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O RESTRICTED PERTURBATIONG IN INVERSE IMAGES AND A
DESCRIPTION aF NORMALIZER ALBERRAS I C*—ALGEBRAG

by Eberhard Kirchberg (Berlin}

SUMMARY &

Let E and F be Banach spaces and T & hounded linear map from
E intoc F. Initiating a certain perturbation function 3
we find a useful sufficient criteria that T maps the closed
unit ball onto a closed set. Applying this to the quotient map
from a C*-algebra A onto its gquotient Banach space a7 {L+R) by
the sum L+R of closed left— and rightideals L and R of A we
ohtain that the closed unit ball of A maps onto the closed
unit ball of A/(L+R). It results an independent description of
the images of the rightnormalizer algebra ‘N-{D} and the
normalizer algebra N{D)= Np (D} "N\ N (D) of & hereditary
C*—subalgebra P of & by the guotient map from & onto
A7 {cl (aDY+cl (DAY) . We use this to prove a necessary and
sufficient criteria for a C¥-algebra B to be a C*—-quotient-—
algebra of a C*-subalgebra of a C*—algebra A. The latter
criteria will be applied in situation & equals the CAR-algebra
in same forthcoming papers ( cf. sec.d for more details ).
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Let E and F be Banach spaces and T & hounded linear @map from E
into F. If X and v are subzets of Es cl (X)) means the {norm-—)
closure of X, wel iy ¢ Exs. is the olEx%,E¥)-closure of X in
the second conjugate space pew of E  and H-dist (X,Y) denotes
sup L distla,Y),dist{b,X): a€X, bEY ¥; the Hausdor++ distance
between X and Y. By 8 we denote the opan unit ball of E. We
put : :

%(x,T)ﬂEUQ€H~di5t($ﬁT'1(T(a)}qSﬁT“liT(b)))zaﬁbéﬁq::T(a~b)t!gx}
where »>0. Let per(T) be the limit of fix,T) i % trends to O.

Proposition 1.1
(i) fi{n,T) is a continuous increasing Function on 1 0, pol.
{(ii) per(T) = 0 inplies Tiel (g = et o).

(iii) fin,T) = fix,Tax) for every X > Qu

Here T## means the second adjoint operator of T. f(x2,T) is the
infimum of all numbers yr0 such that given b 8, d T(5) with
11T(b)—d! i< there exists a perturbation b+h of b inside 5§ -
such that {ihiidy and Tib+h)=d. Thus per{T)=0 says that a
small perturbation inside T8) can he realized by a small
perturbation inside S. The proofs and further results we shall
give in section 2.

Now let A be a C#—algebra and L,R closed left— and rightideals
with support projections 1 and r in A¥¥ respectively, ie@e 141
are the open projections in 6a#% satisfying pwwl=wel (LY and
Fasr=wel (R) 4 cf. [TAK,3.4.21. Put g=1-1 and p=i-r. Let b.d be
elements of A#% in the multiplier algebra MR) of & such that
pbb¥p is invertible in pA¥¥p with inverse g and qd#dg is i
vertible in af#xqg with inverse h. Rl is a closed linear sub—
space of A (cf. sec.d). We denote bijﬂzl,m rhe quotient map
A —-> A7(L+R) given by & T=* c+L+R and denote by Jib (. 2d) the
map aiven by € ——7 bodti+fR, (66D .

Proposition 1.2

v i S i e s S i, e A S I8 8 S 0

£{n b 2d)) L xn(ilgl!miihii)lfg + (aniiigit.tih!!)lfz)l’ﬁ

The Proof is given in section 4. From Proposition 1.1¢ii) and
Proposition 1.2 we immediately obtain the following.

Corollary 1.3
Under the above asguﬁptiﬁng concernig A,LR,b and d the
guatient map 6 ——» B/ (L+RY maps Biclisy)d anto a closed set.

Especially the quotient map maps the closed unit ball of A
onto the closed unit ball ot a/ (LAR) .

For every positive integer n, the map Cho i da. 750 [phs, wddn
firom Mat,, (Ax#) 2plat, (R) ## onto Mat,{pA¥xq) is a contraction and
has kernel Matm(ﬁ%*1+rﬁ%%)=ﬁatn(wcl(L+R))&wcl(Matn(L+R)) and
jts factorization daetines an isometrical Mat.~bimodul iso—
morphism from (Mat. (A) /Mat, (L+HRY ) #¥ & ﬁatn(ﬁ%%)/Matn(Wﬂl(L+R)b
onto Mat. (pA%#qg). On the other hand there is a canonical Mata—
bimodul isomorphism from Mat. (A7 {(L+R)) onto Mat o (/) /Mat« (LHRY .
The matrix norms induced by this i somorphisms give a/s (L+RY the
structure of a pmatrix normed space in the sense of Effros
EEF2]. such  that the second conjugate matrix normed space 1S
conletely isometric isomorphic to phkEgy an operator subspace
of Ax% and Cx—-triple system (cf. sec.4). 1f moreover & is
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unital and L= {b¥:b€ R} then p=q and under  the above
identifications A&/ (L+R)=pApCpR%*p becomes a matrix order unit
space in the sense of Effros LEFZ2] with matrix order unit
pE A/ (L+R) such that the second conjugate matrix order
unit space is just the unital Ce-algebra pA¥%p. More
general we call a matrix order unit space X Cx—systen if
its second conjugate matrix order unit space X## is unital
matrin order isomorphic to a unital Cre—algebra. O
definition especially says that X is an operator system in the
sense of LC/E21, i.e. & closed unital and selfadjeint linear
subspace of a Cw#-algebra together with the matrix order
inherited from this containment. The Ce#-algebra structure on
X##* is wnigquely defined by the socond conjugate matrix  order
unit structure of the given one On ¥ and we can define the’
leftnultiplier algebra WMi{X), the rightmultiplier algebra
M- (X) and the multiplier algebra M{X) of X as follows:

M, (X} s={bEX#s: BACKI, M- D :={bCX¥**: ¥BCHT, MO = My COAM- OO
Here we identify X with its canonical and isometrical image in
X## by the evaluation map evx: Y——3X##. My (X)) and M-(X) are
closed subaloebras of Xx¥ contained in X { more precisely in
the image of evx ), M, {¥)={b#:bEM-(X}3 and the multiplier
algebra M(X) of X is a unital Cx—algebra which is unital
completely positive and completely isometric contained in the
operator system X. In our special case A/ (L+R) ig identified
with péhp (Cphasxplaxx) and M- (A LR )= {pbpébéﬁgpﬁpbpgpﬁp},
M{a/ (L+R)) = {pbp:bCa,pbpAp+pApbpipApl.

Now let D be a hereditary Ce-subalgebra of @ (i.e. D closed,
selfadiocint and DAIX D). By a rightnormalizer (lettnormalizer,
normalizer) of D in A we understand b & satisfying DbCD {hDCD,
bD+Db CD). The rightnormalizers, leftnormalizers, normalizers
pbviously form closed operator algebras N-(D), Ny (D) and N
respectively, N, (D)={b%:bCN, (D)3 and N{D)=N, (DN~ (D} is a C#—
subalgebra of A. It twns out that L=cl (AD) and R=cl(DR) are
closed left— and rightideals of & respectively whose support
projections in A¥¥ equals that of D (i.e2. equals the unit of
De#=pcl (DCAxx). From definitions we see that L=cl {ADICN,- (D),
R=cl (DAYCN, (D) and DCNID) are closed ideals of N-(D), Ny(D)
and N{(D) respectively. - :

We define 6/ /De=0/ (cl (A +el (DAYY,  the (unital) gquetient-
Cx—-zysten ,of the unital Cx—algebra A with respect to the
hereditary Cx—-subalgebra D of A. We again denote by
Fmt ——> B//D the guotient map b ~—3 b+l (ADY+cl (DAY . Now we
“are in position to formulate the main result of this paper.

Theorem 1.4
Let & be a unital Cx—algebra, D & hereditary Cx—-subalgebra of
&, A//D the guotient—CH—system of B with respect to D and
Tz A ——3> B//D the quotient map. Then
(i} the restriction of Zp to N(D) ( resp. to Mo (DY ) is @
Banach algebra epimorphism onte W (B//DY ( resp. onto
M, (&//D) 2 with kernel cl{AD) ( resp. cl(DAY 2,
(ii) for every positive Integer I, LBid, maps the closed
“unit ball of Nﬁ(Matm(D)>=Matn(Nr(D))gﬁatnié) enta the
closed uanit ball of
Mat. (M- (A//D)) € HMat.{(A//D) = Mat. (/) //Mat, (DY,
(iii) WpiN(D) is a Cx—algebra epimorphism from the normalizer
algebra N(D) & A of D ontoe the nrultiplier algebra
M(A//DY  of A//D with kernel ideal ker{ZnhiD) = D.

As a corollary we get the following which is in turn an other
farmulation of Theorem 1.4 in view of Proposition 1.3.



Coraollary 1.9
tet £ and ©C be unital Cx—algebras, B a unital closed
subalgebra of C and Vefs/ /D30 a unital completely izometric
map such that BUlb*b:bEBICIm(VY.. Then there exists a unital
closed subalgebra E of A such that
(i) En{cl{AD)+ci (DAY) = cl (AD),
(ii) VeXplE is a Banach algebra epimorphism from E onto B
with kernel cl (AD) and
(iii) the induced map [Verpl®s E/cl{AD) ——> B is completely
isometric where B IS equipped with the matrix norans
induced by © and E/cl (DY  is eguipped with the wmatrix
. porms induced by A/cl (AD)CARFER.
If moreover B. is a Cx-subalgebra of © then there exisits a
unital C¥-subalgebra F of A such that '
(iv) FAlcl(Day+cl (AD))I=D and :
(v) VexplF is a Cx-algebra epiwarphism from F onto B with
kernel Do ‘

With other words . under assumptions of Corollary 1.5 B is a
Ce—quotientalgebra of a Cs—subalgebra of A if B is a C#%—-sub-
algebra of C. Theorem 1.4 and Corollary i.5 are proven in
ssction S. In two separate forthoconing papers wa shall shows
The assumptions of Corallary 1.3 are catisfied with the CAR-
algebra in place of 06 and with DTV suitable chosen if and
only it B 1S separable and exact in the sense of IkIZ21, cf.
section & for more details.

2.»R@ﬁgviﬁﬁﬂd perturbations_in inverse images

Let E.F be real or complex Banach spaces, T:E ——> F a bounded
linear map From E into F and KCE a convex cubset of E. If
a.,b ¢ K by Q(T(a)qTih))%ngTiT(akgTﬂb)) we denote the Hausdorff
distance betwean KN latkerT) and KN (btkerT), 1.2 glc,d)=
H-dist (KNAT- 2 {c), KNAT 2 {d)) if c,de TK) f{cf. spc.1). In this
way T(K) becomes a matric space (T(K)ﬁg) with distance g. On
the other hand T defines a Lipschitz map from K onta TK) with
Lipschitz constant 11T where K and T(K) are equipped with
the usual distance between points in Banach spaces. We have
Tl (ENCecl (T . AS we shall see it is of importence tao know
if Tleliy= cl{T{K)) in special situations we are concerned
with. In general this is not the case, e.g. let K be the open
unit ball of €. and let T be the functional (Listaseead T2
A B e e IR e S BT then Ticl{kK))y= T{K) is the open unit
disk. In terms of metric spaces following situation appears:
Let (R,,r1)y (R=,r=} be metric spaces and o & Lipschitz map
from K, onto Re with Lipschitz constant kdoo and let (R=,0) be
the metric space with distance g(a,h)ﬂdeist(d —1{a) ,d -1 (b))
then r=<kg. We denote by (Ri™,ra™) and (Ra",r=") the Cauchy
cmmplatimﬁé of (Ri,r.) and (Rz,r=) respectively. Because o is
a Lipschitz map it uniquely extends to a lLipschitz map o
Cfrom (Ry™era™)  Into (R=",r=") with Lipschitz constant Ies

Lemma 2.1

Assume there exists a continuous function gUX), w0, such that
al{0)=0 and ola,)<glr={a,b)? then o~ maps (Ri™yr™) anto
(Ra™yrr="2.

