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HOMOGENI!ZATION OF NAVIER-STOKES MODEL:

THE DEPENDENCE UPON PARAMETERS

by

pan poLievskl (*)

Summary., We continue in this paper an earlier work ES], by
studying the influence of the kinematic viscosity
and of the external forces upon the asymptotic
béhaviour of the Navier-Stokes model of fluid
flow through a periodic structure as the characte=

Fistic lemgth of the cell tends to zZefoe.

1. Preliminaries

Let Zﬂ, ie§),z,,,o,6§, be the side faces of Y=
ﬁ[p,ltz and let P bie ‘a surface of ¢class C2 included in V,
which crosses orthogonally the boundary of the cube following
some regular curves which are reproduced identically on opp@si;
te faces;{?separates Y in two domains, Yg (the solid part)
and Y. (the fluid part), with the property that repeating Y
by periodicity, the union of all the fluid parts, respectively
the solid parks, is -connected. in &3 and oific ol CZ‘ The origin

of the coordinate system is set in a fluid bally thus all -the

corners of Y are surrounded by fluid neighbourhoods. We assiiie



& Qe
B TN : ree
ileo that if | iattains an ‘edge of Y, then thiesnormal to I
in that point is the edge itself.
Let {1 be an open connected bounded set in R3, locally
located on one side of the boundary af)l . & manifold of class

7 . & ’ et
¢, composediofica finitenunber of connected components. Defi-

ning(?:ngwa by

.{T{D(x], X0 %x]} { *, 2)

2]
where §°§ denotes the function which associates to any real
number its fractional part, we say that a function f defined

3

on R” is Y-periodic iff f=fe@P,

Further, for any 5610,1[ we denote
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Qﬁx)é[ §w= the fluid-selid ipterface

Let us remark that BL BQ) U F

As usual the scalar products and norms in LZ(QJ and
H;(QJ are denoted respectively by (.,.), l.‘ S (o
XE.“; ihiecnorm ane L2 (D)= (pt2) < is demeted by i.lp. Me agree
to use the same notations for the scalar products and norms
in LL ‘73 L ] 13 and X_p QJj To the cerresponding no-
tations associated to Sla(nnstead ofﬂl) wie attach the index
i (for instance the norm in Lh(ﬁ%) is denoted by‘t.{h’g).

Also in this work, Abs(x) stands for the absolute value of



the real number x,

Ter U Be chie space (without topology) :
47i =§va£}£@& dibtve v =0"in &Z}.

We denote by H and V the closures of UV in LZ(Q) and Hl(&),
respectively, To the corresponding concepts associated to
jls(instead ofL) we attach the index €.

For anyge]O,]E we consider the Navier-Stokes prob1ém)
Athat ks, Uf “the Jexterial forces qseH\€0} and the kinematic
viscosity \% are given, we have to find the velocity field
Ug. and the pressure p , satisfying in some senses the

&
equations

Croifdig o= Oiip uQ_‘£

(1.2) (4V)y -VAy=g Tp in 2

and the boundary condition

(= 3) b d on .anE

The problem (1.1)-(1.3) has a well-known variational
formulation:

To find L%G\E satisfying

z &

(].h)X%((u&,v)é_+ba(u,, u ,v)=(g5,v£‘ (%) vev

where b, is*the Erllinear continuous form on V defined by




least

REMARK 1.1. For any 8A5t]0,1[, the problem (1,4) has at

one solution (sée [91 Chad) El

With a proof similar to that of [8] we hmyve the Eriediiche|

inequality in 125

(1.6)

Il <epelvl, W ven! (2

where C] is independent of & and v,

We need also the following Sobolev inequality in JQE :

1

0.7) \v{b”ﬁ<czg”hﬂv“é () ver! (Q)

where C, is independent of €and v.

