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1. The nonlinearity hierarchy, Hyperbolicity.

We consider the system (ueR'; two independent variables x,t)

t

" 3 .
g% + A(x,t,u)%& = B(x,t,u) (1)

‘with A and B given in a convenient region R (see §k),

DEFINITION 1, The system (1) is called linear if A does not depend on u and B depends

linearly on u (i.e, if the dependence on u is linear), semilinear if A does not.depend
‘on u and B depends nonlinearly on u, quasilinear if A depends on u (particularly, if

A=A )

Th

[

NONLINEARITY HIERARCHY:

LINEAR SYSTEM—<SEMILINEAR S,~ QUASILINEAR S,-< NONLINEAR s ) (2)

The displacement (from left to right) in the hierarchy (2) is related to the

raising of the noﬁ}inearity level,

D2 The semilinear/quasilinear system (1) is called (completely) hyperbolic in the

point (xo,‘té)/respectively (xo, L uo) of R if in this point the eigenvalues A of the
matrix A(x,t)/respectively A(x,t,u) are all real (strictly hvperbolic if they are also
distinct).

REMARK 1. If the system (1) is strjctiy hyperbolic then the matrix A is diagonali-

=]

zable (let P/respectively P ' be the matrix whose columns/rows are right/left eiaen-

vectors of A; then, P-]AP=diaq(k1,‘.‘,Kn))_

2, Characteristic form of a hyperbolic system,

THEOREM 1, If the strictly hyperbolic system (1) is semilinear then it can be put

in a characteristic form,

ﬁ We define
v = P—]u (3)
and put (1} ‘in-the formv(see R1)
av ov
=T € (4)
T=p”! =it pler L 2 i, (5) P
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72 (R.Courant, P,Lax, [ 101), If the strictly hyperbolic sistem (1) is quasilinear

then it can be put in a characteristic form,
= : -]
4 We suppose A L e (a nonessential restriction), Since P depends on u
we cannot use (3) any more and then proceedin two stages.

At first we define U by

<~

=0
3? u =Py , (6.

so that (1) gives (here we need A-])

L ‘ (7)
d X . :
% - 5 '
Then we require ueC” and use B LT e Uite obtain
IS B ap o "
u = P o7
==k +(P~ AP)E" P lag = +([A" (Pu B)].gradu)P}u +

I gé.+[<PE).qraduJA}A"](P3~B)+ A

=Jaip ~
+P {5€+[(Pu).9radu]8}—
e
ot

= I

Py +[(PU) .grad P34

Next we consider the vector

"N Nt
)

v =(u1,...,u UpseeesUo

n,
(here (il e s transposition), We have (according to (6), (8))

v aNEER

where T is a diagonal matrix whose first n diagonal elements are equal to zero, f»

R2, The raising of the nonlinearity level (see(2)) has no echo in the formulations

Tl, T2/ the hierarchy(2) does not filter the property stated by T1, T2,

3. Riemann invariants ([55]), The Riemann form of a hyperbolic system,

R3., For a semilinear system (1) the characteristic form (4) is a Riemann form too.
The Riemann invariants (abbreviated RI) v}(u),...,vn(u) are given by (3}, The invariance
(along the characteristics) is allowed to be manifest by the typical case A=constent,

B=0:tm 1) ..

RY, For a quasilinear system (1), the characteristic form (10) is not a Riemann
form, As A=A(u), n>2, a Riemann form can result under only certain restrictions,

Let
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TR E A T T A T (1)

be the eigenelements (right eigenvectors, left eigenvectors, eigenvalues) of the matrix

A(u). According to the assumed strict hyperbolicity the eigenvectors R/respectively L are

independent and the eigenvalues A are distinct.
Requifement/restriction: the forms
By ‘ _
Lo ln)du. , 1<i<n (12)
j=] J ) .

~

should be integrable,

Let us suppose, for exemple (see the item 5,1 hereinbelow), that each of the forms

 (12) has an intearating factor o.:
a; u)Lj(u)= o vi(u), 1<i<n ()

We call vi(u), 1<i<n, Riemann invariants, There are two reasons for it.

First  of all,taking (13) into account we obtain succesively
I A
aiL['S? + A(u) Sy-]wqiL B

_onit[ 0 A ]=ot,il’_ B

at q X
D SRR e ' (14)
i i Qe el R

- where we denote Ki(v)ﬁki[u v)1. The invariance (along the characteristics) is allowed to
be manifest by the typical case A=A(u), B=0,

On the other hand the relation (13) extends the relation (3) in an obvious sense.

As the nonlinearity level fises,,fhe possibility of finding a Riemann form for the

system (1) is filtered by the hierarchy (2).

L, A review of the assumptions,

: 2
We consider the hodograph space H={u{u€Pn}and the physical plane E={(x,t)|(x,t)eR"}

and study, in the sequel, the initial value problem

AT R - _ % ' :
= +A(u) ==0, m<>§< o (15)
u(x, O)=uo(x), =~ x < ; ‘ (16)

where the system (15) is strictly hyperbolic and, on an open, bounded, simply connected
region RC H, we have AeCm(R), m21, The points of the hodograph space will (often) be cal-

led states,
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5. Consequences in the hodograph space of the assumptions considered.

5.1, Existence of the Riemann invariants.£26:}

We denote

i R
L(u)=(Lj(u)) o e B (17)

PROPOSITION 1, If Lgc'(R) and in R the conditions
i :

I
.BLJ' aLm
= e e, Ve (18)
= m J

are fulfiled, then for every pair (ug, iy u eR, VOER”’ the solution.v(u;uo,vo) of the

problem

‘ dv=-L(u)du=0, v(u0)=vO . (19)
exists (uniquely) in the whole region R and vsC](R),
R5. If the conditions (18) are not fulfilled an analogous result can be obtained
when an integrating factor exists for each of the forms (12)  (as n=3 the intearability

i i
conditions are written in this case L.rotuL=0, 1€i<3),

5.2, Riemann-Lax invariants([36])

Let us consider the autonomous system

ut = é(u) ' ; (20)
i i
where R is an element of (11, REC](R)_

R6, Since R does not contain critical points, all the results corresponding to the

nonautoinomous systems (e*istence, uniqueness, continuation of the solution) keep valid.
i . ? ’ :
As R5C1(R), through each point of R an orbit passes which goes from bord to bord in R.

: . : e ; : e
D3. We say that a nonconstant function o{u), which is C' in Ré:R, is a first inte~

gral in R, for the system (20) if it keeps constant along each orbit included in R, of

the system (20) (the constant depends on orbit),

' ; : [ e .
Dh. We say that a nonconstant function ®(u), which is C' in Ré:R, is a Riemann-Lax

invariant of index i (abbreviated i-RLI) in Ro if it satigfies in RO the equation

é(u).graduw(u)=0 | ' (Qj)
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P2. The function o(u) is an i~-RLI in R, Iffit isia first integral in R, of the

system (20),

Since R does not contains critical points of the system (20), we have ([ 2 7).

' i i
P3, (i) There exist exactly n-1 independent i-RLI, m](u),,..,@

n__](u), i gumedah=

bourhood U(T) of every point TeR °,
(ii) The general so]ytfon of (21) can be represented as
G=FLS, (1) eresy (], ueHCU(D)
where F is an arbitrary ¢! function {defined in a neighbourhood V of the point [é](ﬁj,..

¢

I — .
s0 o © ,(pn_] (U)]} °

. X ] ?

R7. Since u is not a critical point of the system (20), let Rk(U)#O (g, 1) s
circumstance (on which the construction implied in the proof of P3 depends) is generally
local: in another point, U, we could have hj(ﬁ)¢0(k¢j), ék(ﬁj=0. Henceforth the local sta-

tement of the proposition P3,

Here is an example in which U coincides with R,

EXAMPLE 1, In the adiabatic gasdynamics (in Eulerian coordinates; in the usual no-

tations) the system (15) has the form

30 ., 3Im _

S i P

LR e N (22)
ot 3X P B - <

9 3 m
Bt(DS) o [5(05)]= 0}

where
p=p(o, 5)

Denoting u=(u], Uy, u3)=(p, m, PS) we obtain the following eigenelements of thezmatrix

" Ain (15) (we choose the length of the eigenvectors R according to (2%)1 3 and [R|=1)
s ’

i We say that the functions g,(u),.. ,qi(u) are independent in a neighbourhood of the

)
e ] 3 :
point u if rank Hagi/aujﬂ y=gksn (1=j<n) ,

s

S R



U2 UB
Aqlule= -c(p, )= GT~~c(u], UT )
= F Az(u)f g = g%
XB(u)E % + clp, S)= ;% + c(u], ;%) *
s Al L

PG A R N Ve e ) e
R (U)‘“[("é“g‘) 4"('5 °§”§) +(OC -S as“) ] [" "a"‘é‘, = B'é-g, (@1 =5 'ég_] (23)

3 i :
Rmﬁ@£+4‘m,g+gg

. | 2 g ' '
Since we have R]¢O, Rl#O, R]¢O in the whole R we can give the RLI in the whole R:

(i) 1 - RLI are

(t‘ ) Us. u C(‘E’ T)
m,(u)z-g + /2 5#3%§~ B e = Loas
e e LG [
Foia ks
(pz(u) S— 'G']'
e = Rl ek
SRR N
(D] (U)—- ’5 = ‘G’i"
.U3
(.OZ(U)EP(D,S)EP(U], Il"«r )
(iii) 3-RLI are u
. e
3 ; ; ((— S‘) 'Uz U] Cis, UT
S gl . by e
@](u)_ o) fO = aiE u fu £ dg
¢! I 10
il
(DZ(U):S: 'GT
It is easy to see that
] i
R(u).qraou A](u)=1
2 | | '
R(u) . grad 32(u)=0 : , : (24)

3 g
R(u),gradu k3(u)=1
~ COROLLARY |
i
(i) R
(ii)

éu),graéu¢](u),.w,graduén_](u) are independeht in U(T)
L(u), gradué](u),.‘g,ﬂraduén_](u), k#i, are dependent in U(T).
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5.3. The relation between the sets of Riemann and Riemann-lLax invariants .

Pli. I'f there exist R for the system (15). let vl(u),.;.?vn(u) be their expres-

sions, then

.v](u),,.,,vi_i(u), vi+}(u),...;vn(u) ' (25)

are the i-RLI,

g According to (13), B
In other words, if there exist Rl for the system (15) then vi(u) is an k-RLI,
I<k<n, k#i. \

At this point Qe.ought to revisit the conclusions :of Pl and the details of R7,

particularly in case n=2,

R8. The RI describe a (local, cf. [63]) characteristic coordinate system in R

(fia. 2). The surface Vi(u)=constant is stratified by the lines of index j, l<j<n, j#i.

6. Genuine nonlinearity, Linear degeneracy. Convexity, Continuous solution of a

strictly hyperbolic system in two independent variables,

6.1, Genuine nonlinearity, Linear degeneracy, Convexity.

D5 (P.Lax [ 361) A characteristic field of .index i of the strictly hyperbolic system |

: (15)‘is called genuinely nonlinear if 7 : T

é(u’;graduki(u)¥0,’ in R (26)

and linearly degenerate respectively if

é(u).graduki(u)zo ST (27

D6, (P.Lax f36]). B strictly hypérbo]ié system (15) is called convex if its characte-|

ristic fields are all either genuinely nonlinear or linearly degenerate,




e
Here are some examples of convex systems,
E2. The system (22), according to (24),

E3. The system

&
90 , am _
el el

s (28)
am 3 (m = =
o "5';(‘(5“ + p)=0, p=plo)

of the isentropic gasdynamics in Eulerian coordinates (in the usual notations) .- Here

u=(p,m), flu)=(m, g“ + p)
and
I 2 . !
de fe || dc cy~1
R(u)=(-8'5 + 5) Ll ,KI (u)],R(U):-"(-d*S -+ -5) il ’.}LZ(U)]
Ay (u)= .g -, Ay (u) = g +c

(we choose the length of eigenvectors R according to (29)).

