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A, BUIUM :
Global moduli spaces in algebraic geometry exist only ?
fn veryospecial situsations., lﬁdeed, to handle the set bf iso-
morphism Qfasges of objects of a given kind, the first thing
one generé]iy Liles-ra to decompyse Lt intoe a(benerq]ly ind tois
te) disjoint wnion of “quotients“.of certain algebraic schemes E
by certain "algebraic'" equivalence relations, But even if such f
.a decomposition into Pouotients' ds awellable, the‘LereSbO”' %
-
ding "equotients’ nenerally do not exist as algebraiic schemes f%
{or:as algebraic spaces): this is the case For,instFFce with thé??
polarized nons fagular proiective vérieties where thé ruled ones %

spoil the picture h7]r'0n the other hand "t may happenh that Boe

|
such decomposition into '"quotients' is available at all: this
seems. to be the ‘ease {atdEast aprieri)owiths a) fiaitelyipre- .if
sented algebras, b) complete local algebras, c) ‘linear algebraic

GrONPS, 36 w0n

To remedy the lack of global moduli spaces there are at .
= : . ?
leasit: two .changes ©f vicwpe ot which can be made: first one - §

i &

can adopt a '"local'" viewpoint on moduli (in the sense of Kodai-

ra=ppencer, Schiesginger, .. .): secondly cae: can adoot a Thirasr

|
tional' viewpoint on moduli (as suggested by work of Matsusaksa,

% ; . % e R v i TR i
shiimura, Keorzumi. 16l Yigzkizt ) !
(N oS DA N -4 I

it is the birational viewnoint which we follow in this pas
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of Yresidue Field at é“ on a’'global meoduli space. N §€77 Mat- E ;
= &
susaka proved the existence of the fields k(%) for nonsinoular ; %
polarized projective varieties and called them '"fields of mo- % %
dud B s strategy was geometric, via “quotients“,hence does %
not - seem to appl¥ato “Cases al., bl ¢} aboves : § i
The gim of ‘this:paper ls fo introduge s mew method by t
which we prove the existence of the fields k(§) for large
ciasses of objects (possibly equipped with certain additional
structurés) Belonging tocelasses a), bl, c) abowes Bor precise
statements, see Secfion 2, Our method is of purely algebraic
nature; it s of independent interest.since it s based on kil- é i
E
ling nonabelian cocycles of certain nonprofinite aroups . %
: : |
Rather than speaking about "fields of moduli' we will f%?
T
speak in our paper about 'coarse representability' of certain j;
functors of fields; as we shall see "coarse representability” : g
is ‘esseptizliy eguiwalant’ to the existence of "flsids oFf w0~ - i
dal i lef, assertion. (5} in-Theorem -£1.5))., H %
Thespaper ‘is divided into awo parts. in-part b weprors ;
§
ve aty abstract criterion .of ‘cotrse representability’™ for funC‘ﬁ ;
tors of fields-{assertion (6) in Theorem (1.5)), we consider 50%§§
me basic examples of such functors and state our main Theorem- g %
(2, 30) which asserts:that most-our functors are "eounrsely rex- ? g
presentable’ in characterist%c zero. In part 1! we use nonabe- ?
lian cohomology to split algebras over skew group algebras in_ %
érder to.check that our Functors satisfy. the axioms appearing %
iR ol criterion of: cogrse representability. i
As & concluding remark note that there are remarkable ?
cases wher the Hlowes] modgli theory™ is trivigl whereas the % |
eae]
"birational) moduli.theory" is not (e.g. the-case of smooth arfii
' ‘ %
ne varieties which have no nontrivial infinitesimal deformations
but iots of gicbs! deformations “ce:eﬁdinc effectively on @ ?
CERCaln T aremaees s BC byl CECgia Sk be e NeE T hanig GThigie eeTE GBS



when there is no satisfactolby "local moduli theory'" whereas
there is 3 satisfactory. "birationat, modul] thieoryt (e .00 Ehe
case of nonnecessary isolated slogularities)i Both cases abo-
¥eowl Ll be ddiceiceead: in our

paper,
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PART |: FUNCTORS OR FIELDS

PR

R (B}

Ukl el . 5% o . categories (here 'c" means
“subcategory'). and Vet CiBixS{= category of sets) be a.con-

travariant funetors For any object X en® define the functor

hX:B~w-S by hX(Y)=HomBe(Y, X)iFor alleYe B

We say that an object X&‘Be codrsely rebresents ik the—;f

re I's a morphism ?:C-%hx satisfying the following properties§

(m]) W(Y):C(Y)w~4>hX(Y) ig a bijection - Tor all

t.

YERS ?

: ; . g€
(mz) For any moerphism f’ZC-%hX: with X/efBi
there is a unique morphism fcHom e(X, X)) sach that vf=i[

=h{°$ (where h{:hx,—% hy, is the morphism naturally indubed
By F), on 2 i

Cleanly (= ) olinicusly determines Xiupito a Ycanoni-
) = ! ;

cal isomorphism in B

3

i
The prototype for the definition above is Mumford’s

concept of coarse moduli space: (in that case the objects of

: . L€ =
B are .locally noetherian schemes, those of B  are also schemes

: Ea - a
or more generally algebraic spaces while the objects of B

are the spectra of algebraically cleosed Fields),

(1.2) From now on we shall fix a qround field k; all

objects and maps will be 'over k''. Throughout the paper we
J p (

: 1
assume -that B is the dual of the catecory of fields, B~ is the

full subcategory of B whose objects are the algebraically CWP"

sed fields while B is the category which we shall now descri-
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e S ; = 2 : : 5
be, Given-a set X}by a-birational structure of it we mean. =&

Sl ’ £ C 1 o b A ' . 1 . -
tantly-of Fielde .’“k<x); X e Xt a8 set together with a biratio-

S

nal structure on it will be called s birational set, By a

morphism between two birational sets X and Y we mean a map

Ne

fiX=>Y together with f£ield homomorphisms f::k(f(x))ww>k(x)

foraltl . el s Bl atbona) sots it cm. o category which we denote

by BE & i e
¥ » Biis viewed @s a stbeategory of B by keming & Field

K be didentified with the birational set X={x}, k(x)=K. A bira-

tlomalt set ¥ is ecalled of finitely generated type if kix) is

@'fiﬂitely generatedrextiension of-k for all xeX. A -birational

set X coarsely reprecenting a Ffonetor L:B~-—25 wil]l be called

a 'birational moduli set for C. G j
Intuitively the field k(x) should be viewed as the ;

‘: . . : ‘g
“residue field" of X at x, Moreover note that if XeB® and KeB g
then ‘ ’
@ ) : 2 ;
hX(K)=1}x,u); XEX o sk {x) K a.field homomorphism S 2

Xo) hX s '"birational analogue' of the '"functor of points' 1

of a scheme in algebraic geometry.

(1.3) What we do next is to_give a criterion for a

AR e b g s

S R 2 A S T e T o ¢

L R S T s e R

FUncto P CiBesas it possess a birational meoduli set of finitely

generated type; our criterion will involve (and was motivated

by) concepts introduced by Matsusaka, Shimura, Koizumi (espe-
cially their concepts of "fieldsof m&du}i“)a
First we flx some notations. 1f K/KO itseacF e ldexs :
tension, g(K/KO) Ji}} denote'the oroup of Ko-automorohisms of 2
K and we write Q(K) instead of Q(K/k); If o Q(K) 15 @ sub= ;f
‘ i
group then K% will dencte the subfield of K of elements fixed %
= . ;
‘by g; ¢ is called Galois-closed if g=g{K/K?), ;
Rowirai e g e ame e aipin O Do s B s SR e i pla et SO
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§

we say that -2 subfield KO of K is=a Tield of definition for £

ir £

M

lm(C(KON»w> C(K)). Denote by D(§)=D(§, C) the set of tho-
se subfields ofid which are fields of definition for & . Hore -
over note that glk)acts on TAK) on the right by ‘the formpula

°ng -] = =
=Cta J(E) for_aegilk)y Ealif)s let

urn

: =
90§, C=g(E)=foecalk): £ = & {
be the 350tr0py of % under this action. Finally define

K%= intersection of all members of D(g)

K’= intersection of all ()
¢ I perfect members of 3

5 olt). ;;‘
1

|
It 3K ies a]gebraica]ﬁh closed then scme easy remarks arz

e o

insorder=lef. f16(F2b7).g

Bl KOED(%) then g(K/KO)C gtk pafticu]ar we have
(0] 3
K%CKé. f

/

- 2) g(%) acts on D(E) hence globally invariates €

§
so i glt) ¥s Galois-closed and K/K™  is not algebraic . then
., e 5 = s A
KE/K is an algebraic normal extension.
3} It is ot peasenable to expect that ngD(§): thiis

fails in very nice situations (e.g. k=@, C(K)=set of isomor-

phism classes of non-singular projective curves over K |24 1)

() e fieldowil hibercal lbd Uninersa) 1 it as algebraical-

ly closed and has uncountable transcendence degree over k. We

}
1

u = . . H =
denote by B the - full subecategory of B consisting of upiver

o) - ) : s 3 o ™ = iy
sal fields anc by B the- full subecategory —~0f:B consisting
2 hose Fields which are countebly cenerated over sio L i

e




separably-“closed n k. -
Eet G Ri=— "S- hiern functor,-%-:C(K) amd Tonsidersthe o llos

wing properties:

(g}). g(%) is Galois-closed

’Oﬂ— g

(93)' Ko/, is purely insenarable
B '
: . §
(d]) D(§) contains an algebraic extension of K
(dz) D(€) contains a regular extension of K s belonging
to b
(d3) D(§) contains a finitely generated extension of ke,

i
i : :
A functdﬂ C2B—>5S will be sald to have property (91) or
bd. ) - fok some leti=3 i Mor tall KeB P amdiol - ESBll), £ has thes
correqundi%% ﬁroperty. Consider also the following nronerties

which make sense for any functor L:B—s 5,

(W) For any KeB we have st k) =FEim €{t) where E- runs throudh

tihie: sieit ol @l siubf e lids ofis & belongimg to: B,
a :
(s) For any extension Kf/K, K,K’¢B  the map C(K)— CAKE) ds

injfelcbivies;

{m) € haé a birational moduli set of finitely aenerated type.

