INSTITUTUL
DE
MATEMATICA

INSTITUTUL NATIONAL
PENTRU CREATIE
STIINTIFICA SI TEHNICA

ISSN 0250 3638

ON QUASI-SIMILARITY OF CONTRACTIONS WITH
FINITE DEFECT INDICES

by

Gelu POPESCU

PREPRINT SERIES IN MATHEMATICS

No: 29/1987

BUCURESTI

led 23786

ON QUASI-SIMILARITY OF CONTRACTIONS WITH FINITE DEFECT INDICES

by Gelu POPESCU**)

July 1987

*) Department of Mathematics, The National Institute for Scientific and Thechical Creation, Bd. Pücii 220, 79622 Bucharest, Romania

On Quasi-Similarity of Contractions with Finite Defect Indices

GELU POPESCU

Department of Mathematics, INCREST, Bd. Pacii 220, 79622 Bucharest, Romania

Necessary and sufficient conditions are obtained, under which two C₁₀ contractions with finite defect indices and the same Fredholm index are quasi-similar. Some invariants under quasi-similarity and some examples are given.

Finally we point out some consequences of the main result of this paper.

0. INTRODUCTION

For those C_{10} contractions T on a Hilbert space H for which the defect indices are finite $(d_T < \infty, d_{T^*} < \infty)$ and $d_T - d_{T^*} = -1$, a complete invariant under quasi-similarity has been obtained by V. I. Vasyunin and N. G. Makarov [1]. (For the terminology see Section 1.)

In this paper we find necessary and sufficient conditions under which two C_{10} contractions T_1 , T_2 with finite defect indices and $d_{T_1} - d_{T_1^*} = d_{T_2} - d_{T_2^*} = -k \ (k = 1, 2, ...)$ are quasi-similar. We point out some invariants under quasi-similarity of such kind of contractions and we give some examples proving the existence of C_{-k} operators which are not quasi-similar (for k = 1 see [8, 1]).

In Section 3, as a consequence of the main result of Section 2, we find some new necessary and sufficient conditions on a contraction with finite defect indices in order to be quasi-similar to a unilateral shift.

Finally, our results give the possibility to add some new equivalent conditions to [11, Theorem 3] and [12, Theorem 2] in terms of the multiplicity of the operators.

1. PRELIMINARIES

In the following all the operators are acting on complex, separable Hilbert spaces. The main reference is the book of Sz.-Nagy and Foias [6].

Recall that for operators T_1 and T_2 on H_1 and H_2 , respectively, $T_1 \stackrel{i}{\swarrow} T_2$ (resp. $T_1 \stackrel{d}{\swarrow} T_2$) denotes that there exists an operator $X: H_1 \rightarrow H_2$ which is injective (resp. has dense range) such that $XT_1 = T_2X$. If X is both injective and with dense range (called quasi-affinity), then we denote this by $T_1 \stackrel{d}{\swarrow} T_2$. T_1 , T_2 are quasi-similar $(T_1 \sim T_2)$ if $T_1 \stackrel{d}{\swarrow} T_2$ and $T_2 \stackrel{d}{\swarrow} T_1$. For an operator T on H, let μ_T denote the multiplicity of T, that is the least cardinal number of a subset M of elements in H for which $H = \stackrel{\infty}{\bigvee} T^n M$. Note that if $T_1 \stackrel{d}{\swarrow} T_2$ then $\mu_T \stackrel{b}{\searrow} \mu_T \stackrel{b}{\Longrightarrow} \mu_T$

Let T be a contraction on H. The defect indices of T are, by definition, $d_T = \operatorname{rank} (I - T^*T)^{\frac{1}{2}}$ and $d_{T^*} = \operatorname{rank} (I - TT^*)^{\frac{1}{2}}$. If $d_T < \infty$ and $d_{T^*} < \infty$ then T is a Fredholm operator and the Fredholm index ind T is equal to $d_T - d_{T^*}$.

Recall that $T \in C_1$. (resp. $C_{\cdot 1}$) if $T^n h \not\to 0$ (resp. $T^{*n} h \not\to 0$) for all $h \not= 0$; $C_{11} = C_1$. $\cap C_{\cdot 1}$. For every $T \in C_1$, we have $d_T \leq d_{T^*}$. $T \in C_0$. (resp. $C_{\cdot 0}$) if $T^n h \to 0$ (resp. $T^{*n} h \to 0$) for all h; $C_{10} = C_1$. $\cap C_{\cdot 0}$.

