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Necessary and sufficient conditions are obtained, under which two CIO contractions
with finite defect indices and the same Fredholm index are quasi-similar. Some invariants
" under quasi-similarity and some examples are given.

Finally we point out some consequences of the main result of this paper.

0. INTRODUCTION

For those C10 contractions T on a Hilbert spac;H for which the defect indices are
finite (dT <o) dT* < ®) and dT - dT* = -1, a complete invariant under quasi-similarity has
been obtained by V. L. Vasyunin and N. G. Makarov [1]. (For the terminology see Section L)

In this paper we find necessary and sufficient conditions under which two C10
contractions T, T, with finite defect indices and dTl - dTai = de - dTE sl = 1,2, 05-)
are quasi-similar. We point out some invariants under quasi-similarity of such kind of
contractions and we give some examples proving the existence of C_k‘operators which are
not quasi-similar (for k = 1 see [8, 1.

In Section: 3, as a consequence of the main result of Section 2, we find some new
ﬁecessa‘ry and sufficient conditions on a.contraction with finite defect indices in order to be
quasi-similar to a unilateral shift. .

Finally, our results give the possibility to add some new equivalent conditions to EE

Theorem 3] and [12, Theorem 2] in terms of the multiplicity of the operators.

1. PRELIMINARIES
In the following all the operators are acting on complex, separable Hilbert spaces. The

main reference is the book of Sz.~Nagy and Foias [6].
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i d
Recall that for operators ’l‘1 and T2 on H, and Ho respectively, Tl-(TZ (resp. T1 <T2)
denotes that there exists an operator X : H; > Hy which is injective (resp. has dense range)

such that XT1 = T X. If X is both injective and with dense range (called quasi-affinity), then

we denote this by ’1'1«<T2. Tl’ T, are quasi—éimilar (T1 ~ Tz) if T14T2 and T2<Tl. For an -

~operator T on f, let B denote the multiplicity of T, that is the least cardinal number of a
[e0]

subset M of elements in H for which Bi= \/ TnM. Note that if T1.<T2 then H 2 Hp e

n=o : : 1 2

Let T be a  contraction .on H» The defect indices of T are, by definition,

i 1
d.. =rank (I - TAE)? and dT* _ gankell = TTE)% 0 dT < o and dT* ¢ o then T is a Fredholm

T
operator and the Fredholm index ind T is equal to dT - dp*.

Recall that TeC,, (resp. C.p) if ™h 40 (resp. T "h £0) for all h# 0

€ -Cc nC

B i 1
TP 5 0) for all h; C C
+ 0) for all h; 10:(:1. n C.ye

. For every T e C;, we have dp £ dpx. TeC,, (resp. ?0) if T"h - 0 (resp.

Let C be the complex plane. For a positive integer n, let Li and Hr21 denote the

standard Lebesgue and Hardy spaces of C-valued functions defined on the unit circle 3.

We will use naltn 1o denote the argument of a function defined on 3E® and for an analytic

function, we will freely identify h(elt) on the circle with its extension to the unit disk h(3)

(see [2]).

2. THE QUASI-SIMILARITY OF C__k CONTRACTIONS

Let us define for k= 1,2,...
C—k ={Te Clo; dT < oo, dT:,(- < o, ind T = -k}.
Note that S_k = C—k’ where Sk denote the unilateral shift on Hi.
For Te C_k and dT* =n we have dT = n -k and we can consider its characteristic
function 6 acting from "k io €. Therefore © is an nx(n - K) matrix over H”. Since

TeCyyp © is both inner and %-outer function (cf. Prop. 3.5 in [6, Chap. VI]). The functional

model of T is defined on H(0) = Hﬁ@eHi_,/ by

Tef = PH(G)(eitf) o AE H(@) (2.1)
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where pH(@) denotes the orthogonal projection from Hi into H(0).
Let {ei}?:1 be the standard base of c". Since 0 is inner its values, e(elt) on 3D are

isometries a.e. (cf. Prop. 2.2 in [6, Chap. V.]) we have (see [8]):

Xleo(elt)lz =1: aesonad, (2.2)
2 (0]
where o runs over the set ZE of subsets o= {il, eie ,ik} (i1 < 12 Cownk ik) of thfe set
1.2, v.sson}lyand . ' |
E)G:de't(ei yeees € ;8. (2.3)
1 k

On the other hand © is a *-outer function and from Theorem on Outer Functions 3,
p.21] it follows that the greatest common inner divisor of {GO}OSZE is the constant inner
function, that is,

i : .
: /C\}e(f L (2.4)
where @;stands fpr the inner part of G)O ;

We start by provihg the following two preliminéry lemmas.