Note that (g])+(92)+(g3) implites cthe: fact: that £ hes &
“Lrield eof medudi!'siin Koizumilts sense Tﬁ67 while (ql) says that

‘ : Mol | 5
£ has a "field of moduli' in Shimura’s sense (24|, Note also

that- in-olr:applications property - {s) wild be essentially =

‘'spécialisation' property.

|

% : 5 = e - o st + 7 ~ c
Lt wi b}t be comvensent -to consikder the Fol-S0MWEng arica titans
of (diloand i ) {iidlkinog.sense - for ony funefor LoBa23)
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g:‘. 1= = ,.,\U ' - t:
(u]) moes ol Siae i EiC(K) there existe an extension P
—~ 2 ~ E € i
K/K such that D&g) contains . an algebraic extension of K° ‘
(where j LS ThesiMegeior: & yis LAk —wat (V> e
(£) For a1l k8.8 a € i
Y5 a K&B -~ B and all 369C(K) there exists an exten- -
: o ; ~ I~ P
sion K/K with KeB" such that D(E) contains a reqular extension |
of Kg : d
the fellllewina resilt cunmarizes the relevant imolications i
between the above properties (the last implication beina the key t
one in our approach);
LT.5) THEOREM. “For-a functor C:B—»5 the follewing hold: i
sl te el

2) (s)+(d])+(d3)::?(g])

Shalw (é}) = (S

s

5) (w}*?(5)+(d!)+(d1)+(9])+(92)+(93){::,‘\(w)+(d )

=) Ll (k)i=04"

Remarks, a) Implication 6) is a formal consequence of 1)-5)
b) Implication L4) is contained in ]!6j
3 A
c) The eauivalence 5) is & characterisation of
course representability (under the hynothesis (w)+(d3)),

\ Sl % < : - :
d) lmplication 2) plays a key role ia our approach,

Proof., 1) is standard and we omit proof. 2

- e T
ield K& B sng for afy

~

~h

20 sEBee sany ccubfield L of a

EcL(K) put glE/L)=gl{s)~alx/L}.

¢

T




dental extension of k hévinq uncountable transcendence degree :

dieesd ot s ig ) el ©Y where j is the natural
] 5 3
e \
ime lLusitoniof KO, thie sallgebraic -closure of K”&“/Lc nto K and
e S ] = o~
SreGaiee T | f hence b B s R T nite iR e
: s . :
tenicsiion K=o f Kg\’/L) contained in K with K,eD(g). Ye have
| o ] >
Q(K/K])cg(’?/L)cq(K/Kg(?/L)}= Upohn - letting H to be the image of =
> - ; E -
- (& : /AL |
g(£/L) under the projection a(K/Kq\s/L))«e Q(K]/Kn(é/ >> we have |
- ' H ‘|
by Galois theory that H=g(K1/(K])H) hence q(é/L)=O(K/(K]) ) ?

which easily implies our claim,

We will make 2

(5)y

New Jet?s preove -that q(§)=Q(K/Kq

'""'reduction to the uncountable case'. Let k! be a purely tramscen=

over k.. et K’=Q(K®kk’) be the quotient field of K®‘kk', F an

slgebraic elosdre of K opd §F be the image of § via C(K) —> C(F).

e , |
By our Claim 1 we have g(?F/k")=g(F/Fg(§F/k )). Now take 1
£ ; : : - ;
CréQ(K/Kg(J)). et oo e I k! ube irs wni quie entens ion and det
Eé;i?ﬁifj be any extension of g 7.

Chatm 200 e alr el ~F/ " )

I8 %4

Assuming this for a moment we get that yéS{gF/k,) = ;
ros » |
§
O( 0“ % o’ (—(‘7‘ . b
§F=<§F) =(§ )F and we conclude by (s) that §=_§ s Bl S %
e ._ . h
geals)e So 2) will be proved if we prove claim 2. ;§
etk : ; g
5 ~ ey o =
g=4% eq (F/k* ) 3<K):K'-:}Kt9(f)j
Clearly there js a surjective homomornhisc i
4
< e
g —wr'—T@le o(K‘/k')"C":Q(-';)T |
i = i
ne the ke=ae O e et F £ e



o

Pa =

g /"ln' = a =
F9(>F ) r—q_<FQ(«/i\ )) :<K/)9=((Kl)ﬂ )=Q(V\G & /k’)

wherre: the whe §ndesc Uil means "nerfect- eleosure! odathe last eabas

lity is a consequence of a remark made in ’LZ7J 00‘1405—-}406, Now owur il

Claim 2 follows because Bi is the identity on Q(Kg(g)ﬁ k k?).

3) Let el %G}C(K) and let KO be ithe aleebraic closure

of K- in K. By_ (@), KOeBW. By (d]) there exists some §06C(Ko) F
. : i %
whose image in C(K) fs g . Apnlying (J;) to Ko and go there is é
% e - ~ - £
an extension K/KO such that KCcB and Blt) contaiss @ reaular -
Ao e » o i 5
extension of &k ' (= fmage of §b i L EK)TE, - How thene exists a !
K,-isomorphism u of K onto a subfield Ky of K. ¥ith T e %
~ :
of é in C(K))=imaqe of § in C(K])}clearly we have that D(§])
o
contains a reaular extension of KCO contained in K]' e el |
€ z 2

25

- . 1 ki
be done if we prove that Ko =KS. Bt this ieeacily checked throua

property (s},

2
Y ‘S - = . - - : o eSS £¢e‘c'
By Sl e v eNgEs - T s ouitbcaEnt to sRiniERel DETFELE
T E = = 3 z ,\L”’; . - - au-
EcD(e) with e t, Bv (d ) there exists FebirlaB wibh-E s pean

lae extenslon of K- let F. be the perfect closumecof F - in K 'sins

5

cerk Esepeefect oK s alaebraically elogedtiniF.. S50 ohe cal

§

fimd woe giR/K ) suchathat o x égr;, By (g‘), cc ql(g) hence

) -] -
xgo F,ecp(3).

i i i i ' iat N he
5) To prowve imp i eation from left to riaht we need t

: e aaa : o ‘ - :
folllowing definition. Liven a =subcatecory B ©f B a3 mornhism

¢

|

O:CiBo-?h

X1iB

. . = N = - . iso-
g..5fs solkd to-have nroperty Lm, ) 18 0 (Relces 5

| - 3 : 2 20 = i ]
Fearphismsen.all “obgjectis of Bar\s ~ Then we proceed ih-severasy

-

stens.:

wy
rt
]
&)

. L€

L9
=3
=
o
w
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2

Hom  (E,F)=)ugHom (8, F): w can be extended: t6 some
BK L B

Define s birational set as fol lowWs. Put X:C(K)/Q(K)’ et
s X = b (K} “be-amy sechion of the nrojection p:C(K)— X and out

3))

We construct a ‘morphism YK:CI = hX!BK havina property (m])
¢ B

as follows, For any subfield E of K and any gEcéC(E) let §=§K

‘k(x)=KS(x)‘for all xeX (k(x)/k is finitely qenerated by (d

be the imaqe of éE in C(K); we B s(p(§))=§a. for some
€ g(K) and we oput ?K(E)(gE)=(x .l ) where X =b(§) andu skix )=
. G 3 g

o Eois diefiined & thes composition

)

|
S a” e
Bl e = T

¢

2l

of 0 . Moreover if E is alaebraichlly closed fK(E) =5 iﬁ}ective

Note that by (q2)4(q does not depend on the choice

due to properties (5)+(9])+(92)+(q3) and surjective due to Dro-

perties (W)+(d])+(92)+(g3)e ' .1

SieepriZe et ik aimd ‘PK be as “inSten 1, YMe can construct

= - w e : = : =
5 funetor BB —= B with the property that for any L B W ot

\

an isomorphism ﬁEZEﬁff<E) in B and for each arrow u:E'— E’ in B
o e ' w
we have ﬁ(u)cfE=VE,ou, Define a morphism ? L w-*hx\

8 B

w e ‘
for any E€B let Y (E) be defined by the commutative disaram:

w. a5 followss




Clearly '\¢ has (mi).