We have
Ruudoaiad Selll=T, 11,2 (29)
The Rl have the expressions
e 2 aelg) Bl B (o)
V](U):B ¥ -*—-E—dO, VZ(U)”E-FI“BMD (30)

E; Asen=1in (15) we put a=f’ and then we have A(u)za(u), A(u)za(u) in R so that;the
requi rement (26)‘can be written [R(u)f“(u)#d 1% (e
£ (u) £0 o R (2
(f should be genuinely nonlinear : convex/concave). Under this restriction the length of R
can be chosen according to R(u)f'"(u)=1. On the other hand, the requirement (27) can be
transcribed |
£ (u)=0 inR 52)

(f should depend linearly on u),

6.2, Smooth solution

A smooth.solution can be constructed ([10 1, [151, [17 1, [27 1) from smooth initial
data in a convenient neighbourhbod»of the initial line, This neighbourhood is naturally limi-

ted by the presence of singularities (see 6,10),
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6,3. Continuous solution, Simple waves solution,

Let us consider, under the assumptions of §4, the autonomous system

du <

T “AURW) (33)
where i is a genuinely nonlinear index, eC” (R), myl, and A#0 in R, Let U(Q) be an orbit of
(33) isolated with the condition

Ula, )=U

We use U(o) to construct the function
Bla)=A.[U{a)] (34)

i
Qﬁ and R are elements of (11)). We have

.dB . ‘;‘- <
5= AU (a) JiR[U(q)].,gradukifu(q)ij};éo (35)
Next, we take into account the initié? value problem

Ba S0 s
5 4p (@)% =0, —ecx<o, ©0

(36)

alx,0)=6(x), -~ecxce (37)
where 8 is a continuous function for which a continuity neighbourhood of t=0 exists (éxamp]e:

8 is an increasing or smooth function).

R9.. The characteristics of (36), described by

& plalx, ©)] | (38)

are-straight lines along which a=constant,

: 9B : dR e o
It is easy to see, cf.R9, that for =5~ 0/respectively =5 <0 the solution of (36), (37)
can be represented in the implicit form
o=2(E), E=x-Bla)t ) | | (39)

Particularly,we consider a smooth & in (37).The representation (39) can be read in two ways:

Fi (B, t)=E-x+BL0(E) Tt=0

(40)
Fz(ch,t)za-'G[x~6(q)tJ=O

or

3F oF |
The requirements S?L # 0/respectively = #0 imposed to the functions Fy and F, respectively
Jin order to apply the implicit function theorem are both equivalent with the condition
. dp ';:‘Ci@~ L)
(5 aa[O(q)JEEL #0 ‘ ‘( )
Under the restriction (41) we can obtain, explicitly, from (hO)] the correspondence

E=E(x, t) realised by the family of characteristics and from (40)2 the solution a;a(x,ﬁ)e




dex i in D, We also say that D is a simple waves reaion of index i
T T e g e — o e

Taking (40)7 into account we can calculate

v Bla LSEQ. " do
QL 0. _ —dE o
e ] B d dO i &;'gﬁ‘ggt (42)
+'8’ 37‘ . da oF

The derivatives (42) keep bounded in a regularity neighbourhood of t=0 (possibly placed on

both sides of this axis) determined by (41). According to (41) or (42), given E a singulari-

ty can appear for

()=~ g (g) 190 1 7 - ‘
A dB do 3 3 e : h
S d%g<0 we have t(E)»0 and so a singularity appears in t»0 the earliest for

_t=t%=inf{f(§),EgIR}e As EE-SS:)O for each EeR, we find that a regu]ar:ty neighbourhood strict-

ly contains the halfplane 20 (fig.3,a,b).

The envelope of the one-parameter family of straight lines (40)] is described by

Blo(E)1] s 1
crpeer e SR
S : ==L (E):

75 (4h)

dg
[Flgea3;a,b)

Now we use the solution a(x,t) of (36), (37) in order to construct the function
u(x,t)=Ula(x,t)] - (45)
This function is a continuous (weak; see 7,1) solution of (15) (classical if © is smooth in

©7)) .

D7 (S.D.Poisson [52]), For the system (15), a nonconstant continuous solution construc-

ted in DCE by the procedure described hereinabove is called a simple waves solution of “ins

°

P5. In a simple waves region D of index i the characteristics of index i of the sys-

tem (15) are straight lines along which the solution keeps constant,

.?@ We have B[a(x,t)]=Ki[u{x,t)]’in D, We use R9, P

As 0 is constant along certain intervals of the initial line, the continuous solution

constructed by the procedure described hereinbefore consists of constant regions separated

by simple waves regions, .

The mentioned constructton rAFlects the possibility of a branching through a straight

line characterlstlc and the weak discontinuity c%ﬂrartﬂ1 of such a characterlsticg
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519; Since (33) and (20) are parallel we can apply the RLI theory in order to charac-
terize a siﬁple waves solution,

Cidialiven s boint'ﬁeR, we consider the neighbourhch u () menﬁioned in P3 (i) and R7.
The hodograph of a simple waves solution of }ndex i lays along a line of the field & wilim

the limits of the neighbourhood U this hodograph is aiven, according te P2, by
(46)

(ii)Llet us consider next a nonconstant continuous solution u of the system (15) define
'in DeE and a conveniently close neighbourhood D of the point (xo,to)ED so that u(DOkU(E:
i i '
5 - = . l;
@][u(x,t)LC],,,.,cpn_][u(x,t)]_cn_1 in D (47)
then the RLI theory, the previous remark and the implicit funttion theorem show that in

Eg the considered solution is a simple waves solution of index i,

6. L4, A hierarchy of the smooth solutions.

A smooth simple waves soluticon is a particular case of rank 1 solution; the

_statement of P5 shows ‘a particular form of the rank theorem statement (L6111, 1.74),

HIERARCHY:

SMOOTH SIMPLE WAVES SOLUTION < RANK 1 SOLUTION~CSMOOTH SOLUT!ON (48)

6.5, The Friedrichs theorems ([181)

LEMMA 1, The boﬁndary of a constant region contained in the domain 0 of a-continuous
solution is a polygonal line whose sides are segments of characteristic straight lines.

4 Argument 1. For a hyperbolic system the perturbations prénagate on characteristics
which in a constant region are straight lines, The appearence of a nonconstant neiaghbou-
ring region is equivalent to a perturbation,

Argument 2, Let C be a noncHaracteristic arc of the boundary of a constant regiqn.
It appears'that the constant solution can be continued outside the constant region, a con-

tradiction, f??

D6 (K.0.Friedrichs), We say that an open segment (a connected set which does not con-

tain vertices) of the polygonal boundary of a constant region is essentially isolated

;(fig,h).
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T3 (K.O.Fricdrfhhs). Let D be the.domain. of, a «continuous solutibn:u'and*Dl, ﬂz open
subsets of D adjacent atong the open arc C, We denote u]/respectively Uy the restric-
tion of the solution u to D]/respeétfvely Dy

If HI Is constant, Uy is smooth and nonconstant and C is essentially isolated then

there exists a region DBCIWZ adjacent to D] along C so Fhat resti et iion us of u to D
is a simple waves solution (fig.5),

4 Let U=u(D]) and let i be the index of the characteristic C. According to C1(ii) we
have 'in a neighbourhood U of T in H

k n_]

L(u)=j§16kj(u).gradub;(u), 1<k<n, k¥i ‘ (49)

By (15) and (49) we obtain in Dz:
k ‘ k
b au U~ ou
O—L(U)[}é'{ +A(U)‘:§”§]—-L<U)[§“€
: T (50)
|
t<bj(u)+kk(u)g-;@j(u)], 1<kEn, ki

io;«

= ij(u)[

Q

Let us consider in Dy the initial value problem which consist of the linear system

(associated to the solution u)

= :
f’}_ & > a() G - 3
jilekj[u(x,t)]{atﬁh(x,?)*lk[u(x,t)]§;~j(x,t)}—O,]SkSn, k#i (51)
and the data .
Qj(x,t)=cohstant=¢ﬁ(ﬁ), 1<j<n-1, along C (52)

The equation of index k in (5§1) requires only differentiations in direction A
so that '€ is not characteristic for (51). Then the problem (51), ~(52) has a unique solution
in D§2U2 .
@.(x,t)Econstant=@j{u}, 1<j<n-1 (52

J
On the other hand, we have in DB Laccording to (50)] Qj(x,t)zéi[u(x,t)]n We use

- R10 (ii). B
- Analogous arguments lead.to the followina theorem (see C3 hereinbelow, pag. 25):

Th. Let D]CID be a simple waves region, The region D] cannot be adjacent in D along
an essentially isolated seament of straigth line characteristic but to a constant reqion

or a simple waves region™ of the samé index,

6.6. The Eriedrichs rank partition

The Friedrichs thecrems show how can we characterise the rank of a piecewise smooth
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solution. in iits domain D. So, let, in a rank partition, DT be a rank j reqgion (j=0,1,2);¢he

Friedrichs theorems state that 02 and Do cahnot have in common but isolated points. Thus
a description (related to the mentioned context) of the manner in.which the rank can chan-
ge is offered: with one unit through curves, with two Units through points. Moreover (see
}he hierarchy (41)), the Friedrichs théorems show that a rank 1 region adjacent to a rank
zero region must be a simple waves region,

A typical example of rank partition is given in fig.6 (we ignore the possible change

of the simple waves index in the region D] of this fiqure).

6.7. The hodograph of a simple waves solution

Let i be the index of a genuinely nonlinear field, The foliowing result will be use-

ful to us hereinbelow,

L2, In every point ueR we have

M u | (54)

4 We use. | , ‘ :
' i i s 9R
i 8 | _l J£ i /g
Rk(u)’ an{aj£R£]~Rk{§Um“ R£+aj£ 53”4,
k k : I
e PR fior it i
04 e G s _Em 5
e e e e

]

Rl (Pabax Eapl), li)lket pec™” (R), m23, in (15). For each uﬁgP thé set of the

vectors u_ which can be joined (as states to the right in B) With up by a simrle waves ho-
dograph of (genuine]y nonlinear) index i are laid alona a line of the field é,
Let us introduce, instead of o, a new parameter, denoted €, cf..

€=ki(u)—ki(g£) in the points of thg orbit U . ) (55)
The felation between the two parametrizations is aiven, in the points of the mentio-

ned orbit, by

I (3#) : 5 :
e=e (o) =4, [U (o) -2y () "= pla) -2, (uﬁ), efa )=0 (56)
Since i is a genuinely nonlinear index we have, according to [6), (33).and (26},
de .o i i ; ‘
e ALu(a)J{éLu (@)1 grad ;LU (a) 130 i (57)

We can-describe an orbit Ula(e)l by



: : m= 15, ; s :
where the representation (58) is C ‘h a convenient neighbourhood of each point (e=0,

u£=ﬁf), UﬁeP. Moreover, u, cannot he a singular point on the curve (58) and we have

da = R(u) -
== (59)
R(u).grad A (u)
ui
giﬂ [E(u).gradu]R(u) i H;[Q(u).graduki(u)]

AT L

Ll

(60)

N

\(u).qradu Xi(u)]z

de z'[é(u),graduki(u)]

Thus, around each UKER we can find in the hodogranh spnace a convenient neiahbourhoo

. b
whose points can be displaced by a convenient (unique, smooth) mouvement along the lines of

el

(i) In case of a linearly degenerate field we obtain from (56) B(a)zki(uﬁ>, Then,

cf. (27), the envelope given by (bh) goes off to the infinity. This circumstance hinders the
'?anning out'' or the "approach' (described, in the sense of increasing time, by fig.3) of a
(linearly degenerate) simple waves region.

-+ (iii). The parameter € is a maanitude and does not reflect the structure of the sim-
ple waves solution in the halfp]aﬁe t>0, This structure isdescribedby the corresnondence
e=efa(x,t)]. This correspondence depends; in its turn, on the (qiven/or determined - see

R36) function 0,

D9. A simple waves region for which €30/respectively €<0 (corresponds, according

to (58) , to gasdyngmic rarefaction/compression and) will be called rarefaction/combigiiigﬂ

Sim[:"n e waves reg i on,
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6.8, Linear degeneracy and weak nonlinearity. The Rozdestvenskii theorem

of global well-posedness

D10. The convex system (15) is called weakly nonlinear if for it all the characte-

ristic fields are linearly degenerate.

Let us now suppose, cf.(15), B=0 in (14):

9 - ) .
”?,Vi+ki<v)3?vi = 1<i<n (61)

Q2

L3. For a convex system (15) for which the RI exist the.requirement

(27) is equivalent to the restriction

3= ' ‘
37; kk(v)=0 in R ) (62)
(without summation; R is the image of R).

€ Using (13) we find

oA n dA v n 3k
k k i l K
s erm———— SR Y 5 n o
du, .Z e T al(u)LJ(u) dv.
_J |‘=] | l |=] i
N =
k n ok n ; axk
R(u),gradukk=.2 R (U).E C('I(U)LJ(U) e
J=I i=] |
n n k i B‘Xk
=2 a. (i R.(Wk.(U)leer =
e sl . J i TSN
i=1 j=1
n aX 3X '
5 67 k i
_I§1ai(U)6k: v =0 (u) v,

Therefore, for a weakly nonlinear system for which the Rl exist the requirement (62)

is fulfilled in (61) for each k, I1<k<n,

D11, Ve say that the initial Gaté LS associated to (61) according to
vix, 0)=v_(x}, xeR ; (63)
are mutua]ly‘disjoint if we cén find the intervals (mk, Mk)' 1<k<n, so that we should ha~‘
ve simultaneously
(i) mkSVOk(x)SMk . xelR
(i Mj<mj+1 |
We.denote

lroa. VLAS0



€ = min
Isksn=1

T5 (B.L.Rozdestvenskii [Beis [571) .