Proof: Let be déRz" and jet {(di.d=,.--) be a Cauchy ssguence



Ay

in {(Ro,r=) representing d. From gld,,d ealra(d, (ds)) and
g{0)=0 we obtain that (d;.,d=,...! is «lsc a Cau chy ssguence in
{(R=,0). We select a subsequencs (€21 ,82snea) OF (daydzyena)
such that g(aﬁgpn+;)<*“" If Catod e, we find CawiCd " {Ener)
With ri(Ca,Cne1)<2 " because distic,.o e 1) 4G BR s Bnea) . By
induction we get a Cauchy sequence {Ci,Cz,...) in (Ri;ra) with
CnC @ ~*{En+1). Let c be the point of (R,",r.™) represented by
(C14Cmy---)- By continuity of o ., = ). Gneutls

Now fallowing considerations are sotivated. We define for ®>0
Flxde= Fex,K,T)e= supl g(Tla} ,Tib)}: a.,begkK; 1iTla-b)it £ » J.
If K=5'is the open unit ball of E we alsoc shall write £t B
instead o S o) . Obviously F(x) is an increasing
nonnegative function on 10,00l and dist(a;T-*{T(BIINKIL

ﬁg(T(a),T(b})g$(::T(a“b}:!) 1f ,BbBEK. So there exists a
continuous function g >f (1) such that g(O)=infif{x)zx203. ble

put per (K, T)r=inf{f (x,K,T):n>05 and per{T) i=par({T,8). From the
above Lemma 2.1 applied to (Ri,r)= (K, norm distance) and

{Rz,r=)= (T(K}), norm distance) we get the following.

Proposition 2.2

o o o e P e 9334 s S S S e R S S

- per{K,T) = O implies Tlel Ky} = cl(T(K)).

In our applications of Froposition 2.2 we nesd some  technics
invelving upper estimates for F,K,T). 4

Lemma 2.3
) is the minimal number y such that (™) haldss
any couple a,b¢k with 1iT(a-b)ii<xn and every
> 0 there exists cc¢cK with Tic) = Tih) and
tla—cii¢ ytt (i.e. dist(a,KNT 2 (T(b)))zy If N YA
d tAiTla=by i< ).
(ii) F(x,K,T) = sup{ fw,K,T)2 0 { w < x ¥ and
f(th TI<F (wy, K.T)4(i~(wlx))5uw lia~-bilzabék ¥ i7 O<wix.
Espuczally +(x EyT) 15 continuous IT K _is bounded.
(1ii)y IFf G i=s =& Banéﬁﬁ space and Us F ——>B is & bounded linear
map then F(x,K UT){ FV(F KT T WD) where fY{X,ueel)™=
infd filu+t, ..z 30 3. _ !
{iv) per(K,UT) £ peri{T{),U) Iif peri(k,T) = O.
Proof: Adl{i): Let y be a number satisfying (*) and let be
1 Tla-by il and deT-*{(T(a)) N\ K, t30. Then T (d-b)iidx,
bte(d-b) € ¥ and !1T(b+s(d=-b))-T(b)}idax<n if 04{s{l. By (™)
there exists c€K with T{(c)=T{k) such that |ib+sid-bl~ciiz v+t
It follows dist(b+s(d-b) T 2{T{(bMNAKIL y+t if 0{s<1 and thus
dist(d,T-*{(T{(h)InK)< y+t. This holds for any couplie a.bekK with
1iTla-b) t 14X, every t>0 and every deEKNT *(Tlal), i.e.
fix,K,Ti<y. Conversely let be given a.,bek with 11T(a-b)iidx
thern digt(agT”l(T(b))ﬂK)igina)qT(b))g¥€i:T(a~b):!)g§€x?H§T).
Thus for any t2>0 there exists cek iith Teay = Tk and
tla-c!i<f G K, Tr+t, i.e. f(x,K,T) satisfies =)
Ad{iid: In other words (i) m2ans
Fix,.K,T) = supf distta, T3 (TB)INK)I: a,bek, P ifta=B)Y il < % 3.

Let R({t) be the set {dist(a,T *(T(b}INK): a,bek,tiT(a-b) li<tl.

-

Erom Rix)= U ocwenRin) we get £ix K, Ti= supl flwkyTiz Odwix T
and fix,K,Ti= sup{ gl{T(a),Ti{bl): a,bel, 1iTla=bYii < ®n J.

Now let be givwn w > >0 and put t= x/w, o= bttla-bl. Then
PiTle—hd i i=t a-b) i i<tw=n if a,bei and 1iTlabl)iidw. Thus
dist(a, T l(Tib))f\ By < ita-el b+ digbEle, TTAURBIIN K £
Sei-t)tla-bii+Ff (x,K,T). By (i) we get Flwdg Fixir(i-idiam(ik.
Ad{iiid: Let be a,bfk, !iUT(a-b)iidx, t>0. We choose >0 such
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that FF . T S+, K, TISFEM(F (T U}, K, T)+t/2. Then T(a)
and T(b) are in T, 1IUT@)-T(b)) ! idx and by (i) there is
in T with Ulcd= U(T(bY) and ' iT(a)—cii < fix,TK) D+ s. We
find g in K such that T{g)=c. fgain by (i) there exrists d in K
satisfying Tid)=T(g)l=c and la—dii{Ff{(F{x, T W+s,K,TI+t/2.
Thus we have deK, UT(di= UT(b), }la-dii<F™(F (e, T U)K, T)+E.
By (i) we get {(iiil.

Gdiviz By (iii) it holds {2 K UTYLF OF G, Thax, TIKY UY. Thus
per{kK,UT) = lim.—>o Fix,KUT) < lim-se F(F 00K, T, TN Uy =
=per (T U iF 1limeno (F O ,KT)¥x} = par{kK,T) =-0. ge2.de

I+ L is a closed linear subspace of E and ecE such that KCet+l
then K—d € (e+l)—d CL if d€k, d= e+l with lclL, i.e. the closed
real linear span clspan(k-d) of K-d is contained in L. This

‘shows that K-K € clspan(k-d}, that d+clspani{k-d) is the closed

real affine span’ of K and clspan{k-c)= clspan{k-d) if ¢ and d
are in K. We define the relative interior of K {(relatively to
its closed real affine span dtclspan(kK-d} with d in K):
rint{K):= d+int(K-d), where the interior of K-d is taken
relatively to clspan{iK-d).

From d-c € clspan{k—c}) and {(d-c)+{K-d)= K-c Cclspan{k-c) we get
(d—c)+int (K~d)=int{K-c) in clspan{kK-c). Thus the definition of
rint(K) is independent of the choice of d in K.

Via canonical isometric incluszion we identify E with its
canonical image (by the evaluation map evel in its second dual
E#% and dencte by cl(K) the (norm-)closure and by wel (Y  the
g{(Ex% ,E#)~closure of T. Now we are in position for the main
result of this section. :

Theorem 2.4

Let KCE be bounded convex set such that rint(K) is nonvoid and
the image Tild+clspan(k-d)) ef the closed real affine span of K
by T is closed in F. Then

(1) Quen <o ,ren (TEE(R) 5 TEEDI) = Grameaso ,v{TA},TBY) =
= Qex acs 7 (T(a),T(B)) = g +(T(a),T(b)) If a,bErintUD,
(1i) FOi,rint(K),T) = #$lu,wcl (), Tee) <

¢ mAnE G, el () TY o F G, T,
(iii) e, rintdd, T = £z, cl{K), T) iF¥ perirint{,T)= 0.

To prove Theorem 2.4 we need two preliminary lemmata.

Lemma 2.5
Let ¥ be a convex subset of E such that O int¥ and lIet L be a
clased lirnear subspace of E. Thern
(i)Y wecllbNnint(Y)) = wel (L) wel (Y,
til) el intd¥)) = LoeltYy 2 LAY 2 Laint{Y).

Progf: We use the bipolar theorem: I¥f XCE and X%:={f¢ E=x:
Re(f{e))< 1 if ecX} € Ex is the o{E,E#)-polar of X in E¥ and
Xo2 € E#% is the o(E#,E##)-polar of X in E¥¥ (i.e. the
bipolar of X) then X°° is the o(Exx,E¥)-—closed convex hull of
XNL0Y CECE#% by Hahn—-Banach separation theorem, cf. th. VLS
of [SCHAL. Especially X©°= wel(X) if OC X and X is convex.

The nontrivial inclusions we have to show are LAcl(Y) c
C el (LNint(Y)) and wel ()N wel (YICwel (LAInt(Y)). Now if XCE is
a convex set, eCE and ecwcl(X) then eccl(X) by Hahn—-Banach
separation theorem, i.e. EMwcl(X)=citX). Thus it suffices to
show L2 Y22 ¢ (LAInt(¥)) 22 if t5¢Y for some t3>0 where 5 is
the open unit ball of E. From tSCY and Y=9= wcl (Y)= wel {(cl (Y}
one gets cl(Y)= cl{int(Y)) and Y°°= (int(Y))}®?. Thus we may

7 o
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Qe (Tta) ,Tib))= Qe o

assuma Y= int(Y). :

W= have Lo= th= {geE#*: gib= 03 and Y22{t8)?=(1/t)5% 1is 3
g(E#,Ey—closed subset of the g({E#E)~compact set (1/t)5°
(=rlosed i/t-ball of E®). By cor. 2 of th. IV.1.9 of L[SCHAL,
(YNAL)® is the ol(Ex,E)-closed convex combination of YU/ L® but
Yoon L2 is the polar of the convex combination of YU m. md

Cwe need is that the convexr combinstion of Y° and L® in E¥ is

g{E% E)~closad, But this follows from the o{E#,E)-compactness
of Y2 < (1/t)5°. : gee.da

Lemma 2.6
Let K, and K= be convex subsetsz of E. Then
H-dist (K, ,Kai= H-dist{cl (K;) ,cl {Kz))= H-dist {(wcl (Ka) qwel (Ke) ).

Proofs If X,Y are subsets of a Banach space E thb open  unit
ball 8 then by definition we have H-dist{({,¥} =
= inf{ £>0: XCY+ES, YCX+i8) = inf{t>0: XCY+icli), V£X+ta1€5)}.
H-dist{.,.) is a semimetric on subsets af E such that
H-dist(X,cl(X))=0 and H-dist restricted to the system of
closed subsets of E is & metric {(with possible infinite
distances if we also consider unbounded closed sets). By the
triangular inequality we get H-dist(X,Y)= H- ~dist (el (X} ,cl{¥))
for all subsets X,YCE. The closed unxt ball 5°° of the second
conjugate Ex¥ of ? is the weak (i.e. ol(Ex*,Ex)-) closure of S
and 5°° is weakly compact. Thus wcl{Y)+t5°% is weakly closed
and is the weak closure of Y+i8. We obtain XcY+tScwel (Y) +£5°°,
Ycwel (X)+£8°° if ti>H-dist(X,¥). Hence wcl (X)) Cwel (Y)Y +E577 and
weliY) Cwel(X3+t822, j.ec t > H-distlwcl(X), weliYry, if £ >

H— dxdtik Y3 or H-dist(X, Y},H ~gdist {wcl (2, wcl(V)) it X and ¥

are EUbEEtS of E.

Now let be given conver subsets Ky, and Kz of E and =3
H~di%t(wcl(ﬁ1),wc§{K¢)}. Fut r= (H-dist{wcl () ,wecl (Ka)i+s) /2

and t= (s-r)/2. Then kK, Cwcl (K;) Cwcl (K2) +r5°%= vc1x¥~+r9) and
KeoCwel (B, +rBY. By separation theorem, ENwcl(Y)=cl{¥) if YCE is
convex. We get K, Ccl (Ka+rS) C(Kztr5)+t5 CK=ts.5 and similary
Kz CK:45.5, i.€. 8 > H-disti{k;,K=).

