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FOR A QUASISTATIC ELASTIC-VISCO-PLASTIC PROBLEM

Joan R. IONESCU
INCREST, Department of Mathematics, Bd.Pacii 220

Bucharest 79622, Romania

ABSTRACT. An initial and boundary value problem for an
elastic-visco-plastic material is considered. An Euler method
internal and external approximation techniques are used in order
to reduce the continuous problem to a segquence of lintar alge=
braic sustems. = The error s estimated over a finite time inter-—
val. Supposing that the time step js less then a critical value
the error is estimated over an infinite time interval in the

viscoelastic case.

0. INTRODUCTION

The following rate—type elastic- visco-plastic consti ive

equation:
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is considered. Various results and mechanical interpreta
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concerning this constitutive law may bé foun
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Freudenthal and Geringer E35; Cristescu-~Sulie il le and ‘Sulieny

[ELG If F depends only on o equation (0.1) may be reduced to
“come.classigal medels wsed in viscoplasticity. Examples of con=

stitutive: equations ol the form (0.1), involving the full cow



pliing insstressaand strain are given for instance in Cristescu-
-Suliciu EZ].

In the paper of Ionescu, Sofonea [61 a quasistatic ini-
tial and boundary value problem for this type of materials is
considered. Results concerning exisﬁence, stability, assymptotic
and large time behaviour of the solution ére obtained. The goal
of the present work is to give error estimates for a numerical
'approach ef Ehis problem. |

In the first section some notations are introduced and
some ?reliminary results are recalled. Further on the mechani-
cal problem is stated and the assumptions will be used are
given. For the convenience of the reader some résults and tech-
niques from'Ionescu, Sofonea [él.that will be-usefull in this
work, are briefly presented.

In section 3, we use an explicite Buler method, internal
approximation technique (possibly a finite element one) for the
displacement and strain field and an external one for the
stress field, in order to reduce the continuous problem to a
recursive sequence of linear algebraic systems. The error is

estimated (Theorem 3.1) over a finite time interval.

For large time intervals oOr for a large Lipschitz constant .

of F (usually at metals) the ‘error estimation obtained in sec-—

Lion 3 isnot . se useful. The following gquestion arise: " How
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large the time step can pe chosen in order to obtain numer
informations about the large time behaviour of the solution?”
In .order te: throw seme Tight - on-this problem, in section 4,

ohily “the viscoeltastic case 1s considered and the function i

from (0.1) is supposed to be of the form:

(0T F(O’,S)z")\(C‘-*G(E;)}



“with K>C and G a strongly monotone'function5 In this case éha
error is estimated over an infinite time interval provided that
the time step k is restricted to be less then ko a value which
depends on the material constants. It is not established a
critical value kcr’ for which the numericai solution is diver-—
gent for k>K;r. But, however, Exemple 1 of section 5 shows that
such a critical value exists and hence the restriction on the
time step is also a‘necessar condition in o;der to have a bound
of the error for an infinite time interval. Similar restriction
on the time integration step is obtained in Mihailescu-Suliciu,
Suliciu Ef] where a one-—dimensional dinamical problem is consi-
dered and the method of characteristics anduenergetical estima-
tes are used.-

Finally three one dimensional numerical examples are given.

1. NOTATIONS AND PRELIMINARIES

Iﬁﬂ:Uﬁbe the set of second order symmetric tensors in RN
(N=1,2,3) . We denote by *, | | the inner product and the eucli-
: . N 30 N 4 S ; =
dian norm in R and J. Let QC R" be a bounded domain -with a

smooth (CT).boundary T'=90 and let T, be an open subset of I' with

=
o ‘ ¥ e
mes F1>O and FZ B Fq-
e Nxh =r N
‘The following Hilbert spaces:o&=FL2(Q) EXN, L:rhz(Q)é\!

= =
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SN N : = A |
g?{ﬁ(div,ﬂll,, Hs{}T(Qflx; HT:th/?(inN are used and the can-
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nonical inner products and norms are denoted by((e,e),[

({{er"})/ lii"}il)l {(*r.°)ar %“iia)r (('Ii)f}r ‘!aliH)! ((’f}rl

1
i

ERAEEY respectively.
Let ij{u H; Yo(u):O on FT} where YO:H»HF is the trace

o je = ; e
map. The operator ¢+ B>l given by £:§(V+V ) is linear and contl-



nuous and since mes F1>O the Korn's inequality holds
(1. 1) !le(u)llzclluilH for -all uev1' e

Lf ce;% then there exists yv(g)GH* (the strong dual of H

I B
with the norm denoted by || || ) such that
= %
G2y v, el (vl slo el iy 0,v))
(1.3) vy (o) ] selifol]”  “ifeuiatl oeX ven
% * :

By o-v[ . we shall understand the restriction of (o) on
L, ; 'Yv

E=Y, (V,)CH, and the norm in E* will be denoted by || Ho‘

As it follows from Geymonat and Suquet’[@l, E(V1) is the

ortogonal complement of V2={OGJZ;(diV 0=0; O‘vlr =0} in &, Hence

2
5f=€(v1) @)Vz'and
2 : 7 A}
(1.4) (og,e(v))=0 for all v‘éV1 s oevz
Eer GG !iX) be one of the above spaces and let denote

by R+=[b,+m) and CO(R+,X)={Z:R++X; z is continuocus};

C1(R+,X)={XECO(R+,X); there exists %éCO(R+,X)} where the dot

represents the derivative with respect to ‘the time variable.