Let $\mathbb C$ be the complex plane. For a positive integer n, let L_n^2 and H_n^2 denote the standard Lebesgue and Hardy spaces of $\mathbb C$ -valued functions defined on the unit circle $\mathfrak d \mathbb D$. We will use "e^{it}" to denote the argument of a function defined on $\mathfrak d \mathbb D$ and for an analytic function, we will freely identify $h(e^{it})$ on the circle with its extension to the unit disk $h(\lambda)$ (see [2]).

2. THE QUASI-SIMILARITY OF C_k CONTRACTIONS

Let us define for k = 1, 2, ...

$$C_{-k} = \{T \in C_{10}; d_T < \infty, d_{T^*} < \infty, \text{ ind } T = -k\}.$$

Note that $S_k \in C_{-k}$, where S_k denote the unilateral shift on H_k^2 .

For $T \in C_{-k}$ and $d_{T^*} = n$ we have $d_{T} = n - k$ and we can consider its characteristic function θ acting from \mathbb{C}^{n-k} to \mathbb{C}^n . Therefore θ is an $n \times (n-k)$ matrix over H^{∞} . Since $T \in C_{10}$, θ is both inner and *-outer function (cf. Prop. 3.5 in [6, Chap. VI]). The functional model of T is defined on $H(\theta) = H_n^2 \Theta \theta H_{n-k}^2$ by

$$T_{\Theta} f = P_{H(\Theta)}(e^{it}f), \quad f \in H(\Theta)$$
 (2.1)

where $P_{H(\Theta)}$ denotes the orthogonal projection from H_n^2 into $H(\Theta)$.

Let $\{e_i\}_{i=1}^n$ be the standard base of \mathbb{C}^n . Since θ is inner its values $\theta(e^{it})$ on ∂D are isometries a.e. (cf. Prop. 2.2 in [6, Chap. V.]) we have (see [8]):

$$\sum_{\sigma} |\Theta_{\sigma}(e^{it})|^2 = 1 \quad \text{a.e. on } \partial \mathbf{D}, \tag{2.2}$$

where σ runs over the set Σ_k^n of subsets $\sigma = \{i_1, \ldots, i_k\}$ $(i_1 < i_2 < \cdots < i_k)$ of the set $\{1, 2, \ldots, n\}$, and

$$\Theta_{\sigma} = \det(e_{i_1}, \dots, e_{i_k}, \Theta).$$
(2.3)

On the other hand θ is a *-outer function and from Theorem on Outer Functions [3, p.21] it follows that the greatest common inner divisor of $\{\theta_0\}_{\sigma \in \Sigma} n$ is the constant inner function, that is,

$$\bigwedge_{\sigma} \Theta_{\sigma}^{i} = 1 , \qquad (2.4)$$

where θ_{σ}^{i} stands for the inner part of θ_{σ} .

We start by proving the following two preliminary lemmas.

LEMMA 2. 1. For $f_1 \in H_n^2$ the equality

$$\det(f_1, f_2, ..., f_k, \Theta) \equiv 0$$
 (2.5)

holds for any $f_2, \ldots, f_k \in H_n^2$ if and only if $f_1 \in \Theta H_{n-k}^2$.

PROOF. (=) is obviously.

(\Rightarrow) Taking $f_2, \ldots, f_k \in \{e_i\}_{i=1}^n$ we infer that rank $(f_1(e^{it})), \theta(e^{it})) = n - k$ a.e. on ∂D . Now since rank $\theta(e^{it}) = n - k$ a.e. on ∂D it follows that $f_1(e^{it})$ is a linear combination of the columns of the matrix $\theta(e^{it})$ a.e. on ∂D , in other words $f_1 = \theta g$ with $g \in L^2_{n-k}$.

From (2.2) we deduce that there exists at least one $\sigma \in \Sigma_k^n$ for which $\theta_{\sigma}(e^{it})$ is non-zero on a set of positive measure and therefore a.e. on ∂D .

For any such $\sigma = \{i_1, \dots, i_k\}$ we apply the matrix $(e_i, \dots, e_i, \theta)$ to the equality

$$f_1 = (e_1, \dots, e_{i_k}, \theta) \underbrace{(0, \dots, 0, g)^t}_{k-\text{times}}$$

("t" standing for the transposed matrix).

and we obtain $g = \theta_{\sigma}^{-1}h_{\sigma}$, $h_{\sigma} \in H_{n-p}^{2}$. Thus, on account of (2.4) and applying a lemma of [5] we deduce that $g \in H_{n-p}^{2}$. This completes the proof.