<mk+1

—Mk) : c 6l

For a weakly nonlinear system for which the

Rl exist the initial value problem with smooth disjoint initial data has a (unique) global

smooth solution.

s

& A1l the ingredients of the general proof are present in the analysis of the case n=2.

We only consider this case, Cf, (62) we have

1

We suppose
A0, A2AD

and put

Then, the problem (61), (63) can be transcribed

or i
Pyl Tl

Erlx, )S(x0][r

We put
| o Gef %%.+ r %ﬁ
= dgf %%+ g%

into account we find

3 R
(-éw%— 425 "-8‘:3‘(:)2-—-0,

tial line - since in the smoothness neighbou

mates
Fel<le, slsl<k, Lr=si>Ex0

or 2
i

5

K=max([m]!, IM2|)

Ky

KK

=] 212 e

(\«e’ a7
o}

]

9s
T

= = V5=
A »k](vz,, kz—kz(v])

) 15dx)

Sl
S X
TR
=(s r)ax

=max{sup[fré(x)l, xeR],SUPUSé(XN

|

(€5)

(66)

Qo
%2}
O

- (67)

(o3)
X

% xeR (68)

(69)

(70)

—+ T %;) in (70) and (69) respectively and taking (67)

—2—»)‘%0 (71)

smoothness neighbourhood of the ini--

(uniformly) have the following esti-

L2, A solution of the problem (61), (63) which corresponds to (discontinuous)

—piecewrse smooth initial data can be obtained,

smooth solutions,

alobally, as a limit of a sequence of
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TFiL

A Ly { LS P I o ] Ry ' g e . @
4 The initial data are smoothed and the theorem TS is applied, &

If we '"force' the weak hbnlinear?ty allowing
Ay (vp)20 Lyet A, (vy)#0]

in (65), then (67) is replaced by (k=constan£)

|
5

1=

which leads to the linear equation

95 A0S -
"a"E ‘{‘FO(X"kt)-é = 0

x{wn

D12. A convex quasilinear system (15) which is not weakly nonlinear will be called

strongly nonlinear,

R12, The definlitions D18, D12 characterise the nonlinearity intensity of a Strictlhy

hyperbolic system (15).

%

- R13. The following HIERARCHY filters the global existence of a (smooth) solution from.

smooth data:

L[NEAR SYSTEM- WEAKLY NONLINEAR S,=< STRONGLY NONLINEAR S. 672 ):

6 9. The importance of the strict hyperbolicity.

: ; Bl e s B RS
R14. From (67) we obtain BT?T?T =(r-s) 3; =

The disjoint initial data ensure the/strict hynerEoTicity o% the weakly nonlinear sys-
tem (61). As the initial déta are not disjoint the strict hyperbolicity can be compromised
and ‘together with it the global existence of the smooth solution as well.

Indeed, let CS and Cr the families of characteristics of slopes s and r respectively.
Using»(?]) we can see that z=constant on each characteristic of Cs (the constarft depends

*

on characteristic) and, similarly, z=constant on each characteristic of Cr. Let (x, 0) &

“point of the initial line in which the data (68) have the same value:
and for which

-We have



- ’/O &
so: that cf. (740 theitiuo! chisiracteris tics = from CS and Cr.respectively - through (x*,:0)
incide in a convenient neighbourhood of the initial 1ine. From (67) it then appears that
their common arc is a straight line ségment:’This remark can be used in order to supply
examples in which, for nondisjoint data, the -global exf;tence of the smooth solution is com
eromiéed, The simplest example of this'kind supposes that tHe restrictions (73), (74) are
;ulfilled on a whole interval of the initial line (fig.7) so that-in:a convenient neighbour
hood of this interval the problem (67), (68) corresponding to a weakly nonlinear.system
degenerates in the problem

9

=

%{-+ r = O, r(x,0)=ro(x) (76)

Q

X

- which coresponds to a single genuinely nonlinear equation.

According to the item 6.3 the (smooth) data of the problem (76) can be chosen in such

£

a way so as to supply singularities in solution (fig.7).

6,10.Developmerit of a singularity: some estimates.,

The manner in which the singularities can be developed in solution is deécribed, in
case of a‘single genuinely nonlinear equation , in the item 6.3. Ve shall re-make here this
description -in case«of a strictly hyperbolic strongly nonlinear system for which n=2,

Let us consider the Riemann form of the mentioned system

dr ar: 9s " ° 98 F i
—? + )\.(F,S) '5;(- = 0, 5’{ + u(r,S)a—x 0 (77)

The strong nonlinearity requirement can be written
A o (78)
el #0 and / O =3 # 0 :
while the assumption of the strict hyperbolicity is equivalent to
A-u#0 inR | | (79)
The two families of characteristics of the system (77) can be described by the so-
1utions » :
_x%X(t,xo), 'X=X(t,§5) ~ (80)

of the problems
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%?Xﬁ,xo):?»{r[x(t,xo) ,t],s[X(t,xO),t]}=

B 2 , (81)
=A{ro(x S s[X( o K ),t]} Lk, xo)=xo
g?Y(t, ?6)=u{r[%(t, ;o)’tE’ s[X(t, ;2),t]}=
s (82)
e EMELKGE 29 tly s RN Rlop s
Let “us piit
ot (r E) dE 5 r -5%:-(52 s)dE
") f A(r, Sl e h<r’s)=£ n(E,s)=A(E ) (83)

H(t, xo)=exp{h[ro(xo), s(X(t, Xo),t)]} : (8)

H(t, X )=exp{hlr (X (t, R)at) s, ()13

T6 P Lax [37]) (i) If in the problem (77), (68) the |n|t1a1 data are nonconstant

smooth of compact supoort Oor nonconstant periodic then a singularity can appear as there

is a xoeR so that

*\ON *y W A
] 22 >
. ro(xo)8 < 0 and/or So( o) T <0 (85)
(ii) Let B, T constants so that we have, for each t>0, -m<xo,§O<w, the apriori

estimates

L 1?"?"7 -~[X(

Jr< B st Sl ) Kaliep
))xo 3 ,H(t’ XO) (0] : (@]

. (86)
lré(xo)H(O, xo)|<§, Is’(;-)H X I<g

(8]

Then a singularity can appear the earliest at the time

*~(gp"!

Remark: in the particular cases 9 (x )%constant, so(xo)zconstant or ro(xO)Econstant,
so(x )fconstant (the system (77) is reduced to an equation of the form (35 and) the state-

ment (i) results from the considerations of 6.3.

-4 Differéntiating (81) with respect to X we obtain for (aX/axo) the following problem

d_(3X y_ A, 3 359X AX o
H?(axo)_ Brro(xo>+ 9s 3x axo’ axo(o’ xo) ] (87)

From (77)2 we get

ol ggxgws[X(t, s il g?-ZnH(t, x ) . = (88)

O
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Furthermore, from (87), (88) it results

d- s B A0 aX d A
Tl il ra et TR
which leads to
H(t,x ) ' £ H(0, )
X . SEG A X ,
= E(tax J,  Elt,x Yelir? ot
ax H(O,xdTv( Xo) ( el (Xo)o or “Y?T""T i . (89)
Similarly, for (HQ/GZO) we find

Tl ) js t H(O e}

LSO oL o TR R )=1+s? (x )f S ———=dr (90)

e B T SHle )

Differentiating in r[X(t,xo)!tJEro(xo) with respect to x s we find

X s .
—,ﬁ- rEXGt, xo),t] ﬁ;(t,xo)—ro(xo) (91)

From (91) we can see that a singularity can only appear if for a certain pair x_,t

we simultaneously have

e A )#0 and < (t ) 0 and/or sl (x ) £0 and (t ) 0 .(92)

From (89), (90) it results that the requirements (92) can be fulfilled only under
restrictions (85),
Fina]ly: from (86), (89), (90) we obtain

min[E(t,xO),E(t,go)]>]_6§t>o as.t<(BC)—]' &

R15. The value t* givén by T6(ii) for the systems ought to be compared to the value

t* given in 6.3 for a single equation,

ES. Let us consider, as p(p)znp’ (polytropic‘equation of state), the system 28) of th

isentropic gasdynamics

dc dc - vl du _
e et nd m

: e
ou au 2 O e
ke e

We have, according to (30),
ey =u + 4 c

Fediamenc, s =



e

'*(r,§)=u(r,s)—c(r,5)2r(Y4-%) * S(%*" Y)

/{ﬁr,5)=u(t,s)+c(r,s)=r(%-"Y)+S(Y* %)
a}\';‘i;&——ém 912\;._8,“_ /i ] - - -
ey 9 g ?>0’ kjkzh/])“ s)
h(r 5= TTwmm7€nl] : E(r,s)= %%2%~)£n|1— £4=h(s,r)
S[X(t,xo),t] B‘Z‘Y “ I r[X t z\(o),t] 3'.,2\{
H(t,x )={1- ) L(Y-T),H ' TR I-M\mT

The requirement (85) can be written
? * H *
ro(xo)<0 and/or so(xo)<0
The condition of strict hyperbolicity (A#u) is fulfilled as r#s in R Or, this last

requirement is satisfied in case of disjoint data.

7. Hyperbolic systems of conservation laws

7.1. Integral/differential/weak form of a (strictly) hyperbolic system of conserva-

tion laws

Leét us eonsider first the integral form of a system of conservation laws concerning

a (vectorial) entity. This form asserts that in any region V of the space we have

: . :
—= [ udV + f fndS = 0 :
iy 3 (93)

where u and f denote respectively the (vectorial) density and the (vectorial) flux of the

mentioned entity, Motivating (for example) by gasdynamics we suppose f depends on u alone

in a region RCH,

In case of a single space dimension V is an interval [x], xz] and (93) passes into

(S
= » t)dx+fLulx,, u

By

1°? t)]=0 (9“)

for each x],xzem, x]<x2,t>0.
It is easy to be seen that if a solution of (94) is smooth in a certain region of t>0

then in that region it also (‘'classically') fulfils the system

—

Sy e e .
= e 0 . . | (95)

The form (95) is said to be a divergence form,




il

We assume in the following that (see §.)

feC(R), m>3 (96)
“and that the matrix
- = o
A-A(u)~[aIJ(UXH«|,an, a; = 3ﬁmfi(U) (97)

has real and distinct eigenvalues.

The conclusions of the item6,10require, in the attempt to find global solutions of
the initial value problem (15), (16), extensions of the concept of solution (for an ililumi-
nating discussion see Lax [39], [40], [411), Here are two ways of accomplishing this, At

fitvst,

D13, We regard the (possibly nonsmooth) solutions of the integral form (94) as genera-

lized solutions of the system (95),

Alternatively,

DIh. We say that a bounded measurable function u(x,t) is a weak (generalized) solution

of (95) -if
© o ‘3(9 3(’0 o
.(f) f_oo_[u ‘a“'{:- +F(u)5c;]dxdt = 0 (98)

for any @ecg with support in t>0,

The definition D14 is justified by the fact that if a weak solution is smooth in a

certain region of t>0 then, as it is easy to be seen, in that region it classically satis-

< fy (95).

Now the definitions D13, D14 can be related to the initial value problem (95), (16).
In the sequel a solution of (94), (16) should be regarded as a generalized solution (accor-

ding to D13) of the problem (95), (16), Alternatively, a bounded measurable function u(x,t)

for which
T £ (u) L1dxdee 2 (x)p(x,0)dx=0 (V)WEC] (99)
O g, TR o%" < e Sl et e d

corresponding to a bounded measurable initial data Uy should also be recarded as a genera-
lized solution (according to D14) of the initial value problem (95), (16).
If necessary we shall specify (according to D13, DI4) the nature of the generalized

solution considered,
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The’oppqrtunity of the two types ‘of extension (considered cf.D13, DIL) and the rela-

tionship between them is discussed By RI9.,

€3 (of T3)

can be connected to a constant state is :the

T

Cons ervatlv:ty

In the class’ of continuous functions,

the only type of solution which

simple wave solution,

The considerations of the previous. item points out the possibility to associate one

~ of the forms (94) or (98) to the form (95). The form (95) occurs in a smooth framework.

order to adapt the consideration 7.
-selves, in a smooth framework,

form. .
D15. The equation

In

1 to the system (15) it is therefore natural to ask our-

under what conditions this system can be put in divergent

(100)

for which @,weC](R) is called a conservation law associated to the system (15) if it re-

sults from (15) for each smooth solution of this system (i.e. in a smooth framework) .

