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~It is well known from the theory of algebraic groups that

one- cannot deform maps from a diagonalizable group to an af-

fine‘algabraic group except in»a‘trivial way i.e. by compo-
sing a fixed map with some "variable" inner‘automorphism of
thé target. The main effect of the preseét paper. . is that it
-provides a "non-commutative" analog of the above property,

With Sweedler's terminology in min(i'[5] the non-commutative

analog of affine algebraic groups afte the finitely gererated

- Hopf algebras while the non-commutative analog of diagonali-

zable groups are the finitely generated group algebras, What

we shall prove is roughly speaking that one cannot ceform

£ .

maps from a finitely generated Hopf algebra to a group algehra

except in a trivial way i.e. by composing a fixed map with

N

(3}

some “"variable coinner automorphism™ of the source, see Theo-

rem 1.1 below,
"OQur approach is quite different from the one used in the
“computative case"

and has some interest in itself, In particular it provides new

1

informations also in the “"commutative case’

~

gng- 201 s below.,

Q

, see Theorems 2.8

¥

(i.e. in the case of affine algebraic groups)



1. STATEMENT OF THE MAIN REGU dqy

First recall some terminology and notations from |5 |.

=N
Throughout. the paper fdelds will he comnutative and will con-
tain a fixed ground field ko which is supposed to be alge-:

hraicully C!Q)PO of characteristic, zero, For a fileld' k we

o~

fenote by Homp(m,m),AlgP(m,m)'minlgp(—,«) thg sets of k-~

linear maps, k-algebra maps and k-bialgebra maps respectively.,

r‘.‘

" o] 2 e L i r— ) .
kecall fronm i‘*j 81 that any bialgebra map between Hopf alge-

bras dutomatlc 11y is a Hopf algebra map. A k-bialgebra is
Of G g

tely yenerated if it is so as & k-~algebra. For any

s

called fTin

k-bialgebra ‘H we derote hy AH rand, EH'(Qr simply by A and

£ ) the comultiplicdtion and the Cntrxl of H; if SH “has.an

1

antipode it will be denoted‘oy H (or qluwlv by 5) . For any

t

Hopf.k¥algehra H - we denote by ‘G(H) the group of group-like

elements {(i.e. of elements. XEH, A—%O such that  Ax=x@®x}).

H 1is called a group k-algebra if it is spanned over k by G(H

\ " ) ) P . ) P .
Now recall that if H is a Hopf k«algobra then . Hom, (},a)
has a natural structure of ~md1(LbF8 {with multiplication X
induced by A called convolution and unit given by‘f)~while

A1Ql(z,k) is a subgroup of it uncer convolution IS‘JP.BZ.'For

C(U)(X)—"Z‘—W" ())x(l)/u( ( ))>~(,;)
R ),

Here we used the "sigma°notmtiorﬁ‘£51p,1@. It is 'easy to s

e ‘

&

Lef tdas )y beliow ) tHat Gil). is an: . invertible k-bialgebra map

and the map C:Alg, (H,k)- ->251algk(%{ﬁiY” is a group homomor-

/
(&S
s

phism (where M” cdenotes the group of invertible elements of

(H,k) define the map .C(u):H—>H by the formula

1



the monoid M), The maps, C(u) above are called coinner auto-
morphisms of H; as one expects, in the commnutative case i.e,
L [ .

in the casc when H 5 the coordigate ring of an affine.al-

jR
¥
o

\

gebraic group X , the coinnor automorphisms.of M correspond

Av3

L prergescoe o gna it - § P ,, e '_,h, PN TR AP, - B
prUpioLly to the inner automorpnisms o7 A

Finally given two Hopf k-algebras H and F and two maps

we say that ¢ and ¢ are conjugate over a

o AL

¢, Yeni

e

field extension k of k if there is a coinner k-zttomorphism
o of H:zH(Ekk- such.that Ye0'= & where ¢ cand ¢ are the K-
~’ g ’

bialyebra mapnps from H to Fi=F&®

k

i naturally induced by e,

Our main result is the..following:

THEOREM 1.1, Let H and F_ 'be two Hopf ko-algebrés with
M finitely generated and F A group algebra, Jet Kk be a
field extension of k and put H=H @, k, F=F &, k. Then.for
. ’ k S K

any map Ye&Dialg, (H,F) there is -a map w e 8Byalg, (H_,F )
' L= Yk _ ) c ~k0 o' o

,
w

are conjugate over some field exten-

sion of k.