We shall also use the following notation }[zi|§= sup| |zl
: e

+

B zeCO(R+,X). Similar to above the spaces CO(O,T,X) and
CT(O,T,X) can be introduced and the norm in CO(O,T,X) will be

denoted by I!Z\lT x> ST% j‘]z(ﬁ)ilx'
eige 10,1

* ¥
) Everywhere in this paper C>0 will represent a generic con-

stant which depends on {, F1 and possibly on some material

constants which will be mentioned.



2. PROBLEM STATEMENT. EXISTENCE RESULTS

Inthis sectien, after the ,problem statement and some
assumptions, we shall briefly recall some‘results of Ionescu,
Sofonea'[ﬂl, concerning the existence of the solutien, which

“will be usefull further on. V

Lét us consider the following mixt problem: f£ind the

displacement function u:R+xQ+RN and the stress function

0:R+XQ+<Yjsuch that

8 div o (£)+b(£)=0

& th)afe(ﬁ(t))+F(o(t),é(u(t))) in Q
i u(t)]r1=g(t); o(t)vlr2=f(t) for.all £>0
(2.4) u(O)qu ’ 6 (0)=0,, in Q

where Vv i§ the exterior unit normal at T, (2.1) are the Cauchy's
eqpilibrium equations in which b:R+XQ+RN are the given body
forces. (2.2) represents a rate-type viscoelastic OY viscoplasj
ticvconstitutive equations,?f isc g fenekh ordere tensor and
F:ija:f+ffis a constitutive function. uj and oo‘are the dnitial
Idata and f;g are the boundary data. .

The following assumptions are used.

|

a)?f; jkléLo'o(Q); Eeatlolt] for all xeQ, 1€d; 1,3,k.2=T,N
\ i e :‘}?{ e : s Tioe N
(2.5) BT, 1,25, T, for all T,,T,€J
C)bf‘TziTi b0 for-all e Jﬂ

: 3 gy l< T - i =
a) lF(/'T»]IQ»]) F(}\rTleZ)l“L(\[»I Tz!'*'\ O.l O-2111 1—-‘0

(261 for. all Ty ;r2,01,02 € Jp,.xeﬂ

b) Piex,0,0)=0



béC1(R+,L), féC1(R+,E*), there exists héC1(R ol )
(2.7) e

-guchithat ht)=g(t) on F1 for-all ter.
= g weEl, @ e;?
(2.8) e e _
b) div o +b(0)=0, oo-vlr2=f(0), uolr1=q(0)
.In order to homogenize the pfoblem (219 =d2.4). lek us
consider'géc1(R+,H) and 82C1(R+,35 the solution of the following

linear elastic problem

Pl

(2.9) S (£)Be (TH(EY)

(2.10)  div G(t)+b(t)=0 =

2 1) Tit) |, =g(t), Fit)ev|p =£() for all teR, .
» , 1 > i

Moxeover for all teR  , W€ have
- = -
(2.12) Tt)=ge (@(r)

and if T>0 and tj,tze[b,T} we have

(2.13) xiﬁkt1)45<t2)l\H+l18%t1)4EXt2)|1§§(T)1t1»t21
where A
: o e [ e ;
)

and € depends only on {, F1, a and- 0.
. b - NO SpaaEe NO - (ot ~ Nf
Denoting by u =ug wi0)-r 0 =9, o(0), G=u-u, G=0-C trom

(2.1)-1(2.4) and (2.9)-(2.12) we obtain:

Q.15 Ext):bz(u(t>>+F<5<t)+€(t),g(a<t))+e(3(t)))
“(2.16) div o (t)=0 in @
2 wpel] =0 s - 0 for all t>0
1 2 :



(2.48) S)-u. = o)=0

O O

Let consider on V1 the inner product (°,‘)a given by
2 193 (u,v) = (e (w) & (V) "u,vev,

which generates an equivalent norm denoted by'll ‘!a'

Let V=V1XV2 be the product space with the norm denoted

by il 11V generated by the following inner product
: 1 |
(2.20) iy o= ) FIE TiaT))

for-aill xi=(vi,Ti)eV/i=1,2. We shall consider A:R+XV*V a non-=

linear operator defined as follows

(2.21) (A(t,xl),x2)=—xF<f1+8%t),e<v1>+e(ﬁkt)f),e(v2))+

—-1 N =
F (BP0 () e (v ) e (B(£))) 7))
for all Xi=(vi’Ti)éV/ i=1,2, teR,
As it follows from Ionescu, Sofonea Dﬂ e, 0) dssthe
SGiation o tahe probilien 12505) a1 1EF xec! (R, ,V) is the

solution of the following Cauchy problem:

&
222 w(t)=nlt,x5)) >0
(2723) X(O)=XO
where XO=(GO,86). From (2.5)-(2.8) and (2.1 3) we get
2= 24) ) [A(t1 ,x1)—A(t2,x2) 1 {Vgcr.(l \x,l—xzi }V+I(T) \t1—t2{)

for all xw,xzev, >0, tq,tqe{b,ﬁ} (the constant C depends only

on Q’FT’ 0 =md-d). Hencey there exists a unique solution

x=(G,3)¢c! (&, V) of (2.22), (2.23) and u=t+aec! (R, ,H)

O=E+SEC1(R+;£) is the wmicue solution of (2.1)~(2.4).



3. ERROR ESTIMATIONS OVER A FINITE TIME INTERVAL

In this section a numerical aproach of the problem (2.1)-
-(2.4) is given. Using an explicite Fulexr's methed a recursiwve
sequence of linear elliptic boundary value problems 1is obtained
and the estimation of the error is given. An internal aproxi-
mation (we have in mind a finite element aproximation) for the
displacement and an external ohe for the stress lead to a
recursive sequence of linear algebraic systems. A final error
estimation is obtained.

Tt T?O, MeN and k=§ be the time step. We consider V}{:V1
" a finite dimensional subspace of V1 (constructed for instance

using the finite element method) , and let (uﬁ,gg)n=67ﬁ be the

solution of the following recursive algebraic systems:

©_—0 Y =2=—=0 : O

(8.1 up uh+u(0), uhth, oheau.

' i —n+1 =l - noom

(3=2) u, eV T ,vh)a—(uh,vn)a k(Floyre(uy )y e(vy})
£ 3
for alk vh€vh

(3.3) R (e %)
Dl n n+l, 2 Dy —eshe o 1

(3.4) Sy rOh+é%(uh )—é%(uh)+KE(Gh,g(uh))

1

The following theorem gives an upper bound of the distance

between the exact solution (u,o) of (2.1)=(2.4) oudthe approxi=

0

: n
ti a1 Y
mative one ( 19l W

THEOREM 3.1. For all n=0,M we have:

(5:5) llu(nu)~u2\$ﬁ+ﬁ{G(nk)~og[]§

o~ 4 X o

ﬁCexp(CLT){k(I(T)*U(T)+Z(T))(GXP(CLT)"T)+S(T)+

el =aS |+ o =02} 1]




where the constant C depends only oﬁ s F1, d and. 9,
® ¢ & B
(3.6]) U(T)=llu!|T;H Z(T)=]lc[1T’df
1= S(@)- Supe (nf |1E(t)~vh||)
te[0,T] v, eV,
In order to prove Theorem 3.1 we shall consider the fol-

fowing. sequence of linear elliptic boundary value problems:

n

Find (u”,0") _q \ Such that

(3.8) uo=uo . GO=UO_

(3.9) div 0n+1+b((n+1)k)=Q

(3.106) on+1—é%(un+1)=0n-éz(un)+kF(on,€(qn))
(3.11) un+1|ri=g((n+1)k);' on+1v|r2=f((h+1)£)

Using standard arguments from the theory of linear elliptic
equations one can get that the problem (3.9)=43.11) has &

unique solution (un+1,0n+1)éH =

IBMMA: 3 For all n=57ﬁ we have:

T '[lu(nk)—un]\H+llg(nk)~onil§

z -8 -] o >
gkcLI(T)+U(T)+z(T[l:Lexp(CLT)mfl
and the constant C depend only on Q, F1, d -and 0.

ggoof. Let Gn=un~a(nk), Enzvnmg(nk) for sall nzﬁji. From

(65 9 e | hane geie (ansn)év and from (3.10) we can easily

deduce that
G GE“+1,v)aé(Gp,v)a~k(F(5Ynk)45“, (kYT ), )

for alid v&v1 and



= s

G.14) (£, 0= (& 1T, 1) +k (E 'F (0 (nk) ¥ e ulnk) ) +e (W) 1)

for all 3eV.. Denocking by yn=(ﬁn,5n)év, n=0;M frem (3.13) .,

2
@y, (2200 aind (2521)  we get
o n+1

(3.15) yoex oty =yP+ka (nk,y")  n=0,H-1

hence (yn)néﬁﬂﬁ is the Euler approximation of the Cauchy problem
(2.22)., (2.23). Bscit Follows: frem Henrici [5] p. 26 and (2.24)

e

we have
(3.716) ]|x(nk)—yn|lvék[i(T)+Z1j[?xp(nkCL)—ﬂ
where Z,= sup [}Q(t)llv =

tef0,T]
Having in mind that x(t)=(U(t), o(t)) from (2.76) we can

obtadn (3242 ).