In order that a conservation law should result the functions o, ¢ are to satisfy the

following restrictions [see (97)1

n
<o
— T 0 3y .
i . ou. b ki

R16. As n=1 (underdeterminacy) or n=2 the existence of (at least)ione pair @, satiss

(101)

fying (100)/of a conservation law associated to (15) is guaranteed. As n=1, given © we can

determine Y by integrating ? (u)=a (u)p’ (u). As n=2, (101) is written
W . 30 30\ _
3u] (a]] au] +?21 auz) y
(102)
i o 3 30
— - (a + a,, =)= 0
8u2 12 au] 22 Ju U,

It is easy to be seen that if the system
system (102) is strictly hyperbolic too. Then

thod of characterlstics

1f n23 it is p055|ble that the. system (101)

E (@»¢)=con§‘cta__nt;-

S s e e e e as bt RN SR ievietiam)

(15) is strictly hyperobolic then the linear

a solution of this system results by the me-

should not have but the trivial solution

In this case we say that the system (15) is completely nonconservative.

SLES el L ae

S
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Bul gu] auz 8u2 8u3 . 8u3

3*{*- + Uz?\vm= 0,

= oo OIS 10
e 0, i Hlly = 0 . (103)

is completely nonconservative,

D16. We say that the conservation laws (100) corresponding to the pairs (@i’wf)’

ISi< are iﬂgependent‘if the functions 1, ®pyeeeyPp are linearly independent in R.

R17. If for the system (15) there exist n independent conservation laws for which

D(@yyeees)
p A0 GinR (104)

D(u],;..,un

then this system can be converted into a divergence form.

So, let
-—amco e anlih=n 1<i<n " (105)
e %1 ? Giir

be n independent conservation laws associated to (15). Then on putting U=w(4) and using

(104) it results u=g(U), f(U)=¢Lg(U)] sc that (105) gets the form

5 5 i | *
Uit ) =0 | (106)

8, Discontinous piecewise smooth solution of a convex strictly hyperbolic

system of conservation laws,

- 8,1. The Rankine-Hugoniot jump relations.

D17 (D,Schaeffer [581). Let u be a solution of (94) or (98) and let D be a reaion of

its domain as t=0. Let C be a smooth curve along whiéh u is discontinuous. We say that the
arc CAD is isolated in D with respect to u if for each point (F,T) of COD there exists a
neighbourhood V(5,T)eD so that

(i) the solution u is smooth in the regions Ve,V of V adjacent along C,

(i) the lhmits

uz(E,T)=]im ulx,,. u_(x,T)=1im W o
I
(X,T)EVK (X,T)E\!
.

exist,

We say that u is a discontinuous ‘piecewise -sriooth solution inD if Did-a join of

an (at most countable) number of isolated arcs with respect to u and open sets on which

u is (continuous, piecewise) smooth,



=D
Let x=X(t) the equétion of the arc C, Given f>0, we denote
utzu[x(t)—o,t], urmu{X(§)+0,t],Hgﬁ: u i el (107)

LE, In the points of a discontinuity line C a piecewise smooth solution satisfies the

conditions
LFul=blul , b=x:(¢) (108)

4 The case of the integral form (94) of the system of consefvatjon laws (fig.8). For

™ we calculate the rate of change of

X, X(t)=-0 X,
I Tulx, t)dx=r e ;8 il u(x,t)dx
X X, ' X(t)+0
We have
. X
%? L 2u(x,t)dx= fx(t)~0 g% dx + ulX(t)-0,t1X’ (t)+
X X
] 1
*2 d :
+ f 5it‘-dx = ulX(£)+0,tIx’ (t)= (109)
X(t)+0
X(t)-0 X
=-lulp +(r + f . i

x X(t)+0 Ot

]
Since in the adjacent regions u is smooth we can use (95) in order to obtain
x X(t)-0 x;
o 1 2ul,t) dxm-O[]- (7 S el p
: X
X, X, X(t)+0

=-D&‘uiﬁ+[[f(u)jﬂ—{f[u<x2, e} Ttk &)

j

Q.

(110)

The condition (108) then results from (110) and (94).

The case of the weak form (98) (fig.,9). Let S=supp @ intersects the discontinuity

line, We have

= R RO 3@ =Ly 30 0 -
0= {w[u S TR ]dxdt—ng 5t * f (W) Tdxdt
¢ B0, < 0 £ 3 2 |
=B F Lo+ #u) 22 Juude o3 f { %= (up)+ ==[of (u) I}dxdt -
s t X s ot aX
i=] Si i=) Si _
. S Bflu) s : B '
=i [5? + ax-~-](pdxdt =f @[-udx+f(u)dt]+f @l ~udx+f (u)dt]=
=15 B(r) A(2)

A ;
=fw([@ﬂdX~[}(U)Edt)=é O([f (u)]-0ful) dt
A B :



s 4
‘where the indices ﬁ'and £ indicates the left/right side of the discontinuity line. Shrin-
king supp © around a given point of the line C we find (108). B

We call (108) the Rankine-Hugoniot jump relations.

R18. It is possible that two different systems under divergent form should have the

same smooth solutions. Example (as n=1): the forms

S B gl B 111

M) a0 i aa g
and _

5L 2 I e S ' (112)

it )+ ks ul)

but they have the same smooth solutionse

In a smooth context the differentiation (111), (112) is of no importance for the

equation (of the form (15))

bu
X

Qu 2
-§~E~+u =0

S

The considerations 7.1 are however connected to the divergent form of the system (15)

Therefore, in case there are several divergent forms for this system, we have to make it
clear to which of these forms these considerations are referred.
On the other hand, we shall notice that the system (103) cannot be put in a divergent

form.
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jﬂé&w(}) Cf, to the considerations of 7.1 and to L4 the integral and the weak form o
a'system of conservation laws have the same discontinuous piecewise smooth solutions.

(ii) In the horizontal strips ofvthe Gl imm scheméfthe G]imm approximate solution sati
{fies both the integral and weak form of the system of conservation laws considered. Glimm’
[arguments are referred to the relationship between this solution and an (exact) solution o

the weak form (99). Thus, an equivalence is suggested between the intearal and weak approa

‘ches, wider than the one stated by the remark (i) feeslagl, “Lhod AEisd, Tig 1)

R20. A divergent form, as Glimm’s method requires, cannot be associated to the system
(103). However, as it is easy to see, this system is weakly nonlinear with Rl so that,

in this particular case, the problem of a global solution is solved by T5 and C2.

(4

8.2. The Hugonfot curves, The Hugoniot ~Lax theorem.

We reaard now, givén-uk=u[X(t)~Q,t], t>0, the jump conditions (108) as n relations
for v ,h+] unknowns u and D. We shall subsequently consider, by eliminating D from
(108).tthen let D=D(ur, UK)]’ the projections

| f(u)-f(u£)=D(u, uZ)(u—uK) (174)
of these Ee]ations in the hodograph space H. Thus we have n-1 independent relations (114)
between u and Up- We think about the problem of finding the set of vectors u which ganvbe

associated, as states to the right for the considered discontinuity, by these relations to

a given vector uK (regarded as a state to the left).

T7 (H.Hugoniot (301, P.Llax [361), Let feC™(R), mz3, in the convex strictly hyberbo]ic

system (95). For each uﬂeR the set of vectors u_ whichicah be joined in H to up as states
to the right according to Fhe relations (114) are laid, in a conveniently close neighbou;-
hood of u, on thejoin of n (unique) smooth curves, one for each index i, 1&i€n, For each

of these curves a parametrizatién can be found so that each of them cou]d be representea b

pp=Sial S, Ug)’ Si(O, Uf)= Up : (115)

| | -

A represenfatioﬁ (115) for which the function Si is Cm“] holds in a conveniently small

neighbdurhood'of each point (&i=o, u£=5i), GzER and for it
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(f) uf cannot be a singular point on the curve (115),
4 : B3 |
(ii) the tangent in up to Si has the direction R(uﬁ)
(iii1) R D(0, u

)=Ki(u ) (116)

£ 4
where we put, on each Si’ D(&i, UK)ED[Si(éi’U£>’ uz]a

4 (J.Conlon [ 71). The conditions (114) can be written

[H(u, uﬁ)fD(u, uz)l](u—uﬁ)=0 : (117)
where | ‘
H (u, g£)=61A[uﬂ+z(u—uK)]dz R (T18)

As'u#uK in (117), D is an eigenvalue of H(u, UK)' Let i be its index. Then, from

(118),

it appears that as u=u, each of the eigenvalues of H(u, uﬁ) tends
to an eigenvalue of A(uﬁ). S{nce the system (95) is strictly hyperbolic it results that,
for u. conveniently close to.uﬂ,.all the eigenvalues of H(u, UK) are real and distinct.
We can put (114) in the form
Qk(u, uK)EE(u, uz)(u~u£)=0, 1<k<n, k#i
where é is the left eigenvector of index i of the matrix H. We have

i s
tj(ug’ u£)=Lj(u£)

0
l—"'-"-Q]__ =
auj k u—uﬁ

(3

and use the implicit function theorem,

In order to prove (ii) Tet us differentiate (114) along the curve S.. We obtain-

o [/ dD
[A(u) DI ]B-S-—(u U/@)a"g . -‘ (]]9)
As &0 it results
EAGU)=D00, ) 19, =0 (120)
@ B E=
The possibility.gglézo=0 must be excluded according to the conclusion (i). Thus it appears
that o
QA ; :
Hglgzo"QR(ug>’ a#0 : (l?])

and so we get (]16).E%

D 18. The curve Si»deséribed by (]15), qiven Ups is called a Hugoniot curve of index |

“A point of Si characterizes a discontinuity of index i in the physical plane E.

E7. In the 4D adiabatic gasdynamics we have Rj¢0, 11, 123, ineRief. E1) . Then: for

e b e e e A S i e s e S ke e s (e e aiRd dimat e T AT
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Euj%#ﬂ, 1<j<3, along a discontinuity of index i in E.

R21. The theorem T7 can be restated as follows: around each UEER we can find in the
hodograph space H a convenient neighbourhood whose points can be displaced by a convenient

(unique, smooth) mouvement along the Hugoniot curves of index i.

8.3. The case of the linearly degenerate fields, Contact discontinuity.

In case of the linearly degenerate fields the theorem T7 has the following remarkable

consequence

T8 (P.Lax[361). A discontinuity corresponding to a linearly degenerate index

must propagate, as Up and u. are conveniently close to each other along a characteristic.
q1fKis allinear]y degenerate index then (cf.(@27)) kk(u) is a k-RLIl and the line
o : S L RSN SR e Ty :

+ through u, of the field R(u) is laid on the surface kk(u)=constant=Kk(u£). So, aiven

up, each point u#u, of the mentioned line satisfies (108) with D=kk(u)=kk(u£)becau?§

along this line we have gg[f(u)—AP

<

(uﬁ)u]=0. It results that the line considered is a
 Hugoniot line of index k (see also R11(i)), The theorem follows from the uniqueness

stated (as u_and u, are conveniently close to each other) by T7. b

; : : G S g : . db
R22. Since D=kk(u£), given u, a discontinuity line x=Dt is isolated in E. Since Pt =
it appears that along this line a branching takes place (compatible with the fact that
the line is laid on a characteristic curve). The possibility of a branching along . a di:

continuity line is typical of the linear degeneracy. The example E8 presents some details

of this branching.

E8. For the system (22) the jump relations (108)-have the form -

.I[p{énpl -D)1=20

[m(g— D) + pIl=0 - (122)
- m
S@ - p)J =0
e (p )1 _
In case of the linearly degenerate field of this system,.kz(u) given by (23) is a
: 2
2-RLI and along a line of the field R we have _
m m ; 4 ‘

: Siee)ns s : 17

D =@ @, _ (123)



» Sl | (124)
* From (122)2'we also obtain
[pl=0 ‘ | | (125)
6n the other hand, the relation (122)] allows, given Jé (and, thus, given D), an arbitra-
fy value for moﬁ; This fact together with the remarks (124), (125) shows that the branching
}is characterized by the values of {[pl ; particularly &6<[p]l can be taken as a parameter
along of the Hugoniot curve 32, The rem;rk E7 also reflects, in case of the iiﬁéar]y dege~

_nerate field, the dependence of [p,m,0S] on [pJ as (124), (125) hold.
We motivate by R22 in order to give

D19, A discontinuity corresponding in E (under the assumptions of T8) to a linearly

degenerate index is called a contact discontinuity (abbreviated Eﬁ)'

P

We have igﬁored, in the proof of T7, the details of the parametrizations along the

Hugoniot curves. In.case of a linearly degenerate index such details are now considered.