Trtuitively we may view the elements of Hialgk(HJF) as fa-

milies of kowﬁialgcbrm maps from.'HO to FO with parameter

space Spec k; so what our theorem says 1s that any such family -

is conjugate to a "constant’ one.

Tn the commutative case Theorem 1.1 is well known and at
lesst in the case when OSpec F  is connected (i.e. a torus) our

thegrem 18 ¢

ssentinlly a .conseauence. 6f the conjugacy of maxi-

mal tori in Spec H, sae%}?ip,lBB. iote also that an infinitési-

"mal version of Theorem 1,1 is proved in the commutative case
roo g o] .y ; T g e Y -

in E)Jp.iio, e idea in {k>J is to relate infinitesimal

deformations of maps hetwgen algehraic groups to cohcmology of

©



G-modules.,

'
C e

ferent, First will be t

&

show in fact t

non-connuta

jonf-theoretic

tive case will he aquite dif-

o prove &n infinitesimal version

(rather than cohomological) ‘argu-

hat there 1is natural”

Yy

is an

explicit

izing vector fields" for infi

way of constd urian “trivigl nite-
simal cnfﬁrrdbions of maps from Hopf algebras to a fixed group
algebra (Theorem 2.9 below). The second step will be to inte-

grate vec

our,

by using a slight variation

Picardnvhookut extensions [

Our method for the

also in some other quite

i

The pian of ine paper

duce a

Section 3 is devoted to the

‘voted to integration. Ir

Y

A
UEFOR

NS
£y

First some more terminol
2.1, For any k-linsar

and

(V V1)

ug V-
Ve

V., For

Hom,

ix

~tor fields (Theorem 2.11

“secornd

deformation-theoretic

Secti

MATICH
ogy

space

Y so <“{’qu ;><>' . <u

is a fomily of elements

helow): this will be done

on Kolchin's existence theorem for

3

190420. .

step” pruves itsclf to ¢ useful
different situa itio 9,_5@@ [ ]
is as follows, 1n Section 2 .we intro-

setting ited fofr our purpose.

~

Sl

infinitesimal case. Section 4 is €e~

ion 5 we make some final comments

Ot THEQRETIC SETTIMG

W N W

and conventions,

v % “HO”x(V ) the lineca

we write u,X> 1ﬂstcar o{

K

Ut
x &V

7

Z = H H
by ?”‘éﬂﬁamp(W'.V ) the
, Px

M
v’

. {e
we eagn

ote

for all XEV, ugE

in ancd if for all

xE€V ‘there are at most finitely many indices 1 such that
. <1 ‘ . x
<¢L,X:>w:u iHrﬂ'ZfLL is a well def ined element in Vo we
- c Ll



o

shall consicder several times such (possibly infinite) sums.’

i

1f Y:A—>»B is a k-slgehra map and.k, is a subfield of k
: R 1 :
then n man diA—>0 is called a k,~ P-derivation from A to

5 if-it is k.-linear and d{xy)=cd(x)e(y)+@{x)d(y) for all x.ve

EA., If A=B and ¢ is the identity then we say g is a klwdew
w '

rivation on A. Denote by Cer  ~(A,B) the set of k,-9P~deri-
! N k_{ / l

vations from A to B and by Derk (A) the set of mlwderivatiowa
. ‘ : 1 '
on A. low suppose ¢ :A-—»DB above is a k-bialgebra map. Then

1 3

identity,, .
L )

e -
<

i\ g % ' X
Biderk kh,))»§d~—u0‘ (A,B): ¢ & Dery (BX,A )}

: ST . . A
e elements of which we call hiderivotions. Here A and B

th

are viewed &s algebros uncder convelution,

2:2, tLet H_,F be k -bialgebras, k a field extension of

a k~linear map
. T RIPRLIN I
K:ber, (k) ——— ﬁla@rk.(H,F)

which we shall think of as the "Kodaira Jgencer map” associated

[

to¥. First we cefine it as & map from Der (ley ot

O
[AS
: : : - . 0 ~
as follows, >r:w“' gé_“al (k) denote by 51,54,51} and S

o)

k  and Hsz 0l Fxﬁoéﬁk. For any %Z?Bialgk(H,F) we shzll define

Hom, (H,F).