Step 3. Usina axiom (&) ¥ can be extended to a mor-

e

phism ¥:C—>h  which will still have property (m,

Step k. We claim that ‘¥ has also property (mz). To

check this take any morphism ¥7:C —> h choose Ké&BY and consider

XL’
the g(K)-equivariant maps of sets ?(K):C(K)::3hX(K),((’(K)=C(K)~4>

— hX,(K). Taking orbits we aget maps QX: C(K)/Q(K)419~hX(K}/q(K)Z

X apld g}:C(K)/g(K)—ﬁ hX,(K)/g(K) and define f:X— X! by

f=7n:$’a?" where W:hx,(K)/g(K)~€>X' is the natural projection.
X‘é’ué) and uf’(K)(g):(X% ,U'g) for § & ¢ (k)
then by functoriality of %* we have iEiREx i ek, —wiiile by the

Horeoxer i F= ol ) (€ i

very constliuction of X we have ug(k(x%))=Kg consequently we aget
S 3 >
field homomorphisms £ :k(f(x))—s k(x) hence 2 morphism f:X— X’

| x
unique wiﬁh the property h£0f=~ﬂ,
The othar imgli-ce«2-- i5 5) is proved alons the same
lines; it will not be used in the sequel and we omit details.
|

As already noted 6) follows from the nreceedino impli-

cations.

-

(1.6) The followina aeneral situation will often occur
in what follows, Let’s make the following definition: a morphism

C/— C between functors from B to S will be called g full embed-

ditmg. T f the map CEEK) =it kk) is Injective for-all Ked and

for-any field extension j:K— KY,

Now ff C*~>C is a full embeddine and § & C(K) for
ceme KEeBahen clearlv Dl=()l= Erpd el d tlcals B0 Copscane

SRR AT AT

TR T

s ey

PRt

ERTRAT S

RHESTRE AT




= ]'% -

Iy B e CS s doiee Yo i otihe pDIRODeRrRties (Qi); <di)' (J:>’ o), 5] mhe

Saimesihodid sifemre L,

el The following coristruction will plav-s role laters

Suppose C:B—>S is a functor. An element ¢ C(K) is called boun-

ded if. there exists a field extension KE/K, & subfiedd KO of Kf :

finite]y generated over k and an element §OéC(K$) siich that §

and %o have thé same image in ¢ Gl For any KE€B let Cb(K) deno—;'
- :
(

te the set of all bounded elements in C(K).'Then [ € (K) -defi-

. nes a functor Cb:B-—>S fullv embedded in-C,

2‘“Som¢ remarkable functors, Main result.

i
o
|

(23 )k The typicaT examples of functo?g fipom B to S

Wit chwe are goipg to consider are the “moduli functeors” associa-
i

i

= c

ted to - suitabie Fibred categories over-B, Morel Pl siely —Let st

Lo : = —atan
e ear s R Sn S0 FEe o e an

=3

£
7

(6]

v2r B: by this we mean thdat fer any KE&€B we

are aiven a category CK’ for anv field homomornhism u:K=K’ we

are given a "base.chanae'" functor CU:CK—ﬁ Cs land for any pair
N &
of field homomorphisms K —» K/ —Y» K" we are aiven a functorial
isomorphism C :C. oL —>¢C , all these data beina subject
Wi VIS S et vu :
to same natural compafibiTity conditions UOJ. Civen C as above

one can define the "moduli fupctor! [sti}l denoted by L) from B

to S by the formula C?K)=Cy/iso(=-set of - isomerphism classes oOf Q
- £ ~ /2 ” v
objects in CK). I f AECK and gA is its imane in-C{K) we put : |
Ve e %
D(A)=D(%,) and slmisg o8 ). :

|

(2.2) Tthe: functors PAL, PAL{, HAL., By a K-algebre

L3
i

(K a field) we understand either an associative unitary (not ne-

-
b

:

|
i
i
i

e . \ ‘ 3
cessarily commutativel Kealaebra or s Lie K-algebrag., By a3 no}

~ - . - - ) . b e g ‘
tinmsi-te dimenslona = linear su

®.
)
O
=)
0)
I
o}]
0
h
Cr
2
fo1]

W




R

bra we mean a K-alaebra A with a given polarization pA ot

polarized K-algebra is of course finitely cenerated; it is_éa]led
finite]y presented (resnectivelv hoﬁoueneous) it the kernel of
K<?A>‘%~A is a finitely aenerated (respectively finitely Qener%ted
aﬂq‘homogeneous)Ideal of K‘<?A> =free (associative or Lie) K-al-

aebra on PA‘ The polarized (respectively polarized finitely pre-

se i :
nted,respect:ve]y homogeneous) K-alaebras form a cateaory which

f?
K'

a K-algebra map f:A—>B such that f(PA)C:PB, For any field homo-

wescad | PALK (reSPective]v PAL HALK);a morﬁhism is by definition

K-%PALKg by
£yt ' |
Ar=>A'=kK?! © Kk A PA‘=KI @)KPA (and analoaously for PALE, HALK )

morphism K—>K’ we define base change functors PAL

the resulting fibred cateaory and moduli functor are denoted by

f

PAL =i es pectiively o mml U g )

Finite dimensional K-alaebras A have a natural structu-

A F =y ' . - ' S : >
re o polarized finitely npresented K-algebras via PA=A° Another

rem kanp: = Ty = = = - 5
remarkapie exampie of algebras which carry a natural polarization

Wil I “he given belowdet. (2.4) and (2,8)).

(2.3) The functors CLAE, CLS, AN -complete lecal K-alachbra

will always be assumed commutative, noetherian, with residue field

17 =

e Denoté by CLAK the category of complete local K-alaebras. Defi™
ne the base change functors ﬁLAKﬁw%CLAK/ by AF%}U'ééKA (Cg =
COmpleted tensor product) and denote by CLA the resulfino.fibred
category amd modulli- functor. As we shall see-beleow the functor
CLAP of bounded comnlete local alaebras {(ef, (1,7)) will prove
itself to have aood moduli theoretic properties. Note for imstance

=S

L

that any AQ'CLAK which is algebraisable in the sense of LY

—

bounded. It seems to be an open problem whether any complete loca

ailigebra o “bownded (ef. the end ofl21).
' ’l A

L.
For teehnicol rescsons it is comnvenient -to consider sl e
Pil=s I 1t " - £ : 3 o
a - relatifvie  ssii syt ifon, Namel v ors8 fixed tpteoer K3l let K Xos

i
e
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the category of complete local K-algebras A equinped with a local

algebra homomorphism Kit X E»>A (the morphisms in CLSV beina assumed
j 4 \

to agree withithe mape kNl —>A). These CLSV define = FTibred cate-
: - <

-

gory “aid someodal i Foanceer 15

(2.4) The functors AFF, AFFT. By an affine K-algebra we
mean a finitely generated, commutative, geometrically rgduced K-
algebra, Denofe by sAEE , the catecory -of affine Kealogebras (which
i's antiequfva)ent to thé category of affine K-varieties) and by

i

AFE .the resuliting fibred cateqofy and moduli functor. We say that

AEEAFFK has non-necative Kodaira dimension (comﬁare with [?f]) i

R R

it s gebmetrical]y_integral and there exists a-smooth completion

X of Vreg (=regular locus- of V=S§eC(A)5 such thatISm(X;’D)‘= g
. . - ¥
.=HO(XM&@ m((m—])D))¥0 for some m»l (where D is the re?#ced At e
sor X*\Vrec assumed to have normal crossinas and u&';s %he cano-
mical bundle on X). If chor{k)=0 then by l}][é1] Sm(x‘%F) (viewed
G o SUbcoac s s lab o cn at ceguiliar meuple n-forms oh!VrécfwhETe
n=dim(A)) does not depend on ‘the choice of the completion of ;
reg; T Sm(X,D) can be interpreted as the space o% reculaf ?
m—up1e n~forms on Vre with finite “volume', Qenote by AFF; the é
full subcateaory. of AFFK of all dlpebras havime a-non=neocative z
Kodaira dimension and by’AFF+ the resultina fibréd cateaory and %

moduli funiction,

2.5) The functor CON. For any. field K et COHK denote

the cateaory of finitely uenerated KEXﬂ- modules (Xz(x1v-"iXN))‘

K

-

5 = lﬁpu
Define base chanace functors CNH_ —> COHy, by El=2E @JVEXUKﬁkb”
4 LA}

A\ 5
:K‘(E,y E. We get a fibred catenory and a moduli Ffupctor C%H. i
b
2,60 Ghel fupetor LES, Fix.a complete-tacal k=3ldebis
e e e A m ” = = o ol A Y+ 1 & s £ % e e of S



3 A
o 4 0 o & R = \ v .[2‘
K Soec(RK 5 . j where ; K GO 0 and M(RK)
{

Fiinieid o Tunctonm N ESEB =2 5,

tilired o sipre e i GimesY

i's- the maximals ideal of Ry' We de
N

r

(2,7) The functors AHA, AHAP, AHA'. Let AHA, denote the

category of affine Hopf K-alaqebras (which is anti-egquivalent to

the category of linear alaebratc K-aroups [Hﬂ)J With obvious ba-
se change functors we get a fibred cateaory and hénce a moduli |
funttor AHA, ' El
A reductive algebraic K-aroup P (char{i)=0) will be
called pure P fe But{P)ltnt (P) “is finite, £ K is aluebraically

closed P is pure if and only if its center has dimension £1

.(lJZJ p.218 and [}j , p.-409). An affine Hoof K-aleebra A(Char(K)=
=0) will be called pure if, upon letting L=Spec(A), e (L=

=unipotent .radical of L we have that L/U is pure (L AUE exicsts and

= = =
full cunea

-

is CE Ttk

G
(]

ductive by [12] £5.80 2nd 117). Let AHAL

i
[t

ey el AL ot paies Moot slaebrac.and AHAP the resulting fibred i:

—tc iy | o
s b2 ] .
7 2 ~ MBS
]\

O

t&

cateaory and moduli functor,

Suppose A& AHA char(K)=0, By a riacidification on A

K!