Thus H-dist{wcl (K1) ,wecl (K=2)) 2> H-dist(K:,Kz). .=t

Proof of Theorem 2.4: By definitions of Owx,vts Qoo a  Tes,
£ L inu,) WE  Mmay re&l&ue ¥ by K—d and E by clapmn(h~d) if deK,
then F by its restriction to clspan(k-d} and F bv
cl(Tl(cispan{k—d}} because wcl (K-d)=wcl (K)-d, (Ticls sparn (K-di ) &
= T##!(clspan{K-d))#%, where we. canonically identity the
cecond dual of a closed linear subspace of E f(resp. F) with
the weak closure of this subspace in the second dual of E
(resp. F) as a consequence of Hahn-Banach extension theorem.
By our assumptions d can be chosen in rint{k). That is
w.l.0.g. we may assume E Is the closed real Iinear span of K,
K  has nonvoid Interior int{K) = rint(k) in E, 0¢ int{d and
T(E)= F. The eqguality T(E)=F follows from our assumbtion
Ti{d+clspan{kK—d))= cl{T{d+tcispan{kK-di}).

Ad(i): Let be given a,bcrint{K)=int (k). Then Lemma 2.3 applies
to K~a (resp. K-b) and Li:=ker{(T): '

cl{{a+l) N intk)= atcl (int(K-ainL}= a+<Li(h ~aink.r= (atlLiNcl (K,
similary clitbely Nintkd= (b+L3IN cl (K}, wel { (atb) Nintk)=
{a+wcl (LY wel (K) , wel ((b+L)NintkK) = (h+wa1(L)hﬁwsl(K}. Becaussa
Qe r{Tla) ,Tib))= H-dist{E n (a+tl) ,Kn (b+L)) and {(a+l) N intK <
Clat+l)N K Cla+biNcl(K) by Lemma 2.6 we abtain

riT{a) ,T(b)i= Qrarmew,v{T(a),Th) )=
= M- d15t€(a+wc1(L)>ﬂWLg( ,(b+wci(L)Xﬁwcl(K)). On the other
hand H-dist ( (atker (T )N wel (), (brker (TH##)) A wcl (K) )} =
= gwlevT*&(T%%(a),T%%(b)). it suffices to show that wcli{l)=



et

e

ker (T##) iFf T(E)=F. By the inverse mapping theorem there
exists an isomorphism I from E/L onto F such that T=IP where P
iz the guotient map from E onto E/L. Thus To#=T#uPrs with I[wx¥
invertible and hrr(T%%}ﬂ ker (P#%}. By canonical Ld@ntlflhdtlun

ot (EA* with b CE# and of Es®fucli{lL) with LYy w2 (E LY %5
{Hahn—Banach theorem) P¥ becomes the 3n3wcLﬁmn L* -—> E¥% and
Px% becomes the quotient map Ex¥——3> Ex#/wcl (L Thus ker (Tx#)=
= ker (Pes)= wcl {l).

Gd(iid: Let be X(K,Tie={o., +(T(a},Tib)): 1iTla-b)iidn, a,bekr.
By part (i}, X{{rintdd,T) is contained in the interse thmn of
KK, T), kivl(!) Ty and X(wai(K},T%%}§ thus fixgrint(k),T)=
sup XOrint ) ,TY £ mindf (e KT f (i, el (K), Ty F g wel (K) TH#)).

Our w.l.o. g,“aggdmptasns 5 y that © is in intdd). HNow we put

L={(a,b,T{a~b))a,bCEXC EBEGF and Y={(a,b,c): a beintk, c€xbS=3%

where EF is the.,open unit ball of F. Thcw L is a closed sub-
space of EGE@F (with 1, sum norm) is spomorphic ta E®E, wclil)=
= { (a,b,T#¥la-b)): a,b¢ E#xx} C Exs@ERxOFx, cl ¥y =
= {{a,b,c): a,bfwcl k), c€x.wcl(G=)} where E%%@E%%@F%% and the
second conjugate of EGEOF are canonically identified. Becauss
0¢Y¥=intY¥, by Lemma 2.5 it holds YAL= {{a b,Tla-b)): a,béintk,
il dasbY il <n. J iz weakly dense in NC;(Y)f\WCl(L}
= {(a,b,T##*{a-b})za,bCwcl (K}, 1Tex{a-b)iiixnd and cl{¥YNL)
= cli¥y N\ L= {{a,b, T(awb}) a,bécl (K) 11 T(a=-b)!id{xn}. With other
words there @letg a net {{a,,b,)3, in EGE such that a, and by
are in_intkK, a,——*a and byw—;b h@akly and {iTlay,~bydii<x it a
and b are in wcl (k) and !iT#%{a-b)!i<x. By definition of f(x),
gistla, T 1(T(by))ﬂ1ntV)’ i, 1ntV,Y)u HMow let be given t2>0. We
chou:@ C.cT -t CRth piintl such that llay,—cyil £ FO,intK, T+t
Taking otherwise a suitable subnet by weak compactness of
wcl (€Y  we may assume that {{a,,c4?3, is weakly convergent in
(EGE) %% Ex#0E#%, Let ¢ be the weak limit point of {c,%. Then
c €wcl (K), tta—ciid<supflia, ~c,i3{fx,int,T)+t and Teel{cl=
=w-lim T#¥{c,)=w—-lim T##(b,)= T##x(b) because c,eintk, Ta#{c, =
=T{c,. )= Tib,)= T#%(b,) and T## is weakly continuous. By Lemma
2.301), fixn gwc}(Vﬁ Te#) £ Flo,int{k) Ti= FOi,rint () ,T).
fdliiil: Az we have sgen in the prmmf ot part iiz) {{a.b)sz
sCel (K), 11T a-b)lidxd " is the closure of {{a,b): a.b€intk,
FiTta-h)  1dx} with respect to the l;-sum norm on E%E, At this

i

moment for brevity let be FfO)i= fix,intk,T). Mo assune
per{intkK,Ti= int{f{x):t>03= 0. Then tor avery fived t -3 there
prxists a sequence H;id=r...>0 such that Fte) s £ s

Let be given x>0, a,bécl (k) with !:“xawb);;5~ and t>0. With
K gHmgans a5 abmve there are sequences (a.) and (b.) in intK
such that !lan—alidn, i iba-biisn {21iTHI}) and 11T (an~ b ) iidx.
It follows | iT(Bn—bneid il 2¥ny Qimerx, T{T(bn) Tibavea ¥ £ F8uad g

cdistl{a, T2 (T(b ) Nintk) £ iian~al;+ dtS&(ﬁhﬂx“liTib MNintlk) <

£ % + F0) € Fix) + £/2. We find c, in T L {T{h.)intE with
tica—at 14t/2+f () and then by induction Cae1€T 2 {T{bn+1) YNtk
with (lch~Cheat :”f L0 R nét/r’n&}' Then (lci—c=ii+i iCa~C=iitona
¢ /72 and c=limlc,.) satisfies ce€ cl{Kl, Hea=glistya, Tlo)l=
= lim T(cay= 1im Tibad= Tiby and !lla-ciid ila—c,ii+lica—cil &
¢ f£ i+t hence distfa,T-*{(T{)icl(k)) £ flx)+t. By Lemma
2.3(i) we get Fx,cl(K),T) £ fixn)= Flu,int (K ) o Tha g-€.d.

Remark 2.7

e s o 20 $30 o o S e S5

Under assumptions of Theorem 2.4, rint{k) C rinti{wclik)) and

Fix,rint (wcl (K)),THx) = £ (x,wcl (K)  THx) = Flx rint (), T)a

f= in the proof of Theorem 2.4 one can restrict to the case
OCint () and T(E)=F. Then O€intiwcl{(K))=rint{wclK)), wel ()=
=cl {rint (wcl (K)) and Theorem 2.4 alsc applies to wecliK), T##,
Ex® and Fef. From rint (O =int ()Cint(wcl (K))=rint{wcl (K})} by



Theorem 2.4 (i} one gstg grintgwcl‘M,ﬁvT%%(T%%(a)ﬁT%%(h)) e
%gwcl<m>97w*(T%%(a),T%%(h)} = Qraneacr,TiT@, T if a.b are

in rinti(k). It follows Fiu,rint{kK} T} ¢ FfOi,rintiwcl (K)) ,TEx)

cf. proof of Th.2.4(ii). On the other hand by Theorem 2.4€i1),
f(x?rintiwml(K))QT%%)g¥ix?wc1(K),T%%)m&(x,rint(K)gT}.

Lemma 2.3(ii}, Proposition 2.2 and Remark 2.7 together prove
Theorem 1.1. We need some corollaries. S

(1) Filn,t(K+a) ,T)= £73F ({tu K, T},
(ii) $ K, T) £ % IT2{T(EY!! IFf T is invertible aon TL(E),
{idi) f0e, PO, Tr & Fln K T) if P dis a real linear caontraction
on E such that P(K) CK, FP=2= P and there exists a real
linear contraction 8 on F such that Q== and TP=UT.

 Proof: (i) and (ii) follow from Lesmma 2.3 (iii) and definition

of Fltyanad. Adiiid: Let be atP{KICK and deTR I =0T (K} with
1T (a)~d! 1¢x. Then B{d)=d and there exists bCK with iT{a-b}ii
fix,K,T) and T(b)=d. Let be e=F(b). Then Tla~el= TR{a-bl:=
B8T(a-b), {iTla—e) il ¢ 1B 1ITda-bYil £ fix K, T, @,a€ P
and T{e)=TP{(b)=GT{0)=0{d)=d. Use Lemma 2.3(i). GeBota

i -

let E and F be Banach spaces and T: E —-~* F. a bounded linear

map. Ossume there exists an isometry I from E#% onto a ¥~

algebra B, projections p,q in B, operators bhed in B and an

isometry J from pBg onto F## such that

(i) Te#(a)= Ji{pb{(I(a)idag) if acE=x%¥ and
(ii) there exist positive selfadjoint operators g.hehB with

phhspg=p and hgd#dg=q f(i.&. pbb¥p and qdxdg are
invertible in pBp and gBg respectivliyl.

Fut p‘'= b¥pgpb, gq'= dghgd® and let T' be the -map c=—>p'cq’

from B into p'Bg'CB. .

Caorollary 2.9
Under the above assumptions, p'.q° are projections in B an
Py, 1) « it git-iiRbEd*emn "),

Proof: By (ii) p’ and g’ are projections. Let TY be the map
from pBg into p’Bg’ given by T"ipcq}=b%pgmzqhqd%; Then T
(ligiletihiD 2= 7" is invertible, (FYY " {p'cg’'i= phpcg'dg=
pbecdg if c€B. Thus Tx#= J(T")~*T'I. It follows A, THE)=
=f (X, (T")~*T'} because I and J are isometries. T maps the
open unit ball of B onto that of p'Bg’. By Lemma 2.3 (iiil,
Lemma 2.8 (iii) and Remark 2.7 we get fix,T) £ FCLIT"Hix,T ).
: g.e.d.
Now assume moreover p=a,b=d,g=h and that on E and F there are
involutions e~—>e® and in E is a "unit" le such that
(iii) Itiz)=1p, I{em)=I(e}% if e€Exx and Jipb¥p)= Jipbp)# if
LER where e-—e¥ (eE€EC#*%x or e € Fs%) mean the second
adicints of the involutions defined in E and F.
Let be s<t and specis,t)= {ecE: e=e¥, spec(I{e))Clis,tL . Fut
Plae)=(es+e) /2 if 2CE and B(c)={(cx+tc) /2 if ceF. Then specis,tl=
= ((t-s)/2¥P(8) + {{(t+s5)/2)1e and P,0,K=5,T satisfy the
assumptions of Lemma 2.8(iii). By Lemma 2.8¢1), Lemma 2.8(1ii)
and Corollary 2.9, under the assumptions above we ohtains

i

Corollary 2.10

fin,specist),T) 2 (2/(t-s))Ffheiigli(t—-a)/2,T ).
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1f b is a contraction on a Hilbert space we denote by Uib) the
unitary matrisx

1" b, (i-bb®)i‘s= |
t (1-b*b)1<= . —p¥_!

Theorem 3.1

let & he a unital C¥-algebra (real or complex?, u a unitary Iin
A and p,q a couple of prajections in A such that E:puq.s<1,
Thern Tor any contraction b in phg there exizts a unzt@ry 6 in-
& such that ptig = b and |lu-bii = HiU(pug)-Uib) 1 1.