>

the unique k _«derivations on H,F,HQDPH and .FQQkF respectively

e

ol
‘Exnlicitely we have a"(ax)n(ga)x for ack, XQRHO

. . ) 5 - e
; : A . 2 W
(ga)Xpr for ael<, x,yezHo and similarily for S and 477,
1 (7 04 fj‘— "» i o e g S N - & —_ PO TR V. / ? T S t{)f R
POV Pl [~ teo ;Ui CASLLY osovb Leadici © .i\(F\{’ JE - ‘k L

. V2l
Ve claim that K

=S

vhich agree with S5 on K ~and vanish on HO,FO,H ébHO and FO@QF

,wﬁlMwa%

H o o . 2 -
5)6 n(t“ 1,F}. To check this we 8fa TOroec

.
O



1:.0,

H
0

e E;.’; e

W

do some computations:

T L1 A
LEMIGA «sd. S o /,_\, i
Froof. Just use definit ions.,

LEMIGA 2.4, gll(xaby)u(glx)@py+x6§§ly f
) o

sroof . Write Tra T = > b wi
Proo iri 7. F v ZZquq ith

(same arguments will hold for F,). Then

11, o1l = LS Q,,
S. (x@y)=6""( 2 apqupébyq)* y S(dpbq)x
= 7 }- v " "—; o b 3
SIZ_J(SCAP)L,)(‘/\{J@ yq l‘ : C}n((g'.)ct}

:r:(.S]‘-x)@\/ 4 ><@§1y,‘ GED.

1&rw~2ﬁ, (K¥Q)@%’+%@K$d))QAH;AFO

Proo £ 0 A pr 1 v i G Lemma 2 > 5 owe hffi Ve

. S0

I ow

fro

| /\DK (CJ>.?‘- A;TOSZbY e /.}\gfjowoog‘lﬁg;:?'olx{:o

S22 (P pip)e A\, - (F0P)e Dy

KTLS>.

50"" AF"LFOS}.::

$E2

L$ 2 (o) - (Ya)e 8T /ﬁ\{

we are left te prove ‘that
4 5 ¢ g 5 & ? [£ el
K P+ YO, 3= F@%W~\V@%)
{
both members of the above equality are
m H® H to F«&PF so it is sufficient
. IN . .

N

-~ o o £ - s O iy 4 .
ce on elements of the Torm: ™ X ®y with X

(KL\P(S\/‘C;QL{} * ({)@K(f)(gf’) J{x& \/!):.:.\ _ (S\

gll

k-(¢® ) ~cerivetions

to prove that they

veH . But

\ﬂ( >')Q<) “L \5‘)\/”



b

)

Sy

k7

2
(x))¢ly)+p(x)@ 87 (y))=(S

g " "
by Lemma . S

2,0%

fMow we are

x”'\
g . ,g\ﬁ IR AP S A el B
that h?( ) gfmn!, (F7,H"). Indeec foreall
we have | using (2.,5):

= <u ®vV, (i-((‘ﬁ
n<{“( (§)§u)x(%xy)+

-G

The following property of

play a key role later:

X

(o ¥)) (x0Y)

prepared to prove tne ¢

Y
. u,veF

\p<§>x>s<u@ v, AF(z\:%,(c?)x)

the Kodaira-Gpencer map

1 : . 1L .
nd we are done since S (Xéﬁy)mme

laim in (2.2) namely

1 4
\NE e
A

and

N

> =

(5}(’1"{’ + g-” © K([o (cg‘) ) ( A H><)> =

(w‘a'>,¥.(;<(‘p<§>*<v> x>

1
™~

will

LEMMA 2.7. The following conditions are equivalent:

L %oéylk Lok, sEd Voé;#ialgk'(Ho

]

s

2) K, 1s tne

zero map.,
\

i

¥

-
) %]

J =

~t

1) >Lf = are trivial (note

.

) 

ristic zero assumption is here essential).

Proo

ie sufficient to check that ¥ maps in

H
0

I}

w(1ASLS

O

he fe of FO anc write

. |
for all i, hence éiaﬁ:O for all i and j.
i3 _
so Y(x)eF,.
2.0, Ve sholl define for any Hapf k-alo

S;éfmr
o

3) There exists a family (Si)j with
K . i ) . ¢ e (
K (é y=0 for all.i and sucn tnat ixt K; O

)«

O

k

(k) such that
Ty o

characte~

O
x=0 for all

To prove 3) ==>1) it

¢ F ., Take xe M
0 & & &

. :
K)o a.y., with
?(x)= Zlagys

Consecuently @

5t<o

ehras M and F o oand



n k-linear map

~y

and any {eRialg, (H.F)
{2 .
£ L

R :Der, (H,k) ——= Bider, (H,F)