LEMMA 3.2. EOr éll n=0,M we have
n--n nh n > o
B0 e o -oht1§Cexp(cmzw[o(ﬂ)+||uo—u§}1H+llco-ahlﬂ
where C depends only on Q, T, d, 0 and

(3.18) piM)= sup daf |l ([
n=0,M Vhel-Vh

Proaf. Tet @%, %) as in the proof of Lemma 3.1, anc

gch§, gEgVﬁ be given by

(3.19) g?(v)z—k(F(cn;e(u“)),e(v)) for vev,
T e ol = 5 :
(3.:20) gh(vh)~ L(L(Oh,c(uh)){t(vh)) For vhgvh

Prom 42.2) and (351 3) We get

—n+1 a2.v)  +gv) for all veV,

(8:=215) {u ,v)aﬂiu



—n+1 —=—n n
B3522) : (uh ,vh)a~(uh,vh)a+gh(vh) foxr=all vhevh
: Fie wo
s 0 = = - n - i
Denoting by £ (V)“-Z gElviEin V), fh(vh)w_Z gh(vh)+
Ji=0 % =0
—0 - 2
+(uh’vh)a for all VGVT, Vhevhf
From-_{(3.21) and-(3.22) we deduce
(3.23) (Gn”,v)a=fn(v) for all vev,
(3.24) (Eg“ vyl = h( ) for all v, eV,

; ; : iz
Having in mind that |g (Vh)-‘gh h)’_z
§CLk(1Iol—o;!|+|]u}—u;[|H)[lvhllé and using Strang's Jemna (see.

for instance Ciarlet E1] p. 186) from (3.23), 824) we deduce:

(3:25) Hﬁn”—un”llec[ inf | ™oy

h : il L
VhéVh
i 3 o == -~ -0
kT lotook 1+l Iuteu 11+ 5,550 11 15,753
If we denote by a —!lu - H i =] |u" uE{{H ;

n W = -

b =|]0n~0h[l=l|6 —Ghll and d_ =1 5 for a2l n=0,8 from (3.25)
1=O

we -get
(3=26) _C(D(M)4de +d )

n+1'

If Wwe substitute (3.10) frem (3.3) after some algebra we

obtain

(35.27) Dn+1,c n+1+den+dO)

S Frem (3.206) and “(3.27) -we dedice d 1Sd (1+CkL)+C(dO+D(M))
; ’ n ;
and recursively we get d <d (1+CkL)n+C(d +D (M) ) Z AEckb) =
: — n+El =0 o ic0



Hence

(3.28) dn+1gi%[§o+o(mi](exp(CLT)~1)+doexp(CLT)

for all n=0.M=T. If we replace (3.28) in (3.26) we get

(3.29) an+1§C[D(M)+dé]exp(CLT)

Azl EEomEds 20 ) B Sl ang <35 270 we deduce-for all n=0 0=1

(3.30) bh+1§C[D(M)+dg]exp(CLT)

and hences (3:-175)° holds:

Proof of Theorem 3.1. Having in mind that

D(M) £S(T)+ sup l[u(nk)—unllH from (3.12) and (3.17) we deduce
n=0,M

(3..5).



4. ERROR ESTIMATIONS OVER AN INFINITE TIME INTERVAL

(viscoelastic case)

We shall study in this section the largestime behaviour
of the error in a particular case (a viscoelastic one) for
which we know from [é) that the system (2.1)=(2.4) is stable.
The ceﬂtralNresult of this section is theorem 4.1 which give
an upper bound of the error over an infinite time intervél if
the time stép k is less then k which depends on the material
constants. Ft is not established a critical wvalue k - the
largest ko for which the statements of theorﬂm 41 hoeld, but
however Exemple 1 of the next section sugests us that such a
kcr exists. '

In this section the constitutive function F of (2.2) is

supposed to be of the form:
(4,15 F(o,e)=—k[q—G(eil for o,ge;ﬁo

where J>0-and €& #= a L ipschitz continuous and strongly monotone

function=i e

42 : |G(T1)—G(12)[§LOlTWWT2l . s
(4 3) (G(T )"G(T )\‘(T - \}Oti'f = {2 Q,)O

) L/l 2 / 4 2/;: 1 T4 ng
el T1'T2&J? Let us remark that L= Amax (1 Lo) and for large

% the Lipschitz comstant L. from (2:5) 15

Xel
®



and from [61 theorem 4.2, and (4.4) we can deduce
,(4.5) G:HEH;O<+OO : i.—:HBHO"<+oo

Let k>0 be the time step and let us consider the following

recursive algebric systems slightly different from (3.1)=-(3.4):

(ab) u?l:ﬁif?f(O); eV ; cflef.