(or on L=Spec(A)) we mean the givina of the isomorphism class e

V' of @ faithful represemtation V of /U (where-onece aasain

UzRu(L))‘ Siree L/U - is reductive the set of all pessible -rigidid

cations on o aiven A 1s o "discrete” set (1.e. 1t does ‘not ipcnca

wn

=5

se by base change K—%aK’L K. KiQEB;. By a rigidified affine Hopf

K-algebra we mean a2 pair consistinag of an obiect AgAHAK and a riEs

gidification V- on it. Ricgidified affine Honf K-alaebras form a

e e = r 2 - S
groupoid ™ which we-call AHA': we obtain a fibred arunoid and a

K

meduli “functer AHAr.

el
I=
i
|



Egl |
oif ) then by L#JL21] the map u™: (vf)

reg reg ==
“isomorphisms Sm(X, D)—*?Sm(xl, DY) hence u. induces

ail s nxl

_morphism AF

iy free sheaf F on YK into the KKXU - module F’=HO(Yy,
theorem of

a full embedding by the yogqa

o
(=]

any ‘K| Y1~moou1e E whiech s
ssociate the local complete K-algebra KiX i
= ‘;.‘ ; - -
: Ly

._]7..

<k

b

. 5
b) LES? ——% goH s cls” —srls

§
) AHAP ——— nmn

where f Z o
= o we assume char(k)=0,

Proof. The only non-obvious arrows are N,ﬁ,g?

lTeo constnuet clithe key polng is that a6y AéﬁAFF;

a8 canonical polarization PA'

V=Spec(A), (X,D) a smooth normal ereossing completion of V

let m%»] be the smallest inteaer such that Sm

I't-.is cohstructed as

for each integer n%l the K-linear subspace of A:

fol

(X, D) 40,

ha
lows ., Let
a

reg

An.ciféA;f.(B] ® ... ®p€es. (X,D)for all ﬁi ;'.-‘,Fnesm(x;o)g

|

&

(B )

M

=&

(
the smallest it eaer sucﬁ

o L -
s e
T &

e s s S
sne 3 PESET 2o cdon

phism and V’=Soec(A/), G ¥} 5 spooth normal

I | ~ o !\__.i
[ = K Lt oot T2 40 &2 »

&

n
that AN generates A as a K-algebra and

/n

1

-

[0

reag

_K-isomorphisms %

; in particular u(P )= Prd o

ey

o consiEruicE F‘ write R=k|[X]

o -'

—

n ‘10}.

F —%-PAL' which obviously is a full

Rrothendieck Uoifl hsoifinisted vy igene patieds

4=
=

indu

N be

CES

—«%Ag f o

embeddina.

/I and send a bounded

Now

Fimadidy, - 66 ‘construft 7 we praceed as follows.,

i i

bounded and finitely cenerated

25

By

R i
H

we

iopedc

S

nd

Then consider

crossing completion g

K-

so we have a corectly defined

loeal=

a

S

HIREED
g

et A

R

AR

i e e TS g

SRR R b




o

it : . . Wty o : ; |
with the obvious inclusion map KEXll—=KiXlo -Er thies will be on eleat

4

. b : : 2
ment ol CES (K o elfelkothat ¥ 1o o furl embeddinao one has

to-prove thateif /K B field extension, A -is a bounded comple-

- oy ) P A . [~ % 5
te Slocas] Ku}d ~alddgebra and L @)K A QLGxﬂng is an isomorphism of

WX - algebras (wich Bos finitely generated bounded L}::L’X]j"~ module)

r—

then AZKEXQ@ E, for some bounded finitely generated KEXQ- module

Eo' It is sufficient teo cshow that (nil(A))2=0 and the natural map

U‘KHXH*—57Ared=A/nI](A) is an isomorphism, The condition on nil

is clear while for the second condition thé formula (LQ@ A) =

4 k" red
5L @JK(Ared) (which holds by separability of L/K) shows that

A N - A ; : :
1 ® u:tL @)KKBXW4L C)K(Ared) is an isomorphism which imnlies that
so s u (look at the associated araded rings).

-
(2.9) Ik iseian easv exercise to ched& thist the funetors

e properties (w)(d,){s). Clearly CLS has
A

; S 5 | ‘ .
property [&3), Moreover CLS" has property (dB)i gisiethe - fact: that

g Seaisaae s o on braic ecuations with coefficients inm a univer—

®
wn

i8]

Sias hbileldioKk involving at most countabiy many unknowns has a solu-

4 : : > ] { y g
tion in a field extension of K then-—it ‘has-a selhution «in Kiiwe

b

would like to stress-the following technical poihthere the

uniiversality of K iss. elssemtial amd this justifies both our defi-

nition of property (dB) and the somewhat  borina ''reductien to

the uncountable case'" in the nroof of 2) in (1,5)), Finally note

o)

that by a result of Seidenbera {22] LA has property (s); same

]

shiow thoat in faect £15 has fs).

N

: S ]
arguments as in {22}

I

The ‘main effect of our theory will be.the followina:

{

|

(2. 100 THEOREN. Suspose chanlk)=0. Then the functors
5

a) HAL, AFF+, PALf; bleEn —Con® LFSb; c)AHAP, AHA" have pro-

s *

perty {(m).,

|

|

PR e

TR e s




E

Farsieis et 08 i e o (5 tonether LR e :

2000 the oty dibehic Wi ll be proved if we prove ihe fol?owinoi
b

: L e : 0 |

V2ol A T HER R e - The Funetors BAL gnd £ satishy (01) i

' : £

and.(uz)_ Moreower ifochar (L)=0,  BHA saticfics (g}), AHAP satis- |

~

figs (d;) and AHAr satisfies (5}) and (dz),

A Corollary of Theorem (20 we get that if echar(k)=
=0 then AHA has property (g]).

Theoren® (0 1] ) saivec sionificant i hbormatich also in
characteristEC'p>O.

Indeed together with (=5 (1.6); (280 (2.9) it shpui

that «in arbitrary characteristic PALf and CLAb have the properties

(Q]), (92), (d]), (dz). A typical corollary in characteristic

p>0 concerns the Frobenius automorphism ¥, Indeed if k is the

PrimerTic ol Samei e s e indod does) comletie K-aloebra {or
P €
1 H : T+ = . T +

g4 polarized finitely presented K-algebra) with K universal such

n
T ha ’*“‘P L — N ) ” - = - 2 = 5
e e = SHIE B2 iher N is Sefines over the sicebra e rlos
suire: of -

D

An example of remarkable functor havina property (m) in

arbitrary characteristic et 2

6

)

) is the functor ERV B —> S

{ [Ny

CRY (K)= set efiisomonphisn classes -6f - smooth projective curves over

-

Fhe cprepf ‘of THeorem (201 will be done —in Part Ll of

~ X 7y

o spaper (cf. Corollorics Gleeg b A5l =(h by

o

a purely algebraic SErateoy from our book

(2o Zis Non: that one:could try to prove { }) in a

Ygeometrich” way s e llows . IF € 15 686 of the flbred-catecoiies

~——

under consideration then each ebject Al (K uniwersal
4

<
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D
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=
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then try st Use reppecteiltasbi ity of the functor of ‘tsonorph: sms

between objects in oy owhere L i s-ap extension of [ tothe

cateqory SEH of Tchiemes (over k). There are serfous difficulties

witth this approach: (indeed although one can findibw property (dg)

a field definition K1 o Beawhich Jis Ffimltely genenated over KO

one canmot find-apriori such a K] Wihibeh: in-—additien s “¢table

under glA) Cin fact if Kl/Ko is transcendental then K, is néver
stable under g(A)!),

Note also that one céu]d try ke prove (é}) by extending
the method of Chow points due to Matsusaka and Shimﬁra( There are
difficu]ties 2l 5o i the “rhii’s apérpaCh. Indeed in their method it

‘t\’\B‘L £
is essential“¥the moduli functor takes the form

ikl Ll 0 iR k) i!

ective k-schemes (apnearino as 1oca]{¥
{

oy
!

RS . Sy " < -~ . T R |
osed pleces of cartain Lhow varieties or Hilbert schemes) and

[

O
[

R. certain ''algebraic! (nonnecessary closed) equivalence rela-

tliomswen. H. . But € fioF ot clear (8t least apriori) thast s Ehies hb]ds

0

bly- need-a theony of’ Ehow coordinates (or a YHilbert scheme' ) for
the corresponding fibred cateaories (e.g. for complete local alges
biras or for polarized: finitelv presented a!gebras!).

{2.13) Let?s close bv making some remarks on automors

4 . T : S Vs .
phitsms in g8-f kbred=cateqory € over B.-let KeB ACCK, there
exists an exact seguence
3

3 { fon
1—Aut v (A) —>6(R) —5qg(p)—s
( s

e e ? R o o D it mres e sy 1o oy

s e

EQ
¥

H

¥,
5

topthe functomrs under-consdderation: —to see this eone - wottld proba--

i
£




. 3 : & ;
afe palbrss sal v o v s B (A e vt s A vl (A) an isomor-

L

phism in CK; the multiplication is defined by

C_ T A\ = i t v <
Lol (8, —w=(azT, Eo ol w)
= = - oo
where v =( _](V)EHom(A ,(Aa}t) and ¢ =F = (B e Hom(tA )
T A A
13

oT

will be to kil covcks of G(A) with values in general linear
groups GLn(K)‘

As an exampTe; |5 C=CLA and if we‘view K as a subset
_of AE CLA then 6(A) identffies with the group of all k-automor-

phisms of A sending K onto e

A ). Note that G(A) acts on K via'g(A)o A key pelnt in our method:

The following relation between our setting and Weil's

Let. K_ be a subfield of K and AcC t# %X £D(A) then one can find

= QFOUPVhOmomofph'sm s:q(K/KO)—w%G(R) which composed with the

5 B B O]

!