Proof of (1.7). We consider the classical Sobolev inequa-

(.89 fufge full 5 () uen! Q)

where Co is independent of u, Then, for any veH;(j%), let Us

choose uGH;(SD i G108) as  fellows

Vi in l2¢
u:
0 in _Q.\.Qa

In a straightforward manner we obtain



(1.9) \v[e,egcoﬁvué

As (1/4)/2 + (3/4)/6 =1/4, by the Holder inequality

we have

G H<H1/u] l3/t+

Finally, introducing (1.7) and (1.9) in (1.10) the

proof is completed. [

Let ugeVe be a solution of the problem (e siince

be(u,v,v)=0 (\) u,veVe . then 1f we set v=u, Sin 0 e

receive

(L1 *?lhgl(8~‘la\ o \5

and using succesively (1,6) we obtain the following estima-

G ‘ H%JL<C&]9£[/’NQ
(1.13) lu| <e&% gl /
2

where C denotes constants independent of g . Now we can prove:

THEOREM: ol BFf the (non-dimensional) Galilean number

defined by




(1.14) | O

is sufficiently small, then there exists a ‘unique solution of

the problem (1.4),

Proof. et u, and U, be two possible different solutions
of the problem (1.4), If we subtract the equations b)) cor
'responding to u, and Uy and if we denote by WU =Uy, then we

obtain

(Laa5) %;(w,v)%/+b£(u],w;v)+b£(w,u],v)=0 () vev, .

4

For v=w the relation (1.15) reduces to

(1o56) VEHW

e ' '
!g = bE.(w,u],W)<!Wi4,ghu1”&

|

Estimating Hu]kaby (1 J2) and wsimg (1.7), From (b it

follows
(17 VO-es) [uf (o

wrtth some positive &, independent of & ., For G& sufficienthy
small (l.17) implies Hwyé=0, that is u]'=u2 T El

|f the homogenization process associated to problem (ko)
is studied, one has to remove the fact that Ug and Pe are defi-=
ned only in.Qm. While ug can be naturally continued by zero in

-

AaNd

g, the prolongation of p- o L is not so straight. For
: &

the case when\%.and g, are of ap-order, a —conmstruction of
T =i . 2 10y
such a prolongation can be found in L83 gnd i & s done Jin (&)

: ol e ]
by transposing some special restriction operator from HO(QJ



to H;(QQ. Unfortunately , it holds only when Y. is strictly
contained into Y,.Q..é being defined as the domain obtained from
2 by pleking-out the %YS parts which do not intersect 3&;;
thus, from the physical point»of view, the flow in [8] is only
bidimensional with monophasic border, In [5] we have extended
the above mentioned construction to the.gebmetry already presen-
ted —at the beginning ot this section, which is three-dimensio=
nal, with connected phases and biphasic boundary, Still in this

case we have succeded in [5] to prove -the convergence of the

homogenization process, which meant there that,after the pro]on»l

gation of the solutions,the following convergences hold
2 : 2

Gl 8) g /€ wmu  in L () weakly
(A9 T in L6/5(QJ strongly
with the propertyvthat u and p satisfy the Darcy problem
(see [6] Chi 7

It - is obvious that, for different relative values of
the data Y% and 9. with respect to € , we expect different

behaviours of the solutions as & tends to zero,

2 - The pestriction operator revisited

As we want now to study a larger range of N% and g, »
we need more regularity properties for the restriction opera-

tor constructed in ESTIand therefore we shall reconsider that

pioiciediuies



LEMMA 2,1, There exists fé&ﬁWé])(Y), W(]/z)(EYf) such

6
that
R f(u) =0 on I
(252) flu) =u i N i =0 i Y
(2.3) Sf (u) .ndg”= Su nd0~, (¥) iég},z,...,67
Z =

where Z:c Z ﬂY wkZ’n'VS and n denotes the unit outward
normal to 21.

Moreover, there exists a constant C such that

(2.4) ‘f<u)lLNQYf)<c\u\Lm(bY) () uewél>(y).

Proof, This is a slight improvement of Lemma 1 from [57.