Carollary 3.2

Llet be & a unital C¥-algebra (real or complex}, p, q nonzera
projections in 6 and T the wap from 6 onto phg given by
T(ad= pag (a in A). Then F0i,T) £ » + (Rl =,

We nesed.some preliminary lemmata T Jimgliﬁﬁ notations let
diag(a,b,...) be the diagonal m@tFlf with diagonal elements a,
b,r=. 5 let Mlc) be the matrin

ies e, tphaeeN) o=

breRe) = ek
if c iz a contraction in pAg and let us dencte by Z the matris

e
et o0t

s aen M wh i e e B T

Let be given a C¥—algebra A, pFﬂ]QCuxﬂﬁv p?q in &y & Iv pﬁq, x|
in gfp such that a and
We= § a3, (p—aa%)ifE i
. { {g-a%a)l/2, d_1
are contractions in M=(f). Then Pia
= diag{q.p), MlalM(a)x= diagip.q).
If moreover iialid<l then d= —a%.

|

satisfies PMla)xMMlial=

Progf: {(i-aa%®)?“Zp= pli-aax)? == (p- —aa¥) 1”2 and gi{l-a%*a)* ==
= (i—a%a)*/Zg= (g—a*a)?’? hecause aa¥ip, aa¥iq and pag=a. It
follows a¥({p-aax)t“Z= (g-a*a)l Za#, (p-aak}' =Za= alg-aralr” =,
and {(g-a¥x)*72d= (l-a%a)* =d. Put Mi=Mial. Using this
identities straightforward computations show M#M= diaglqg,p!}
and PMbie= diagip, q). Moreover it holds :
MeN = diagl{g.p—aa#—ad) + diagl(c,0Z where

eE ak{(p—aa¥) > 2+ (g-a¥a)i 3d. But iM#Nii £ 11 Meit.liMil €1 by
assumptions on N and the above observations concerning M.
Looking tm the (1,1)-element of (F#N) (Mehi* we obtain
figtcexil <1. On the mthar hand c= gc by the above identities.

Thus q+occ# = gigtcc#®)g £ q, i.8. © = 0, (l—aral 2 =(—-ax) =
.= —g¥({p—aa¥)i - = (g-aka)*’=d = {(i—a#*a)* =d. Now if tiatd 21
then (l-axa)*”= is invertible and d= —a¥. ge@ad.

1Oy
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Lenma 3.4

Let be B,a.p.q as in lLemma 3.3 and iiaii < 1. ﬁﬂsa@e that
T a, (praa®)iE, g‘

Ve= |
i (ga¥a)*’=, d,y h
11
B

&

£y ky, &

e mam

iz a partial Iisometry in Mz=(R) such that VsV = diaglg,p.s?
and VYv# = diagip,q,r) then f=g=h=k=0, d=-a¥, ste=s and epiE=r,

Propf: The upper left ZxZ-submatrix of V must be a contraction

k3

in M=(f). By Lemma 3.3 d= -a® because liaiidl. Lizing now the
equality WVx=diag(p,q,r) from d=—a¥% we get gg#=0, hh¥=0 and
using VeV=diagl{q.,p.s} wa phtain f4f=0, k#k=0. From f=g=h=k=0
it follows ete=s and ee =r. : G.8.d.

Lemnmna 3.2

e e st v waind S parae s wa

Let p.tq.r.= be projections in a unital Cs-algebra 6 and v,wé€ A
such that VEVEQ, ww=p, ptrivvE=l and grstwde=i. Put

Da= 5 = W : : F‘(y'):u y.,f}.,O

bpavae i Q. = i ey
i 0,0,0 1 G0, 0 F0,0,0
0, 00 2900 | = a0 ,0

Blyls= DxF{y)D, Hiyrz:= ExF(yIE, Tly):= D¥F (y)E iIf y is in ﬁﬁ
Then . A
(i) Tiy) =

! pyg, Ppyw¥; pys i for vy In A
| vENg, vEVEE, viys |
| ey, ryaE, rys_ |
(ii) G and H are Ffaithful s-representations Trom A into M=s(R)
such that G(i1)= diagip,q,r) and H{l)= diag{q,;p.s).
(iii} T is an isometry from A inte Ms(A) such that Tly)T(ly)x=
: = Giyy#®) and T{y)}#T{yl= Hiyxy} if y is in A

(iv) Tlat+vhitowbvdwtal=

m Q0O

o
b
]

LN

: 7 %
: L] '5
E gllgt
if efras, atpfg, bEghq, c&wﬁj, déafp.

(v} IFf yEb  then the equality Tlyr= implies

k
9

o
0 n
fﬂOC’

i ;

: H

i Q§Og ;
y=atvi+towtvdwte wth efras, a@pmq bSqghqg, ckpﬁpu dCqghp.

(vi) An element y= atvbtowtvdwte satisfying the condiltions af
(iv}) is a unitary of A if and only if the upper lerd
Ix2—-submatrix Iis a partial isometry (say W) In Mz2(0A)
with Wah=diagiqg,p) and WiWe=diagip,q) and e is a partial
isomelry with s¥e=s and eek=r.

Proof: (i) is cbvious. Ad(ii)+{iii): We denote M={A) by B and
the projection diag(i,0,0)=F(1) by P. Then F defines a unital
C%maingr isome rphl:r {ram & onto PBP. By owr assumtions DD#=
= P= EE*. Thus z——3DEzE, z——>D%zD and z--E¥#zE define linear
isometries from PBP onto D®DBEESE, D¥DED*D and E*EBE#E
respectively. Moreover the latter two are unital Cx-algebra

isomorphisms. T{y)T{y)® = D#F {y)EE#F (y#) D= D#F (yy#)D = Glyy#)
and Ty #T(y) = Hiy#y). Hence T is an isomstry from A onto
D¥DREXE and G.H are unital #-isomorphisms from A onto D#DBD®D
and E*EBE#E respectively. It holds G(1)= D#D= diag{p,q.r} and
H(1)= ExE= diagl{g.p,s) as computation shows.

Ad(ivi: By assumptions on pP,QshS.W,v it holds wss=gs=ry=rp=pvs




=mgq=0. Put y=abtvhtowtvdwse. Then by assumtions on azbeo.d,e we
have rysesyssrys. With g=y-e by (i} it follows _
’ Tiy)r=

I pugs pgws0
Pvitgr, vEQRE O
v C Oy 0, e

Using pv=wg=0 we get pgg=pagTas POWHECWRHSCPTE viga=vEvh=qb=b
and veguEsvivdwwi=gdp=d. : :

adiv): fs we have seen in the proof of (ii) and (iiid) ¥
defines an isometry from £ onto diag(pgqgrkﬁdiagiq%p,s}n From
Tiyk= diag(g,qgr}Téy}diag(qypyg} we see that a=pag, b=aqbgs...

oo meox  mmon

. Put z=atvbhicwtvdwie. Then by tiv), T )= Tty). - Bat ker{T)= 0,

ieBa YFZa
Bdtvide: By {(ii), (iii) and fiviy

 Webl=diag (g.p), Wie=diag(p,q), e¥e=s and eo#s=r if and only if
TilyixTiy) = H(1y .and TiyiTi(y)%® = Bi1) if and only if
H{i-y%xy} = O and Gil-yy®) = O if and only if

yi#y = 1 = yy¥. - ‘ 6 B

Prooft of Thearem 3.1: We put a=pug. Then 1iali<t, (l—a®a) *-=

55&“"(?3a55?:?75 Tenizt. Let be v= (1~p)uq(ima%a)‘1fz and wWe
(1—aa®)~1-Zpul{i-g). He have

| VEVY= (lwa%&)"lfzqm%(inp)uq(ifa%a)“1fE=

= éiwa%a)“lfziq—a%a)(i—aﬁa?“ifﬁ = g hecause gaka=aka=akad.
Similary we obtain ww¥=p. Especially and v are partial
isometries. By definition {(1—p)v=v, wll—qi=wr, {i—prug=

= yil—a#al == gll-akal)* == vig—a®al) *77, pu(iwq§=(p"aa%)1fﬁw.
Thus vw#{l-pgy wEws l—g, v¥ugsE (g-a¥al*’ = and puwE=s (p—aa#) * =,
put r=i-p-vvé  and g=i-g-wiw. Then PaVal s0sWyS satisfy the
assumptions of Lemaa %.5 and Tiw) defined there satisfies
T(u)*Tiu)wH(u%u)ﬂH(1}mdiag{qu¥$)5 T(u)T(u}%=B(i)ﬂdiaq€p,q,r)
by Lemma 3.5 (ii) and (iii). Moreover by Lemma 3.5(i) and the
ahove eguations Lemma 3.4 applies to Teudrs

Tlur= i i
1 {gqra%a) 72, —ak,0 E
it 0, : 0, e_i
with e#sep=s, ee¥=r. We put a= b+v(q~b%h)lf2+{pwbbﬁ}lfzwavb%w+e_
Hy Lemma Z.54¢1v),

Ty= ! b, {(p-bb¥)*7=, O H
¢ {g-b®b)*7 = ,~D¥, Ot
=1 == £, e e
By Lemma 3.3 and Lemma T.5vi), 0O is a uni
We have |lu-fii= i Tlu—-fm) i = PiMlad)-Miby i,

Now if c € pRg then Ulc) = Mlc)+diagli-p,1i-aqtZ.
Thus §iu— iimv!%U€a)~Uib}§§* Py dpug) ~Ulb) i g.2.tde

tary slement of f.

Lemma 3.6

Let be a,b contractions and h,k positive zplfadjoint operators
on a Hilbert spacé. Then

(i) lihis2—gro=it € Lih-kiirr=,
(ii) !laxa—bxbii £ 2iia-bii,
(iii) lUtar—-utb) it £ ita~bii + (2ita-bii)2/=,

Proof: adtids Let t=!lih-kil. Then h+tg{(h*“=2+f17=)= and kihtt.
The Ffunction alt)=t*“= is gperator monotone on H.anl, cf.
[TAK,I.&6.31. Thus prisms (het)+ = < hir=etir= and we Ccan

interchange Kk and h in this inequality.

fd{ii): awa—-b¥b = a%x{a-b) + (a—bl¥b. - pdfiiide With cz=
= diag((iwaa%)lfﬁ—(iwbb%)1f2, iima%a)lf?m(i~b%h)1’2) by L)

and (ii) we get pretig(2ita-bii) = .
We have Uta)-U(lb)= diag(a—b,(a~b)%)+czw o Enthe

TR
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Proof of Corocllary 3.2: Let be a,bé @& and »>0 such that phg=b,

tiatidi, bt i<l and tipag-bi idx. Fut P= diagi{p,0},
O=diag{qgq.0), B=diag{b,0) and gstitai. Then u is a unitary in
Mo (A2 such that ul= diagipag,0), iPullii ¢ ititatl €1 and
iPub-BL =1 ipag-bi 4K, Mareover FPEO=E and [iBli=iibi . BY

Theorem 3.1 there exists a unitary éM={(A} such that
=1 U (Pu@) ~U{EY 1 and di@g(gcqsékﬁpaﬁﬂﬁﬂdiag(bqﬂ} wharse c means
the (i,i)-element of the unitary 2xZ2-matrix U. Looking at the
(i,1y-element of u-U by Lemma 3.&4(1i1) we cbtain {la-clig
{}§u~w§§ifiUiPuQ)*U(E)}§<ﬂ+€2x§1’?, ) rhe other hand tlotig

< timit = 1 and pcg= b, Now let be @4t<2. Put == i~€E£/72) and
&z€p+ﬁﬁiwp}§c{q+5€i“q}}ﬁ Then pea= pog= b, fla-chl € 241-5)=t,
tig—ald < tER+{E0) 7=, i{ptsil-pileqit £ {i-s)libli+siicgiil £
¢ i-{i-s) (1-1ibii) and ilel! € i-f1-s)2(1-1ibii) e