LEMMA 2. 2. If $T = T_{\Theta} \in C_{0}$ is such that $d_{T}^{*} < \infty$ and $ind T \neq 0$ then $\sigma_{p}(T^{*}) \supset D$ (o stands for the point spectrum).

PROOF. Setting $d_{T}^* = n$ and ind T = -k (k = 1, 2, ...) we have as in the previous lemma that there exists $\sigma = \{i_1, ..., i_k\} \in \Sigma_k^n$ such that $\theta_{\sigma} \neq 0$. Put $V = (V_1, ..., V_n)$, where $V_i = \det(e_i, e_i, ..., e_i, \theta)$, i = 1, 2, ..., n. Obviously $V \neq 0$. Let us show that for each $\lambda \in \mathbb{N}$ the function $f(e^{it}) = (1 - \lambda e^{it})^{-1}V(\overline{\lambda})^*$ is an eigenvector corresponding to the eigenvalue λ of T_{Θ}^* .

It is sufficient to prove that $f \perp \theta \vdash_{n-k}^2$. For any $h \in H_{n-k}^2$ and $\lambda \in \mathbb{D}$ we have $\theta \vdash_{n-k}^2 = (\theta \vdash_{n-k}^2) \vdash_{n-k}^2 = (\theta \vdash_{n-k$

Before stating our main result, let us define for the model contraction $T_{\Theta} \in C_{-k}$ $(d_{T_{\Theta}^*} = n)$ the following set of inner functions:

$$A_{\Theta} = \{ \det(f_1, \dots, f_k, \Theta)^i; f_1, \dots, f_k \in H_n^2 \}.$$
 (2.6)

Considering $T_{\Phi} \in C_{-k}$ $(d_{T_{\Phi}^*} = m)$ we set $A_{\Theta} \stackrel{Y}{\sim} A_{\Phi}$ if there exists an $m \times n$ matrix over H^{∞} such that for any $f_1, \ldots, f_k \in H_n^2$

$$\det(f_{1},...,f_{k},\theta)^{i} = \rho(f_{1},...,f_{k}) \det(Yf_{1},...,Yf_{k},\Phi)^{i},$$
(2.7)

where $\rho(f_1, \ldots, f_k)$ is a non-zero inner function. Here we admit that $0^i = 0$.

The main result of this paper is the following

THEOREM 2. 3. If $T_{\Theta}, T_{\Phi} \in C_{-k}$ then

$$T_{\Theta} \stackrel{d}{<} T_{\Phi} \stackrel{\longleftarrow}{<} T_{\Theta} \stackrel{\checkmark}{<} T_{\Phi} \stackrel{\checkmark}{<} A_{\Theta} \stackrel{?}{\sim} A_{\Phi}.$$

The proof of this theorem will be done in two lemmas.

LEMMA 2. 4. If $T_{\Theta}, T_{\Phi} \in C_{-k}$ then

$$\mathsf{T}_{\Theta} \stackrel{\mathsf{d}}{\prec} \mathsf{T}_{\Phi} \implies \mathsf{T}_{\Theta} \stackrel{\mathsf{d}}{\prec} \mathsf{T}_{\Phi} \Longrightarrow \ ^{A}_{\Theta} \stackrel{\mathsf{Y}_{\mathsf{C}\!A}}{\to} .$$

PROOF. First we note that if $f_1 \in H(\Theta)$, $f_1 \not\equiv 0$, then there exist $f_2, \ldots, f_k \in H(\Theta)$ with $\det(f_1, \ldots, f_k, \Theta) \not\equiv 0$.

Indeed, if $\det(f_1, g_2, \ldots, g_k, \theta) \equiv 0$ for every $g_2, \ldots, g_k \in H_n^2$ then, according to Lemma 2.1, we infer that $f_1 \in \theta H_{n-k}^2$, contradiction. Thus, there exist $g_2, \ldots, g_k \in H_n^2$ such that $\det(f_1, g_2, \ldots, g_k, \theta) \not\equiv 0$, whence $\det(f_1, f_2, \ldots, f_k, \theta) \not\equiv 0$ for $f_i = P_{H(\Theta)}g_i$, $i = 2, \ldots, n$.

Now let X : $H(\Theta) \rightarrow H(\Phi)$ be an operator with dense range intertwining T_{Θ} and T_{Φ} .