R23. Let .k be a linearly degenerate index. We start with the expressions R(u) which
: ; k k
define a vector field in R. We next normalize this field by IRI=1 and determine L according

A I :
to &.E=l. Hence the requirement IRI=1 is supplemented by the choice (of the expressions

K : ; g : A ; K
R(u) we start with, i.e.) of the orientation of the field R. Then we choose as a parameter

€, the arc (conveniently oriented; originatfng with UK) of the. line through Up of the men

k

tioned field. Along this line we have

du K
*a'g‘: — . (126)
and u(0)=u£ (hence o=1 in (121)). From (126) we further obtain
2 k k
Em% =[R(u).grad JR(u) : (127)
de, : b -

8.4, The case of the genuinely nonlinear fields. Shock discontinuity. The Lax

admissibility conditions

In case of a genuinely nonlinear index the details of a parametrization along a Hugo-

niot curve are given by

79 (P.Lax [36]). Under the assumptions of T7 we can find a parameter €, along the

curve Si of genuinely nonlinear index i so that
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R(u,)
T i
[ﬁ(u)‘graduki(u)]uzuﬁ
SEH. : E%}J).qrad;]é(u) :
da? €. =0 [&(u).graduki(u)] u=u,
9 [R().grad A (1) ]
i dEi 9
-R (u) | 5 (129)
[R(u).graduki(u)] u=u,
aD Ayl
5|8 =0 =5>0 ; : (130)
sign e,=signl Ai(u)"ki(uﬁ)] (131)

& According to T7 (ii) and (26) it appears, as u_ and u, are conveniently close to eact
other, that the curve S, has no points in common with the surface kk(u)=ponstant=kk(u£)
but the point uf.‘
~ Hence we can choose

i  (uy) (132)

as a parameter on S. (this choice is parallel to (55)). Under the smoothness assumptions
P : P

of T7 we differentiate along Si in
6Eki[u(6?]-Xi(u£)

and obtain

gl '
1225 .graduki(u) (133)

Then, taking the genuinely nonlinear nature of the index into account, we get from (121)

and (133)
i oy
a=[R(u).graduki(u)] u=u, (134)
Carrying (134) into (121) we arrive at
i
_dU = R(uﬂ) =
w EBR(u)arad A Ga)d
: ui u=u,
Next, we differentiate (119) along S. and find
2
du ) ; s o d i = dD du d D )
[(Hg .gradu)A( ]EE'FFA(U) D] 5 B35t (u uﬂ) (136)

, ; d& dﬁ
In the limit &0 we obtain, cf.(135) and (116),
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2

FAdd ) Gt 1S =
oabsaddn e
l .
{CR(u).gradq]A(u)}uzuﬁéﬁuﬂ) '
= - 7 s — + (137)
[R(u).grad X. (u)1"_ '
u i U=
: % /4
i
R(u,)
db £
el

dD e
(35)6=0 ki (138)
Hence, we can transcribe (137) by
2
; du du o rdi duy
[A(uﬂ)—ki(uz)lj(d62)ﬁ=0 Sl LT arad AT plesle g (139)

Now let us differentiate along S. in [A(u)-A, (W) 1IR(u)=0. Thus, in the Timit

&0, we find

[A(uﬁ)-ki(uz)l](ggé)5=0=

du : i .
=(Eg)6zo[h(u).graduki(u)]uzuf - (140)

du i
-[(Hgngradu)A(u)]ézoR(uﬁ)

From (137); (140) it appears that

Then we have _ ;
|

dzu) (5%=R)

6=0

(g

i

. +Bé(u£) ' KB4T)
: . Ry
We reparametrize S, taking 6=6(€i) and requiring

&6(0)=0, &°(0)=1, &' (0)=-B (142) -

We obtain
I 2_ 3 .
&=t ?B]Si*O(ei) a (143)

l We use (143) in ofder to transcribe (135) and (138) by (128) and (130) respectively.

L Further use (EL3) cin (A4Y) andd find



Then taking - _
i
: gET{R(u)vgraduki(u)]
L Bk o (145)
LR(U).graduAi(u)]

ks, 43 we obtain (129).
Now let us consider for (143) the form
e R
b=e;- 5B e+ fael= ge; (ag} 26,8, +h)

: 2., E - : / Sk
As a>£ﬁ] it appears that sign Lki(U)UAi(QK)J=Sign‘e;S!gn @2 g

The parametrizations corresponding toR1{,(cf.(55)), R23, T9 (cf.(132), (143), (145))"

are taken together in fig.10,

'ké: Let i be a genuinely non]nnear index. If ureSi<u£), ur¢u1z and U, Up are conve-
niently close to each other then D is not an eigenvalue for the matrices A(ur) or A(uﬂ)u

< We remark that Sy
et du (128)
lim %Efki[U(EI)J:]lm [gradu%i] = 1 : (146)
ei»O i E—:_i-O !

Then we compare (146) with (130) and take into account the strict hyperbolicity of the

system (95), &

Let us COﬁéider two constant regions iani (the half plane t>0) adjacent along a dis-
continuity of genuinely nonlinear index. We aésuﬁe that the yé]ges U=tp, U=u_ the solution
takes in these regions respectively and the velocity D with which the discontinuity pro-
pagates satisfy the relations (108).

The constant adjacent regions do not generally reach the initial line t=0. Let us cén
tinue the constant regions until they reach the initial line. Then we can isolate a piece~

: Al 2sin
wise constant function u:R+»R

5 , X<Dt
3 cdE I
U(X’L’uﬁfur) 1ureSi(u£) , X>Dt (147)
and an initial value>problem which aséo;iates to the system (95) the data
4 *'-‘ ‘ ,. ' U}'/ % = s X<0 o
il : (148) .

»UreSi(uﬁ) o x>0

DZOJ”Wé"Say that the function (147) is an admissible/determined solution of the pro-

et L G i R i o B T S s S N P L e e i e s e SR IO N e s S i s
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method of. characteristics).In this case we say that the discontinuity involved in (147)

is admissible/determined. Motivating by gasdynamics, an admissible discontinuity is also

said to be a_shock discontinuity (abbreviated sd).

Let A, the domains of determinacy corresponding, for the problem (95), (148), to the

intervals R of the initial line (fig.11). Let us consider for each open interval of the

<L

initial line containing the origin its closure in R. We denote by I the set of the closed
intervals of the initial line obtained in this way. In order to reach the region RE&A+L§A“
fhe construction used in“the method of characteristics must start with data assocfated ton
“an ‘interval of I, In such a case an ingredient of this construction is the use of the jump
relations on the discontinuity. The presence of this ingredient (in fact the presence of
a discontinuity) gives a selective feature to the admissibility requirement (cf. T10, Til

herefnbe]ow).

T10 (P,Lax [ 36 1). Let us consider a discontinuity of genuinely nonlinear index i,

corresponding to the points uﬂ,ureSi(uZ).
We Suppose that the aséumptions of L5 are valid, The considered disscontinuity is ad=
‘missible iff the conditions (the Lax entropy conditions)

X, (o Yebeh, (u,)
(CEL,) el i (149)

ki-l

(u£)<D<Ki+](ur)
sieatulE il Ted i fle 10 ) .

4 Since the system (95) is strictly hyperbolic we have k](u)< ..Q<An(u) in each of the
regions adjacent to the discontinuity.let jﬂ and jr the indices for which in the (left,

right) adjacent regions we have respectively

A, (u,)<DA,
ipg % J

N el

St Iy

It is easy to see (fig.,13) that (in the sense of increasing time)

(u,)
+14
z@ : /][_-0)

+](ur)

(i) a characteristic in the left region approaches the discontinuity iff A>D,

(ii) a characteristic in the right region approaches the discontinuity iff A<D.
Then it appears that in each point of the discontinuity the left and right regions provi-
de n—jz and j _ determinacy reiations1). Hence in each point of the discontinuity we have

T)Let j be the index of a characteristic which approaches the discontinuity. The relation
v. (u)= constant (see §3;‘Vp’ 1<p=n, are the R1) along the mentioned characterlstlc is

called a determinacy relation.
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n-jptj. determinacy relations and n jump relations so that the method of characteristics

counts on Zn--j£+_]r relations in all. These Zn-j£+jr relations allows us to find in each
point of the discontinuity the values of the 2n+] unknowns Up, Ur’D' Then the admissibili-

ty requirement is equivalent to the condition 2n~j£+jr=2n+] which gives j£=jr-l. An easy

re-arrangement of (150) then leads to CEL,

o Now, it is easy to see, as U_ approaches u
e

K’
that Jo i B

R24., A characteristic of index j#i/respective]y @ characteristic of index i is re-

fracteé/respecfive]y absorbed through a sd of index i (cf, Figala ),

R25. In case of a linearly deégenerate index k the conditions (149) degenerate {ef.T8)

in ¢

Ak(ur)=D=kk(u£) (151)

In- this case the second condition of the degenerate CELk results from {151).

1P Sisase E 3681 ) fee T obea genuinely nonlinear index.

In a conveniently close neigh-

bourhood of Up » On a Hugoniot curve Si(uﬁ) the fulfilment of CELi is equivalent to the re-

quirement £§<0.

At first we prove that the fulfilment of CELi leads to the requirement €,<0. This fol-
lows from (131) -and (1#9)].

Next we prove, conversely, that the fequirement €i<0 results - for conveniently small |

values of leil - in the fulfilment of CELI. We remark that
bim A, Lule)l=a, (up)>2; (uy) (152)

€.~>0
[ L g
For conveniently small values of le.| we find, comparing (130) with- (146), that

l;[u(ei)]<[)(€i)<)xi(u£) as €, <0 (153)

Now we put (152), (153) together, B

R26, In case of a genuinely nonlinear index i the theorem Til isolates the admissible

part,(€i<0) of a Hugoniot curve,

In the second part of the proof of T11 we imposed upon supplementary restrictions on
the negative values of €; permitted by T7. In the sequel we shall supnose these restrictions

hold.

From (149), (151) it éppears that in a close neighbourhood of up the (admissible part

of the) curves Sj’ I1<j<n, have no points in common byt u

X



=0 -
B%Z;‘A curve Sk of a linearly degenerate index can be regarded as a hybrid object.
Indeed, on shch a chve the states u. and up are connected to each other by a jump and, on
the other hahd? this curve is laid on a line of the field R

The strange nature of this object has been already remarked by R22, R23,

i
R28, In the sequel the vector R corresponding to a genuinely nonlinear index i will

be normalized according to
i

R(u)ograduki(u)=l : (154)

i .
We shall remark that (154) completely determines the field R (see R23 in case of a linearly

x s el 3 Lo
degenerate index), Then we détermine L according to L.R=1,

Téking (154) into account we give (59), (60), (128), (129) the form

il

5 = R, 6,20 (155)
d2u i Ty % ,
== =[R(u).grad AR (u), . €.20 (156)
de 4 : _

along the rarefaction part of each curve R, (uy), and

du ] ;

EET l8;=0 = R(UK) (157)
&y (R () Th (W) | (158)
==l no kR Gukvgrad IR

def Si—O u u—uz

as €.~ 0, €,<0 in case of a curve S.( K) of genuinely nonlinear index.

Funa]ly we complete this table by addlnn some details on D:

cf.(116), and
1/2 in case of a genuinely sanlindac lidee i
0 in case of a lihea}]y degenerate index i

Moreover, in case of a linearly degenerate index k we have

dD

dei_.0 along the Sk . (160)

R29, According to the result (130) a branching is not possible in case of a sd (see

R22).

8.5, Riemann~Hugonio£ local system of coordinates

D21 For each u.cR the clurvec



{si(s;‘.,uz),s.(o, uz)zR,(O‘? Up) ,€,50 Fths

for a genuinely nonlinear i

u=H. (e ',uL)def o '(i6l)

s K) : for a linearly degenerate i

1si<n, are said to be the Riemann-Hugoniot cufves (abbreviated Hi’ Isi=n, or. RH ciirves).

R30. Since for a genuinely nonlinear i the curves Ri and Si have, according to
(5060 ), 28, (129);. 5 ‘second ordér contact -in each upeR, it appears, cf.Rll, T9, that,
=for such an index, in a convenient neighbourhood of each point (€i=0, u£=ﬁk), GKSR the re-
: m-1

presentation (161) is i B i

; in Up and has piecewise continuous third (or higher)

derivatives (with a jump at €i=0).
R31. The remarks R11(i), R21 can be now adapted: around each upeR we can find in H a
convenient neighbourhood whose points can be dispiaced by a convenient (unique, smooth) mou-

vement along the RH curves of index i,

Let 0=(k],..;,kn) be a permutation of the indices 1,,..,n.