¢ ik <
as follows, First define & k-Tinear, map

(H, k) —— 3iderP(H)

o

C(Q)Pf: Z (g(x,]))g(/((5))~«6‘(>\(1))5(>’(5)))/€(2)

— \

-3 . : . .
where QG,DerV (H,k) and xeit, Using standard computations it
is an easy exercise to check that c{(f) is a k-~derivation on

5 o ; X b i ” %
H. To check that c¢(8) is a k~derivation on H note that one

may write <ﬂ9)z@@l@9#9®1@£)o[}$H->HA\%mre Do=(100 ) A =

D

H
i k 159

S(DOLYA He— H@ H@ M and E@ L0 (HOHPH——"2H takes
N
Xy @ Xy @Ry into E(XJ)Q(X%)XZ (similarily for G@1®E ). Hence
g e - 5 & y ] ‘

£ X . X ,
for any ugH ve have ((E® 1® 0. .001@ ) u=s@uolb-Pouese SO
c(0)*u = ux0- B xu

. : X T o . o L .
which shows that c¢(8) is a k-derivation on H (it is even an

inner derivation t). Mow define the . k-linear map Rg, by the for-
. , : : i :

mula

&

R (8) =yfec(8) for all Qéﬁerk (M)

It is eas "to see that the maps R behave naturally in the
v Lta K .

o

foilouing saﬁsé. Consider the category §z whnse obj@cts are Hopf
k-algebra maps ¢:H—=>F, where H 15,9 variable Hopf algebra
and £  ie a fixed Honf anehra[‘ﬁnd>whose morphisms are defined
in aﬁ'@hvious way, Then we may look at the functors D end B

e : . £
from Cb to {!-’;«] inecar ss;‘ync:us;'zx- defined by D({)=ber, (H,k) and



v
0

a($):ﬁiderpv(H,F) and remark that the maps ;R(f define a natural

homomorphism R:D—>0B8.

Our infinitesimal rigidity restitft is the following:

THEQREM 2.0, If F is a group algebra 'then R:D—>B8 has a
right inverse 6:3 —>D which may be explicitely described as
follows. For any map Te>Bialgk(H,F) the map Q; :Biderk?(H,F)

<

~;7 Derlg(ﬂ,k) is gdven- by the formula

ge G(F)
where aeﬁuxmrk (H,F) and the elements g"*(é'F'X are defined
by requiring that
14F 0 h=g
Lgtihos
o if h#rg
for all heG(F). 5 : e

The defining equality for (%(3)_ in the statement =above

' . . . X
should be viewed of course as an equality in H™ .

COROLLARY 2,10, 1f .F is a group algebra then the maps R%

are surjective for all .

Note that if we restrict ourselves to commutative Hopf alge-.

. bras then Corollary 2,10 1is a consequence of & result in [@] '

o e

1]

The next theorem shows in particular that. “infinitesimal r

1

gidity"” and "actual rigidity" are equivalent "up to hase change’.

THEOREM 2.,}1., Let HO be a finitely generated Hopf koﬂalgebrn,
F.O any HopT kO~Q1gebra, k a field extension of ko, and H:Hn@)k,

E=F ®@k. Then for any maaﬁyeﬂialgk(H,F) the following hold:



.

1) If therc exists a map ?Oeiﬁinlgk (HO,FO) such that - ¥ and
: 0
?Oaplkv are conjugate over k= then the image of the map K?:Derk (k)

: TSNt " . _ , , L ‘
—y Dider, (11,F) is containcd in the image of the map RT:Derpg(H,k)

> B,s_cérk‘e(h,ff).

2) If the image of K? is conteined in the image of R, then

there exists a map Y_ € Bialg, (H_,F_ )’ such that ¥ and Y ®1, are
: 0 vk o' o ' o k

Qo

comjugate over some field extension of k.

Clearly -ouy Theorem 1.1 is a consequence of Corollary 2,10 and
of the second part of Theorem 2.11.