Thus fi{x,T) € x+(2Zx)*7Z by Lemma Z.5€1)a gee.de

B2, e 2% ) A% 00 (2R 5 Hiemtny ot prnm
4, On_Ce#-cposces and Ci-systams

s in [C/E2]1 and [WID & {complete) matrix normed space aor
matrix Banach space X is a Banach space together with a asystem
af narms  (11.'iadnse on the spaces Mat.{X) of nun—matrices
over X such that (Mat.{{),ii.1i.} becomes for pvery positive
integer 0 a uniform Cx—bimodul with respect toe the action of
Mat,.=Mat- () on Hat.{(X{) where v means the real or compleX
field and such that 1b®0nilaew=iibiln if BEMat. (X} and 0. is
the zero of Matw{(X). If X and Y are matrix normed spaces and
i€ T i= a linear map from X into ¥ such that the matricial
extensions Ta 1las eléMato(Xy ——> [T(a. ) 1€Mat (Y} of T are
contractions {(resp. isometries) then T is completely contrac—
tive fc.c.y (resp. is completely isometric fc.i.}). X and Y
are completely iscmeiric isomorphic (c.i.i.) if there exists a
c.i. map from X onito Y. Any C#-algebra A is a matrin normed

space in a natural way if we use the Cw—algsbra norms o

Mat.{f8y. X is an operator space if there is & complete 1is0—
metry from X into a Cx—-algebra (i.e. X is c.i.i. to a closed
linear subspace of £{H) for some Hilbert space H ). 1f YCX is
a closed subspace of X and if we consider Y as a matrix normed
space with matrix norms inherited from X we call Y a matrIx
subspace of X (or operator subspace of ¥ if morecver X is an

operator space). If YCX is a matrix subspace of X
the algebraic Mat,.~bimodul isomorphies Mat, (X/¥) 2

mMat,. (X} /Mat. (Y)Y define the structure cf a matrix normed space
on X/Y which is called guatient palrix space of X by Y. Wg say
quotient operator space if ¥ is an operator space. If TeX ~—>7
ims a Cc.c. map from X into a matrix normed space I with
er (Tr=Y rhen the maps 1,7 given by the Banach space theory
decomposition T=l¢T, where I:%/Y ——>» Z and v is the guotient
map are C.C. Maps. ¥y}, maps the open unit hall of Mat. (XD
onto the open unit ball of Mat,. (X/Y} {i.e. ({1 n3% 15 an
isometry for n=1,2,...) and I is a cCc.i. isomorphism if and
anly if T. maps the open unit ball of Hat., () onto open unit

hall of Mat.(Z) for n=1,;2,...

A closed linear subspace X of a Cé¥~algebra which is invariant
under triple-products {a,b,c) ——> ab¥c is called Cx-triple
system (cf. LYOD). There is an axiomatic definition we winr b

bore the reader with. In our definition at the same time a CB—

triple system is an aperator space and hence is matrix normed.
i1¢ p and g are projections in & Cx—-algebra C then pCg is &
simple example of a Ce—triple system. Two Cex-triple systems
are isomophic if there is a triple product preserving linear
isomorphy between them. Simple calculations verify Lemma 4.1.
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Let ¥ be a Cx-triple subsystem of a unital C¥—-algebra B.
(i) =X#+Xrepan (XeX+XX#) is a ®—subalgebra of B, where X#=
LML HCA . ,
(ii) If p is a projection in B such that px{l-p)=x for x in X
: then plcl(Y)) (1—-p)=X.

e

Proposition 4.2

I¥f B is a Cx—-algebra and XCH is a Cx-triple system then there
exists a unital C¥-algebra T and @ projection p In O such that
X is Cwe~triple system Isomorphic to pCli-p). Hereover this
isomorphy is completely isometric.

Proof: We may assume B to be unital. The map T(b)=diagib,0}Z,
where we adopt the notations of sec. 3, defines a completely
isometric triple product preserving linear map from B onto
the upper triangular matrices of M=(B). T{X) and p=diag(l,O
satisfy the assumptions of Lemma 4.1. "I C is the closure af
TRy +T (X +espan{T(N #T X +TOO T Xy #) we get the result. g.e.d.

Combining Proposition 4.2 with Youngson's result [YOl we get:

%

The range of a campletely conitractive projecition on Ce~triple
system Is -completely isometric isomoerphic to a Cx—triple

syzsienm.

MNow let E be a Hanach space and eve: E ~—» Exx the canonical
isometric inclusion of E into its secon onjugste space
(second dual) given by evaluation eve(s){(gl=gl(e} if etE, gtE=.
Then {(eve)bvee= 1dee and {eva)Y*%: Ex#——> #¥# is a ofEwe E¥)-—
—cf (Fe#ee, Exs) —continuous isometric inclusion. In general
BVess F {(Eve) ¥, {Bves) ™ Exzix ——3 E¥% iz a o{Exses Exes)-
~r(E##% ,E#) ~continuous contraction from Exss® onto Ex#  such
that {(evesx)*{leve) ™ = {({Bve)l *evew)® = idewes. If we consider Ex
as a subspace of Ex#% via inclusion by @Ve. then {(evexl!*™ 1is
just the estriction of elements of Exxxx to Ex*. We are
interested in the study of FPei= ({evel "tMeves) ¥= (Bveflevel T2 ™.
fis we have seen Fe is g o(Exxxx Exgg)-—continuous projection of
norm one on E#s#% with range isometrical isoworphic to E¥¥. Pe
fines the point gf E in Ew#ssx given by ev-inclusions
ECEx#CEx#%#% but in general not those of Exx(CE###x) and  the
range of Pe iz the o(Exxxx Esxx}l—-closure of E in E#sxx. If E
morsover is a matrix normed space the is an  algebraic Mat.-—
bimodul isomorphism from Mat.(E¥%) onto Mat.{(E)# given by the
definition Lf. w1lles wll=raza wen Fa nlea ) 3F Lh, 1 i8 in
Mat.(E#) and [&, 1 is in Mat.(E). The dual (i.e. polar) norms
on Mat.(E®¥) of the matrix norms on Mat,(E) define the
structure of a matrix space on E¥x, the conjugate matrix normed
space of E. Iterating this constructions we get matrix normed
spaces Ex, EBEx%, Ex#x,

T
S

-

P

Exx#% such that the injections E ——3E#%,
Ex#% given by the evaluation maps become
complete iscometries. If E and F are matrix Banach spaces and
TsE~—3F is a bounded linear map then under the above
identification of Mat.(E¥) with Mat.(E)# the adjecint map {(TR)*
af the matricial extension T, of T becomes the matricial
extension (T*),, of the adjoint map T#:F#—— E*. From theory of
Banach spaces applied to the T, and (T#).; n=l,Z2,..., we see
that T is c.c. If and only if T% i5s c.c., Tn maps the open

14
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unit ball of Mat.(E) onto the open unit ball of Mat.(F) Tor
n=l,2,0-- (resp. T Is c.i.) If and enly if T# is c.i. (resp.
(T®),. maps the open unit ball of Mat.(F¥) onto the open unit
ball of Mat.(Ex) For n=I,7,...}. Thus T is c.i. if and only i#f
Te#% is a cC.i. map from E¥% into F#% and T is c.i. if and only
if there is a completely isometric isomorphiem I from E¥ onto
the quotient matrix space Fa/(T(EN® of Fx by the orthogonal
space ker (T#)=(T(E))® of Im(T) such that I{T¥)=Tueccrer s

The second conjugate matrix sormed space of a Ce-algebra hois
the matrix normed space defined on axx by the Cx-algebra
matrix norms. By straightforward calculations one gets:

Lemma 4.4

i) I¥ E is a ¥-space and Exx#¥ is equipped mith the Faourth

adioint of -the antilinear izometric involution % then Fe
is #%—invariant and PﬁiEmnm“%%&%)QEm=m,%%§wz{E%%%%)ﬁ,ﬂ=

(i1} PelEw...#%%% ix unital and positive If Em.w. I5 BOFEQVEr
an order unit space. :

(iii) I E is a matrix normed space then Pz is a completely
contractive proejection an the fourth conjugate wmatrix
normed space Exxxx of E.

tiv) The second conjugate waatrix normed space X%% of an
aperator space X Is an operator spaceé.

{v) I¥ X is matrix Banach space and YCYX is a matrix subspace

then there 1Is a unigue c.Ii. wap 1 from the second
conjugate matrix normed space (X/Y)Y=% of the quotient
matrix space 17y onto the quetient matrix space
X##/wel (¥Y) of X#% by the bipolar Yoo=wecl (1Y) of ¥ such
that 1. {v)EsE= Wues cvi e

In view of Corocllary 4.3 we obtain:

Exx## Js c.i.i. %o a Cw—triple—system If and only if Ex¥ Is
c.i.i. to a Cx¥—triple—-systen.

et ¥ and ¥ Cx-triple systems and T:X-—3>Y a linear map. then
s called completely decomposable {c.d. map) if there exist
®-algebras A,H,; a unital completely positive map
g-—->B, projections p in & and g in B and comnpletely
sometric triple system isomorphisns. I ¥#% ——>pAli-pl,
s qB{i-q)——3>Y#% such that Vipl=q and PV IipAtL—p) Jel=T#¥,
We call an operator space X C¥-space if the second conjugate
oparator space X¥#® is completely isometric isomorphic to a C¥—
triple system and Px is a c.d. map. '
@z in L[EF21 by an eperator gysten X we mean a closed unital
eplfadioint linsar subspace of & unital C#-algebra B together
with the involution, unit and the order unit structures on

c -~
fe s
]
i

Mata (X)) w. == inherited from MataiBlm.wm.s ar- X is are
(invelutive) matrix order unit space complete in its matricial
arde unit norms given by iibilagl <=3 diag(l,ir+diagibb®)}Z

(notation cf.sec.3) if b is in Mat,.(¥). By our definition
every operator system is an operator spacs with respect to its
matricial normsS. =

1§ X and Y are operator systems then a map T:X ——> ¥ is a
unital coupletely positive (u.c.p.) map if T(ix)=1~ ard  Tat
Mat.(¥y ——> Hat.(¥} is positive for every M. From the
corresponding properties of order unit spaces one gets that T
is w.c.p. ‘if and only i+ T is wnital and c.C. considered as a
map between opesrator Spaces, i.8. HeCaCSTZUCaf- GO0 operator
systems. Especially every HeCalo Map is an W.C.P. Map. X is

Ut
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unital completely isometric isomorphic (w.ceini.) te ¥V if
there is a w.c.i. map from X antﬂ Ya If ACA, Xewmpuol (XICA%E is

the bidual operator systes of X. The inclusion XsxCA%¥ equips
Mat . {¥#x)&Mat, (X )%% with bidual isnvolution and bidual order

unit structure on mtn('%%)}ﬁda, {Patn‘x - e ) EE,
XY is @ qu&%ient eperator systems of X if there is a
‘C.i. map T from X/Y into a unital wadlmmbrw B such that T

is a u.c.p. map from X into B and. (3v).{Mat.(X)+) is dense in
the positive cone of Mat.{(X/Y) induced by X/Y2TIX/YICE.

én  operator system X whose second coniugate operator system
X% i5 UeCoiei. to a CE-algebra we call (unital) Cx-system.

The unital complete isometry V from X#¥ onto a C¥—algebra A
induces on X#% the structure of a Ce-algebra (X%#,.,%) such

that the given matrix order unit structure and the matriy
order unit structuwre of the Cs-algesbra (K##,.,%) coincide.

Lemma 4.6

(i) The Cx—algebra structure on X##% Is uniquely determined by
the matrix order unit spa®e X if % is a unital CE-syster.

{(ii) Let X be a matrix Banach space, e an element of X and 1
a c.i. map from the second conjugate matrix noraed space
¥#% onte a Cx-algebra B such that Ile) is the unit af B
then X is a C¥-system with unit e and involution and
matrix order induced by the inciusioen IT:XC#% —--> B.