The operator f defined there, satisfies (2,1)-(2.3) and also

(2.5) \f(miwé]/z)mf’)gc]ulwé%bﬁz‘) wen{ (1,

where C is independent of u, Hence, what is new here is only
(2.4,

#or this let us remark that if u€Wé])(Y), thén
eWéS/é)(BY) and according to the Sobolev imbedding‘theorems
for fractional order spaces (see E1] Ch.VII) it follows
ueC®(dY). Recalling the definit.ion of f(u), (2,4) is obtained
in a straightforward manner. I

LEMMA 2.2 1Ff uéWé])(Y) then there exists a unique

=

(v,q)eH](Yf)xL Yf)/R, solution of the problem




(2.6) -Av +Vq = -~4u in Yf

(2 k) disv-vo=adiy U4 kfu) Sin Yf
(8 v=Ff (u) on EYf (f given by Lemma 2.1)

where, denoting the measure of Y. by lYfl colkbu) s given by

(i) o) = Sdiv u dy

A
\Ys ¥

Moreover, there exists a constant C such that

¢ (|ul + Abs (k(u)))

[vi L) Loo (2Y)

Proof., Everything was proved in [5], except (2. 11).

For this lest us consider a vector ZGCMXSYf) such that

(2929 g C.ndtr=\Yf\
By

where n is the unit outward normal on Yfe

Let us consider the system

(2..43) —\/.'xvg +Vq5 =0 in Y
2 ) div %;f] in Yf
215 Vi = G on BYf

This is a classical non-homogeneous Stokes problem. The

compatibily condition is satisfied because of 2-12) 3



g

according to [2] it follows that there exists a unique
(vt,qg)ﬁH](Yf)xLz(Yf)/[R= solution of the preblem (2.13)=(2.15}),
Moreover, for any®>1 there exists a positive C (independént

of ) stich that

(2.16) l"zl w(2) (Yf)*\qgi w(ol) (Yf)/LR<C EEtw(?‘) (Y

o< o f)

‘I'f (v,q) is the solution of the problem (2.6)-(2.8) -then

itohas the form
: (é.17)_ v=u + k(u)vg+7 ; q = k(u)qg_+q
where (V,§) is the only solution of the problem
(2.18)  -a¥ +Vq = 0 in Y
(2.19) div y =0 in Y
(2.20) ¥ =Y(u):i=f(u)-u-k(u)8 . on AP

Using properties (2.1)%(2;3) of f one cams easily verifiy
the compatfbi]ity condition of (2.18)=(2.20) , Referring agéin
to [2], we obtain (¥,§)en’ (v )xL® (Y,)/R.

s . 3 e
Obviously, what we need more is an L, -estimate for V.

Taking in account (2.4) we have
U - -
2.20) Wy j<etuly_(oyy + A8s @)
For any iégl,z,Bg we denote

(222) M; = rsun Abs(%(u))
QYF -



where %ﬂ(&) are the components of the vector valued function
Sial,

Let us define w=(w],w2,w3) by

n
As sup v, = sup %2(u)<9§ , it results
EAR: CAS:
(2.24) wéHg(QQ

The domain Yf is divided in two sets (see[Bj Ch.il for

inequalities in the sense of H])3 :

M. =§erfl w, (y)>0 in H](Yf)g

.Ni={erf>l wi(y)=0 in H](Yf)}

which are determined within a set of measure zero. Moreover,

we have
=G
W, et i M
(2. 25) —L =4 97j ’
QY
0 in N

T hius:, Eonme 15 19 ) v fol lows that
(@260 diiy w. = 0 ia Y

Now, we take ‘the duality product of (2:18) by w; taking

in aiccoumta (2. 08 =02 26) itoyields



= [ eiaan 2 |
(2 e ]y = gwﬁ | = 0
i,j=1 j H (Y

(2,28) V< ave. on V..
Nnis bogous 1y, i f we = - defilne w, instead of (2.23), by
(228 W, = mingo'i + o, 05

we,thain Q}}—X

£ sbs i), W desr 2 2
\%$z S |u Ig ?

o

(2.30) \"\"i\L (%)

Finally, estimating v via (2.17) and using (2:36). (.20

and (2,30), one can obtain without difficulties 9.