The rest of the paper is devoted to the prcof.of the two theo-

rems above,

3 INFINITESIMAL RIGIDITY

Th this section we prove Theorem 2.9, Let. G=G(F); o triviel
“computation shows that:

¥

LEHﬂA 3.1. The following equalities'hold'in Fos
9%4% g;K :'g% for all g€G
% x e
g x h” =0 for all g,heG, gﬁéh.
| ¥ ’
;Ef;m~A9 = 1 {(here l:%z 1)
- g€e6G ;

LEMMA 3,2, For any PéBirlg (H,F) and de nider, (H,F) the
- =1 _X ¥ X ®y T , i
sum 4@%(3): Ef G‘(?;g )x(Q»g}) is a well defined element in

ge
Tia and viewed as map from 4 to k it is 8 k=g ~derivation.
. ’ o
oo, o P ‘-,; o
voreover the k-linear maps db=» §(J) from Bicer, (1i,F) to

i
¢ . . ;
Cer, (H,k) behave naturally . in tne ¥ -~argument.,
N

i



— K~

Proof, Faor xeH and he‘G we. have

<(Y§£gi()}‘(axgi‘)-,x>::: (i ) <(} Y)x })><Q 9}( 2)>
§ X

which vanishes for all but finitely many g@g's so /7’&0(&) is a well

H

s 2 . ‘}’\ - 3 \ - ' % .
defined element in H . To prove that @(9) 15 a K- ¢ -teérivation

from H to k note first that for all x,yeH | we
have:
________.—_—.1" o v
X x X
3 Pl xy = R ¢ -h™, : and
Lg* Pxy) > _>{| e > ey D
h=g

N o X X , : X X
L‘<g 21y 7 < x> =g x x>
(x) |
Using these formulre vie get:

1

(Q(g XY> ZJ<9 L{)(X Y(]))><g*‘v9(x(?)\/(?))>:
“Z__‘.(< x Hox(l)>/h Yy ])><¢sk, (2) >(bm (fy( )>

. " o .
fhegb ™ >(h fy(l)><d A f>)>(a Y (2 )>
e N !, -, N i

;2_4<f",\[):((1)>< rja,(/)\/< 5"1Y ,(:()\,’\/-e»

Z<hr‘ ,({/\‘/(1)>\/ 1)";9»,(?)\/\/ }CQQ'({)X >;

=Yy (D) >LE > <€.%><9?(9>. >

£

Finally to check thet Q(,_aan:‘ave naturally we nust pro\fa that for

: €
X
any map T ?’x:‘;nlg‘,(C),H) the map A oQ :Bicle ry (% F ) vt [)erk (H,1)

Ry %— - 1. - J - | l . 0 f”\{/ oy g \\0 n e
eerd* L (J,k) equals the map ¢ 3ide 189 (t .,f‘) >
!Jb 6 ‘ :v'. :
el {35F )= Dor,  {J k) where k[:’h- v ., And indeed we have



.

The following statement closes the proof of Theorem 2,9:

LEMMA 3.3, Toc(é%(a)): 2 for all 9£§%iderk@(H,F),

" ; g S 4 : X X
Proof. It is sufficient to check that o and 6(5?(9))Ao

o |

X " " , = bt %
agree on g" for all geG. tow by (3.1) we have ~, g % g

i
el

”

A ‘ .
so applying @  we get

X X 33 }: ) g 3 X { X
DR s 2 (e @76 =0
| g > g '

v

Consequently by (2.8) and (3.1) we get for all g€&G:

(c(8,()) ) (7™ )=(r7e™)x6,(3) - 0,(9)%(1%5™) -

Zw (X (@) Z(a WY x (PR ) (7 g") =

4, INTEGRATION.
This section is-devoted to the proof. of Theorem 2.11.
4.1. First it will be convenient to adept a functorial way

of looking at coinner automorphisms. Recall from [Bt}p.GO that

for any commutative komalgebra A, (h A) is a subgroup of
Hom, (HO.A) under convolution, The rrcup inverse of any element
\O . : c; 5 . L
ueAlg, (H_,A) dis uT:i=ue S, Moreove the correspondence
Sk . '
0

Ap——> Alg, (H_,A) defines a functor which we call X from

L3

1

%Commutétive komalgebras} to %groupsj. Since Ho is finitely
generated X 1S representable by some finitely generated

3



‘algébres‘ﬁto {grmups}defiﬁed by Y(A)wulalgA(HA,H )*  where H, =

tively for any n»;noul“ m&p‘?) MY Hom , (M,A) (respectively ¥ =

e R

koualgwhra which becomes an affine Hopf algebra.