LEMMA 2. 1. For £, € HZ the equality |

det (£ ,f5 .- fls©) =0 @2:5)
holds for any fz, S fk € Hrz] if and only if f1 € GHTZ]_k.

PROOF. (&) is obviously.
(=) Taking ,,..., f, € {ei}?:l we infer that rank (fl(eit)), @(eit)) =n -k a.e.

on 8D. Now since rank G(eit) -n-k ae. on 3D it follows th‘at fl(eit) is a linear :
combination of the columns of the matrix 0 (eh) a.e. on 3D, in other words f, = ©g with
ge Li_k.

From (2.2) we deduce that there exists at least oneg € ZE for which Og(eit) is non-zero
on a set of positive measure and therefore a.e. on 9 D.

For any sucho = {i,..«, ik} we apply the matrix (eil, cees® 0) to the equality

k

f :(e-,:-.,e- ,6) (07""O’g)t
| b i S

("t" standing for the transposed matrix). k-times



S
and we obtain g = Oc_fth’ hy € H;Z]-p' Thus, on account of (2.4) and applying a lemma of [5] we
deduce that g € Hi—p' This completes the proof.
LEMMA 2. 2.If T=Tg € C.Ois such that dt* < wand ind T £ 0 then OP(T*) oD
(opstands for the point spectrum ).‘ '

PROOF. Setting dT’“‘ =nandindT = -k k= L2,... ) we have as in the previous lemma

that there exists 0= {il, - ik} € ZE sqch that ©4 7 0. Put V= (Vl’ . Vn), where
Vi = det (ei,ei yoees € ,0), i=1,2y...,n. Obviously V 7 0. Let us show that for each AeD
g me k

the function f(eit) e ly X)* is an eigenvector corresponding to the eigenvalue A of
*
Te'
It is sufficient to prove that £ 1 © Hi_k. For any h€ Hi_k and A € D we have
oh L (1 - Xy vy = (@nR) L VO* =>det (@M )e; ..., € ,00) =0

Z k
which is obvious! y. The proof is complete.

Before stating our main result,. let us define for the model contraction Tg & C_k
(dT@ = n) the following set of inner functions:

Ag=ldet(f)y ey 1p8)5Eppenes B € H2h (2.6)

Considering Ty €C_p (dTa&) =m) we set Ag LYA@ if there exists an mxn matrix over W
such that for any fl, sannibi € Hﬁ

det (f ;s 1fk,e)i S0ty £ det (YE e, Yi,0), (2.7)
where D(fl,; .., f, ) is a non-zero inner function. Here we admit that Oi =0;

The main result of this paper is the following

THEOREM 2. 3.If TG’T<I> € C-k then

d
Tog< To=> T To =) Ag éA@.
The proof of this theorem will be done in two lemmas.

LEMMA 2. 4.1f Tg, T € C_ then

d
s Y




~that det (fl,gz, s gk,@) 7 0, whence det (fl,fz, s fk,e ys£0  for

b

PROOF. First we note that if fie H©), fl 7 0, then there bexist foreees fke HO ) with
det (£, ..., £,0) F0. ’

Indeed, if det (fl,gz, ey gk,e) = 0 for every gosee-s gke Hr21 then, according to
Lemma 2.1, we infer that fl €0 Hi—k’ éontradiction. Thus, there exist Boreees gke Hrzl‘such
=P hese
e 2 il

Now let X : H@) + H(@) be an operator with dense range Inteftwining Te and Tg .