(4.7) Tf}‘l”c-vh; ('ﬁﬁ” A (Gﬁ,vh)aﬂ\k <f(n-k) Yo (V) >+
¢ ((b(nk) v, )= (G (e (@) e (v,))] gl feu,

(4.8) QE”:GE*H’J((nm)k)

(4.9) 0E+1=(1—)\k).og+é?€(uﬁ”—ui)H\kG(e(ug)) for nep

REMARK 4.1. The sequence (uﬁ)neN can be computed from

(4.6)-(4.8) without any computation performed on the sequence

n
(Oh)néN'
' 1 dzo
THROREN 4.1, Let k =mint—) 2oy TF Ok sk thien
o) 2A 2 o}
2050
o
e S
q,=ALJ0 fa°e)(1~exp (~Aka/Q) ) rexp (- ka/Q) <1
(4.10)
q2=kk(1—exp(~%k))+exp(~kk}<1; q=max(q1,q2)<1
and for all nelN we have:
= ] B Om- e ot hae =
) - Eralak ahl‘aiqvluo h‘!QJmCLO/W(DU) C(L /oS+8/ (L))
n n o) = : n o
a7 chm%ﬂh1&%Hgd—hH+Qwa@@0ﬁkaqIh%ﬂ%Ha+

o7 L

et
+k21§+ —%(Ib+u}(ur1)1 +Cl—5 =



where C depends only on &, T d, Q and S, S are given by:

1 7

S=sup (inf [mEi=v 1]

g
. EEGR v,V
(4.13) e il
o 2
- Selprial- iRt ]lu(t)wlela)
téR+ Vﬁﬁvh

PEMARR 42— A it -follows from (4.171) and: = 13) the

error of the initial displacement ][uo~uglla and stress
L|00~o§|| is vanishing in the estimation of the error at time
nk for=n large. This a concequence of the asymptotic stability
of ‘thessystem (2.1)=(2.4) (see tﬁeorem 4.2 of [ﬁ]).

In the proof of theorem 4.1 the following three abstract

lemma will be useful.

LEMMA 4.1. Let (X,(+,*),|] ||) a Hilbert space, A:R _XX-X
a nonlinear operator and xeC1(R+,X) the solution of the Cauchy

problem (2.22), (2.23). Suppese that there exicst L1,L2,c>0 such

that
(4.14) ]]A(t1,x1)~A(t2,x2)1]§L1||x1—x21{+L2 | £t |
(415 (A(t,x1)~A(t,x2),x1*x2)§~c[[x1~x2]|2'

for all x1,xzeX, t,tT,t2€R+n Let k>0 be the time step,

B:kpxX~+X and bz ) a sequence such that

neéem

(4.16) | |A(nk,y)=B(nk,y) | |2
for»all nelN, veX. Let (yn)nem be defined as follows:
n+1

417 yOeX( v =ynﬂ<8(nk,yn) néeN.



T k<ko=c/L$ then q=kL?(1~exp(—kc))/C+exp(-kc)<1 and for

all neN we have:

(4.18) ilx(nk)—yntlsqnllxowyoz[+kL2/(c~ka>+
+ el = n-1-i
(1-exp (-ck)) /c } (1+C/L1)Zi+kL1[[x(lk)l|q
: . i=0 -
(4.19) | |x@r)- ™ =y™) /x| sn | I xme)-y" 2 .

Proof. Let nelN be fixed. For all té[hk,nk+g} we denote by
z (£) =y™ (y* 1-y™) (t-nk) /k and we remark that:
(A28 ot e D SleleBink . ek nikerE]
2
l

If we denote by 8(s)=||x(t)-2(t)||", t=nk+s from (2.22),

A2 23, (4.14)f(4.16) we get

0 (s)< (A(t,x(£))-B(nk,y™), x(t)-z(t))=

N =

= (A(t ’X(‘,t) )TA(tlz (t)) IX(t)-z. (t) )+ (A(tlz (t) )’A(nk,}’n) ,X‘(t)“Z (t)) 5

+(A(nk,y")~B(nk,y ) ,x(t)-z (t)) s=co(s)+
{851 snyesny | 1y™" =y | /va ]

hence we have

6(s) <-2c0(s) + de(s)(kL2+L1[Iyn+1~

ny|
g ] s [0, x)
and using Lemma 4.1 from [@1 we obtain

n+1

(4.21) | |x(nk+k)-y || sexp (~ck) | |x (nk) -y | |+

+(1~exp(—ck))[ﬁ1\[yn+1~ynl[+kL2+Zgj fe




From (4.14)-(4.17) we can easily deduce:
(a.22) || Y=g Lk | etk =y 20| |k | )
if wesreplace (4.22) in (4.21) Qe get
(4..23) [}x(nk+k)~yn+1l!éqllx(nk)~?n!l+
+{1—éxp(—kc))[kL2+Zn(1+kL1j+kL1[lé(nk)l{]/cf
and recursively we obtain (4.18). We also have

b

]ig(nk)-(y /k||<ltA (nk,x (nk))~A (nk,y™) ||+

] |a(nk,yM) =Bk, ¥y | <L, | [x@k)=y" | [+5 .

REMARK - 4.3. A larger ko for which similar inegualities
Wikl 4 180, (4-19) Theld for k<kO can be obtained if cko is
the smallest positive solution:of the equation exp(-x)+

+L§(x~exp(-x))—1=0.