For $f_1, \ldots, f_k \in H(\Theta)$ with $\det(f_1, \ldots, f_k, \Theta) \not\equiv 0$ let us consider the following subspaces:

$$H_{f_{1},...,f_{k}} = \operatorname{span} \{ T_{\Theta}^{p_{1}} f_{1},..., T_{\Theta}^{p_{k}} f_{k}; p_{1},..., p_{k} \ge 0 \}$$

$$= \operatorname{span} \{ T_{\Phi}^{p_{1}} \times f_{1},..., T_{\Phi}^{p_{k}} \times f_{k}; p_{1},..., p_{k} \ge 0 \}.$$

$$H_{Xf_{1}},..., Xf_{k}$$

Obviously H_{f_1,\ldots,f_k} (resp. H_{Xf_1,\ldots,Xf_k}) is an invariant subspace of T_{Θ} (resp. T_{Φ}). Note that

$$X^*(H(\Phi) \ominus H_{Xf_1, \dots, Xf_k}) \subset H(\Theta) \ominus H_{f_1, \dots, f_k}. \tag{2.8}$$

By a theorem of Beurling we deduce that

$$H_{\mathbf{f}_1,\ldots,\mathbf{f}_k} \oplus \Theta \ H_{\mathsf{n-p}}^2 = \mathbf{clos}\,\{(\mathbf{f}_1,\ldots,\mathbf{f}_k,\Theta)P(\mathbb{C}^n)\} = (\mathbf{f}_1,\ldots,\mathbf{f}_k,\Theta)^{\mathbf{i}}H_{\mathsf{n}}^2,$$

where $P(\mathbb{C}^n)$ denotes the set of all polynomials with values in \mathbb{C}^n . Hence we obtain that

$$H(\Theta) \ominus H_{f_1, \dots, f_k} = H_n^2 \ominus (f_1, \dots, f_k, \Theta)^i H_n^2 = H((f_1, \dots, f_k, \Theta)^i)$$

and analogously that

$$H(\Phi) \oplus H_{\mathrm{Xf}_{1}, \dots, \mathrm{Xf}_{k}} = H_{m}^{2} \oplus (\mathrm{Xf}_{1}, \dots, \mathrm{Xf}_{k}, \Phi)^{i} H_{m}^{2} = H((\mathrm{Xf}_{1}, \dots, \mathrm{Xf}_{k}, \Phi)^{i}).$$

We have also that

$$\mathsf{T}^*_{\Theta \mid H((\mathsf{f}_1, \ldots, \, \mathsf{f}_k, \Theta)^i)} = \mathsf{T}^*_{(\mathsf{f}_1, \ldots, \, \mathsf{f}_k, \Theta)^i} \quad ; \quad \mathsf{T}^*_{\Phi \mid H((\mathsf{X}\mathsf{f}_1, \ldots, \, \mathsf{X}\mathsf{f}_k, \Phi)^i)} = \mathsf{T}^*_{(\mathsf{X}\mathsf{f}_1, \ldots, \, \mathsf{X}\mathsf{f}_k, \Phi)^i}.$$

The relation (2.8) shows that the operator

$$W_{f_1,\ldots,f_k} := X^* \mid H((Xf_1,\ldots,Xf_k,\Phi)^i)$$

acts from $H((Xf_1,\ldots,Xf_k,\Phi)^i)$ to $H((f_1,\ldots,f_k,\Theta)^i)$ and

$$W_{f_1,...,f_k}^{T^*}(Xf_1,...,Xf_k,\Phi)^{i=T^*}(f_1,...,f_k,\Theta)^{i}W_{f_1,...,f_k}^{T}$$
 (2.9)

Since $\det(f_1,\ldots,f_k,\theta)\not\equiv 0$ it follows that $(f_1,\ldots,f_k,\theta)^i$ is inner from both sides. Therefore $T_{(f_1,\ldots,f_k,\theta)}^i$ $\in C_{00}$ and hence to the class C_0 (cf. Thm. 5.2 in [6, Chap. VI]).