THEOREM 9.1, For any &>0 sufficiently small there exists

e s ()) 1
a-nestriction: opierator %ﬁgalc e HOCQE)) such that

= =0 in DL = Rou=u
(z.32) div u=b in~9.t? div(Rgu)=0.

(1

o i :
Moreover, for any u€W. )(Q), there exists C independent

of & and u such that
geg ! (lul, velwmlg)

Q\C(\u\jﬁl/z(%% )



e

Proof, In fact we have only to prove that the restriction
operator defined in [5] sathaty (230 Nevertheless we remind
here that definition,

First, let us notice that every gY-cube s tof-the

form

3
EYn=TTW}ni, En, +8[~

i=1

with n=(n],n2,n3)€32’.3 and. that the gY¥=cubes which intersect jl

can be indexed following
- 3l n }
z =yneZ’| YL+ ¢

For any ueWé])LQ) we set

(2.35) R8u= 0 in il\\&%

n

: = ’
(2.36) Rau—v ey in eYe

where v? is given by Lemma 2.2 for the datum

_ u(an+&(g))€w(6”(Y) e g o
e
E
u(en+e(.)) continued by zero if aY?ﬂ&Q#ﬁ.

Thus:, It folleows straightily

: n
[R u <sup KVQD@‘ Ny = osupiv k :
& L))g’.\ ﬂGZ{:& £ LG.Q( 8Yf) n@.ZZ-E\ LW(Y f)

According to (2,11) it yields

\

n| 3 Abs(k(ug)))

(2.37) |rgul ¢ sup ({u] | ()

(:’ L=
C o»e N Z




il

: ; n e
Next, let us evaluate \USIL“JBY) and AbsCk{u)) using

the change of variables:
(238} x =¢n + Ey, yeyY,

In this way we obtain

{“QIQQ(BY)<ju!gm(5Y”)

: n ] > ] n{5/6 '

Sdlv us(y)dy =-E=2=gdlv u(x)dx<gzz=(gYs\ \Vu] LG(ZYZ)
% I

which imply

Sup lugle(évKlU]w

neZ%

< sap Abs(k(ug)) <C§5]/2(Vu&

nGZ% G

and the “Enequaliity (2,.34) - is proved via (2.37). 1

3. Convergence of the‘homoqenizatrbh process for

G£=o(

Recalling (1,14), throughout this section we assume

the following two hypothesis:

(3.1) Bim o2 G =0
- &0 - &
3529 (3 geH such that g /!%{M»g strongly in Ht

REMARK: 3.1, Jgl="15 O




Introducing the hilbertian space
e W=§W€H](Yal W‘F=0, div w=0, w is Y-periodic }

with the scalar product

o
| du;
(3o b Tl = 2 Si_'. oy

we can formulate for any ké§},2,3} the gso-called local pro-
blem:

(k)

To find v €W such that

et - - ka(y)dy, () wew
¢
where Wy is the k-component of w,

By the Lax-Milgram theorem, there exists a unique

v(kkEw, solution of the problem (3.5). Further, one can easily
proye that there exists a unique q(k)ELz(Yf)/R such that

(3.6) 1Av(k)+Vq(k)=e(k) (in the distribution sensein Yf)

(k)

where e is the unit vector of the k=-axis.

Moreover, the regularity theorem for the Stokes problem

(seel9] ch.1) implies ven?(v,) and ¢ Menl (v ) /R, Also,
as in [61 Ch,7 there is a proof of the Y-periodicity of q(k),

we have in conclusion.