Tusion ci%qu):GiRJ‘

(e

e = RN e { i B - St s
projection &{A)—sa{A) yvields th

2 Ta T°C

Conversely if such o ‘section!' s exists 6ne-can ask whether
KOGD(A)' Uport Jetting sla)= (o, s ) foraealk/ik ) with s A—A
= a (o] o 2

we see that we have ; 2

: . ; ¢ 7 . ,oe
fer altl g, i.e, the fanmt] s e glk/K )¢ satisfies a condition
e g .

Sen
analogue to Weil's cocycle condition i261. So if K/K, was & fa-
i -

7 §
—

lois extension, we would get for 'reasomablet Ll that Well's dis

cent works: apd KOQD(A). In our situation; however, K is universal

while K is the algebraic closure of k® so K/K  is always trans§6ﬁ§

b

Galoi§ descent worths being noted (although won®t be used later). |

¥

; — o 5 ¢ . 1 = Sl
dental; moreover we do not dispose anriori of a '"section'" s as abo
ve. S0 Weil's Galpic descent cannot . be apolied to desl with pro=




PART 1) ALGEBRAS OVER SKEW GROUP-ALREBRAS

3. Kﬁ]llﬂﬂ. non. E"il”n cocycl les

(3.1) We place ourselves in the settina of.[}}, seotion i 560

let G be a group (not assumed to be profinitel): by a f-field

(ot

(VQSPEthveiy G-group,_ﬁ-rinq;,c,) we will Qnderstand a field (res
pectively group, ring,...) toaether with a f-action on it by field
(respectively group, rinq;,;.) automorphiéms. if K is 8 G-ffeld
and L is a linear algebraic Kc-aroup then L(K); the orogb of K=
ﬁoints of L?;S a G—qroup; ‘ : v =

Becall ahar e s anb-group.one defimes the set
Z](G,P) of c?cyc]es as the set of all maps f:G~#T‘Sati5%Yi”“

ét) for all s bER o “A-cocycle &

Fleti=rfc)ciF istcalled 8 cobounda=
e ‘ == e - e
TY 1T Ehere eiists xe B sren thet Flsi=x =x Too =il =2,
;|
{3+2J) We make two werinitions, An exrvension /K of FrFicids
. : s : ; r s .
will be called constrained if the extension E /K  is alaebraic
(terminology is inspired from differential algebra [1h1)2 note
that if E/K is .constrained and K is algebraically closed then
KG=E(;.= . - - 5 . i
Moreover a subgroun Ey ol ok it eal jed ecfinite i f there
exlists a sequence of subgroups C]c H S :Gm=ﬂ sich that G ¥s
normal of finite index in ﬂ.+§ for l£ism=1. Llearly the extensiosn
j
G
I e ; e
ke /K™ s then pecessarily thaite,

|
(3.3) THEOREM, et K- he a B-fiehd: L a |inear algebrait

] $ .
drioup.and fCZ (G-I ) & cocyele, Then:

o) There exists =& eofinite suboroup B, of & and & fini

oy
4
!
¢
]
r
4]
«
)
n
-3



o T

%2}

geometriecally ITrreducible there existsia Fi-

nitely generated requilar externcion of hi-~fields KT/K such tEhia e athc

]

™~

imagesof f wber T (B )T

1 >
e r{ea) ) e s collsgndar.,
1

Prook, Evinbed | inte €L, for some N and suppose L i:s

N
G,~~
[ X1y by an ideal I where X={X. . ) and d=det (X), The-

defined'in K

re is a unique G-action on KLXlAwhich aqrees with our G-action

on K and h' th e ) . = ;
stich thait inj szip(f(s})nj where f(s)éy(K) is viewed |

st R S LS

a5 an element in GLN(K). Simce sd=(det'f(é))d the. action above
extends to a G-action on K[X]d{ clearly J=IK{}]d is pjoba]}y G=in=}
variant. To prove b) note that the radical r(J) of J is a prime
ideal in KLX}dband clearly is-alebally 6-invariant, Thgn we put
K}=Q(K[X]d/r(J)) and ]et xéL(K}) be the vapoint of Licorrespon-
ding to the map KG[X]d/I;w%Kl; clearly fF(s)=x""sx fowiali sEn

and b) is proved. J 1
|

. e Lt T K[X]d

satistying trt2 folloping nro-asrties: : =

Lt contains

Zyoat el invariant -‘for some cofinite subgroup o
ot G

Let J] be a maximal member in S and let'ﬁ] be the cor-
feSPOﬂdiﬂg cofinite atoup from condition 2}, We clalm Jasks @
prime ideal, Indeed let M=557,,Lg,Pm % bie the setof primes in
K[*% miniimad over . Then L. o=Kerl{f, . shut(M)) Jde -still cofinlite

- did ] 2 1 S
J

s0 P, £S5 hence by maximality szl' Let K,=0(K[X
. 1 A

xéLKK1> as-in the proof of b). We are Jeft prove that K§1AK’ IS
: g
algebraic, It isssufficient to check thot any element aEKI’ 15
' - ey !
algebraic over K; indeed if én+b}aﬁ =+,,.+bn=0 with bigK 5 an
equation of minimal degree satisfied bv a then for anv sgh, we
ey
e i =15 R o =508 nence by minime v osb.sE
' ;4 -]
r: — 2 Ve

)
1
1
0

s



ot s o (&2
turn “is -fipite cuel %L,
: 3

/ . s
Assumesthiere Poxists ack transcendental "over K and

|
look for a contradiction, By Chevalley’s constructibility theorem

_K%az, g #0 such that the image of the map SDGC(RHG*

Llere “exiafe q¢
a7
A

s Spec(Kﬁﬁ]) contains Soec(Kiéjq) (where R]=KLde/J1 and e

is the R,-subalgebra of Ky generated by a), Ve elaim there exictr:

ascefini-te subgroup ﬂz of Loand a ﬂzwinvariant prame iceel P#:O
i

in- Klad not conteiming . o, IF K is infinite this is clear.|

To prove the claim in qeneral note that there exists at least one

oy

-
. e | : : : =
olyn ‘ i 3 v '
poelynomial hekK ng none of whose prime factors hy,...,h in KLaj |
divides g, Clearly G, acts on K[a]and also on the set of ideals L
F=§b]KE3],..,,hm K[é]?. Then the claim follows by takina G,=
=Ker(“]“”*Aut(F)). With P at 'hand consider the set E:{Q}":"°'°

ce+., 0,7 Of minimal primes in the fibre of spec (R, [a])spee(Kfa])

at P clearly &, asets on R, Jaland alse on E. Thea if we let G

Se U R. 5 PEnces 9ol | Do the inverse imece oF 5% n KN

: i : = & AT
which we call J3. Now Q#0 hence Qn.\)‘f’ (because Q(R]:-—-Q\R][a:/) S0
J3 SEricEly contains J]; Siince 83 s cofinite 4in-6- this contid
giiict s the maximality of 3] and the Theorem is proved, =

(3.4) Let K be a G-field., Denote by K[G]the skew group

W

K=glgebra on Gy reeall that as o K-linear -space, KLGj has a basis

consisting of the elements of R, while the multiplication is de-

et

fined by (Cigl)(£252):(5231<CZ))(S’52) for-all .geepoek, o1s 896

1

‘ f K

We shall be interested in the category of w?“ modules (note

K

that the (6,K)-spaces from 15| are K[G]- modules while the con-
e b

Verse:is not true ‘simce we do not assume = and this will be ImpoEs
( If M is 5 K[l =

tant = thst the action map L -—>qg(K) is injectivel,

-

. , : :
Fo b LR o - ol e O e o 3 e 2t =Y 2 1 =y b=
modile sthen Slexj=(anelidespl 0. =211 eagfi ek, nel, When we soy &
- = - i ~ £ < &
; b osLTe ¢ it - = £lme e e e ~o3n e e v .o S me ise



=

For anmy K[ﬁj— module M put MG=2xEM; sx=x for all SGG};

: G .
A . . . H
M= ls-a K= Binetir &epace ond we have o natural mjlec i ve map

(MG)—»—«-~>M, C® Xl—> CX

G

We Wil often Fdentifty- K ®
, K

\(MG) with the image of the above

map. |f this map is surjective we say that M is a Sp]it K(ﬁ]" ios

diles Closr iyeMsiaspilit —f and only 1f it s has a-K-besis con-

tained in MG. Mereover one easily checks that — anhy Sub“K[C]_ i

dle of a split K[@]— module is split (use an araument similar to

that in[S] D5l )i o F K]/K is an extension of fG-fields and.if

iS=a h[b] module then K](@ K M hasa-notutadiskEriicture: of K}[ﬁ}»
AN 2 #

module defined by sle @ix)=sc ® sx- for sehi, ceky, xeM.