For fl,...,fke H@O) with det(fl,...,fk,E))’;'EO let us consider the following

subspaces:
P Py
Hfl”"’ fk:span{Te fr0000Tg £ Ppreses kao}
P Pls,
fo =span{T® Xf,eean T Mk;Pl"i"kaO}'
EEREE ka |
Obviously Hfl’ = (resp. HXfl’ # ka) is an invariant subspace of Tg (resp. Tg ). Note
that :
X*(H(@®)oH H(© H . 2.8
© Xfl,...,ka)C el ... (2.8)

By a theorem of Beurling we deduce that

ok e P2
Hfl,.-o,fk@e Hn_ :CIOS{(fI,-.o’fkae)P(C )} —-(fl,-..,fk,@)Hn,

where P(Cn) denotes the set of all polynomials with values in C". Hence we obtain that

p

2 l 2 i
H@®)G Hfl’ _ = Hn@(fl’ S fk,e) Hn = H((fl, cens fk,e) )
and analogously that

2

i
o= H((XL), ..o, X1,,®) I

= i
Hw)eHXfl"“’ka = Hm@(Xfl,..., ka,s’o) H

We have also that

*

9 k7

The relation (2.8) shows that the operator

e

@ - * H
. ST O 00y )

k

. ¥ . £ % O ok g
TG)IH((fl,---,fk,@)‘)"T(fl,... tao) ]<I>|H((Xfl,...,ka,<1>)l)"T(Xf.l,...,ka,®)1.




=

acts from H{(X ;. «s X§j,2)) to H(, 0)) and

) k’
W iW

. (2.9)

TERRERY

O) is inner from both sides.

* .k
e L e ,@)‘“T(fl,...,fk,e)

Since det (fl,. i k,@) %0 it follows that (fl’ ey T

ie Cy and hence to the class C (cf. Thm. 5.2 in [6, Chap. VI]).

Therefore T(f e fl 0)
We prove now that Ker X = {0}. Indeed, otherwise there exists f, € H(©), £, £ 0 such
that Xf1 = 0. Then the injective operator Wf ¢ intertwines the operators
l, ° .I, k

T(f'l’ = fk)l € CO and T(XfZ’ ~ ka’q))l. This is impossible since by virtue of Lemma

2.2, "p(T?XfZ, i)> D while UP(T’&I i?D (see Thm. 5.1 in [6,

ka,¢>) s fk,e)

Chap.II]). Thus X is injective. In particular for fl’ A fk e H(0) with det (fl’ ey k,e) o)

it follows that det (Xf.l, ity ka,cb) % 0 and as above T?Xfl, s @)1 € C

Let us denote by K the space clos NEHUEE s L ,(I)) 2
et 1 K

Taking into account (2.9) it is easy to see that K.

is an invariant subspace of
17 L :

=

T(fl,..., £,0) and

* .
Gigr .~ g = fige,. ool '
] k o
1 k
Since both these operatofs belong to the class CO’ they are quasi-similar (ct. [7, Conollary
1]) and the determinants of their characteristic functions are equal. »
Therefore, we have proved that
det (X[, vy Xf}s0 ) divides det(f}, ... fk,e)‘. (2.10)
On the other hand since XTe =Tg X, by the lifting theorem [6; p.258), there exists an

: R
mx n matrix Y over H such that

2
Forfl,,..,fkeH?\withdet(fl,. ,k,e)$0wehave
¢ 9) = det (Pyy oot P T )
det(fl,..., k,e) = det HE)fr " H(@)k’@
i (2.11)

:p(fl,.u. ,f )det(XpH(e)fl,oe‘, XPI’I(G) k,(I))

= plfyeee s B det (Ve oees Yi,50),




where p(fl, e fk) # 0 is an inner function.