1

(3.7) vMewnn?(y,) and q(k)eHPer

(Y) /R




=6

Our convergence result is the following:

THEOREM 3;{0 | f (u&,gk) is a weak solution of the pro-

blem (1,1)-(1.,3) and if we consider u, continued to £ with va-

&
lue “zero out ofjle , then there exists a continuation of p
[
to A (denoted with % J-sueh that
(3.85: P /82‘9\—4>u weakly in L2 (0)
e £ £ 3 :
(&:9) ?Z /{gg\-mn» P strongly in L6/5(£D

where (u,p)€H x L6/5(Q)/R sat{sfy in the distribution sense

in. the Darcy equation
(3000~ ~u = Klg ~¥p!
the homogehized (3x3) - tensor K being defined by

(3. ) KU. = nggi)(y)dy (v(i) given: by A 3. 505
\Qa ‘

Proet Feem (=13 ) it results that%%%;/ﬁzl%i; is bounded

=S :

in del); hence there exists u&H for which, passing just in

case to a subsequence, the convergence (3.8) holds (the fack

SR

that the convergence holds on the whole sequence it will be pro";

ved by the uniqueness property of the Darcy problem).
Simee (1.2 Is satisfied=in H*](X%), using R, the opera-

o(])(ﬁbz:

tor given by Theorem 2.1, we have for any v&wé

(3.12) {Vp, JRovp=- W, (Lug ,Rg v)) =by (y ,ug s Re vI+(g W Rev),

Taking in accoumt (l6),. (1.52) and (13 it yieclds




E fwie

[<70, 2re D v vl +al, Bl Vel o
lo| 1% \&Cfgf elrgvl, +e2/ %

Considering also the properties (2.33) and (2,34) of R.

we receive

(3.]3) \<.VP8'R8V>(<C{921 vl6+ gle‘6+& G} [

‘where C is independent of & and v,

Thus we found that the functional

=<Vp8, R&(a)><H—],H(1)>(Q)

is bounded on W( )(SQ that is €3Wé/5%ﬂ) If we continue

Vewé])LQ ) with value zero in jl\-Qe y T rom property (2.31) of

£
Ra it results
el =
(3 ) E 'Qa V$5

Moreover, whenever div v=0, (2,32) implies

< g '\><w

6/5'

: ’
and hence (%)‘§§£?(QJ such that

(3.15)  V = Feu é;;)(&)




=8 =

Refepitng. te Corollary 8,12 UF [?-1 it follows

(3.16) ';SE’Q:,LWS(Q)AR

and comparing this result with (3.14) we see that
(30.7) D Fs=a ceontinuous of P,
s '

Also from (3,13) we obtain

e an

for €& sufficiently small, Consequently, using the inequality

(3.18) {?;hws(Q)/R@(&)\V%\wé_;;)(m

.(see[S]Remark 2 and. [h]) we: flhnd.2thaitt —thie sequenceggé / lqil}c is

6/5

bounded in L6/5(Q)/U% and therefore there exists pégl (Q) /R such

that on some subsequence

49 %/(gg\Qp weakly in L6/5(Q)/{R
(3320) Vﬁe’ /\gglw:z.vp weakly in wé;;) ()

o
Let us notice that for any wgm-»\w weakly in Wé])(&?.), via

(3.13), we have

|<V; 719, + wey =<V |
S KW 715} o v DRI Ay - Vw2 1<
< C “ws —w‘lé + E,les -leg +83'/2

+E;]/2 l VW8 - leg)+ (term wbikalhe=20)

G, ( \ws = Wloo+



=g

Taking in account (3.1) and the corresponding compactness

theorems we ob%ain
G e Tt
which means

g lw%»Vp strong]y in Wé/;)(ﬁﬂ.

Gl s — Vé;/lg

Recal I ima: (5,18, from (3.21) we receive (3.9),
Resuming, it remains to prove that (u,p) satisfies

(3.10); for this we apply a standard method.

Seting %>=,v(ilq% and q&fq(iQCQ’ we write (3.6) in
terms of X=gy
BorE s e A, seWe- e L

Because v(i) and q(i) are indepenﬂent of & , by straight
estimations we obtain
(3.23) RVU [vgl e \<\ ¢ and lqﬁ[eéc

where C is independent of E& .,
Let é%ﬁ%ﬁ); making the duality product of. (1.2) and
; : 1o = e
(3.22) by @vﬁ/[gd and reSpectlyely @\eua/a \%i , by subtrac

Ll onwiersgiet

3 ira
s = oug OV Bib 1 >
(3.24) "{"g‘i\“?](a P Yegn o l \é e s7¢ ) """"q 2} ‘qu'))_
, g :