S = - s o ef . MR Sty
i ; FE P L AR f R s LS DI

3
i

it K6~ mos

ej“ ;
du]e’ G IS a Subgro ! £.G and K /K iS an extension Of G]”fieEdS

]

Lhensine Toiilowing ho

Sy
e

Py}

f
sl ; : 2 =
1) K M s & split RXEH] modu1§ and

2) - thie patiral, nap
- 1
e o

is an isomorphism,

The first assertion is chear since K. &

M has a

“,-basis consisting of Geinyariant elements in M, To prove the

second assert ton. It =i

w

= i I e
morphism after tensorization with K, over K{} - Bt after ‘tensol

zation both the source and the target of f naturally

K]._ Fw SO -We - are-uvsone, i

®

sufficient to check that f becomes an iso-

U s

+

identify wit

r
13



~segll sowe get.

(3.6) COROLLARY, Let K be a g—f;eld,-Ma,KEQj— module

of finite dimension, Then:

a) There exist a cofinite subgroup G]‘of G and a fini=

tely generated constrained extension Kl/K of G]}fie]ds such that

'ﬁ @)K M is a split K][h]j— module,

b) There exists a finitely generated regular extension

K)/K of G-fields such that K] @)K M"is @ split K][ﬁ]— module

b, Polarlzed KLG]— oebras

I
(L,1) Lex K be a G-field. Fo1 owi Al D9j p. 952, by-@

. a P ¥ o ” o e 5 7 o~
Ze @l uesre B o ownito 5 o6
S

1s
, g -
such that the multiplication map A A-—>A and the unit K—A
7
st

=

Cm

L St hiere. fegnv] = re n?ﬁz— moou e meps. there AR & le sl s
module- -via s(a] @)az)=sa] ® sa, for seh,, a],azeA), By a polari-

Zed}<@]' algebra we will mean a polarized K-algebra A which is

also a Klﬁ]- algebra éuch that PA is a K[ﬁ]— submoduie of A.

Following ;;9} P o5 ame-say fhat the (po}arized) Ki@]“

algebra A is split if there is an isomorphism of (po]arized) KLGJ"

. : 5
algebras A~k & r(AO)__for some (polarized) K'-algebra A® where
K" | '
K® G(Ao) is-given the structute of K E3— algebra defined by
K :
s{c ® x)=sc @ x for s&G, céEKR, x({AOc

I
/
I
l

(4.2) THEOREM., Let A be a polarized K[f]- algebra. Then:

, . i o ’ S -
1) There exists cofinite subgroup G] of- Gi-and a finiite
ly' :generated constredined extension K‘/K of G]—fields such that

’, - : - . - 1 3 i !
K ® Retbs a=split - polarized K.;G§3~ algebra, :
\

@ b

e e

TR s

R

T R R T T

A A P S H e AN O R oLl
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N
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2) There exists a finitely generated regular extension

of &6-ficlds K]/K SwCi that K}(@ Kb 8 a-sp Pt poltarhzed K [ { al

R roof; Let’W:K*<b>~9A be ‘the natural surjection, P=PA

and J=Ker(®¥). To prove assertion 1), by part a) in (3.6) there

Exlsts o cofinite suboroup 6. of & and-a finitely aenerated cons-

1
trained extension of hy=tields K /K suech that Pii=Ke ® ¢ is a
Split KlLGIJ_ module, Consequently K]<%]> s a: Sipaliit K]LGJ]_ al-

gebra, Since ¥<]C§ e le o K][%‘Z— submodule of K]<F]> EE ke

split; this immediately implies that K @ (A ic a split polarized |

K

K]BﬂlT algebra, The proof of 2) is similar usina part b) in (3.3)1

i

instead of part a).

7 - ! ﬂ
(k.3) COROLLARY. The functor PAL has nroperties (o)

~froof. Any polarized K-algebra A ‘has: o structure of polarized
Klf] lgebra with E=GUA, PAL) {(see (2 13) ) for any s=10,vren
G‘ ”
f@Q(A, PALY, v fi—n and any a¢A we put sa=p_(v{a)) where
T e
p :G@;]A:A =K @)KA::7A=K =i A (where K is K itself viewed as

-

a K-algebra via g;];KtﬁéK). We conclude by (4.2}

5. Complete loecal KIXIIRT= alaébras
(5.t bet %k be = ~-field. By = romplete loecal

a

=] s 5 .
I<@!- algebra we mean a complete local K-algebra which is also
L] algebra, If x:(x],‘._}xN) by a compiete local K %1;5

algebra we mean a complete local F!”'— algebra together with a
: == : ey > , B
tocal alnebre homomorphiam w:kiiXl —> & such that elX. JehA ~for

ey i

i1

1 &1

Ne

T e Ay AR et e




=25 -

(€
‘ =
|l .t A be a complete local KiXﬂLG? = a]aebra;is called
e o S . . /X ] .
split if there is a KﬁXH~ algebra isomorphism AxK (X G(A ) with
: e K
a0 - =
A —acomplete lTocal C[ algebra such that for the induced K{Fk

A A
(A?) we have sf{c @ x)=sc ® x for all

(5.2) THEOREM. Let A be complete local KBXQE - algebra.
Then:

Bl=There ‘exists o Tield extension EyK siehs - that
D(ﬁ“é‘ L 6is) ; i £
T conktarms an.-algebraic extension of K

2) There exists a countably generated reqular extension

. . A
O G=Tfields K/K suel that KQD A is a splitﬂCOmP]ete ]oca K[K;]

: K
algebra.

: Proof. We shall prove 1) and 2) simultaneously. refering
t%!them 8ssstoi case 1) and 2} . For all n>Z, An:A/M” ie 5 finite o
mensional K:::- Epdnle (MM AT ). By (3.6} one cas consirucr Teao—
tively a sequence G=G]::G2:3G33.,. of subgroups of 6 and a8 seguen=

ce kK e, altce o of flields such that: for all a2 the folle

wing conditions are satisfied:

al-Keis 5 Cn-fie]d

n
b) Kn/Kn ] s o firitely qmﬁ“rated extension of F =
flields which 95 sopcstrpipec in-case 1 ¥ and reguler in case 27,
B ShE e S 2 e e - G ecmae 1)
c) G - Asse cofinite subgrou ) G,_qy in csse 1)
! P =2
< G \:r‘:y'“:-l nEls Ease <) e
' | o
< - 3 ¥ i~ ! : { -
d) Kn ;)V.An is asplit ananiy module (call it Bn).
Now put
{
“‘» {;n ~ Ie ~
= rioon e i i e ~
oA s B e i s e Kok, i - T
= n
&"
o g —
Kote Ehat K/K - 3¢ slegebratc dn case anc G ool E

RO b st phaedy ot ok

sy iggsitee

SR

AP AU e




e Vol '\/(“_J . 0o - _
moreover inscase 2) k=K' Clearly AP is a k-subalgebra of K(n'y
and ,2" X) o~ o :f\’/ /\ i T : s - —
nd we have‘f ® k(/\n) K@ (A . Since the natural maps f_:B ., —>
T : 3 P S Pt 5 s si\an
Bl @/Kan are maps of Kn+]i}n+]] modu1eg we aet by (35
£FAC V= (K. B )S”H—k G- E '
Foner s g B By T n+) e.n
n n
Cons ] h e ¥ A d A°
(] rrat % = v
,quentv§lL e maps K @k An+] > K ® kPt sen =8

§
|

: o . . i’
onto An..We claim that with these data one can construct a comple-

te local kﬁXﬂ- algebra A° and a QEXU - isomorphism

cAar A
i K(E‘”A *%?<@D A. Moreover we may assume in case 2) that the
: 2 > A\ o : =
IG?actlon inducedvi-a2if com K C)i: A ds-the "split" Jetion; clearly

vuthis will close the proof of the theorem.

e Now the claim above can be proved by using an argument

fr%m {5} p.80; we peprodice it “for convenience. IF s is the embed-

SifE dimenslion ol snd ¥-_fv.. ¥ ) are jndeterminates obe €an
-J ; — e o . - —
find surjective maps pn:kﬁY%—?An which agree with the projectiens
Set ¢
!
-0 0 - 2 i / \ =
— T s St o= sl e Bk have K- WmoOTrpnism
r‘n+] ~% n [OR S ..v_-,..n ..n Sy S = L " SC P 15

which are compatible with the projections obtained by ''passing

“J

froman+l tont . Put - = /\J and AO=kF'Yﬂ/ . We have isomorphismssj
. . f'e) n L [e) i

~s A o ~- “ n:r_ X T Ao 1 {3
rmfe ek I ’HYﬂw~’KEYH Ity Kb —2
K = o ¢ g i n {ia d
/:) (o s e o ~ ~ A
= 1im(K{IY/J _K[iY] =~ 1im(K® A )J=K@®@ A
= n - K on K
e R
|
Indeed to see that o« is. an isomorphism we use the fact
j Vel o -
that/ﬁ\(J K? ¥) =J FUVB which is proved as follows/ lpon letting
~ i ~ = 2
L =J /J =C=kjiYil/d and B= F V“" Ki"Yl Wwe are reduced, to proving
n n (e} o o) O =
that fior any extenston L=8 of local noetherian rings
with € complete and for any seguence of ideals A3 _J 5 I € it i
: > ]

S

e

e

R e



H
AUS}
L)
H

MNI =0 we have f\(TnB)rO; Now by [ng p.103 there s o function

m

m:N-— N such that T
m ( n {

e(Mc))" for all n3l hence (I (n)B)::

e

n
/ n = 2 5 ;
c (Y(M(B))"=0 and we are done. To check that A is an isomorphism
n i
onesuwses the siamdard faet what any completecslocal wing is comple

te in any separated linear topology on it,

On the other hand if we denote by Xin the image of Xi

e 2 6 it e Sl
In An then o éAn hence we get k-algebra homomorphisms u .kDXU >

n
— kﬁYﬂ/Jn which agree,with the. projections kﬁYﬂ/Jn+]—*-kaﬂ/Jnn

R AR

Since tﬁYﬂ/JozéiT kEYﬂ/Jn ; u. yeld @ ?~a1gebra map EEX@«?AO.