For fl,.

det (PH(@ )fl’ o pH(@)fk’@) = 0. Since X is injective we infer that

Dy e
oy fk € Hn with det (fl’ ches fk,(r)) E 0 it follows that

det (XPH(O )1‘1,\.(. = XPH(G))fk’q)) = 0 whence det (Yfl, ey Yfk,®) = 0.
Therefore A@ c A(p and the proof is complete.
COROLLARY 2. 5. If T@’ Ty eC_y and Tg~ Ty then Ag = Ag:
We are going to prove a statement which completes the proof of Theorem 2.3.
‘ : ; o
LEMMA 2.6. If Te, '1"@ € C_k is such that Ag < A@, then T®<T<I>'
PROOF. As (2.7) holds, we infer that for any 0 = {il, i ik}, (o] Z?n’
@25: de’r;(ei peees € ,0) = p(ei seves € )de*&t(Yei it Yeik,CD)l.

‘ 1 k 1 k 1
From (2.4) it follows that

A det(Ye , ..., Ye,,0) = |
0={il,...,ik}
o€ Zn
m

and according to the Theorem on Outer Function [3, p.21] the matrix (Y,®) is outer, whence

we deduce that

2 ;
PH@ )YHn is dense in H(®). (2.12)
Now let fl =@h, he Hi_k. Erom 2.7) ‘and. (2.12) - it fellows  that

det (YO h,gz, oo gk,é) = 0 for any goy«+«s g € Hi.

Using Lemma 2.1 we obtain YOhe ¢ H?n—k’ therefogre
2 2

YOH < oH_ |- (2.13)
Let us show that
2 2
Ker (Y,0)c OH_ | @H_ - (2.14)
- 2 2 : ,
For this, = .Jlet fl € Hn such that Yfl € @Hm_k. From (2.7) we have

= 2
det(fl,fz,.‘., fk,e) = Oforany fy.v.y fke Hn'

Using Lemma 2.1 we deduce fl €0 Hi_k, therefore (2.14) holds.

i oSl ti : 5 i 1d, the
Let us define X to be PH ® )YIH(G)) Since the relations (2.12), (2.13), (2.14) hold,




—n

argument that X is a quasi-affinity and satisfies XTe =TgpX is straightforward.
The proof is complete.

COROLLARY 2. 7.Let T, € C-kb€ such that d

® % ° m.

Then Sk«(Tq) iff there exists an mxk matrix Y over H such that det (Y,9) is an
outer function.

PROOF. Setting © = 0 and n = k in Theorem 2.3 we find that Sk»(T@ if there exists Y
as above with the property that for any fl, A fke Hi

det(f -+ fk)1 =0y eey £ det (YE 0oy Yfk,(I))l. (2.15)

foslif -
01’< 1),.det(Y,(I))det(fl,...,fk) the

Singe.  det (I, c.0y Y1 ,@):det(Y,@)det(fl""’
1 k 0

relation (2.15) is equivalent to p(fl, o fk) det (Y,<I>)1 = | that xs p(fl, sy fk) is a constant
inner function and det (Y,®) is an outer function.
In what follows we shall define the i-spectrum (i = 1,2,.. .) of an operator T on H as

being the compact set

where (fL)i = (fl, s fi) runs over all i-tuples (fl, s fi) of linearly independent vectors in

H and Hf ; is defined as in the proof of Lemma 2.4,
peeo

For i = 1 we find again the formula for a, given in [1]. It is easy to see that if p = k

then Gk(T) =@.Nowif T=Tg€ C_j then taking into account the proof of Lemma 2.4 we get

ok(’r): n o), (2.16)
OLEA@ ;

where 0() stands for the spectrum of the inner function a (see [3, Lecture 1))
From Corollary 2.5 and (2.16) we infer thato is an invariant to the quasi-similarity of

(@ ; contractions.

-1

Now, using this invariant we can give some examples of C_, operators which are not

quasi-similar. (For the class C_, see fe,-8, 17




O

Let us consider Te € (k = 1,2,...) with © given by
o
g =(k+1) Z(A,B,...,B)Jc S
(o e ;
k-times
where A,B are some inner functions such that AAB = L.

EXAMPLE 2. 8. Let£ € 31D, @ as above, where A Is the singular inner function

AQ) = exp%‘\%—% and B is an infinite Blaschke product with zeros Ny £ (non-tangential).