=(g 7/ |g,| » Py )+ (B /{gg| » VP - (lug) /8 \qi

where (ug)i is the i-component of Ug o



According to (1;12)-(2513) and (3.23) we have

: ou % o % oy
(3.25) ‘g:\ l(e SRS sTeree . iTE \T@‘a"\"'qval&“ue\\s l&le HV&L {CE
£ 3/ 2
(32600 o \be (”e’”£'¢va )K 9. X“a\é Hugn }"e[m)€< Lo
) o l(cie,ugv¢>){é»éiggl~lug\g[qs1£<c&

As by the classical lemma on Y-periodic functions we have

also
§3;28) (v ).aJ»Kij weakly star in L (L)

where (Vg)j is the j-component of Ve then passing (3.24) to

the limit we Bind that u-and p satisfy (3:10) dn the distribus

tion sense in.&L. [j

REMARK 3.2. The tensor K is symmetric and positively

defined (sée Cf)](:h.ﬂ6 £l

L, The macroscopic problem in the transition case

"3/2)

Ge =0 (E

Throughout this section we assume

= 35D
Y. g S

L, 2 &H h h =
(4,1) g such that g& £ A

9
from which follows obviously 5?/‘G£=\gl
Reconsidering (1,13), in the present case we obtain

that %&u&/‘iég is bounded in LZ(QQ; hence there exists u€H
8 X

for which, on some subsequence, it holds




th2) -« sn /\vgn-—-:»u weakly in L2y,

Also, with the techniqueé used in the first pa%t ofizthe
proof- of  Theorem 3;1 we can prove that there exists‘% , a con=
tinuation of % to & s -Ssach Ehat

3/‘\’

(hi3) &
; .%

/Yfﬂma»p strongly in L6/5(§D,

REMARK iilg As the energetic method of proving the con-

vergence of the homogenization process seems to fail in this

case, we search for asymptotic expansions of u_ and p& as

&
£~—>0. The heuristic deviece (s t6 supbeose that Ug and Pe have

two-scale expansions of the form

() ug ()=, (ug Gy y)+uy (x,y) 4.0

(4.5) b, (=297 (p (e y)vepy (e, y)+a)

where y=x/g and the functions u,(x,y) and pk(x,y) are Y-perio-
dic in the variable y; their total dependence with respect to

x is obtained by the rule

bt i os el e
; : ,

Further on, we consider the '"partial' problems obtained
by collecting together the terms with the same power of E in
(1.10=(1.3)5 as a result of the substitutions (L.h) and {(h.5)

governed by the rule (L.6),




At the lowest power we receive
e 7) _ P, = Pg(x)

At the next level we find the so-called local problem:

(4,8) divy u0=0 in Yf
(4.9) (roy)uo-Ayuo=-Vyp]+(g—pro) Y
(b, 1:0) uo=0 on F

in which x has to be considered as a parameter and (g~$;po) as
the given force, Reminding that u  is %—periodic in the varia-
ble y, it follows that the problem (4.8)-(4.10) is equivalent
to the homogeneous Navier-Stokes problem on a torus; hence it

has at least one solution (see [?] Gl T ),

|f we define the mean value of w&VW by

(4.11) Qﬁ='§w(y)dy

and if we denote by v(y,g-E&po) some solution of the problem
(4,8)-(4,10), then the nonlinear version of the Darcean law
(3 0) e

(4.12) Nl in Y. Ej

(6] K50

The considerations of Remark 4,1 suggests us the follo-

wing macroscopic problem,

CONJECTURE . -The Jdimits uel and p€L6/SCQ) of (4. 2) and {4 3

satisfy the equation




e e — -

(s 103) u=9 in &
where veW is some solution of the problem

(4, 18) ((v,w)) +b(v,v,u)=(g=¥p,w), (¥)weV

the trilinear continuous form b being defined by

> 3 ; OV
Gl b %(u. e ddy, O oy ey, B
i, =1 =0 ¥ J

%
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