~ A

. ol o =D 2o A} !
It is-easy te see that the K-isomorphism K QA =2 K& A comsriicy

¥
]

ted-above s in fact a Kﬁxﬂ— algebra map and our Theorém is pro-

ved.,

(5.3) COROLEARY. The fumctor CLS has properties (ul

and {52),

Proof. Any l6cal complete K|iXj|- algebra A has a natural
5 o )
structure: of KiXEGZ- slgebra with 6=6(K, ELS)Y lexoctly as in (b.3)
R ) 3 g

and we conclude by (5,2),

(6.1) Throughout this section we shall often identify
an affine Hopf K-algebra A with the linear algebraic K-group
L=Spec(A) and we write A=[(L);: moreover if K is algebraically
closed we shall sometimes use the Tetfer L to denote also the

growp L{K) of K-points-of L.

!
i
i
|
i
&
f

Following {19ip.952 by a Hopf K/Gi- alaebra we mean 2

Hopf K=algebra {131 j15! which is also . a K|G |- algebra such that

i
o - e - B TEE s b -

/) = ) = S0 - - A 1/
thiecomiElitirp biceati ol — 05 5 A ond the: counnt oo K —gre



& 3] -

| > : : 3
a Hopf K-algebra isomorphism AxK (O (B2 el B Hopf K -alge-

i
. S Sa ¢ 3
bra such that the induced Kfﬂj- meilElie SrFrctdme on i
o~ O ; 2 7 S - ) — 30
REI \AT) s glueni by si{c @ =)=sc @ x for all seb, c€K, XA . |

(65 2 EHEOREM. Let K be “algebraicallyclesed of charac—|
tenlsitic Zepo amd ek A be an affine -Hopf K[}]— algebra. Then
s - :

D(A, AHA) contains an-algebrajc extension of K°,

The key -paint in brovinq (6-2) s the followina:

(653 THEDREN: Lot K/K0 be an extension of algebraically?

e e

‘closed fields of characteristic zero and L a tineas aibebraic e

b
¥
= . 2 5 8
group with unipotent radical U=Ru(L). Then KOED(L, AHA) if and ;
enly if K eb(Lie(U), PAL), where Lie(U) is the Lie algebra of 4
U viewed as-a -polarized K-Zinchbra wia P, ., p.-Lielli), f
Lie\b) 3
i
(6.4) coporiany, 1£ cha-(k)=0 the functor AHA has pro- i
i
perty (éq), §
: =t o - o
(6.5}, Proof of Theorem (6.3). I L=k K Ko ehsl i
= O 13
: . o ol . !
a linear algebraic K -group then u=u® C%,K where 13— 1s .the umi— .
= 2 . §
potent radical of U hence KO te 8 Fiedd of definition fop Uy Jdn g
pafticular for Lie(U), Conversely, if K> is 8 fiteld of definition
i
for Lie(U) then so it will be for U because U is isomorphic as g
an affine variety with the spectrum of the symmetric algebra on ;
Lie(U), the isomorphism beisng given by 'exp' while the multipli=
cation on U is defined by the Campbell-Hausdorff formula which
. E = o =
involves only rational coefficients 112 p,220, 50 we may e e ‘
b J
o} T : 2 ) : r“? 117 I
uxu €)K K for some unipotent K_ -group U”., Now by [12{, P. e i
o ' !
L is o cembdinest product 6t U with some linearly reductive sub.
group-P=l, P >is cnoroatctive and o in pocticulaFadop O Ko fOE
&) i



.

[

3
-

some reductive K ~qroup R ] By f§7 the qroup Aut(U) of algebraic’
: O | 5 : : ‘

i
-

e

group automorphisms of Uiis @n algebraic K-groupimoreover we must- §

have Aut(U):Aut(Uo)(E K, Furthermore the group homomorphism

K
O —

Lﬁ:P*wéAut(U) defined by J%p)u=o ]uo (peP, ugU) is also algebraic,

We elaim there @5 & K=point g of Aut(U) and a morphism of alge-

braic K -groups O'Po-w%Aut(UO) such that O(D lo=lmn e > e
0 e g g e

lnﬂré Aut (Aut(U)) is defined by lnngﬂt)=cg1ct967 Indeed since P

- : e 2 ; ; ' 1
is linearly reductive, by [8] n.194 we have in particular H (P,

Lie(Aut(U))=0 (with P acting on Lie{Aut(U)) via Ve and the adjoint ;

representation of Autl(l)). By [§]p6116 the above cohomology aroup

identifies with the space of ''first order deformations'' ofdp modu-

Jo— % he “first order deformations arrising from infinitesimal inne@

automorphisms of - Aut ) ' Now the existence of;FO and fool]ows

: S : il pI % e
o s tane rromf§7 (2.1) ) plus an obviows bpecialisation argu

- ¥ m i - - = 3
—~oe~ + LT - o A e + e [ o S e S 1o £ 1 - icanmnrnhicm ot Rl
. - SRS e e3 e mooymeer i ber Sl 2

-~ oo
e A eI B et

W

(o]

2
4

gebraic K-groups

:
|

by the formula ?(u,b)=(d'](u),n) where U x p‘ié'set theoretical-

f

Ly H-x-P with sultiplication given by (u},n])(u2,02)=h

?({f(DZ)U])UZ,plpz) and U x P is defined similarily with r=p §$1K‘

instead ofj>¢ Bogs - r=02 x5 ® K and Theorem (6.3)
= r o <5

i's. pirovied:,

(6,.6) Proof of Theorem {6.2). A is the coordinate Hopf

7/
i

algebra of an algebiaic K-group L., Let U -be the uliipotent radical

of L and Jethe defining prime ideal 6f U in A Weselaim that
7 = S p 7 : . £
sCil=d for a1 1-=£06. Indeed upon Jletting O -to-be the image ©I
. : _ o
5 im i) s s, swificient to prove—thet the natlmel Wap -p L=
i i Nelem el Y capries
=y L S NEIR LR S DM melEr R reapraseat st ion Dby . ST e > S TR, S J 2 =R e e




the unipoteﬁt paliiea]lsof L opto the Unipotenturadicaleof |
(here of course L¢=SpeC(A€5. But: this dellows | Fom the factvthat
the map p_ is an abstract group isomorphism (of course not an
algebraic K-qroup semerphismll, Tt takes Zariski closed sets |
into Zariski closed sets and takes und-potent matrices Fhto upi=
ROLERTL Watwliceas, 56 cour clhaim follows. -We deduce that the coordi=
nate Hopf algebra B=A/J of e el b e o Hopf

K[Fj" sligebra. Thesione -eas i)y cheeks thet Lielll-also has o
(naturally induced) structure of Lie K[ﬁj- alaebra (use for ins=- |

tance the K[Cj— algebra structure on the convolution algebra

ES : b
(B =Hom (B,K),%) and the description of Lie(U) as a Lie subalgebra

of the Lie algebra (B*,[,7),[fF, g]=f = g ~ g % f cf. F3])' N
if K, is the algebraic closure of K5 in K by (4.2) and property

(s) we have K_eD(Lie(U),PAL) hence by (6.3) K-enli,

AHA) and we
! ‘
1

are done.

R P A TR RN A ety 4

{L
(6,7) lLetls discuss rigidified and pure é;fine Hop f

algebras, Suppose K is algebraically closed -of:characteristic ze=

G, B s aurattine lop Ko~ atgebia, 1=Specli), U=R (L). The

arguments in (6,6) show that U and hence also L/U have on their

.- = ] = =
cooraimate Hopf algebras matural structures of Hopf.KLGJ— alge

bras. Let now B be an affine Hopf K{ﬁ?— algebra; by a (iG]- Fes

presentation. V of Bi(eor-of Sesec{B)) we mean.a finite dimensional

K£G7~ module V together with a Hopf K[h]- algebra map P(GL(V))“%Bf

=1

Wks called falihfudl ' F the above map s surjective, Here i

[C(GL(V)) has-the structure of Hop f K[Gz—aigebra induced by that f

N £ . p= = : . '.‘. 2 T !
of V- -wvia the following formalaes if S ey 8150 K it v,

e-is the column veeter with entries Eyypecer®y and se=als)e where

: : = i -
sSEG, a(s)éﬁLn(K) and if X=(X;j) is a matrix of indetermiinates wflt

= : : 5 = f =3 ! % o , £
are coordinates on GL{V) then we put sX=a{s} Xa(s){product of




C»‘)

(6.8) THEOREM., Let K be algebraically eclosed of charac:
teristic zero, A an affine Hopf Kfﬁ?" algebra, L=SpeclA), U=R (L)

o let U be. s EETHRELL K

}Gj~ representation of L/U., Assume there

ks o maxXimal feddctive subgroun P of L whose ideal io A s G-glo

bal by “tovariant, Then:

b~

. . - ~s . -
1) There exists a cofinite subgrouwp Garof b and-a Fini-

tely generated constrained extension K/K of Elfie]ds sﬁch that
K® (A and K Q)KFYL/U) are split Hopf K[ﬁj— algebras and‘gQ§'<\/
is a split K[]- module.