From R30 it appears that in a convenient]y.c]oée neighbourhood of .each point (e=0,

u£=u£), uﬁeR-the function

ﬁj(e, Uﬁ)szn[ekn’ iy - g

) "Hk [.,,,Hk][e],uz_]...]]\‘] (162)

n-1 n~=f . n-2
is " in€ and Cm-] in UK' This function is related with a construction (deneted KO) which

sUccésive]y considers, starting with Up> the points u]=ﬁk (Sk . u[’),...,uk =Hk [Ek U e

] 1 n n n n-1

The states Upseenyty are said to be intermediate.
: n-1

T12 (P.Lax [361). Under the assumptions of T7

(i) we can find, around each point UeR and for every permutation o of the indices
1 ,..., h, a neighbourhood Wy (W)cR so that any two arbitrary ponnts Ups U eW_ (G) could be

(unlquely) connected to each other, as states to the left/respectnve]y to the right, by a

construction K(T for which

),. 1<i<n (163)

€1 =€kﬂuﬁ’ U




are Cz in Wy (G )xw ( ) and we have

ek.=0 as u.=u, o (164)

(ii) for each upeR/ respectively U eR the functions €, ( Uy, u), 1<i<n/ respectively
m-1

€, (u, ﬁr), 1<i<n, are piecewise C in uwith a jump throuqh the surfaces €, (Uf,u)=0/res
i ;

pectively Ek.<u’ ﬁr)=0 of genuinely nonlinear index.
& We cons;der For‘each GeR, cf.(162), the function
| @G(u; €, uﬂ)Eu -FG(E, UK)'
in a conveniently close‘neighbourhood ef - (u=u, 850, p£=ﬁ). We have
' o (3, 0, W =0 -
and, according to (126), (155 ), (Y57 (162),

A~det(~———— @ )l £0

Then we use the implicit function theorem.@

cl,  For each point ieR, given a neighbourhood U(U)CR we can find the heighbourhoods

%j(G)CfV (G)C U(T) so that any two states of'WG(G) can be connected to each other by a

construction K, having its intermediate states in VG(D).

DZ%. Given uﬁeR , the n-tuple [Ek](uﬁ’ur)’°"’€k.(uﬁ’ ur)] is said to contain iﬁg

"(local) Riemann-Hugoniot coordinates of index ¢ of the point u}eR with respect to u,.

(abbreviation: o-RHs for the Riemann-Hugoniot system of coordinates).

The construction KO can be carried in E by using four ingredients: constant reg?on;
rarefaction simple waves region separating two constant regions, sd separating two constant
regions, cd separating two constant regions. In the sequel the last three of these ingre-

dients are called elementary .waves (separating two constant regions) .

en D : :
Let us assume that a partition of R+ into three constant regions (corresponding to

the states) UpsUps Yy is possible so that the regions Ups U should be the left/respectivel:

right adjacent regions of an elementary wave of index i and, similarly, the regions Uy

u should be the left/respectively right adjacent regions of an elementary wave of index

As t>0 the constant region u_ is bounded by the straight lines x=P,t+x . (to the left) and

s 3 : SR Ao e >
x—Pjt+xoj (to the signL), where X010 and
(k (u )kf¥.thé é!eﬁentary Wavé'of }ndex k'}s a simple waves £
k' m : (166)
e region or a cd

k
l Dy if the elementary wave of index k is a sd.
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D23. The two elementary waves - considered herein above- of indices i and j respec- -

T

tively, for which i labels the left wave, are said to be interactive if Pi>Pj and noninte-

ractive otherwise,

D24, The two elementary waves - considered herein above- are said to be interactive

B = TSRS

if i>j or if i=j and at least one of them is a sd (noninteractive otherwise).

L6, The definitions D23 and D24 are equivalent.
4 We exhaustively consider the possible cases,
As i<j, we have (cf.(166))

Pi=ki(u )<kj( )=Pj Cf laalibm b,c d)idn,

m um
Pi=ki(um)=)\j_](um)<Dj=PJ if j-i=1  or,
Pi=)\i(um)<}\j_](um)<Dj=PJ. if j=i>) (fig.lk e,f) or,
Pi=Di<ki+i(um)=)\j(um)=Pj P j=isl o
Pi=Di<)»i+](um)<)»J.(um)=PJ. TEjeisl i lfia oy oh), o0

(um) if j=i=1 (fig,14i)

A (um)<Pi=Di<DJ.=PJ.<)\i+]

i
(we notice that the circumstance Ai(um)<Pj=Dj<Di=Pi<Ai+](um) if j-i=1 is not possible be-

‘cause - cf.fig.1h t - it leads to ki(um)>K (um), a comtiradiculon)ior,

i+1
Pi=Di<Xi+](um)<Dj=Pj- if j-i%2  (fig.14]))

As i>j, we have

Pi=ki(um)>lj(um)=Pj (fig, 14k, 2,m,n) or,

Pi=ki(um)>kj(um)>Dj=Pj (fig.14p,q) or, .

Pi=Di>Ki(um)>XJ(u )=Pj CRigullir, s ) o5,

S m

Pi=Di>)»i(um.)>)»J.(um)>DJ.=Pj (Fig.14t).
As i=j, we have

Pi=Ai(um)=ki(um)=Pj or,

Pi=ki(um)=)»j(um)_>DJ.=PJ. (fig,lb4u,v) or,

Pi=Di>}xi(um)=Aj(um)=Pj (fig.lhw,z) or,

i=Di>7\I(um)=XJ(um)2Dj=PJ (Fig.1hx). B

D25. A so]ution,iniRi of (95) only consisting of noninteractive elementary waves and

cnstant regions is.said to be noninteractive or elementary.
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i Wineslle of 6.5, 6.6 are reflected by the structure of an elementary solution.

The rank of such a solution cannot be greater than one.

The theorem T12 associates to each pair uy, urewo(ﬁ) a hodograbh Ho consisting of the

o 4 PRy
RH arcs Hk ’“"’Hk of a (unique) construction Koo The definition D24 leads to the follo-
1 n _

@ing significant result,

T13 (P,Lax [36]1). The hodograph Ho can be associated to an edementary solution iff o
is the tdentical permutation (k.=i, 1<izn). .
R33. As we broaden or narrow the constant regions of an e]ementary solution the hodo-
graph of this solution keeps unchanged; on the other hand, the findiﬁg of é simple waves
“region in Ri corresponding to a given hodograph depends on the ‘choice of the function 0
in (37) and on the width of the interval on which this function is nonconstant (examnle:

the solutions depféted in fig.15 a,b,c,d have the same hodquaph)

e zamors

D26, If the permutation o is chosen according to T13 then.the O—RHs is called the

Riemann-Hugoniot physical coordinate system (abbreviated RHs),

R34. (1) The characteristic coordinate system mentioned in R8 is interactive.

(ii) A compression simple waves region evolves interactively.

R35. In case n=1 we have (cf.E6) for a convex equation:
Alu)za(u), Alu)zalu), R(W=[F (0)17) gt

HeréwthevregfonA?“}sﬂénndééﬁAaneFVéi of R. The syétem (59 has the form,

K appr ()] ‘ (166)
which can be transcribed by

e e ' ,

= Alu=1 (167)
Given uﬁeR, as a state to the left (chafacterized by e=0), from . {(167) we find (seel55})

€=A(u)-k(u£) (168)

The jump relation (cf.(108)).
Flu)=F(u,)=D(u-u,) : (169)

is graphically analysed in fig,16. Given the point [uE, F(uf)] on the graph of f, for each
point ueR we can determine D as the slope of the chord A which connects this point to the
peit v, £ (i) ] and, on: the ether:hand, to sach value D%f’(u£)=X(u£)a (unique) point on the

mentioned graph-can correspond, -

] L B N S o B o W V1L e o e . DT g (BT 10 2 S (O e el S o i~
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' k(u)=f’(u)<D<)x(u£')=f’(uz) . : (170)

B _ The point Up divides the region R into two subintervals, Each point of these subinter=

1)

vals can be connected to up by a rarefaction simple waves region or a sd " : this circumstan=

ce determines the nature of the considered subinterval. The nature of each of these subin-
a4

tervals depends on the sign of f''#0 in R. This fact is explained in fig.17.

" The RH curve through each point uﬁe? can be continued in the whole R,

9, The Riemann problem

9ilis The formulation of the Riemann problem, Selfsimilar solutions,The class L . -

A Riemann problem for the system (95) (abbreviated RP) is an initial value problem

which associate to this system the data

u£=constant, x<0
u(x ,0)= : (171)

ur#constant, x>0

where the vectors Ups U, are arbitrarily prescribed .

.

R35. The RP is invariant under the transformation
X =ox; t=at: o0 lT2)

This pecuiiarity suggeststo look for the RP for a solution of the form

u(x,t)saﬁ@ : (173)

027. A solution of the form (173) is said to be selfsimilar, A selfsimilar simple wa-

ves solution is said to be gentergé; (fig.18). The class of the admissible (1) selfsimilar

solutions is denoted &L .

9.2, The resolution of an arbitrary discontinuity.

e

The envelope (44) associated (cfofig.3) to a centered simple waves region consists of
a point (= center) only,
| A centered simple waves region of index f is strﬁctured,.a¢cording to P5, by a fan
of characteristics of index i which radiate from the center, We put y =-% . Then, taking

E173) into acceount,. the system (95) c¢an be transcribed EA(u)-ylj-%% = 0

R36 ([361), The considerations of 6,3 and Rl1, T13, R33 can be adapted in case of thé
selfsimilar solutions éf.y=ki(u), €i¥y~Ai(u£). Th contrast with the description 6.3 the

“Winitial data' are singular here, With the notations of 6.3 we have U=Ula(x,t)] where

TTAs n> only a conveniently close neighbpu}hood of up can be such a way characterized



5l

X i L : : : . '
»GFQQE),4t>O. The peculiarity of this case is that the function o (which satisfies the '

equation (36)) must be determined as a solution of the. functional equation

A {ULa(y) 13 -y=0, yelC R % (174)

Then the implicit function theorem shows, using (26), (33), the existence of a unioue

£smooth solution of this equation., Hence a selfsimilar simple waves solution is smooth

inside the fan and, generally, only continuous on the characteristic which separate the

simple waves region and the adjacent constant region, The system (59) can be transcri-

. bed, ef = (li54). by =é(ﬁ).

dy

R37., The theorems T12, TI13 and the remark R33 show an optimal character of the RP

s rances.

(see fig.19, a variant of fig.,15). No element of the construction in RE is arbitrary now,

We say that a selfsimilar solution of the RP describes the resolution of the arbitrary

discontinuity (171) (into elementary waves), on

9,3. An example of nonconvexity (0.,A.0leinik [501),

The peculiarities of a nonconvex graph of f, as n=1 and under usual smoothness asump-
tions, are presented in fig.20a,b by comparison with a convex graph Gfig.20 c).

We denote

Fu,v) = L Cpretiia e

D28, In the nonconvex case n=1 we consider, instead of the admissibility conditions

(149), the Oleinik (general) admissibility conditions (abbreviated CGO): a discontinuity
which connects the (left, respectively right) states up, u_ to each other is said to be
'igpisgigye if
(i) the points Lu,, f(uz)],[ur, f(ur)] are consecutive on the graph of f, i.e, the.
chord A connecting these points to each other does not intersect the graph but in
these points, ‘
(ii) for each point [v, f(v)], min (ur, uﬁ)ivzmax(ur, uﬂ) one of the (mutually exclusi-
ve) restrictions ‘
F(ur, v)<F(ur, UZ)
Flv, uph>Flu, up)

holds,
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R38, (i)-As u cuj/respectively upcu  the requirement €60 (if) is fulfilled by any

_point placed in.the hachured region of figOZIa/fiq;21b. Then it appears that CGO can be re- |
worded by means of the scheme in fig.22.
(ii) As f''#0 (the requirement CGO(i) is automaticaldy fulfilled and the requirement

¢a0(ii) is equivalent to CEL, so that)CGO consist in CEL.

e i

(iii) In case of a nonconvex system the inequalities (170) can be nonstrict (fig,20b;

for a gasdynamic motivation (in the theory of detonations) see A,Hanyga [ 25 1),
Let us now consider (given a graph of f) the circumstances ur<u£/respectively uﬂfuf '

depieted in fig.23. The resolution of an arbitrary discontinuity can be obtained in the follo-
“wing way. We ;onsider the concave envelope (fig.23a)/convex envelope {(fig.23b) of the qraph

of f situafed under the interval (min (uz, ur), max (Ug’ ur))° EacH of these evelopes is uni- |
&ue]y determinede For each of the mentioned circumstances only one of these envelopes is ad-
missible in the segse of CGO: the concave envelope in fig;ZBa; Fespectively the convex enve-
lope in fig.23b. We explain this fact by means of fig:23a; Let D];D2 the SIODés of the chords
A],AZ (tangent to the graph af u=u;, Uéui respective]y) of the concavevenvelope,'The RP has

the solution

’U£ . x£ Dt

1
ulx,t)= < Fx/t) , Dytex<D,yt
L e ' ?ztéx E

a(F)-s=0, s&(D DZ) ’ (175) é

Since (by construction) f''#0 as u€(ué, u;), the implicit function theorem asserts that a uni-

que solution exists for (175), Thus we can state

I]M, In the nonconvex case n=1 a unique solution of the RP exists in & corresponding

to an arbitrary pair Ups ureR..