TEMME 4.2, het X, A and xalike im Temma 4.1, and Y& X-a
closed subspace. We denote by P:X>Y the projector map on Y and
let B:R+XX+Y given by B(t,z)=PA(t,z) for teR Zee Af

‘yeC1(R+(Y)'is the solution of the following Cauchy problem
(4.24) y(0)=y €Y  y(t)=Blt,y(£)) £50

then we have:

(4.25)

_..ct [
e +DL1/C+ DD/c

(4.26) {|§<t)~§(t)1l§L1llx(t)—y(t)ll+5

e

for all t€R, where:

TR :



L 18 -

Desup mf | xit)-z|]
(4.27) R ney

D=sup inf ||x(t)-z]]
teR, 2&¥

Proof. LEf me denote by 6(t)=|{x(t)~y(t)[|2 from (4.24),
(22220 220 we gk %e(t):(A(t,X(t))—B(tly(t))IX(t)—y(t))e
For aii 27 we have (A, vl ) =Bkt ) ), (E)-y(t)]l=

=(A(t,y(t))—B(t,y(t)),x(t)—z)gi[x(t)—z|ginf Ll sl =] |
' veY ‘

é[lx(t)-z][(E+L1V 6 (t)) and hence we deduce

(4.28)  (A(t,y(£))=Blt,y(£)) x(t)-y (£)) D (B+L, Vo (t))

&

Having in mind that 50 (£)=(A(k,x(£))-Alt,y (£)) ,x(£)-y (£))+

Bk, y(t) ) =Blt,ylt) ) ixlt)=y (t])) from (4.28), (4.15) we obtain
%6(t)§wc9(t)¥L1DL/e(t)+D5 and using Lemma 4.2 from E@I we
deduce (4.25).

TR e ek bk e oy e | Sl ket el =Bk xiE)

+||B(t,x(t))-Blt,y(t))|]| we can easily get (£.26].

EEMMA 4.3, Let %, Y, A, B and x like in Lemma 4.2 and

be given-by (4.17) with yO&Y. TE O<k<ko=c/L? then

(4.29) ilx(nk)—ynligqnl|xowyO;i+k(L2+L1§)/(c~Lfk)+

+2L1(D+c6/Lf)/(c—Lfk)

(4.30) | %k =™ =y /K| [ sp | [x(nk)-y" ] [+D

where D, D are given by (4.27) and Z=sup ![;(t)||.
&R

0
A



Proef. Let»ycc1(R+,Y) the solution of (4.24) with yo=y%;Y.

From Lemma 4.2 we get (4.25) and (4.26) and hence for t=ik we

have:
Gty Hokem | = ¢°| le” ¥ 1Ll /csber, {DD/c+z, ien.
If we'use now Lemma. 4.1 for X=Y, A=B we deduce
el = :
(4.32) [ly(nk l{_kL / (c~kL? () +kL, (1-exp (-ck)) /¢ ) [{y (ik) | lg =
_ i=1
(4.33) ||y (k)= (™ =y /x| sp |y k) =y" |
ILf we replace (4.37) in (4.32) aftersseme dlgebra we
ebtain
(4.34) |[y(nk)—ynlIé(qn—e—Ckn)lixo—yO||+
= e e e ‘
+x/ (e~12k) [T +1, (OL? /c+D+r. V' DD/c+2) |
Using now (4.25) with t=nk and (4.33) we get (4.29).
Having in mind thatf[lﬁ(nk)—(yn+1wyn)/kll§
<| |A(nk,x(nk))-B(nk,x(nk))||+||B(nk,x(nk))-B(nk,y B || we easily

deduce [4.30). g

Proof of Theorem 4.3. let ﬁéC1(R+,V1), EgC1(R+,V2) the

solution of {2.15)-(2.18). If we multiply (2.14) by e(v) and

we-use (4 a0) after integrating . ever @ we get
(4.35) @E) V) =AE(E) Y (V) >+A (B (E) ,v) )=
=De(G e (T (el +a (Wl ). clvi): for all wev,

Let J:R+xV +V1 given by

1



(4.36) (J(t,V),W)aik<f(t), YO(W)>+A((b(t),W))—

~A (G (e (v)+e (T(t))) ;e (W) for all V,weV1

From (4.35) and (4.36) we deduce that W is the soiution

of the follewing Cauchy problem

: ¢
(@2d)= u(0)=u_ uw(t)=Jlt,ult)) >0

Using (4.2), (4.3) and (2. 5)-we get:

= - Lo . 2
(4538) (T, v, )=T(t,v,) v =v,) 5 5 Herw 1
‘ : AL, : .
(@39) I[J(t1,v1)—j(t,v2)[[a§—5~!Iv1~v2[ia+ALOCI!t1~t2|

S

for all v1,v25V1, t,tT,tzeR+.