2) There exists a finitely nenerated regular:extension

of & -~ fields K/K such that E'@)KA, QJ@’K

FEL/0 ) aire split Hopsd
z e : =
Kﬁﬂ-ﬁ1gebras and K QPKV s a split Kf}j— module,

i
!
(6.9) COROLLARY. If char(k)=0, AHA' has propgrties-(J:)

H H

s ‘ . |

s
|

i

G
{

48]
N

PO el AR fzme i)

) Y mael e M s E N S T gy =
..Kr P ..LA: C.-._.-/.-..._ B -

fication. iLet N be £he group of all triples s:(U}uqur) where

!
ceglK), inL“%'L and %_:V~%»Vg—are isomorphisms and the follo-

wing diagram is commutative: -

A L > GL(V)
™ , = i RlLv )
{lG_ ; ] G
¥ i
o X o
(L/U) > GL (V)
-f(
y !
where U is- deduced from uw. white &L (v )(x)=v“}xv . MWrite
G < o o= o7

L=U><<>< P for some-os:B—sfiitfl)) and et & be the:-subgroup odf H

consisting of allsde u. v ) for which UG(P)=P - B (h 8) we

£
ek o

shall be~dene if we - prove that 6 and H have the same ‘image in

0
-
-
)
r
-
3
T
1
'y
1
y

e ‘con lugacy of maximest reguctive

e st e




we.

L9z
1

- 2
2

g : s =
gEedps: i Lol EZY p. ik l) there exists a Kepoinfk ®ell such that
P w¢=lntxpu0. Then Q’:U?_and cpnseguent 1y i

a

(T,w ,¥ )eG which ends our proof.
gty !

(6.10) COROLLARY., If char(k)=0, AHAP has property (J;)_

£

Proof,  Let Kibe dlogebraically closed, AEAHA? . L$Spec(A)l
UzRu(L)’ Bl Al S By (. 9) and the Fact that keDlE, AHA) [7] istasie

Sl fic rentEEte scomsiERUcE v Fai thtul representatioan:P-aGL(V) such

, b
that - for any fchAut (P) there exists WY& GL(V) such that Ja¢?=

:I”ty“f>, Start with any faithful representation £:P—=>GL(W), se

lectoa (fintre) ser T];ess,TNéAut(P) of rebresentativés,modu]o

Int (P) anid Tet wi be the representations of P defined by the com-

e

bﬁ‘P Ji-bGL(W). Then we are done by putting

poss i tton P -

V:w] GPWZ @h.‘iiwr o= representations)
N 3

(6:,11). Proof of (6.8). We prove 1) -and 2) simulteneou-=H

Pys Oneecagainonirite Lol P witheodiP-—» Aut (U) and let

p:L/U~> GL(V) define our representation. Composing wa th-fhecdsos

morphism P—»l—- L/U we get a representation £:P— L) By (.6)

there exist finitely generated extensions K:K]CKZ and subgroups

a G,-extension, |

2

(o9

:G]:GZ such that K]/K 5o G1~exten5§on, KQ/K; is

K40 s a split Kife 1= module, & @, Lielll) 5o solit

K2Lﬁ21 = modulel thegoe o split-Lie K {hs4 -~ algebra) and moreover

2} in caise 1) G,:.G, are cofinite in ~ and K]/K,KZ/K}'arei

constrained, s
b) in case 2) Q=G}=GZ and K;/K, K?/ir(,l are reaqular .

ral structure of Hopf K|[f]- alge-

claim that FECAgt i) ) has a naty
5ra induced by that of T7{(U): this can be. seen by taking the
»'?'
i X Syt
embedding Aut(U) ——a Ausilicfl)) — RL(Liell) ), Moreover thne spilt
e i e e kG - ohesbra e aes Lvis TE

FiGe € K- e 2z & i



K2 630 KAut'(U);\.'KZ &

as Hopf KZLGQ]- algebras,
We claim that of:P-> Aut (U) yields a map of Hopf'KfG]«
algebras between the corresponding coordinate a]gebrasurThiS can

be seen as follows: the action of & on A=rKL)=F(U-§< P)EYiE]dS

for any sz8 & K-isomorphism |
i
> g o :
\P='~f‘S:Ux Bt o P i
040"

where d=s/K sueh that %(U)=UT- W(P)=PG’(the latter follows from

H
|
. - & ’
our condition that the jdeal of P in A is GB-inveriant), For any

uel, peP we have =

P, 1) (1,p))=%(u, DL, p)=(¥(w), 1) (1, 9(p))=  ~
= (7@ (p))W(u) ,P(p)) =Yl (p)u,p)=(P((p)u),¥(p))

This gives the commutativity of the diagram

P » Aut (U)

D £

b

>

C <—
t

(_‘.




where Cv(f)=€ofov—l melice -our claim is proved,

To conclude note that we have two Hopf Kz;GPj~ algebra

maps:

EX:M(BL(K, ® (WV)) —> (K, ®  P)

<x*:rKK2<® ¢ Aut (W)=, ® | P)

Simee P Eal (K

5 X KV)) s =sp it ker (€%) is splubte slifice s = s

surjective,ArTKz ®

: P ' :
VP) Esegsael it s Sinice é* amdi ot Lake G, 1piias
b v

Elaints fnto'Gz—invariants we get £=K2 ®>K(E%,cx=K2C§ éxo)where
: » £

o

K=K r;2_.and
O

’

e 0P i) v 5 rediletive K -group

Wi el Cs e s 0T peoD

le.~Remarks and open questions

(/o)) Eet % be aluebraically closed [of characteriss

tic zero, to fix ideas) and A an affine KFCT— algebra (respecti=

T algebra), One could ask whether there

vely an affineHopf K L ] =

exist a cofinite subgroup i, of & and an extension K,/K of

1
- N c b ~ + i 3 3 1 4 W -7— ‘} | 5 eE=
G)-fields such that K; & (A is s split Kyl 64~ algebra (reso

i it Hopf K,[6, |-
tively a split ﬁOpT'V]Lr}J
A

by seen te: be “true if

pectively if A i .pure). But. it -fails ip general. Here i's ain

e -] -1~ - A i
] t =l + 1 B =N i %) Shase
examp’e¢ LeL A t\A {_} s -.2, 9.11 ,»L2 3 i (3m X n_’r ‘

alaebra), By eur theory this s easls

has non negative Kodaira dimension (res-

OIS

SRS

.k
i

i
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:




THis-makes A inkoansaffine Hopf K{Fiﬁ

where m is a fixed Enteger,

algebra, Suppose there exists G] and K] as above, Upon modifying

M we may assume G]=G¢ Let M be the K}~]3near subspace .of K1<®KA

-spanned by (e = mp . - T
= P)pg7¢ where ep t]t2 . We have sep ep+] hence is
a K]LG]~ submodule of K] & KA hemce It is split. lw particular

there exists“féMG

f

. = fHl s write f=2§apep with apek]. We get f:. %

=SF:= < ¢ = . = - £ 5 —7

(gap)ep+1 hence sap ap+] for all pg // "hence ap%O for-all péa%
contradiction,

(7.2) There are very natural "moduli Functeors' from B td

S which are not cogrsely representable, We give here an example,

(et .
For any fﬁk]d K- let ALGK/denoté the-category of K=algebrgs.: for

D

Fefies = * i) 5B e
cHance =T UNECLoOrs AL by > ALG g

any Tield extensien K->kl s thesbas

l .‘ e s : y - =~ - n
Al @5% A yield a fibred category and a wmoduli FTuncteor ALG
o T =D - i -~ L P nC P -~ Vet { 9 % 472y ]
moresover denote by ALG T ths subfunctor of ALn {ful Yy §moetiel

into ALG) of commutative associative unitary algebras., Since

(o
ALG, ALG ™ have no finitness properties it is met reasopable to
expect that they have property (m); but one might still hope that

they are coarsely reprsentable (by scme birational set not neces=

sarily of finitely generated type). The fact is that neither ALG

1 -

& :
nor ALG™ are coarsely representable. Indeed coarse representabil
ty implies property (d,): on the other hand we can show that

e 2 ;
BLG “land .hemece alice ALE) -does not have this propefty, Just tele

.

k to-be srblerary ~Kep arbitrary, A=K(T)=field rational functions:

in the indeterminate T and'iéALG:(K) be the isomorphism class of
- £

Ao Lleariy K /K 15 algebrsic. On the other hand if EED(%)

|
A-—Ts @an t-algebra sueh that Ask o) A then K& ghc 15 @ field

which mey bappen-only Tf K/FE is aloebraic hence oniy if

is. transcendental: conseguently ALSG does not h



.,39»

(7.3) Here are scme questions for which we would like

P
T

L . . :
td nave a positive S MSWE I

)7

2) Do the functors in Theorem (2.10) have property
(m) in characteristic p>07? .

3) Are ClLb COR - LFS coarsely representable (by-a bi-
rational set not necessarily cf finitely generated type)?

Comeernilng. 1) bt wouldisuffice for - AFF to have propen-
ties.(é1))(é;) and for AHA to have property (5}).

b

Concerning 2) what would be missinbvfor paL’ and cLa

is property (g3).
Comcerning - 3) hote that CLA satisfies (dg) and (dz)

' grTe s s e

{ : .

|

1}

|

|

i
I

1) Do AFF or AHA have property (m)*(at least if char{k)= |

S AIERIN T AT S e

R AR

£ TSRS BT N e
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