We prove now that $\ker X = \{0\}$. Indeed, otherwise there exists $f_1 \in H(\Theta)$, $f_1 \neq 0$ such that $Xf_1 = 0$. Then the injective operator W_{f_1}, \dots, f_k intertwines the operators $T^*_{(f_1, \dots, f_k)^i} \in C_0$ and $T^*_{(Xf_2, \dots, Xf_k, \Phi)^i}$. This is impossible since by virtue of Lemma 2.2, $\sigma_p(T^*_{(Xf_2, \dots, Xf_k, \Phi)^i}) \supset \mathbb{D}$ while $\sigma_p(T^*_{(f_1, \dots, f_k, \Phi)^i}) \not\supset \mathbb{D}$ (see Thm. 5.1 in [6, Chap.III]). Thus X is injective. In particular for $f_1, \dots, f_k \in H(\Theta)$ with $\det(f_1, \dots, f_k, \Phi) \not\equiv 0$ it follows that $\det(Xf_1, \dots, Xf_k, \Phi) \not\equiv 0$ and as above $T^*_{(Xf_1, \dots, Xf_k, \Phi)^i} \in C_0$.

Let us denote by f_1, \ldots, f_k the space clos $X^*H((Xf_1, \ldots, Xf_k, \Phi)^i)$.

Taking into account (2.9) it is easy to see that K_{f_1}, \ldots, f_k is an invariant subspace of $T_{(f_1, \ldots, f_k, \theta)}^*$ and

$$\mathtt{T}^*_{(\mathsf{Xf}_1,\ldots,\,\mathsf{Xf}_k,\Phi)^i} < \mathtt{T}^*_{(\mathsf{Xf}_1,\ldots,\,\mathsf{Xf}_k,\Theta)^i}|^{\mathit{K}}_{f_1,\ldots,\,f_k}$$

Since both these operators belong to the class C_0 , they are quasi-similar (cf. [7, Corollary 1]) and the determinants of their characteristic functions are equal.

Therefore, we have proved that

$$\det(Xf_1, \dots, Xf_k, \Phi)^i \text{ divides } \det(f_1, \dots, f_k, \Theta)^i.$$
 (2.10)

On the other hand since $XT_{\theta} = T_{\theta}X$, by the lifting theorem [6; p.258], there exists an $m \times n$ matrix Y over H^{∞} such that

matrix if over H such and
$$Y \ominus H_{n-k}^2 \subseteq \Phi H_{m-k}^2$$
. (2.11)
$$X = P_{H(\Theta)}Y|_{H(\Theta)} \text{ and } Y \ominus H_{n-k}^2 \subseteq \Phi H_{m-k}^2.$$
For $f_1, \dots, f_k \in H_n^2$ with $\det(f_1, \dots, f_k, \Theta) \not\equiv 0$ we have
$$\det(f_1, \dots, f_k, \Theta)^i = \det(P_{H(\Theta)}f_1, \dots, P_{H(\Theta)}f_k, \Theta)^i = \bigoplus_{k=0}^{\infty} (2.10)$$

$$= \rho(f_1, \dots, f_k) \det(XP_{H(\Theta)}f_1, \dots, XP_{H(\Theta)}f_k, \Phi)^i = \bigoplus_{k=0}^{\infty} (2.11)$$

$$= \rho(f_1, \dots, f_k) \det(Yf_1, \dots, Yf_k, \Phi)^i,$$

where $\rho(f_1, \ldots, f_k) \not\equiv 0$ is an inner function.

For $f_1,\ldots,f_k\in H_n^2$ with $\det(f_1,\ldots,f_k,\Theta)\equiv 0$ it follows that $\det(P_{H(\Theta)}f_1,\ldots,P_{H(\Theta)}f_k,\Theta)\equiv 0. \text{ Since X is injective we infer that } \det(XP_{H(\Theta)}f_1,\ldots,XP_{H(\Theta)}f_k,\Phi)\equiv 0 \text{ whence } \det(Yf_1,\ldots,Yf_k,\Phi)\equiv 0.$ Therefore $A_\Theta\subseteq A_\Phi$ and the proof is complete.

COROLLARY 2. 5. If T_{Θ} , $T_{\Phi} \in C_{-k}$ and $T_{\Theta} \sim T_{\Phi}$ then $A_{\Theta} = A_{\Phi}$.

We are going to prove a statement which completes the proof of Theorem 2.3.

LEMMA 2.6. If T_{Θ} , $T_{\Phi} \in C_{-k}$ is such that $A_{\Theta} \stackrel{Y}{\subset} A_{\Phi}$, then $T_{\Theta} \stackrel{X}{\subset} T_{\Phi}$.