Progf: By Kadison theorem [KA] we get (i). Ad(iid: I™* induces
on X%5% the structure of a C¥-algebra with unit e such that the
second conjugate matrix norms and the C¥—algebra ma aticiy nerms
on X%#% coincide. Px is a U.c.c. map {(i.e. a uv.c.p. projection)
on Xx#x%x by Lemma 4.4(1ii) because e€iXlIm{F). Thus X must be &
selfadicint unital subspace of the Ce-algebra induced by I  on
X%#¥ such that the second dual operator system X##=X®C=Im(P) is
the range of a u.c.p. projection on a CH—algebra. By LCZEZ1,
Im(P) is u.c.i.i. to a unital Cx-algebra. GutZatla

Let X be a unital selfadjoint linear subspace of a unital O~
aly We put M- (X)=M_(X,A)= {aCh:a

algebr . XCX in A and My (X)=
={alA: XaCX}, MI{X)=M_(XINM, (X} i¥F X is a Ce-system we usse AF
=X##%. Now let be A,B unital Cs-algebras and T:A ——> B a u.c.p.
map. The right nultiplicative domain M-(T) 0f T is deftined as

ﬁréT}:{aéﬁézTiba:m\\ 1Tiay for all bEAY. Similary one defines

the left multiplicative dumnin MakTY ot h and the
multiplicative domain M{T)=M. (TINM-(T}.

Lemma &.7

{i? Tiay#Tla)<sTia%a} it ath,
(3111} M (Ti={a¥%¥raCk- (T}, e e e closed subalgebra of £

£ &

and WM{T) is & C¥—subalgebra of A. The restrictiaons of ik
are algebra hﬂmamwrahfsms.

{iii) atM-(T) <=> T{a)xT(a)=T{a¥a)l
ach, (T <=> T(a)Tzu)%mTzaa*)u

tiv) If Tib) is unitary and iibili4{l then b is in M{T).

(vl BEM- (T3 <=3 (b,Tib}) is in M-{Graph{(T 1Camn.

(vi) BEM-(T) then TBYE M- (c1{T{A}I)}.

{vii) I¥ @A=R and T== then Im{TNHM- (Ty=H. (Im{T) and then
b M-(T) if {h.bxbiCIm{T).

ki

EE“

Proofs (i), (ii), (iii) cf. [CH3. {(v) is just the definition
and (v) implies (vi). Adliviz 1=T(b)*T{(b}<{T{(b*b)zl e (i
because T is unital and positive. b is in M- (T) by (iii).

Replacing b by b* we obtain BEM(TY. Adlvii)s 14 Im(Tib<Im{T)

&




freceo

or if b€Im{T: and BEM_(T)} ther b and b#b are in ImfTy. But
b ,h%h:afmif) implies Tibzb)=hxb=T{(h)#T{(b}. By iy, BEM.-(T) .
Qo &l

Lemna 4.8

Let ¥ be a unital C¥x-system. Then
£i} Px iz v.c.p. and P-{¥1= KON M-AF) in Xuww#.

C€(ii) DBEM- (XY (resp. BCM, (X))} I¥ and only IT

BEX and behEX (F&Sp, hEX and bh*EX).

(iii) My (X)=fuwsx€M.-{¥)3. M- (X} is @ closed subalgebra of {#¥
contained in X. W{X) is a Cx—subalgebra of X#%,

(ivy I¥ o is a projection in M{X} then the operator sysiten
qX{i—-g) is a C¥-space.

{vi Mat  (¥) 7is a unital C¥-system

{vi) M- (Mat. (X))=Mat. (M- (X)) 1CHMat. {(X)

fviil Méﬁatn(XE)mﬁatméﬁéxb)gwatnix}

Proof: Let be b X## and let P=F.. Then P is a (s Xeee) -
continuous unital completely positve projection from the CH-
slgebra Xxxxx onto the gi(X#i#:, Hex#)~closure of X in X#eee,
Thus XbCX in XK#%¢ if and only if Im{Plevxe.(D)CIm(F) in Xwexwx
by Hahn-Banach sepsration theorem. Thus (i} follows from Lemms
4,.7¢vii) because X is unital. :

fdliide {b,bxb3CX implies {b.bebrCIm{P) and BEM.. (FINK=M_ (X} by
(i) and Lemma 4.7{(iii). Conversely {b, b#b3Cib if XblX because
¥ is a unital selfadjoint subspace of the C¥-algebra X&=. The
ghther case is similar.

{iii) follows from definitions.

Adi{ivi: Let g be a projection in MX) "and let us denote the
operator space qX{i-q}. Then reav{glEIniF) and rXexEe(l-r)®
=Ysex% such that Py becomes P {rXxess(i-ri).

Ad(iviz The u.c.i. map j from X%% onto a Cx-algebra B ﬁmgxn&v

& U.C.i. map (iln from Mat.(X)#xfMat.({#x} onto the UC#-
algebra Mat.(RB). =

{v} and {(vi) are straightforward berause the scalar matrices
are contained in  M{Mat, G0)ICM- (Mat. (X)) and in

Mat. (M(X))CMat ., (H- (X)) . ’ g e

in the remaining part of this section let & he a Cs-algebra,

R and L closed right and left ideals of A respect tively and D a
hereditary C¥—subalgebra of f. l=supp(l), r=supp (R} and supp(D)
are the projections in Ax* defined as in m&t“i such that A%x#l=
=wcl (L), rass=ucl (R) and wcl (D)=sup péﬁ)ﬁ%-% ppiD), cf. L[TAKI.

Lemma 4.9

(i) wel (LR =wel (L) tucl (R) =A#sl +rf,

{i1) distta,wcl (L) +wcl(R)) = lipagii where g=
pei-supp (RY I7 athwk, dist{a,l+RI=!ipagii

(iii) wel (LA =wcl (LY \wcl (R)=rAxxel,

(iv) disti{a,R)=distl{a,LOR)={ipaiil If a€l., i.e. the canonical
wap L/ALOR ——» A/R Is isometric and L4k is clesed in £,
v} L=cl{BD) is a leftideal and Euppéciﬁﬁﬁ}ﬁ-guppiL}mﬁuwpiﬁﬁ

Proof: Ad(id+(ii): L+R is weakly dense wcl (L) +wel (R)=Aksl +rixs

and a-—rpag={i-r)afl-1) is a weakly continuous completely
ontractive projection on - A¥E with kernel PRl b AR,

dist(a,lL+R)=dist{a,wcl (L+R2) if a€fd by Hahn-Banach theorem.

Ad(iiid+{vi}: RLCLAR, wel (LM wel (R)=wel (R)wel (L)Cwel (R by

partial weak continuity of multiplication in A%,

By Hahn—-Banach theorem, distla, LAR) =dist (a,rA¥#l) and alfxxl

\ XL ﬂ O " i _,L\,
?APJL L\ e
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Proot of meﬁn 1.2

if atA. But distlal,rfAx#ll<dist{arf80)= istla,Ri¢dist (a,LOR)
and dist(a,R)=1ipall if a€th by {(ii).

Adivis 1 a,bEA, d.efb, c=21¢! %a§§2+§§;§tﬁbid*d+aﬁﬂ}, n=adthe
then x#x<c€D and w€cllAc* " A)Ccl(AD), i.e. AD+ADCcL (AD)
wel (L) =wecl (AD) =Axrsupp (D) and wol (DA) =supp (D) &k, = P = =
Lemma 4.10

(i) wel (Mat, (L+RY I=Mat. (wel (LY ) +Mat  (wcl (R))  and

supp {Mat{L))=diag{l,... .1} where l=suppil),
{ii) dist(a,wcl (Mat (L+R}}i=11Palli! Ji¥ a Mat.(f®®)} and i¥
e d;&gip?uuu,p)g G=diagl{gy... Q) where p=i-r, g=1-1.
$iii) There is a unique isomorphisw j Trom €QI€L+R})%% onte
the operator space pA¥#qCA®¥ such that (W, _r)#=i{b))=
=pbq If bEA¥%. J is a completely isometric iawmarahisw
from the second conjugate operator space of the guotient
operd or space ®A/(L+R} of A onto the operator zpace
phreglhze, E=p pecially &FUL+R) is an operator S5pace.

{iv) Mat,.(D} is a bwreaz%"*v Cx—subalgebra of Mat. (A},
auppéﬁ&tﬁiﬁ}}mdxaga~upmi 3 e mupnp i),
£l (HMat (AlMat (DY Y=Hat . (cl{AD}} and
cl {Ma hn(hxhﬂtniﬁki*ciiwnt (Ditlat . (&)=
= Mat-(cl{AD)+cl (D&}}).

235,
D

Proof: Ad(i):  wcliMat. (L)) = Mat (wclil)i:= Mat, (Axxl) =
=Mat.{(Axx)diagi{l,...,1} under the identification of Mat.{(Rfzx)
and Mat.(A)#x as above, i.e. suppMat.(l))=diag{l,...,l}.
Similary wcl (Mat. (R))=Mat.(A=#)diag{r,...,r). Now (ii) follows
from (i) and Lemma 4.9(ii). Ad{iiil: Let be Y=wcl{L+R). If J&.
ie the factorization of thw C.. projection a-—>*pag on H%%
then J is a c.i. map from A#%/Y onto the operator space pAEG
by {ii). Now if I is the c.i. iscomorphism from (A/7{(L+R))*x%
ornto é%%fY then I=d1l is & c.i. map from (A/{L+R))=x onto

pA¥#g such that (X <)#xlbl)i=phqg if b&taw

éﬁiiv)s Let be dhau&#{b} then wai(ﬁatn,J:) = Mat {wcli{Dl} =
= pMat, (dézxd) = dia§€d§,=n§d>ﬁa%n€ﬂ*w)uzav(d$,u,gd). Thus
Mat. (D) is hereditary in Mat.{(A) with support diagf{d,....d).
Matn (DAICspan (Mat., (A)Mat- (DY) HMat . (span{aD)}, apply Lemmna
4.9 v, , : Gueade.
From now on we use the identificaticons as above and the

abrevations as at the end of section 1.

FProposition 4,11
(i) Assumpe that c€i//D, d€A, 07 c
invertible in ’ﬁf‘ﬁ}ﬁﬁ. I¥+ & is

{ Tpldud) and Aplded) is

unital then there exisis
e in & such that FHoildeewed)=c and ileligli.

(ii) IFf c €A//D, 20 in (A//D)w% and 6 iz unital then there
iz ax0 in & such that Trnial=c. .

(iii) Let be fEA//D and dEMIAYCAR®E such that f#f4 (T0o)ww{dad)
and (Jp)#e{d#d}! iz dnvertible in (Af/Dix%, Then there is

g in A such that Totled)=f and iilelidl.

By Lemma 4.10 there

g v
is an isomebtry rom (A onta pHxeg such that
j%ﬂlgm}iaﬁmﬁdq E=A, Tzﬁ{ B A%%, J=j, I=idm and b,d

in M(AICH w“’;%(v thn & ump
now follows fron Cm;uwﬁiu

At this stage m}Jm the proof of &“Vﬁllmiy 1.3 is pomplete.
Froof of Frop.4.11: Adiid: The situation above appears in case
be=d#®, L=cl{AD), R=cl(DA) and gzqmlmaupp(u)” If moreover A is
unital then by Bl e SHOTE Eoe, 5 2 and FPraop. e

Lmr,2.?» Proposition 1u
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beﬁ“frgfﬁmwr(G iy¥¥d) is closed in A//D. By Habhn—-Banach
separation theorem, it suftices to show that jle} is in
{pdesdp 0Ll . §f € ﬁ%%}gwﬁlijiJimiﬁ%iﬁpectﬂﬁi))d)u Hut this
tfollows from jlc)ipduadp=3i {0, idedyy.

(1i) is & special case of {i}.

Ad(iiid: b=1,d, L=cl{AD) and R=cl (DA satisfy Cor.l.3, i.e.
K!aliﬁ}d; i lem@d in A//D. By Hahn-Banach separation theorem
it suftices to check that j(F7 is in the weak closure of
ji%@ﬁﬁ}}“‘ But j{Freiif) 4 jUrsai{ded)i=pdedp and j{f)}= pilfip,
i.e. JFYE plwcl(B8Ydiplilncl M(8dY)). Gueaidd,

In the remaining part of this section let A he a unital.