Let Jh R XV1 Vh, J thJ and let us remark that (uh ned

is the solution ef the following recursive system

‘ = Wl —n —n;
(4.40) uhth r Uy ~gh+th(nk,uh)

If we use now Lemma 4.3 with X= V1, Y= Vh’ A J, B= Jh’ L1=KLo/d,
ad

L =)MLCI,; c=AL /0 we deduce that for 0<k< we have
2 o) ZALzQ

q1=~—§—w(14exo (-ark/Q) ) +exp (~ark/Q) <1 and (4.11) holds and

also we have:

P = ~ :
(4.47) l‘b nk)- (@' -0 | |asan el [ ink) -ap| | +8

Let W: R \fﬁ glven by

o

W(t, 1) ==AT+Ze (W(£))~AT (£) +AG (e {u(t))

~for all TC&? Having in mind thdt'te (u( ))—Agwt)+AG(€(u{t))=

L]

=8(t)+k5(t)évz we deduce that W(t,t)eV, if 1€V, and hence o i

B



the solution of the following Cauchy problem:

(4,42) G(0)=0 eV oty =Wt o) £>0

o=

I1f we denote by Wo(nk,~):X?'&?for nelN the following operator

—n+1 — : 1
(4.43) wo(nk,T)=~XT+g%(ug ~u2)/k~k8%nk)+kG(e(u§))
for te’ and &E:cg—%%nk) from (4.43), (4.9) we obtain:
—nd | e=n : =Hic
(4.44) Oh —Uh+wo(nk,oh)h }ne;N

Erom  (4.43), (4.41) and (4.11) we get
TR L|W(nk,r)~w0(ﬁk,T);{gc(xLo[]G(nk>~E§]|a+§)

We can also easily deduce:

(4.46) (W(t,T1)—w@t,T2),r1—T2)§—A1|r1~T21[

(4.47) !lW(t1,T1)-W(t2,¢2)]I§A|[TT-T2!|+ALOC(U+I)]t1—t

2 !

for all TT,Tzé&f, i en

Using now Lemma 4.1 with X=X, A=W, B=W_, L =1,

4
= S i o . =
L,=AL_C(U+I), AnﬂC(ALOIIu(nk) uhlla+8) and (4.11) after some

algebra wé get (4.12).



5. NUMERICAL EXAMPLES

In order to ilustrate the numerical method previously
presented we shall give some one-dimensional numerical examples.
In this section Q@=(0,1)c R and the following initial and
boundary value problem (which is an one dimensional version of

(2. )=%2.4)) is considercd.,

(5.1) 0 (t,x)=0¢ (t,x) +F (0 (t,%) ,& (£,%))

(5.2) | E(t,x)r—-g—i(t,x) for x&(0,1)

&.3) 29 (£,5) +b (£, ) =0

A‘ Bl = ' u(0,t)=0

(5.5") w(l,t)=q(t) or

(B g ([t )i=mlE) for t?O

(5. 6) u(0,3) =u_(x) o (0,x)=0_(x) for x€(0,1)

EXAMPLE 1. Let us consider the linear viscoelastic case
P{o . ,e)=-\lo=Bec) wWith homogeneous-initial data uo(x)=eox 7
g - (X)i=e and bt x)=0y r(t)zco° In this case one can easily
integrate {5.1)f(5.6) to obtain the solution 0(t,x)=00 2
welt e =2 () . and E(t)=soexp(—kbt/a)+(1-exp(~Kbta))Oo/b.

Sinee Vh is the finite element space constructed with
polynowial functions of degree greater or equal to 1 and the

B

. e T =ne
problem is homogeneous, we get that Uy =4y and o= =0 . Let

E(n,k) be the relative strain error

n
X

s ) Ein k) =& (u =g fnk) /e (nk) |

at iteration n for the time step k.



Some numerical evaluations of E(n,k) are presented in

figures'T ands=2¢for a=20.., A=10., GO=4O. and. b=10.

Elnkl .
5588% /
(= . 0} A=
; /
G /
c / bl===p=5
o 5
o -
9 o el ==—=n=9
‘_,,,—e"’/m’l‘:/ =
5,6 %ok rmmis B2
J35 {ime step 045
Bigure 1

The strain relative error in example 1.at iteration 1

im apeat iteration 5 in b and at iteration 9 in c).

: }Eﬂmk}
249-20/0 £ 5
= x el = 0383
9 -
= v .
o - bl o k =04
c 2
B P
-‘G')"Z; e C} x k = 0’477
600 0.0 00000000
@ e o :
203%5 L ==, e f.N

TRg, Bp 7 8.5
numuper of reraion

Pigure 2
The strain relative error in example | for the tihe

step k=0.383 in a) k=0.4 in ) and k=0.417 in c).
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In figure 1 one can remark that at iterationm 1 the error
is linear with respect to the time step k but at iteration 9 the
error seems to have an exponential behaviour. i

In figure 2 we see that for k=0.383 the error is decreasing
when the number n of iterations 1is increasing, but for k=0.4 the
error <19 almést constant for any n and for k=0.417 the error is
guickly increasing. This example suggest that there exists a

critical time step kcr

tinsour.case kcrcro.4) such that the error

is bounded 1iff k<k .
GG

EXAMPLE'2. Tn this example we shall consider a nonlinear

viscoelastic case Flo,e)=-A(c=-G(e)) with G a non-monotone function:

.