PROOF. As (2.7) holds, we infer that for any $\sigma = \{i_1, \dots, i_k\}$, $\sigma \in \Sigma_m^n$, $\Theta_{\sigma}^i = \det(e_{i_1}, \dots, e_{i_k}, \Theta)^i = \rho(e_{i_1}, \dots, e_{i_k}) \det(Ye_{i_1}, \dots, Ye_{i_k}, \Phi)^i.$

From (2.4) it follows that

and according to the Theorem on Outer Function [3, p.21] the matrix (Y, Φ) is outer, whence we deduce that

$$P_{H(\Phi)}YH_n^2$$
 is dense in $H(\Phi)$. (2.12)

Now let $f_1 = \theta h$, $h \in H_{n-k}^2$. From (2.7) and (2.12) it follows that $\det (Y\theta h, g_2, \dots, g_k, \Phi) \equiv 0$ for any $g_2, \dots, g_k \in H_m^2$.

Using Lemma 2.1 we obtain Y0h $\epsilon \Phi H_{m-k}^2$, therefore

$$Y \Theta H_{m-k}^2 \subseteq \Phi H_{m-k}^2 \qquad (2.13)$$

Let us show that

$$\operatorname{Ker}(Y,\Phi) \subseteq \Theta H^{2}_{n-k} \oplus H^{2}_{m-k}. \tag{2.14}$$

For this, let $f_1 \in H_n^2$ such that $Yf_1 \in \Phi H_{m-k}^2$. From (2.7) we have $\det(f_1, f_2, \dots, f_k, \Theta) \equiv 0$ for any $f_2, \dots, f_k \in H_n^2$.

Using Lemma 2.1 we deduce $f_1 \in \Theta H_{n-k}^2$, therefore (2.14) holds.

Let us define X to be $P_{H(\Phi)}^{Y}|_{H(\Theta)}$. Since the relations (2.12), (2.13), (2.14) hold, the

argument that X is a quasi-affinity and satisfies $XT_{\Theta} = T_{\Phi}X$ is straightforward.

The proof is complete.

COROLLARY 2. 7. Let $T_{\Phi} \in C_{-k}$ be such that $d_{T_{\Phi}} = m$.

Then $S_k \prec T_{\bar{\Phi}}$ iff there exists an $m \times k$ matrix Y over H^{∞} such that $\det(Y, \Phi)$ is an outer function.

PROOF. Setting $\Theta \equiv 0$ and n = k in Theorem 2.3 we find that $S_k < T_{\Phi}$ if there exists Y as above with the property that for any $f_1, \ldots, f_k \in H_k^2$

$$\det(f_{1},...,f_{k})^{i} = \rho(f_{1},...,f_{k}) \det(Yf_{1},...,Yf_{k},\Phi)^{i}.$$
 (2.15)

Since $\det(Yf_1,\ldots,Yf_k,\Phi)=\det(Y,\Phi)\det\begin{pmatrix}f_1,\ldots,f_k,0\\0,\ldots,0,1\end{pmatrix}=\det(Y,\Phi)\det(f_1,\ldots,f_k)$ the relation (2.15) is equivalent to $\rho(f_1,\ldots,f_k)\det(Y,\Phi)^i=1$ that is $\rho(f_1,\ldots,f_k)$ is a constant inner function and $\det(Y,\Phi)$ is an outer function.

In what follows we shall define the i-spectrum (i=1,2,...) of an operator T on H as being the compact set

$$\sigma_{\mathbf{i}}(\mathsf{T}) = \bigcap_{(\mathsf{f})_{\mathbf{i}}} \sigma(\mathsf{P}_{H_{\mathsf{f}_{1}}^{\perp}, \dots, \mathsf{f}_{\mathbf{i}}}^{\mathsf{T}}, \mathsf{H}_{\mathsf{f}_{1}}^{\perp}, \dots, \mathsf{f}_{\mathbf{i}}^{\mathsf{i}}),$$

where $(f)_i = (f_1, \dots, f_i)$ runs over all i-tuples (f_1, \dots, f_i) of linearly independent vectors in H and H_{f_1, \dots, f_i} is defined as in the proof of Lemma 2.4.

For i=1 we find again the formula for σ_1 given in [1]. It is easy to see that if $\mu_T=k$ then $\sigma_k(T)=\phi$. Now if $T=T_\theta \in C_{-k}$ then taking into account the proof of Lemma 2.4 we get

$$\sigma_{\mathbf{k}}(\mathbf{T}) = \int_{\alpha \in A_{\Theta}} \sigma(\alpha),$$
 (2.16)

where $\sigma(\alpha)$ stands for the spectrum of the inner function α (see [3, Lecture III])

From Corollary 2.5 and (2.16) we infer that σ_k is an invariant to the quasi-similarity of C_{-k} contractions.