Proposition 4.12

The guatient operator svstem /D=0 {clBDI+ci (DAY 5 a
unital C¥-system wilh unit Zpil). There is a unigue C.i.
Izomarphism 3 frowm the bidual coperatoer system (B//D1%% of AS/D
anta the Hu—-alcebra plssp wmhere p=l-suppl{l) such that
j(ﬁf;*%€?3}mpap i affwx. Especially Wy defines a unital
conpletely positive map from & into {(B//Diex,

Brogf: Let j be the c.i. map from the operator space (A//D)#%
onte pAxxp as defined in Lemma 4.10(iii) such that j{ ce=x{ali=
=pap where Y=cl{AD)+cl(DA), p=il-supp(D). Then T is  the
abridgement of v, i.e. Tp{l)=7 (1) and j{Fotl))i=p is the unit
of pA%¥p. By Lemma 4.&6€iii), Jj: A&//DCAS/D)%% ——=> phAksp
defines on A//D an involution and a matrix order structure
such that 7Te{l) is the matrix order unit and with the second
conjugate order structure, second conjugate involution an?
matirix order unit Zp{i) the cperator space (B//D)¥# becomes an
operator system such that j§ is a w.c.i. isomorphism. Thus with
this matriy order unit space structure A//D is a C¥-system
with unit Zef{l). The unigueness of i follows from unigueness
of factorizations. The images of the positive matrix cones of
A are weakly dense in the positive matrix cones of plAxEp by
the matricial extensions of the map a——*pap. Using the inverse
map of j and Hahn-Banach separation theorem we obtain that the
matricial extensions of X'n map the the positive matrix cones
of A onto cones densé in the positive matrix cones of the

operator system A//D, i.e. &//D is a quotient aperator system
in the sense of the d@%initiﬁn given above. Qn@atle

[Lemma 4.13

(i) There is a unique unital c.i. iIsomorphism Jd=d. TFrom
Mat,, (A} //Mat (1D onte Mat.,(A//D) such thail

ﬂmiga-ugaxn_ ‘“m(ﬁll}gun-gjzm(axm)

Ny /O |

e mem
o mme me

H i
S R e B ST PG e
vt gow e ySres H :WD(anl),nzugrg}{iﬁnn)
where E=Mat, (D).
R U ORI TR e R e TSR R B D
(iii) Jd.{M{Mat. () /Mat, (D) =

= Mat, (M- {(H/D03 )
Mat(M{6//70) 2

Procfs X=A//D, Y=Mat. {8)//Mat.(D} and Mat (X} are Céx-systems
Ey Frop.4. 14, Lemma 4.10(i) and Lemma 4.8(v). Let b =
=l g utp,..,,p) where p=l-supp(D} and let k be the u.c.i.
isomorphism from Y##% onto Mat, (pAkxp)=0Mat. (A% such that
kil (b)Y )=0bR  and jrXee——>pAs¥p such that j(Tpxxi{a))=pap then
Jadleias ) Pi=kitlctla, 3% and a8 & UsC.d. . Mmap from
Mat,,{(X##) onto Mat.{(pR#%¥p). Thus J.=(i.) "*klY is a u.c.i.

i1
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man from Y onto Mat, (4.
ﬁﬁ(ii)+iiii}: M-Mat. (X)=Mat, (M- (X)) {resp. MiMat.(X1)=

at,(M{X)} ) by Lemma 4.10. By Lemma 4.6, J. extends to a Cué-
migﬁhra isomorphism between the second conjugate C#—alc aebras
af Y and of Mat. (). qﬁand,

Coroliary §4.14
et 6  be &z Cx—algebra not necesserily unital and R and L
faosed right and lett ideals of B respectively. Then there
xists & unital C¥-aglgebra B, a hereditary C¥-subalgebra D of
B and a projection q in MIB//D) such that A/ (LR is com-
pletely isomelric Isomorphic o glB//D){1-ql. Especially
B/L+RY g a C¥—-space.
Proof:  Let © bﬁ the unitization of A, D the hereditary C#-
subalgebre - of Mat=(C} gensrated by EMat-{CIE with E=
RR¥)@cl (L*l) and danmtn by B the
Mat-(C} generated by diag(l,0).diag{0,1} and Mat=(8). Then
bCh, p= o {diagtl,0)) emaﬁm an G7FEL#RY i85 “e.i.i. ip
piRALDIC L —p) by the map defined by the factorization of
T: c€h —> piliaidiaglc,01Z)) (1-pi€p A/ /D) i-p). {(Consider Tx#%,
use Lemma 4.10 and Lemnmas 4.8(iii).) Go@ad.

unital C¥—-subalgebra of

Remarks: A matrix Banach EﬁmLE X is c.i.i. to an operator
space if and only if {ib@cilem=man(liblisliciiy) for b in
Mat. (X} and ¢ in Mat.(X). This implies that guotient operator
spaces again are operator spaces. We need only a very special
case, cf. Lemma 4.12.
It is not hard to see that triple product morphisas between
Ca—-triple svstems are contractive (it suffices to consider ths
situation of "abelian® Ce—triple systems satistying abio=cb#a
whic are isometric and triple isomorphic to abelian C¥-
algebras). The matricial sxtensions of triple system morphisms
are aogain triple system morphisms. Thus triple system mor-—
phisms are completely contractive and triple system isomorphy
of C#-triple svstems implies completely isometric isomorphy
between them (the detailed proof is left to the readerd. @&
variant of Kadison's result on isometries of Cx—algehras holds
also for triple systems like pRBg by some modifications of the
fundamental lemmata of his ariginal proof [K&l. The above
ohservations then imply that two C¥—triple systems are triple
system isomorphic if and only if they are completely isometric
isomorphic as operator systems. By Prop.4.2 the maximal C#—
algebra tensor product suitable extends to Cé#-triple systems.
Then T is c.d. if and only if TRide is contractive with res-
pect to tbn maximal Ce~triple system tensor product norms  on
the algebraic tensor products XB8A and Y86 for every C¥—algebra
£ {(6n Qpﬁ.*Latlﬁﬁ of Wittstock extension theorem [WIZI and of
Prop. 4.2 again). The C#-triple system c.i.i. to X%* is unique
up to triple system isomorphy and the triple product induced
on X¥#% iz well-defined if X is a Cx-space. If X is an operator
system and X#% {resp.X) is c.i.i. to a C¥-triple system A& then
& is a unital Ce-algebra and X#¥ (resp. X) is u.c.i.i. to A
by an other wu.c.i. map, i.2. X is a unital Cé-system {(resp. X
is a C¥-algebra).There exists an operator space X such that
X## is c.i.i. to a C#-algebra but X is not a C¥-space.
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5. Normalizer algebrag
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5.1. Preliminaries and Proof of parts_ (i1,¢1i) of Theores 1.4

Let be & a unital Cx-algebra, U a hereditary C#-subalgebra of

A, gesupp (D), p=l-g and Tp: A ——> A//D = 67 (cl (AD)+cl (DAY) the

n. Considered as
(G//D1e%,  TAp 15 & Wi

i
position 4.12. The algebis

}

I

guotient me s map from A into the We—-algebra

1 compietely positive map by Fro—

it
s ol
11}

as M- &Ly, My (75), MiTe), M-(A//D),
M, {8//0) and MIA//D) are defined in section 4 and the {right—s

iy

left~) normalizer algebras
sertion l.

: N-{D)Y, N.{D} and N{D) are as in

U

Lemma 5.1
(13 If aéh TFollowing properties are equivalent.
(i) acN-{(D} {(resp. actMN,{D), resp. ach{iD) 2,
(ii) {i-plap=0 (resp. pali-p)=0, resp. pa=ap 24
(iii) Trpla)#lsla)=Fp lakald (resp. Fwlallplare=iplaak), resp.
FelalEinial=lxlakal and T L8 {2l #=An (aa®) 2
{iv) ach,. cn) (resp. adh (In), FE5P. achixn? 2.
(II}) T=iN-{D) and waib (D} are algebra homomporphises inte
Mo (a//DIC(A//DYEx  and Mo B/ /DICA/ D) ux respectively.

7

LTII) T nta) is unitary in 6/ /Dye% and iilaii<l then aeh (D).

Proof: That T M (T} and Znith (Fp) are algebra homomorphisms
into Mo(Imize)l=M_{A//D) and My (B respectively and the
equivalence of (iii} and (iv) follow from Lemma 4. 7. wclihi=
= R, By partial weak continuity of the multiplication in
pee  and by separation theorem, palD  4a=3 gAxrgalghsg <=2
ga=gag <=2 (1-prap=0, alCD <=7 pal{i-p)=0. Thus (i) <=3 {(i1i).
By Prop.4.12 there ic a We-algebra isomorphism 3 from (R/D)x®
onto pAxxp such that j{Tnta))=pap if aéh. But pakpap=pakap <=3
{i-p) ap=0, paga%gﬂpaa%p'<n} pall-pl=0, i e biiyd=>iial. {111}
fallows from (1) and Lemma B.7a G-=.de

L3l
o

3

Lemma S.2
Mat.( No (D} ) = N-{ Mat (D} 3}, Mat.{ Ny (DY ) = had Mak (DY 2}
and Mat.{ N{DY ¥ = RN¢ Mat oD 2.

k4

Proof: suppiMat.(Dli= ﬂiag(guﬂp(ﬁ}gzm,,Euppéﬁ)}.by Lemma 4.10

and diagiinpgm..,i“ﬁ)iai,jjdiagip;..,,p} =0 if and only if
{1-pla,, .p=0 for i,i=l,...40. Use Lemna Sel{l). ; Ou@.d-

Lemma 5.5

e G o S S e € T S

dist{c,Mat,(cl(AD)))= diﬁticﬁﬂatméciﬁﬁ§}+cliﬁﬁ)}) i S

Mat (N~ (D}? and =1, 2,0 uay In€ax the restriction o
N (D) /cl (AD) of the gquotient map from a/cl (BD)Y onto AF/D IS

completely isometric.

ﬁgggfg By Lemma 5.2 we can restrict to the case n=1. Pk S p=
=1-supp (D) and let be C in N_{D). Then cp=pcp by Lemna 5.1 and
disttc,clia)) = dist{c,A%%{l-p)) = thepil o= tipepil =
%diﬁt{cﬁﬁﬁ%(i~p}+(1—p)ﬁ*%}zdi§t(cgﬁl(&D}+c1ﬁﬁﬁ)) by Lemma 4.9.

Qo 8.0«

Proof of Theorem 1.4 (i) and (ii): By Lemma 5.1(1I) 7p defines
& Banach algebra hamomorphism h from N_(D) into M-(a//D).
Obviously cl{(AD} is contained in N-(D) and by Lemma S aa
the = kernel ideal of h. Now let be cefA//D such that

N e arats

SR AT
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cEEC(AZ/DYe% is in A//D. Put t=2!ici! and dst+tc in  (R//D)¥%.

Th&n d and did=t ticxttotorc ar

i (BA/D) %%, ‘L‘z.;*g iy VQ?C)&Ls.L«E'L 4.