4,2, In what {ol ows we denote Ly Hom,(~-,~) and ALg, (= ,=)

the sets of A_module and A~algebra maps respectively. One . can

define exactly as in [5] the notion of A~bia1gebra and A--
bialgebra map; the sets of A-bialgebra mapé will be denoted by
Rialgk(w,w). tlow consider the functor Y from Ecommutative ko“
A
:HOGDA (here Y(A) 1is viewed as a group under comp081tlon of
maps). Ve shall define-a naturél homomorphismA C:X~A;>Y in the

following way. First we shall define for any commutative Kk -

o
algebra A & map CA:Algb (%q Ay e==r Al G (H,,Ha) as follows. For
et \
any u € Al gk (% ,r\ put ('A( u)=(u @ l@u)e ‘A?A where AZA:
A,@lAmﬁmqwh@XH;®,Hh and u%ﬁl@uﬁ%@LH & H, — H,
2 ATA AR AA . B ATTAA A
takes xl@xxzébxz into u(o“_)u(xz)xz. | ‘
LLV“& 4.3 ?' Ch induces » natural group homomorphism from X(A)

Proof. First let's agree to write for an A-module ™M (respec
bl s . ; h

:HomA(W,A))‘ tiow for any 'UCEX(A) denote by J,(u) the map from
RS . et B '
Hom, (HO,A):HA to itself which takes w dinto u” x w x u (so

o : ,
Iﬁ(u) 4s the inner autoworphism of the convolution elgebra

,A) determined by u). It is easy to check that we heave

(Cp(u)) =T, (u)

for all'u. In particular we get for all u],uryéX(A):

. Y -. e - Y
(CA(u1 x UZ)) =IA(gl X UZ):lﬂ(UZ)OIA(ul):(bA(UZ)) °(CA<U1)

=(C,{ u;},o{)}\( )Y

£



Hince §§A
»C (u

"We are

A
i

Again: sin
and ([Xu
Y,

But this

homomorph

.44«1'1'0
concept o

Let X b

(which is

.

is a free A-module we conclude that. Cﬁ(u] X uy)=

(uq).

Pan'

left to prove that for ez; ue X(A) we have

by A® aHA

BooC,p(u)=(C,(1)@C,(u))e B -3ty ey Hy D

A

>

R v i
C, (u)éobh(u)) agree when composed with the mep
& 5 Y '

(HAV)QDA(HAV)

LWV
> (Ha®oH,)

is a trivial consequence of the fact that I,(u) is a ring

-

ism and the lemma.is proved,

Next it will‘be convenient to oll(uY]y extend Kolchin's
f logarithmic derivative (see [:3 ]p;394 or[i@]p.@ﬁ@),
e any funétbr from {commutative kowalgebras’} to ggroups%
not nacLasariiy representable f). Onéucan defiﬁe then
1

LigU:SC:ﬂﬁU*jfjwr ke mnlcebr23j—~> garouhs% hy the for-
Al ' e - ! < RN Al

Liey (A)=Ker(X( Lg] —> X(A))

2 e
where A[z[=A@Arz, z =0 and p:A[z|—>4& is the reduction modulo

Moreover

he called

where it

is the ma

for any ékzDerr (A) one can define a map (which shoulcd
< ; L . .

‘ e U ST -

logarithmi¢ derivative and which is not a group no-

[Z,CY‘,\

- L. 1{:\', (A)

N

6&59*((K(iizg))(g))((x(i)>(9))“l for geX(#)

- ‘ .. . . . -
A= L J oRu b naturad _Il,i':(,f,L;jlj_Jz.. gy ant §4 Zion N Ej

p sending a€&Ah into a+(é%)z.

H .- is free it is sufficient to prove that. (C ETLRRPR .0



waa A G
U

ITF 7 P.p i nB - is a k <algebra map between commutative o
; o G F an o

=

alaebras and if 9J, €Dler AY, J‘GSU@r 3 are derivations
S A I 3 Ik .

. ) ¢ "o 0
such that o” Waég' then one immediately checks that”’

Lieg (F) o3 dy= 650 ().
N N 3
thow if C:X—> Y is any homomoarphism between functors from
{commutative ko~ﬁjca)ru7§ to {groups%then there is an induced

homomorphism Li en ! LieX--¢’LieY,'H0reover if ékSDerk (~A) then
it is easy to check that 'LieC(A)oéiglf;ALC(A).