Now, using this invariant we can give some examples of C_{-k} operators which are not quasi-similar. (For the class C_{-1} see [4, 8, 1].)

Let us consider
$$T_{\Theta} \in C_{-k}$$
 $(k = 1, 2, ...)$ with Θ given by
$$\Theta = (k + 1)^{-\frac{1}{2}} (A, \underbrace{B, ..., B})^{t}$$
 (2.17)

where A,B are some inner functions such that $A \wedge B = 1$.

EXAMPLE 2. 8. Let $\xi \in \partial \mathbb{D}$, Θ as above, where A is the singular inner function $A(\lambda) = \exp \frac{\lambda + \xi}{\lambda - \xi}$ and B is an infinite Blaschke product with zeros $\lambda_n \to \xi$ (non-tangential). Then $\sigma_k(T_{\Theta}) = \{\xi\}$. In particular for distinct points ξ we obtain C_{-k} operators which are not quasi-similar.

EXAMPLE 2.9. Let $\omega \subset \partial D$ a closed subset. Then there exists $T \in C_{-k}$ such that $\sigma_{k}(T) = \omega$.

These proofs essentially follow the same line of arguments as given in [1, Ex. 1,2] for the case k = 1. We leave the verification to the reader.

3. THE QUASI-SIMILARITY TO A UNILATERAL SHIFT

In this Section we shall provide some new necessary and sufficient conditions for a contraction T with finite defect indices in order to be quasi-similar to a unilateral shift.

The following theorem generalizes [8, Proposition 2] and [9, Theorem 3.1].

THEOREM 3. 1. Let T_{Θ} be a C_{-k} contraction with $d_{T_{\Theta}^*} = n$ and let S_k be the unilateral shift on H_k^2 . Then the following are equivalent:

$$(i)T_{\Theta} \sim S_k$$

(ii) There exists an $n \times k$ matrix Y over H^{∞} such that $\det (Y, \theta)$ is outer.

(iii)
$$\mu_{T_{\Theta}} = -ind T_{\Theta}$$
.

PROOF. (i) => (ii) follows from Corollary 2.7.

(ii) \Longrightarrow (i) If (ii) holds then from the same corollary we have $S_k \angle T_\theta$ and since

 $S_k > T_{\Theta}$ (cf. [8, Corollary 2]) we infer that $S_k \sim T_{\Theta}$.

(i)⇒(iii) is obviously.

(iii)
$$\Longrightarrow$$
 (ii). For this let $f_i = (f_i^1, \dots, f_i^n)^t \in H_n^2$ (i = 1,2,..., ,k)

such that $H_{1}, \dots, f_{k} = H(\Theta)$ (for notations see the proof of Lemma 2.4). This means that

$$\operatorname{span} \left\{ P_{H(\Theta)}^{im_{1}t} f_{1}^{im_{k}t} \right\} = H(\Theta)$$

hence

$$span \{e^{im_1t}, \dots, e^{im_kt}, \Theta H_{n-k}; m_1, \dots, m_k \ge 0\} = H_n^2,$$

that is,

$$clos(f_1, ..., f_k, \theta) P(\mathbb{C}^n) = H_n^2.$$
 (3.1)

Considering the function

$$q(e^{it}) = \sum_{\substack{i=1,...,k\\p=1,...,n}} |f_i^p(e^{it})|^2 + 1]^{-\frac{1}{2}}$$

we deduce that the outer function

$$h(\lambda) = \exp \frac{1}{2\pi} \int_{0}^{2\pi} \frac{e^{it} + \lambda}{e^{it} - \lambda} \log q(e^{it}) dt$$
 ($\lambda \in \mathbb{D}$)

belongs to H^{∞} and $|h(e^{it})| = q(e^{it})$ a.e. on ∂D .

Let
$$Y_i^p = f_i^p h \in H^{\infty}$$
 and $Y_i = (Y_i^1, \dots, Y_i^n)^t$ $(i = 1, 2, \dots, k)$.