" 10e for 22
(5.8)  G(e)=4 ~5e+30 for 2<e<d | |
10e-30 for e24 '

which is ploted in figure 3.

Let bt 2)=0, r(t}=oo(x)=15., a=20, and A=10. We can easily

see that O(t,x)=00 and: £(t,x) is thevsolution of
I : E

(5.9) E(t,x)=l(GO~G(€(t,x))/a

(5.10) e(o,x>=eo(x>=—--9(x)

=

We remark that €, (t)=1.5, & (t)=3~-ana 63(t)=4.5 are

constant solutions for (5.9). The constant solutions 81 and 63
are asymptotically stable having their domains of akragtivity i
the set of initial homogeneous strains, A1=(~W,3) and A3:(3,+m}

respectively. e .



j G(E)

stress

Figure 3

The grafic representation of the funchtion G

from (5.8) example 2

The solution €, is not stable. This is the kind of one dimen-
sionai example that Ionescu and Sofonea had in their mind in
e e o .

In this example we chooSe so(x}=3,+0.075(x~0.5) in onder
to have eo(x)e A1 for x<li5, eo(x)e A3 for x>0.5 and Es to be
"very close" to the unstable solution g,. The space Vy is the
finite element space constructed with polynomial functions of
desvanias o vhc:c1 @)}, a=(0,1) was divided into 50 finite
elements and the time step =0 .05, In figure 4 ihc computed

I

: T _ ,
solution e(uh} is ploted and the results agree with the teore-

tical expectations previously presented.



strain
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Figure 4
The computed strain field e(ui(x)) from example 2.
The initial field (n=0, t=0) in a) at diteration 24
{(£=1.2) in b).and at iteration 48 (t=2.4) in c¢).
EXAMPLE 3. Let us consider the elastic-viscoplastic case
F(o,€)=— %E(O~PK(0)) where Py is the projection map on the plas—

ticity convex K=[—1,f1. Let g(t)=0, uo(x):o, Go(x)zo, H=1. and

. : : 2tz for x<0.5
(Gl b({t,x)=

-2t (1-x%) foxr x>0.5

The elastic perfectly plastic version of this example was
considered b§ Suguet f9j in order to show that in the velocity
field discontinuities are generated and hence the solution
belongs to BD(Q) (the space of bounded deformation functions).

As it follows from Suguet C9] the solution of the elasto-
visco-plastic problem considered here approaches the solution Of.

elastic perfectly plastic problem (considered by Suguet) for




small viscosity coefficient p. In order to obtain Ju-our . case
similar properties of the solution (described by Suquet) we
choose 3 small p=0.005. In this way one can conslider the elasto-
-visco-plastic case as a penalized elastic perfectly plastic

problemn.

Let. us remark that for 0<t<6 the solution oF (5. 1)=(5.6)

isan-elagtic ones

£(1/12-x2) Fo g

(512) glt,x)=

0= (el ) ) SeE w2

for t<£6

tx(1/4~x2)/3 forox<l/2
(5:13) Wi s

2

) A==t s For _

For t=6,0(t,1/2)=—1 and hence the point x=1/2 is plastified.

The space V. is constructed as in example 2 and the time

h
step k=0.01.
In figure 5 the computed stress field OE is. ploted., One

can see that at t=6 the point x=1/2 is plastified, and the stress

field remains continuous for t>6.
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Pigure 5
The computed stress field 02 from example 3. The
initleal cekrainfield in a)  E=0)., dE =6 ineb)

Afl et =Tl An ) {(t=nk).

In figures 6 and 7 the computed displacement field ug and
velocity field vi:(u§+1~uﬁ)/k are ploted. In this figures  one
can see that for t>6 a wdiscontinuity" appears in the displace~

ments and velocity fields at w=1/2 which is developing in time.

n
u U, n
s 05 - ti=( ih b) f=5 _ ,:iflh clit=72

el
o L

. o

1.5 et i AT
0 —lengih 7 0 0 o8 7

Q
e

displacement
S

o
~
&
1631

Figure 6
; . n
The computed displacement field Uy, from example 3. The

initial displacement field {(t=0) in a), at H=gdn b .
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Figure 7

- The computed velocity field Vg from example 3. The

initial velocity field (t:O) in a) at t=6 in.b),at

6.7 dn el oat B=6.4 in .4}, .8t t=6.8 in e) and at
=72 in f) . t=nk.

In figure 8 the computed strain field s(ui) is ploted;
and the remark that the tdicecontinuity

" point x=1/2 the strain
is quickly increasing.




Y,

X

Figure 8
The computed strain field g(uﬁ) from examplé 9. The

initial strain field fe=0) in g)k,at t=6 in b), at

e, a6 A oind), af Exf8 du G S At

a7 . D dn ), tenks
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