WC shall need 1he fol]onlnq variation on a result.due to Kolchin
-3 ]»4”6 :

THEOREM 4.5. Suppose we are given a functor X from gcommu—
tative kO—algebras } to {groups}, representable by a finitely
generated komnlgebré and suppose we are given a field extension

k

k of ko' and a family of derivations ’(51)iu»éz & Der, (k)
g O R & «
such that %xe;k; é&x:@ for all i}':ko.uSuppose moreover that

we ore given a family (6.). with 9 € Lie, (k). Then there exist

74
, . , e A : . ‘ C
a field extension k of k a family of ko»der;vatlons (uj)i on
o }- .| : ™~
k extending the derivations (él)j snd an element t& X(k)

A ’ i ~

such that if we put an(x(?))(Q{) where $Y:k —5 k is the natural
inclusion then the

w T , '
1) {xezk; S x=0 " for all i}zk and -
i o}

~ o

2 t=f . fFor all i.
) f;é; QL

A-proof of the above theorem is given in L]_]. tote that Kol-
chin's original statement in[ B:Irequires certain - commutation
relations satisfied by the Qi's~(which will not bhe satisfied in

génerhl in our swecific situation). Note also that there is a -weaker

version of (4.5

~—

[ ] 982  which coes not provide our cenclu-

sion L which will be escential to our proof of Thecorem 2.11.)
P : /

@



For convenience we sketch.a proof for (4,5) above. We may Suppose

k- -ig algehraicﬂlly'closed. Let A represent X; then Bopec A
' %0 : .

is an affine algebraic group over koé ve view X(k) as & matriX

group-i.e, 23 a closed subgroup of GLn(k) for some n. Moreover

A0 = e 1% aa o henooe { i } . h > } =] ) f (\ .

we view Lie,(k) @s a subspaCe O gln(<), then the map w0y
’ .

X{k)———> Lieu(k) ddentifies with the "usual" logarithmic de-
S 3 s v
ORI o . -1 . . . I
rivative Zié;g:(élg)g . befine derivations Di on kLTjﬁ
N ’ 4 ’ J

...'" i o - g . )
wg[rpq, 14;)ﬂ1§r\j by -putting Dixwégx fqr x€ k anad

B.T = Z o, T
ipq ipr'rq

r_‘

tar adl 32.p.49 where 9.:(9 ) f.  ek. One enhecks that the
i Vipg’pqg’ ipq :

‘defining prime ideal Pc. x[T] of ne 1(9ntlty component of  X(K)

is stable under el}-lui‘s. FLow CHOOS& 4 maxinal element in the set
{Uéjupe [1]: det(T)dza, PCO, D, (Q)cQ for all 1}. 1t is-easy
.io check thay if we put knk[ JO/OK[1 O and izDi mod QO then

.

A + :
k and éi satisfy conclusion 1} in- {4.5), Then we are cdone by

putting t=(t £ =T mod Q.
pa

ﬂﬂ)' ele

3

4.6. Now we come back to our specific homomorphism C iR > Y

from (4.3) and consider a field extension K of ko. First it is
quite clear that rie, (k) and Liey (k) can be identified with

z N ) o ' | .
Den (H,k) and nlterk(H) r@spectxv 1y; moreover uncer this

I ~ . &

identification the map Lie (k):tie (k) ——7 Lie (k) - corresponcs
f s . 7 | R

; : ; - & - i : : ~
precisely to the map c:Ber, (H,<)~—~»-8100FP(H)' defined at (2.8).
< SIS B “

1 . ‘
Let SC Pgr‘ (k); ve clain that uncder the above identification,
oo .

- | _ - e
the wmap 2,45 f(k)—> LlC\( <) corresponcs to the map BJalgk(H,H)

\/
iy : ; : > 1 -1 1
e~ Bider, (H) sonding ¢ceBialg, (M, H) into Fia o s -8,
T Ceed ‘ ’ - VA=E ek V4 ofi i t i ; f J‘ S e e 'y o h - a
fndeed by its very cervinid 10N sends ¢ intoe the map

RS R REE e - o 1281

giyw;”&i@4;,g7;qy],mﬂﬁ Mﬁwq}}mgwhu[{}mmwﬂq IEY!




.
1

1 , ] < ..”"1 ) W B ; .
where 4[;]:H§bbk[?l ¢, and ¢, are the k[? mblalgohra maps

ES

-1 L .
naturally induced by 0 and 0 L and 1Tfé‘ ) -z are the ko[z?w

7 215 . . 1
algebra maps which send any xe&H into x+(§,x)z and x-(S"x)z

Fes p(rthth. Consequently for’ all x€&H we have

£ 1 |
(K’,SG) (% Yy=x+(Go 510 G ]'x-»c()J"x)z

>

which proves ocur claim,.