On account of (3.1) we get:

$$\operatorname{clos}(Y_1, \dots, Y_k, \theta) P(\mathbb{C}^n) = \operatorname{clos}(f_1h, \dots, f_kh, \theta) P(\mathbb{C}^n) = \operatorname{clos}(f_1, \dots, f_k, \theta) P(\mathbb{C}^n) = H_n^2.$$
Hence (Y, θ) is outer, where $Y = (Y_1, \dots, Y_k)$. Therefore $\operatorname{det}(Y, \theta)$ is outer and the proof is complete.

Using this theorem and [10, Lemma 1] one can easily prove the following

THEOREM 3. 2. Let T be a contraction with finite defect indices. Then the following are equivalent:

- (i) T is quasi-similar to a unilateral shift.
- (ii) T ϵ C₁₀ and μ_T = -ind T.

REMARK 3. 3. If we set θ as in (2.17), where $A(\lambda) = \exp \frac{\lambda + 1}{\lambda - 1}$ and B is an infinite Blaschke product with zeros $a_n = 1 - b_n$ ($0 \le b_n < 1$, $\sum b_n < \infty$), then $T_{\theta} \not\sim S_k$ (see [8, Proposition 2]).

Indeed, for every $(k+1) \times k$ matrix Y over H^{∞} we have $\det(Y, \theta) = \alpha A + \beta B$ for some $\alpha, \beta \in H^{\infty}$. Since $A \wedge B = 1$ it follows that $\alpha A + \beta B$ will not be outer at any choice of $\alpha, \beta \in H^{\infty}$ (see [4]). According to Theorem 3.1 we have $T_{\theta} \not = S_k$.

At the end, let us notice that Theorem 3.1 gives us the possibility to state Theorem 3 from [11] and Theorem2 from [12] in terms of the multiplicity, as follows:

THEOREM 3. 4. Let T be a contraction with finite defect indices and let $T = \begin{pmatrix} T_1 & * \\ 0 & T_2 \end{pmatrix}$

be the triangulation of type $\begin{pmatrix} C_{\cdot 1} & * \\ 0 & C_{\cdot 0} \end{pmatrix}$

Then the following statements are equivalent:

- (i) T is quasi-similar to an isometry
- (ii) T $_1$ is quasi-similar to a unitary operator and μ_{T_2} = -ind T $_2$

THEOREM 3.5. Let T be a $C_{\cdot 0}$ contraction with finite defect indices and let $T = \begin{pmatrix} T_1 & * \\ 0 & T_2 \end{pmatrix}$ be the triungulation of type $\begin{pmatrix} C_0 & * \\ 0 & C_1 \end{pmatrix}$. Then the following statements are

equivalent:

- (i) T is quasi-similar to its Jordan model.
- (ii) $\mu_{T_2} = -\text{ind } T_2$.

REFERENCES

- [1] V.I.VASYUNIN and N.G.MAKAROV, On quasi-similarity of model contractions with non-equal defects (Russian), preprint.
- [2] J.B.GARNETT, "Bounded analytic functions", Academic Press, 1981.
- [3] N.K.NIKOL'SKII,"Treatise on the shift operator. Spectral function theory", Springer-Verlag-Berlin-Heidelberg, 1986.

- [4] E.A.NORDGREN, The ring N+ is not adequate, Acta Sci. Math., 36(1974), 203-204.
- [5] B.SZ.-NAGY, Hilbertraum-Operatoren der Klasse C₀, in "Abstract spaces and approximation", *Proc. M.R.I. Oberwolfach*, *Birkhauser* (Basel, 1986), 72-81.
- [6] B.Sz.-NAGY and C.FOIAS, "Harmonic analysis of operators on Hilbert space", North Holland Akademiai Kiado (Amsterdam Budapest, 1970).
- [7] B.SZ.-NAGY and C.FOIAS, Modele de Jordan pour une classe d'operteurs de l'espace de Hilbert, Acta Sci. Math., 31(1970), 91-115.
- [8] B.SZ.-NAGY and C.FOIAS, Jordan model for contractions of class C., Acta Sci. Math. 36(1974), 305-322.
- [9] P.Y.WU, On contractions of class C₁., Acta Sci. Math., 42(1980), 205-216.
- [10] P.Y.WU, On the quasi-similarity of hyponormal contractions *Illinois J.Math.*, 25(1981), 498-503.
- [11] P.Y.WU, When is a contraction quasi-similar to an isometry?, Acta Sci.Math., 44(1982), 151-155.
- [12] P.Y.WU, Which C.₀ contraction is quasi-similar to its Jordan model?, Acta Sci. Math., 47(1984),449-456.