§§2i<The fiéure 23 also describe the solution of the RP in!Ri° Eorean arbitrari by gl=
ven UKQR;.if,Ur approaches Up or moves away from up reSpect}ve]y the mentioned solution gene-
rally changes its structure thus reflecting the nonconvex character of the graph of f (as
f“#O the structure of the solution keeps unchanged in each of the circumstances u <u, or

ur?uﬂ)'



e

9.4, Final remarks

In the sequel global means free from restriction that Ups UL should be close to each

other,
-
9.1, Notes on the giobal existence of the Riemann problem solution in'the class [
Cf,T14, in the (nonconvex) case n=1 the RP has a global solution in &L for each pair
u{, ureR0

We begin the discussion of the case n22 with an example of global non-existence,

E9 (V.A.Borovikov [ % 1), Let us consider the RP

9 g ) s
Jﬁﬁ? u + §;(3log utv)=0

[3% Vo) =0

u0 (176)

u&,m,v&,m'= £° £ u>0,ur>0 . (177)

(Ur, Vr)’ x>0

(the treatment of the case u<0, u£<:0, cho is completely analogous; log=1og10)v

The system (176) is convex and has the eigenelements

_; ]UZ 2 UZ'
. % , :
X]=% : )»2= % : lez : , R = , , “u»0 (178)
—Z'LI 2U
e
(R, R are normalized by (154)),
We can calculate from (176)
% o . :
%g%%=—=7<0 (179)
u

as u»0 or u<0 (here f,q are the components of the flux),

- In the hodograph space H the characteristic of index 1 through the point (G, ¥) is

“given (by
R o T B ()
et ol U T
which we transcribe) by
-1 v@= ' = - (180)

and the characteristic of index 2 through (U,V) is described by



Sl
The equations of the mentioned characteristics are respectively
u=0 expl-(v-V)] (denoted R1)

u=@ exp[; %(v-V)] (denoted RZ)

The rarefaction arcs of these characteristics are®laid in the region u<i (fig.2h;
‘cf:AW('U)<Aﬁ(u), i=1,2: see D9),
The Hugoniot curves which connect (G,V) (as a left state) to (u,v) are obtained by
eliminating D from the jump relations

3logu+v~-231log U=V =D(u-t) '
(182)

iai g =
= =D (v-V)
We put
S i :
i (183)
and obtain fcr-the equation of these curves the form
. :
E*+3ETogni2 LD,%LL, =0 : (184) .
It appears that these curves-are real ~if
A=9 Jog’n = 8 (.’lﬁ]_) >0 ' ) (185)
We deffne
y(n)= %logn— o e : ‘ (16;6)
. | Vin
and find
y &)=y () | - Res (187)
n 2 ; = ”
The requirement (185) consists of
y(n)<0 , O<ngl
ylndz0 - .5 Jen,
*_Jhis can be trans¢ribed; according to (187), by
OIS
(188)

Motivating by (188) we only consider the circumstance (]88)2, We have

: ]
~ | s ¥

y’(n)=(2 i
3V§?§+2
.and '
3 99
(100)=f~ 2t <0
2y



: Shae

so that (fig.25) as n>»l the equatidn y(n)=0 has a single root N >2. From (188) it appeal;s

that
A»0 iff 1<«l<n or l<ne<m i.e iff‘ l«-<h<n
n7o o g Ny o

In other words, the Hugoniot curves through (G,.V), denoted 31’82’ are real iff

; According to (183), (i8h) we have

v=v- % log ni&%%& 'a]ong"31;'32 resnébfivgiy 3 : : (]99)

From (190) it appears that |v-v | keeps bounded in casév%r<nkno, The admissible parts of the

: o ;
Hugoniot curves associated to an arbitrarily given point of R are depicted in fig.26; these

admissible parts have a second point in common, distinct from (¥, ) and they cannot be con-
tinued beyond this point, The RH curves associated to an arbitrarily given point of R are
depicted in fig;27, e %

The resolution of the arbitrary discontinuity (177) into a pair of elementary waves
consistsof four possibilities (sw=simple waves region separating two constant states):

(sw. ; sd

»(sw], sw 1 2),

(sdy, sw,), (sd

5 o sdz), see fig,28,

2)’ 1

From fig.28, fig.29 it appears that given (UZ' VK)ER the RP for which urjuzni cannot

be solved in &,

In the convex case n=2 it is known that the global existence is guaranteed under
the following restrictions on (95):

(R]) strict hyperbolicity

(R,) genuine nonlinearity

)
2 :
=} ! ) 1o
(R.) (cf. [63.11) L(u){[R(u)-grad ]A(u)}-R )<0, i#i, (W) ueR
1
(we notice that, according to L2 and R28, we have L {[R gradu]A(u)}-R(u)>0, (V) ueR),

g :
1 2 ‘
(R4’1) (e nf 630 3“;’? §_T>0 s (V) ue R

(E‘h,z) (ef< i8] L {[R )-grad JA(W]}-R(u)<0, 4], (V) ueR

: : 1 B
(R, 3) (cf. [331) R(W#R(u), (V) U, ueR

(R

5) (cf. [63]) every field line of index 1 intersects every field line of index 2.

The reversed requirement (R

3

) and the.additional conditions associated with it is,
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particularly, considered ih V.A..Borovikov Bl
The restriction (R“;1)ﬂguarntees,that the Hugoniot curves qgo from bord to bord in R
thus avoiding the circumstance isolated, in case of (179), by V.A. Borovikov.
The three redu?remeﬂtSI(Rq) are péréllsl to each other. \le notice that (Rh,Z) is

: i
equivalent to-R-gradukj<0, i#j and: that (Rh 3) follows from (R,_Jr 2). Also, we notice that

(R]) follows from (RL}’T)° Examples of systems without property (R5) are given in [63].

The requirements (R1), (RZ) guaranfee tbie lispa existence, EF. 8.2, In order to
quarantee the global existence additjonal restrictions are needed: cfi. <R3)_(R5)'

In order to prove the global existence of a RP solution the requirements (RZ), <R3)3

‘(Rh,1) are considered in [63]/respectively (R1),'(R2), (R3), (RM,B)’.(RS) are taken into

account in [[33]] 1).

E 10. In case of the system

a
<

]
J

aw 3o (v) ' T (191

aw
....8_\,_:.::0’._“‘ =0

Q]
s

- 1
we have A,=[-0"(v)] /2=~Xz and suppose [cf. (R1)] 0’0 and [cf. (RZ)] G0
It is easy to see that (R3)’ (R4,1) [and also (Ru,z)’ whence (Rq’g)j hold.
In [1] the requirement

2 3
KZO"O”‘ ; V>0

3latl)

is used, in the context of isentropic gasdynamics, instead of (R5).

i E 42 TP, Livkcopsiders ~ in @ noiconves. case. -
of of
g 'é'al<0 ’ 5“’%<0
(R3) 2 o
af, ' of,
i )

instead of (Rz) and takes into account some additional requirements on the flux. We notice

that (R;) and (Rh ;) follow from (Ré 17. In case of the system (191) (Ré) hold and the men-

tionned additional requirements consist in

) = = . .l . ; ; . S . . . .
1? In (337 the possibility of qlobal existence when (R, 3) is replaced by (Rq 5) - i conjiecs
3 Ty : s

tured.
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(Rg 1) The zeros of o' must be Isolated
b : 5

(Rg 2)‘The curve w=o(v) does not have vertical asymptotes and on each compact of
8

the v-axis the number of zeros of o' is finite.

(Rg 3) The curve w=0(v) does not have horisontal asymptotes, s
: :

>

Also, in [[427 the admissibility conditions CEL and C80 are extended respectively

"in the requirement

(E) D(ug,ur)<D(uz,u), uGS(ug)

In C.M.Dafermos [11] and V.A:Tupchyev [661, [67], the construction of weak selfsimi-

lar solutions of (95) as a limit (as e + 0) of the system
3—9. -+ -—___._S‘F(u..)_ = €2t .?iL_j
ok X )

is discussed as n = 2, . \

Argument:~in case n = 1 A.S.Kalashnikoy ([351) proves that the limit solution does

not depend on the presence of t in the dissipation term.

On putting.u = uly), y = é in the mentionnad system we obtain the following form
for the RP:
d’ d ' d |
e’ =—u == F [uly)] - Ym=r, o alEe) gy lelios u. .
dy? dy dy

On starting with this problem (which corresponds to an autonoﬁous system) an admis-
sibility condition (denoted ET) is isolated in V.A.Tupchyev [656] (and mevisited 16 [6871).

“In [66] the global existence of am ET - admissible solution to the RP for which in (85) the 5

flux is an entire resl analytic function is proved. On the other hand, for a continuously

differentiable f in (95) the global existence of an (admissible in the sense of P.Lax [39])

solution to the RP is proved.: : . é

In the convex case n=3 an important (though specific) result is isolated by T15 herein |

below,

= iTihe theérems Tl T}6 refer to the RP associated to the system of the adiabatic gasdy“:

; b
tem we assume that the specific internal energy e=e(t,S) (S=specific en~ |

namics, For this sys

troﬁy, t=specific volume) satisfies the usual hypotheses of the ideal gases (e>0, ps0, T>0, |



- kg

2
ap SN J oe >
=<0, w=b50, 2B50 (p= - 22 = pressure, T = e temperature) and some reasonable
0T 3T2 v S o a5 2 e

- additional requirements concerning its asymptotic properties). We denote u=(Typ,mT),

T15 (ReSmith [ 671), For any data (uﬂ; ur) the RP has (at least) a solution in €%,

9.4,2, Notes on the global uniqueness of the Riemann problem solution in the class ¢Z

The global uniqueness (under convenient admissibility conditions: CEL/CGO/E/ET) is
guaranteed in the (nonconvex) case n=1 (cf. T14) and, under restrictions (Ry)-(R,) (cf,
vﬁ,KeyFitz and H.Kranzer [33], J.A.Smoller [64]: also see I.M.Gel'fand [201) or (R'Z), (é%l)
(cf. T.P.Liu [42]) in case n=2. We also notice that the ET-admissible solution constructed

by V.A.Tupchyev in [66] is unique.

In the convex case n=3 there is no global uniqueness in &, even in the class of con-

tinous solutions, generally (we notice that the solutions in & ‘are admissible)., Examples of

|
/

global non-uniqueness in the subclass of continuous solutions are due to B.L.Rozdestvenskii,
N.N,Yanenko [ 571 (for a system of the form (15)), \/,F,Dyachenko [15] (for a svstem of
the form (95)), V.A.Tupchiyev [ 681 (for a symmetric hyperbolic system of qradjent-typeﬁ22j)

An example of global uniqueness in & is presented by T16 hereinbelow.

in [ 621 the restrictions

' 2

St - :

MEDIUM = (t,e)g = (t,e»0)
e 2 D

WEAK | =e(T,p2- 5 (T, p>0)

" are respeétive]y added to the hypotheses of the ideal gases (see T15), The condition WEAK

follows from MEDIUM, Hierarchy:

POLYTROP ICC IDEALE MED [UMC WEAK : (192)

T16 (R,Smith [ 621), The condition MEDIUM (the level MEDIUM in *(192)) is necessary and

sufficient for the global uniqueness in & of the RP so]ﬁtione

In [ 621 functions e which (violate WEAK/satisfy WEAK but) violate MEDIUM, causing glo-

bal non-uniqueness in &, are constructed,

In [ 431, T.P,Liu relaxes the hypotheses, presented hereinbefore, of the ideal gases
and proves, under restriction of the (already mentioned) extended admissibility condition

"proposed in [42 1, a nonconvex variant of T16,
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9.4.3% Types of initial data, Types of solutions.,

———

R40, There are /k types of «initial data (171) (té each i,l<ign, two possibilities

correspond: uﬁiguri or-u i<>,u..).