Then Ok(T@) = {£}. In particular for distinct points £ we obtain Cy operators which are not

quasi-similar.

EXAMPLE 2. 9. Let wc 9 a closed subset. Then there exists T € C_k such that

Ok(T) =W
These proofs essentially follow the same line of arguments as given in.[1,Ex. 1,21 for

the case k = 1. We leave the verification to the reader.

" 3, THE QUASI-SIMILARITY TO A UNILATERAL SHIFT

In this Section we shall provide some new necessary and sufficient conditions for a
contraction T with finite defect indices in order to be quasi-similar to a unilateral shift.

The following theorem generalizes [8, Proposition 2].and [9, Theorem 3.1].

THEOREM 3. 1. Let T6 be a C_k contraction with dT* = nand let Sk be the unilateral

0

shift on Hi. Then the following are equivalent:

DTy = Sy

(ii) There exists an nx k matrix Y over H” such that det (Y,0) is outer.

(iii) pT = —md Te.

0
PROOF. (i)== (ii) follows from Corollary 2.7.

(ii) == (i) If (i) holds then from the same corollary we have $;,{ Tg and since



sl

S;.> T@ (cf. [8, Corollary 2]) we infer that 5, ~ TO'

(i)==>(iii) is obviously.

2

(i) ==>(ii). For this let £, = (t%,..., £)'e HZ

(el

such that Hf = H(®) (for notations see the proof of Lemma 2.4). This means that

l,!.t’ {k
imlt imkt ‘
D . ’ =

Span{l I‘I(@)e fl, se ey P[‘I(e)e fk, ml, cony me O} = II(@)

hence
: i(nlt imkt 2

" span{e fl,...,e fk’GHn—k;ml""’meO}:Hn’

that is,

clos (i, ..., f,,8) PEC" = B 3.1)
Considering the function

1= 15000y
p:l,...,n
we deduce that the outer function
20 it ;
5 1 e +A it
h()) = exp = ~£> meit - log qle ")dt (\eD)

belongs to H™ and | h(eit)[ = q(eit) a.e.on 3.

P_ 4P e et gl
LetYinfiheH aninm(Yi,...,Yi)t fi

On account of (3.1) we get:

clos(Y |, ..., Y ,0)P@M = clos(f}h ..., £, h,0)P(C") = clos (£, 1,0)PE€") = Hi.
Hence (Y,0) is outer; where Y = (Yl’ i Yk). Therefore det (Y,0) is outer and the proof is
complete.

Using this theorem and [10, Lemma 1] one can easily prove the following

THEOREM 3. 2. Let T be a contraction with finite defect indices. Then the following
are equivalent:

(i) Tis quaéi~similar to a unilateral shift.

(i) Te C

and p... = -ind T.

10 T
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REMARK 3. 3. If weset @ as in (2.17), where A(Q)) = exp Z\)Ii—Ll and B is an infinite

Blaschke product with zeros a = L-b. (0 <_ b, <1 b & ©), then T@ e Sy (see [8,
Proposition 2]).

Indeed, for every (k + 1) x k matrix Y over H® we have det (Y,0) = oA + B for some
P € H®. Since AAB = 1 it follows that oA + pB will not be outer at any choice of g;8 € B
(see [4]). According to Theorem 3.1 we have T@ # S |

At the end, let us notice that Theorem 3.1 gives us the possibility to state Theorem 3
from [11] and Theorem2 from [12] in terms of the multiplicity, as follows:

%
THEOREM 3. 4. Let T be a contraction with finite defect indices and let T= (Tl )
‘ e 0f I

be the triangulation of type
0 C,

Then the following statements are equivalent:
(i) T is quasi-similar to an isometry

(i) T, is quasi-similar to a unitary operator and HTZ = -ind T,

THEOREM 3. 5. Let T be a C,y contraction with finite defect indices and let

I * © K
1 : 2 0-
e be the triungulation of type . Then the following statemnts are
0= T s
2 1
equivalent:
(i) T is quasi-similar to its Jordan model.
(ii) by = -ind T,
2
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