION., Lét X be 'an glmost "linear space with

o

an inner nfoauct I W(X) X then Q is a linear isometry

(@

f X onto X¥¥ and (erQy) = (x,y), x,ye X is an inner product

x¥* | Moreover, the norm of t*¥ is the same with that

5 |

e

generated by this inner producthe.

Proof.. By Proposition 3.15 it is enough to show that if
W(x) = x* then Wox(x*) = X*. Let Dex*® and let f.= PV,
Since for each,wzéWX we have W(w)e ny , it is easy to show
that foé xE ama ME u ‘?”‘ By our assumption, there exists
X, & X such that foz‘y(xc), Lok nowif ex® . Then f=M) for
some ¥ € ¥ and we have @)(f)==@(\¥(x))=fo(x)=(\P(XO))(x)z
=(x ) =(W (), W (0))=(2,1), ieee, W (e )=B. '

We proved in Y:4j that for any normed almost linear

space X the following formulae holds:
= 3 o g, =3 Rt b A
Swa ii‘w.féSEx, fh]w(x) /O’g

where E and w are given by Theorem 2.2. If X is an almost ]Jnuar

space with an inner product and if we replace B and w (and SX&)
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by H and T given in Theorem 3.5 (and by S‘?(X))’ a similar
formulae is no longer true (use Example 3.8 (11))+ The next

result gives a formulae for Sy iy »
. ¥ (X)

3.17. PROFOSITION. TLet X be an almost linear Space

with an inner product. We have:

(3.17) Sy(yy = § T L€ Sys, T attains ite xorn at Sp(x)

-Proof. Let foé'SiV(X) and let X, & SX such that
fo(x):(xo,x) for each x & X. Define fé& Syw Dby f(h)= 4:T(XO)J17>,
ne H. Then f attains its norm at T(xo)@ ST(X) and £(T(x)) =
:<T(xo),’r(x)'> (xo,x) = fo(x), xeX, i.e., f2=f  , which
proves the inclusion e in (3.17). Let now f & S and suppose
that £(1(x,)) = 1 for some X, &8y o Then £f(h) =< T(x,),h 7
for each hé&éH. Let fO:\P(XO> (&S ‘i’J(X))' We have fo(x) = (.x‘o,x) = "
:ZéfT(XO),T(X):> = f(1(x)), x&X, i.e., £ =T, which completes

the proof.

A consequence of this result is the following :

o€

3o 1B COROLLARY. Let X be an almost linear space with

|
an inner product. 1 P(X) = ¥ +then X is complete. ?
i
oo

Proof. Let %}%En:l be a Cauchy sequence in X which does

not converge to any x&X. Let H and T be given by Theorem 3.5
n» . . = OF . ‘E
and let H be the completion of H. Since %ﬂ%xn)gn:] is a Cauchy §
~ e : |
sequence in H, it converges to some]néii\wT(X). Let féfﬁﬁ be

defined by f(h)= < BATN, 0> , héH, We have TT€Syw and by

Proposition 3.17 (since f does not attain its norm at ST(X))




a0
Wwe get fTESyy) » contradicting the hypothesis that W(x)=x*
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