Tin {bab) =du«d. y Propasition éu,ii i} there evists a contraction

e in & such tha, T lebi=d. Considering 7p a5 a map from A into

(RS /D) %® érnm the complets ﬁmﬁi%szty of o by Choi's in-
o swd

e
sguality CHI,LC/E23) we B E%nleb) d Thibieteb) <

&//0 and d¥d is invertible
Y we Find b in A such tha

i Fs {m

‘5am{ba§?”dvum By Lemma 5.1, eb and eb-Z2iicii are in N-(D} and
¥
¥

£ = Toteb=J ity Thus Z  mans MN-(DY onic M-fAS/DY., By
Corollary 1.2 the guptient from Mat. (6) onto the guotient
3} maps the unit ball of Mat. (A} onto

11 of the guotisnt Cx-system. Mat,, (cl (A0 3

the closed unit
ie contained i {M.(D)). Thus the restriction of the
quotient map to the closed unit balls of Mabt.(N-(D}} and its
guotient by Mat.(cl{(AD}) is again
yiglds (i) and (ii) in case of N- and M-. To cbtain the result
concerning M (D} and M. (A//D) one has to replace & by a7°
{=f with opposite multiplication). Gealis

i

5,2, Proof of part _tiii} of Theorem 1.4 DON(DI=hNy (DINN- (D} by
definiton of N{(D). Thus Xe is a positive unital =algsbra
homomorphism from N(D} into My (B//7DINAF-(&//D = Hia//D). It
remains to show that #Xp is an epimorphism. Let m be -—-a
centraction in M

,}} ;m‘

(a//03. Then Uim) is unitary ip HMat=(M{A//DD),
cts SED . De I+ J is the defining isometry from YYo=
Mat-(0: /7 Mat= (I cnto Mat{A5/0) Yhen o is a Cx—algebra
isomorpghism  from MYy onto Mat=(FL{AF/D)} by Lemma 4.18.
Applying Corollary 1.3 we get a contraction + in Mat= A3

euch that J{ "(f))= UWm)} where " denotes the guotient map
fioum Mat-(A) onto ¥. Then F is in Mat=(NiDl)= M{Mat={D}}
b2y Lsmwata,ﬁai and 3.2 et ¢ be the (1,1)-element of +.
Then cel{(D & JiY—element of Ulmdl, i.&.

e

Dy cand JAxlc) iz the (i,
. 2.t

E.3. Propf of Corellary

Lemma 5.4

Let X be a uni%ai Cr—system, T a unital Cw—algebra, Vi¥k——> C a
unital con jzometric wmap frem X inte T then there
exists a ﬁ a epimorphisae F from the Hu—-subalgebra of
the secand onjugate Hx—algebra C¥¥ of G generated by
V(X) CEC CC#* onto the second conjugate He-algebra X## such
that Po({V#%®) = idxe=. Especially P g e

Proof: Let ha:Xex 3ﬁ£ﬁ) be a faithful normal #-representation

of the w%waig@al& Ye¥ onto a von Neumann algebra Nsh (X %43 CL (KD
acting on some Hilbert space K. Becauss V¥V is unital and
Pmmwlmgaly isometric by Arveson sxtension th@m-um PaRVEID thers
pxists a unital completely positive map Wal ——> £} with UWV=
= hiX., If T:Cxx —> £(K) is the normal @”tenﬁiun‘af W then
T is & completely positive map satisfying Te(VEx) = h and

h(“rznéa)<f(ﬁvﬁ%(a)}%(vy fa) gl P (Ve% (axa) )=hl{aral 1? atres by

7

Chei 's gmnprmizz&d Kadison inequality. By Lemma 4.7 Vaes (K ##)
1e CGﬂLa]ﬂuﬁ i M(T), KN(T) is a C¥-algebra and TiIMIT) 1is & %—

representation  of M(T). FET? 1& moreover a We-subalgebra of
Ce# hecause T is ultraweakly continuous. Let N be the We—aib—
algebra of Cxx generated by ww(Fuw), Then T =h(X#z) and T
i & We—algebra epimorphism. P b= {TIN) is as desired. g-2.d

sur igctive. Mow Lemma S5.3

U p————— R SRS e e i S

\
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Lemma 5.5

fet be X, Cy, V: X—> C as in lenmma 5.4 and let BCC be a unital
subalgebra of © such that BU{b#b:h¢BY (resp. BU{bb®:bCRX} is
contained in  ViX). Then P(B) Iis a unital subalgebra of M-(X)
(resp. of Ma(X) } and V defines a unital algebra isomorphism
from F{(B) ontae B.

Proof: B CV{X) and PiYdx) is invertible with inverse V. We
get P(B) cP(V{X))i= X, ker (FI1E)= 0, (FIB) = V{P{E®). 0On the
other hand {c¥c:ceP{R)I= P{{bxb:belB}) CPWEY)= X and P 1is a
unital algebra homomorphism from B onto P{B) by Lemma 5.4.

Thus F(R) CHM-(X) by Lemma 4.8. Gu&ata

Proof of Corpllary 1.5: By FProposition 4.12, A//D is a unital
CH-system. Using Theorem 1.4 and Lemma 3.5 we  put
E= (s iN_ (DR (IR} {(resp. F= (ZnilD))~*(P{E)) if B is
moreaver a C*-subalgebra of €T ). Then E and F have the desired
properties (i),(ii} and {iv),{v) of Corollary 1.3 by Theorem
1.4 (i) and (iii). Property (iii) of 1.3 follows from 1.4 (ii)
by Lemma J.3. QoEata

6. Cutline of further _resulte_and spplications
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6.1, Let L£(H) be the Cx-—algebra of all bounded operators on a
separable Hilbert space H of infinite dimension. AN operator
space X, 1i.e. & closed subspace of £(H) together with the
matrix norms inherited from £{H), is called nuclear it the
identity map. on X has & cemidiscrete approsximation in the
sense of Effros [C/E31,; i.e. the identity map on X is in the
strong closure of maps T=VW where V: X——» Mat,, W: Mat,——> X
are complete contractions and n depends from the chosen de-—
composition of T of this kind. It turns out that the maps T,
V, W may be chosen moreover unital if X is unital and that X
is nuclear if and only if it is a C¥-space and the second
conjugate C#—triple system ‘¥## is an injective operator
system. A separable gperator space X IS nuclear it and aenly If
X is completely isomeilric isomorphic to a gquotient—Cx—system
of the CAR—algebra Hi= Mz@MzB... by a sum L+R of a closed
leftideal L and a closed rightideal R of B. The Lindenstrauss

spaces L[LIZ are just the abelian C#-spaces, 1.@. the C#*-
spaces whose second conjugate spaces are ijeometric isomorphic
to abelian W#—-algebras. The Chogquet simplices are just.  the

state spaces of the unital ahelian C¥-systems. If X is a
unital separable nuclear Cx-system then there is a hereditary
Cx~subalgebra D of the CAR-algebra B such that X is completely
isomorphic to the quetient-Cx-system BE//D of B by D. By the
results of this paper this implies that M(X)= N(D)/D. This
applies to separable unital nuclear C#—algebras X=M{X)=A.
Combined with the lifting theorem of Choi and Effraos [C/E1],
[ARVZ,th.71 and with their results on ranges of completely
positive unital projections on Cx-algebras [C/E2]1 one gets:
Up to Cx—algebea isomorphy-the unital separable nuclear C#-
algebras are the ranges #{(H) of unital completely positive
projections F on the CAR-algebra B with Ferompressed
multiplication PlaleF{(bl:= P(P{a)P(h)) on the range P(E). An

analyse of Glimm's result on C#—-algebras of type I

[DIX,Chap.91 shows that Glimm actually proved that conversely
in every separable C¥-algebra A& not of type 1 there exists a
hereditary Cx-subalgebra D such that A/7/D= N{(D)/D=H. Using the
method of comparisation of Elliot TEL] one obtains very . easy
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from the latter both results that the infinite parts of (%%
and of Be¥ are isomorphic if A is a separable unital nuclear
C#—algebra not of type 1 and B is the CAR-algebra.

Every nuclear C¥-space (resp. unital C¥-system, C#—algebral is
an  inductive limit of its separable and nuclear Ce—subspaces
(resp. unital C¥-subsystems, Cxr—subalgebras).

6.2, 1§ M is a von Neumann algebra with separable predual then
by an inductive limit construction one can easy show that M is
cemidiscrete if and only if there exists a unital separable
nuclear C#—-system X such that M is isomorphic to =z.X#% for
some central projection z of X#%. The above described results
on nuclear operator spaces then imply: M is injeciive iT and
only if MBL(H) contains a weakly dense C¥—subalgebra I5a=
morphic to the CAR—-algebra.

&£.%. Let X be a separable unital Cx-system (resp. sepparable
C#-space ) then there exists a separable unital Cx—algebra A
and a hereditary C®-subalgebra D_A (resp. closed left— and
rightideals L and R ) such that X= A//D . {resp. X= A/(L+R} ).
Every unital C¥-system (resp. Cx—space) is the inductive limit
of separable unital Ce—systems (resp. of separable C#-spaces)
in the corresponding categories.

&.4. Let FD be the set of maps Ve f&H}“w}ﬁiH) decomposable in
the sense described in sec. 6.1 and let ZCYCL(H) be operator
spaces. We define fin(l):= infd i1 (V=id)$iZ iz V in FD3 and
lactiniY):= supf Ffin(Zdz . ICY, dim(Zi<ooc ¥. By m{fiH))=
loaB8f(HY and co{L{H)Y2c BL(H) we denote the bounded segquences
and zero sequences of operators respectively. CoifiH)} 15 an
ideal of m(Z(D) and the diagonal map doo: Bef (HY ~——>
(B bBye.sdtcoif (HP) defines a C#-algebra monomorphism from £ {H?
into miL()/ca(fH)). In a forthcoming paper we shall show
{(by an inductive limit construction): If B is a separable
unital Banach subalgebra of £ () such that locfin{B*B)}=0 then
there exist a separable nuclear unital C¥—system X and a
unital complete isometry V from X into m{f{H)Y)/c Ly  such
that doo{BE)CV{X}. By Corollary 1.5 of the present paper and
the +orthcoming results on nuclear operator spaces announced
i secwb.t, His & C#—quotientalgebra of & Cx—-subalgebra of
the CAR-algebra i+ B is moreover selfadjoint.

&.5. We denote by 8 the algebraic tensor product of vector
spaces, by 8 the minimal C#—algebra tensor product,. by £€(H)
the C#-algebra of compact operators on H and by GGkl the
Calkin algebra TY(H) /LEH). The minimal C¥-algebra tensor
product 8 is a hifunctor on the category of C¥x—algebras. Thus
there 1i5s a(hniqu@ Ce—algebra epimorphism T from the quotient
alaesbra (L BE (H) /R BLE H)) - anto £BCH) . If X is a
a closed subspace of £(H) and A is a Cx—algebra XBACE(H) BA

defines a dualisable crossnorm 11,11, on X8A such that the
completion ¥Ba with respect to ii.iis canonically ard

isometrically identifies with cl{(¥@s) in L(H)BA. It turns out
that the canonical map fi-om (K@ﬁ(H})/{XEﬁE(H)) into
CPAHY B (HD)Y /L (HYBLE (HD ) defines an isometric inclusion and T
maps (x@f ) )/ (XBLE (D)) into XBC(H). Let Tx be the restriction
aof T to (XEFGH)/(XetedH)) and ¥@C(H) . We define ex{X):=
fepoaa—a . HsingWittskeek s extension theorem [WI1,2.35.113
(cf. alsoc L[PAUT for a more convenient idea of proof) in &
separate forthcoming paper we obtain:

ex(X)= 1 if and only if locfin{X)= O.

For C#-algebras B, ex {B) takes only the values O and 1.
ex(B)=1 if and only if B is exact in the sense of [KI21. We
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get the result formulated at the end of sec. 1.  In other
forthcoming papers we shall refine this result essentiallys
For every unital separable exact Cx—algebra B there exists a
unitary uw in the CAR-algebra such that B iz a C¥-guolient-
algebra by an AF—ideal of the (relative} commutante of u In
the CAR—-algebra- .

One gets several corollaries, e.g. a Cx-algebra Iis exact If
and only It it satisfies the property (C» of Archbold and
Batty . [A/RI, Cu—guotientalgebras of exact Cx—algebras are
exacty, every unital separable exact algebra has a unital
completely isometric (linear} embedding into the C AR~
algebraqaae. '

&.6. In general a nuclear separable Cx—-zysten does not admit a
completely isometric embedding into an exact C¥-—algebra. ke
do not know if any separable exact Cx—-algebra is isonorphic to
a C¥-subalgebra of a nuclear C#—algebra (a long putstanding
nontrivial open guestion).

let A be the unitization of Co{10, 1D RCY wg. (BL=(Z}). By a
result of de Canniere and Haagerup [dC/HI, & is an exact
separable unital C¥—algebra. In Ext (A) there exists an element
iRl such that the Cx—algebra B corresponding to the class L[BI
with exact sequence 0 —3> [C(H) —3> B —— B ~—> O satisfies
BosgR=Resgresl where BYP mpeans B with oppoesite multiplice¥ion.
This implies that B has the weak expection arﬁp@rty of Lance
[LAil. B can not be exact because octherwise B is nuclear and
therefore A and C% ng.(SL=(Z)} are nuclear. But this is
impossible by the result of Lance (LAl th.4.2] because 8L=(Z)
ie not amenable. Thus the category of exact C¥—algebras is not
closed under extensions.
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