-

..So far we chtained for-each <§eDerP (k) a commutative diagram

/8

X

% . ) g
Algk(H,k):X(k) 'Liex(k):DerP (H,k)

o
9}

\Y 845 o~ ’ J

Bialgp(H,H)sz(k) Al > LieY(k)saiderP(H)

- s -

. with cﬂ (Scr = - oy %of‘i—g*.

2

A.7. tiew we are in a position to.prove Theorem 2,34, Brart

with the first statement so suppose there is a map ' e;%ialﬁb (Hé,FC‘
= E LN @ 4
, s

an¢ a coinner automorphism 0 =C(u), ue;Algk(H,k) such that
: - . ] |
-y s} - & s - oy
%%o‘n%;éﬁlb, Then by (2.7) g <Hfsg;:%¢)og for all §¥;Derp (k)
h N \
: ¢
hence ' '

2

Lf)\



To prove the second statement in (2,11} énogse & ‘femily (J:)i

of koﬁderivations on k such that {><é)<; é;x:o for all i }:ko.

’ £

o
N & : 1 : £t : s .

that 5; o YE% wﬂfac(gi). Apply (4.5) to our specific X and

1

By hypothesis there exist derivations 0, ¢ Der H,k)  such

o Lt

- . , .
gi and let k, §;, &y andt be as in (4.,5). ¥We claim that

s

[a%d o
2 e @ 10 0 e,
g, "o - sy =Yecr [9
i Poly =T T(8))
- A~ . .
A g‘ 1 2 P o
wnere i . are the unique korderivationspon T=H &, k-
. : B N
and F=F®, k respectively which agree witk\<% on -k and va-

: : : ~ S oAs”
nish on H .and Fa respectively; moreover ¢=7®1_ &Bialg (H,F)
' = ' ik k
] L . o - s N ) -
and C:Llec(k). Indeed hboth members of the above equality are

AL a3 . . L /\/ -
ke ¥ -derivations from H to F and sgree on M hence they
i ' N . P ) . e X .
agree everywhere, Now if 0:= C_(t) & Bialg (H,H) we get
' i< : ko
~ e L ~o A ~o
2 ~ Aot 5-[ N~ ~z el ] "'] 1
< i -
g ° - o0, = oC f,fg & o L0 )=Ye ; G- - )
e F o Fed e FoB(0y 8 1) o (b 8oy = Fo(oedy o )
~ ) ro Ar
o S ~s
hence g.“o%’ﬂv_“oawff . In other words Ko (éﬂ)-o vihere
4 _ S Yo A
) R e _ $oG™ A . N e s B g B “
Ko :Der, (k)-— Bicder (H,F) is the"Kodaira-Spencer map as-
(‘.’)‘,G‘ .\O 5 k o ! ) . ]
sociated o ey 3y (’j)-e7) P ,klﬁ (.91/,‘:/ for some < é”lwhj(’}, (H i
i< \O O

and we are done.

5. COMMENTS

5.1. Antipodes sre not at all essential to opr.work.‘Indeed
eyerything holds if omm_rehlaces Hopf elgébrns by bislgebras ancd
groub,algehrﬁs by-cancel]@tive monoid algebras, Recall fhat a .
.monmiﬁ. Moodis enlled CﬁQC?ilﬁtiV@ if.either abzac or ha=c¢a
with a,b,c et imply b=c, In this more @enerai context boinner

automorphisms are defined ds follows. If H is & bialcehra then |



b
M
: >

Alg, (H,k) is a multiplicative submonoid of the convolution al.-

\

gebra Homk(H,k) (hut‘posgibly‘not‘a group). By & coinner automor-

phism of H we understand a map H-—>H of the form

sy mi ‘ L
L e DAL TN LT

(H,k)" ., We should emphasize that cancellativity is

—
@
[0
-~
m

ied to go through the computations in (3.2).

5.2. Along the lines of Theorem 1.1 it would be interesting
to dispose of = non-commutative analog for the conjugacy of maxi-
mal tori in affine algebraic groups. The non-commutative analog

of maximal tori in a Honf k-algebra H  should be perhaps the

minimal elements in the set

- .. it
.
'2> A :fprime Hopf dideals P - in H with H/P a group algebrg
— _ - : J
One might-conjecture that if H- is finitely generated and k is
algehrnically closed then for any minimal elements Py and P,
=\ = ’ i
in 2 there is a coinner k-automorphism ¢ of H with UPlaP?.
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