&l

‘6 “+

[f all the characteristic Fie]d; of the system (95) are genuinely nonlinear then
each index i,lgign, can contribute in the RP solution in two ways: by a simple waves re-
gion of index i br by a Sdi’ Then there are 2" types of RP solutiens :in this case.

We can ask ourselves if a correspondence exists between the set of the 2n'types of
initial dafa and the 2" types of RP solutions,

In case n=1 (diagonal system) the answer is affirmative in the convex case and nega-
tive otherwise (see R39),

If n> and there are k linearly degenerate fields then we only have Zn—k distinct
types of sé]utions and the mentioned correspondence does not hold generally,

Nevertheless, for a convex and diagonal system (95) (see for example (61)) having

only genuinely nonlinear fields the affirmative answer found in case n=]1 keeps valid:

there is a correspondence between the signatures of the vectors u _-up and €=(€1”"’8n)'

9.4, 4, The importance of the independent vériables nature, A reading in the Lax

sense of the case of 2D steady adiabatic gasdynamics [ 14 ]

Now it is natural to inquire ourselves about the manner in which the Lax theory

of the RP, described in the previous paragraphs, is reflected in the mirror of the 2D

steady adiabatic gasdynamics context,

An answer to this question shall be presented in the sequel, It intearates, in a
reading in the Lax sense, specific methods and motivations due to Prandt] and Busemann,

In particular, this answer shows an optimal character of the case in which cne of

the independent variables has a temporal nature,

Let us now consider the equations of 2D adiabatic gasdynamics (in usual notations, .
see' [ 9 1; n=h) &
: 4 d a 9 5

e —lpu) o+ 7y (ov)=0

X
3 8 g 5 : - : o
-év-t—(pu) + BX(DU ,+ p) + FJ(DUV)*O s . o i
] A (193)
.a d e— ...2.).,. 2 + = 0 e
5Y(DV)>+_ax(QUV) + Dy(ov -p)
ol (o .L_a_l’..(r.x_n\'] NG et S



where we denoted

s - yigs |

Vo=u T4y, E=plet ?vV e

(196)

(197)

(198)

and, up to an additive constant, we have For a nerfect aas
W
e = -.-J.._ -.D
Yl
We put
_u=(u], uz, u3, Uli)
u]=p, u2=ou, u3=pv, u4=E
/ and
2
: 2y
wl(U)Epuzuz @, (u)zpu +pE—— +p (u)
: 1 :
uzu3 . Y
@B(H)Epuvf m wh(u)zu(E+p)§ UT[uk+p(")]
N : ujusy
QJ1 (l})zpv=u3 ‘ b, (W) =puv= G,
.‘. . U§_ . )
¢3(II)EDV A= -J- + p(ll‘) "L’l‘ (u)= V(E+p) ———-[uu-ﬂ)(u)]
- 1 i
Theh; i cetiot steady flow, we obtain from (193) a system of the form (105)
B W s
' Gk el (a0, Jeis,
The same as in R17 we consider
u, ‘;(“) 1<igh
From (197), (200) we obtain
D((D" ;(102r(931(\9'q) P 2( 2 2
A = ( uy,) %
D u],uz.u37 L
¢o. that, for u in a region U vihere we have

A#D

J:..

u.=g. (U), 1<i<

Here are the expressions of the functionsi g:

(Y+1)U2

g, (V)=
U
oMy, gy Ufg](U)
. -
sl el Rl gy
9y (V)= TV, T35 -

v— o 2
Y(l U% {+f U

YU, +[s;gn(u -c )“{Y U -({ -1¥2u 1Yy -U 3)}?/2

Uh i ;
— Jg, (u)
| |

(139)
"(265)
(201)
(zoé)
2
£ o (263>




1
Ul
NS

where fFrom A(197), (200) we have

2 L) )
qug-(Yz-l)(ZU]Uh-U3)=p (u fcz) >0

R41, We partition the hodograph spaée'U into convexity reaions (this term will be

motivated later on (see R 43)), In a convexity reqion»R the followinag requirements are ful-
filled: .

: u#0, U?“C2¢0, TR (204)
A detailed description of such a region is given in R4S hereinbelow. In the subseauent con-

. siderations we suppose U is in a convexity region,

Thus we put

B BRI ) G, IR )
Taking (200), (202), (205) into account we obtain an analogue of (106)

Z

X + 3y el : e ; .(206>

The jump relations, analogous to (108),
Cf(ul=plul N B (207)

can be, alternatively, presented [cf,(197), (198)] in the form

Tovd = DfIOU]]
' _[[OUVI=Dﬂbu2+p]l_

2 (268)
Cov +pli=D [ouv] o
9 o a2 50 N Seeld
fou (v? + oy Bleblov (47 35 51

where p,u,v,p are given by (202),
We now consider two constant states, let 1,2 be their Jlabels respectively, adjacent

to a discontinuity at the points of which (208) holds,

(@]

The alqebraic study of relations (208) leads to the following results (cf, L7, L8,

i 9;.see Ealal nl).

sl

e e
("'L'I-] = (’G)Z—-D
in (208) then
o , [pli= 0

(ii) the relations (208) hold for an arbitrary value of [pj or [';“ \,_2}



SRR
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in. (208) then

el =0,TuT]] =0,{v] =0, Ep:ﬂ =0

(i.e. there is no jump at all),

L9(A!Busémann [ 6])]), I f
Y v
SR
and -
v]=0
‘then-the relations (208) are equivalent to
| | ] ‘cz 2
2 ] 2D :
Gl - )
' 29
O Dl e A
- (v+1) (u) | Eu] + 22 - (209)

Cpl= -py (U)] ful
?.(u)]ﬁ:u]

fel=p, 5
: (Y—})(u)]{{u}— 2c]
L0, it
v v
; (H)] }é (u)2
in (208) then we have
2

e Geni
[si\/ +-Y-_-T‘“=O

We carry (202) into (200) and differentiate the resulting identity in order to obtai

the expressions of (Bgi/an). Then, on using these expressions we calculate

3 e g L2 e | 2 e
e 7% vl T
af of
[REEARVISERE) S T e b S uv
s L (ushyss ey ]’W"(Y—])Mﬁ
3 L
o, of, af, 8f, 0)
=0 5= 0 srm = 1, g = 0 (21
] 95 . |
of 3f 2
R i B e T e e )
af Y af
S TR T el iy
Uy sl T Tl Uy ° br=hig ¥




g, B0 B
TN T e e e
: 5 (210)
: ; : {continued]
afh_(]sz c2>3f1 Dl
A LT e
B0, 2 Y1305 * 30,740,

We also calculate

Y+ 1 2 ¥l

difs = e bEle s WLE Sy )dU]+YudU =1 1 vdug-(y=1)du, ] (211)
plu“=c™) : :
— .‘ — )?.
dv= 53( vdu, + dU3) i (2i2)
2 ! Y48 Zayelo2. 2 ‘ .
do = 7T [ G )dU]-YudUZ-(Ynl)vdU3+(Y~1)dUk] (213)
ufut=c™)
uz( 132 c2 Vo2 79 12
dp=(y })Zrlp(iv Hie ])dU] [7(u . )+ (~x + ——_]du ~uvdU +uqu}- (214)
7% 2 :
[ ) c 1 1.2
d(-'2~\/ +—Y__])~ '55["(*2"\/ F“\{“*T)dU] + dUl{] . (2]5?
The matrix
afi' : ' o
A(U)=(EUT) {aje)
_ J
has the followina eigenelements: the eigenvalues
2. 2:41/2
uv+t(u +v-c©) v
= = = e 2
us=c \ :
and the eigenvectors
]§4=A 4[1 +CV+U(UZ+VZ_C2)]/2 tcu+v(u2+v2-c2 2 L4 “Si] ' £218) -
] > - : .
ey (u2+v2— 2)1/2 (u2+v2—c2)]/2 2 Y=
2 e
R =A,[1,2u,2v, (zV +?§T)+v J ; (219)
3 [ ' e '
R =A5[1,u,v,5V ’ ‘ ‘ (220)

R42. The expressions (219), (220) correspond to the requirement that

2
do=0 along a line of the field R

] 2)

3
défv =0 along a line of the field R

The fields of indices k=2,3 are linearly degenerate in a convexity reaion R

k
R(U). qrad

1,l(u)éo, k=2,3, inR (221)

We normalize the vectors R R according to
&(u).gradux;(u)=1, i=t,b,y inR : (222)

- ‘.
and the vectors ﬁ,i according to R =1, k=2,3, thus obtaining, particularly,
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2

] q 4'Y+‘ -g(u +y »cz)EtCV+u(u +v c2 }/233 B (223)

We notice that

el B 0. ‘ .
i e sl DGR By (224)

: : i
Let A be the determinant whose rows are R(U), 1£igh, Ve have

: e
G 2 e (225)
, [ ems P Aghaty |

RE3, In a convexity region R the system (206) is convex, In particular, this system

is (nonstrictly) hyperbolic and the eigenvectors R(U) are independent,

On carrying (218) or (219), (220) into (211)-(215) and taking R4l into account it
appears that

: _ ! t
L1}, (i) Along a line R, of the field B, k=2,3 we have’

p(U)=constant ‘ ’ Ta (226)
%{%%—= constant (227)
(ii) Along a line R, we have
o (U)=constant
(iii) Along a line R3 we have
%MZ(U)=éonstant
L12. Along a line Ri of the field ﬁ, i=1,4 we have
2
%MZ(U) iﬁé%l-= constant ' ' (228)
S(U)=constant (S=entropy) (229)
divi o ] ; ; , . .
= (230)

thh:‘THe lemma L11 is a.variant of L7, The two degrees of freedom found cf., L7(ii)

have been associated, cf,R42, to the 1ines'R2 and R, respectively, In this manner the men-
3 J

tioned lines are'respective1v parametrized by Ep]}andﬁ%vzj (see‘ES)f

. )
RIS, The lemmas L10 and L12 suggest a study of the relation [Cf;c“=cz(p, 51



Clu, v, ps S, K) =2 = ’
s VyPio, :’2’"\ o '\"/':'T' ~K=0 (231)

We shall regard S,K as parameters., Given S,K we denote

AT 02 \/m==(2!<)”2, Ko - (232)

Given S,K we can describe (231)

Lmispace u, v, p-as a pressure hill ([/17, filg.31 a).
Now, we give to (231) the form i

Vaiess WY;:]-(\/2‘~\/§)' : i - (233)

Then, it appears that
: T Tt )
Wsmeroll LWPESIG (234) .

On the other hand, (231) can be put in the form

n

s D 2
e A2
VERE = cmme 0 (235)

so that we consider
V_£V&Y e (236)
s m

We notice that V., V_are only parametrized by K,

Next, the requirement u2=c2 in (231) leads to the restriction

PSR T AN L 2
vi= ??”(V c )—‘?TT(V u’)
b etiilonn),
G, | (237)
P e = ] ‘ 237
Ve .
s m

Thus the images of the convexity regions R, associated to (204) result from (236),

(237) and are described by fig.30,

(4% o L

RL6, Given a point U of a convexity region P we dencte K=K(U), S ) o i e

; . i _
keep constant along a field line of index 1 or 4 through U so that the projection in the

u,v,p of the image in u,v,p,$ of this line is laid on the pressure hill CS,K' On gubsti;
tuting c2=c2(u,v;S,K) in (230) we obtain the relation

F(u,v; S,K)=constant (238).
The projection in u,v of the image in L,v,p,S of' 5 Field 1ine s am epicycloid (Fig,31b:
in this figure two epicycloidS,QFrom different families, through an arbitrary point
(uo,vo) of the annulus (236) are depicted), The projection in u,v,p of the mentioned ima-

ge is depicted in fig.3lc, In both of these figures the arrows indicate the way of compre

sion,
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1 : 2<

B )R ()=DR S g i ecys b aher pal ' e,
@y M ROl e e P S50, 8 LI REASU) o) ST U)) (239)
e s e
@y W=}, @, W)= Sopy 4 @5 (U)=p(U) - (24
E{JI'(U)ED(U), ?pz(u) %’%., ‘B\z(U)%VZ(U) s 4 (241)
4 o 4
NOEIORENOEION @5 V)2F,Lu (V) ,v (V) 35.(0) K (V)] (242)

. 2.3 :
We notice that @3,03 correspond to the requirements settled by R42,

At this point it is interesting to revisit comparatively the considerations of 5.2,

R4S, In the relation (209)2 the point ((U)Z’ v2) describes, given ((u)], 0), a hypo-
cissoid (Folium of Descartes) called the shock polar (cf.A.Busemann [§ 1) The admissible
part of this polar, isolated by requirement that (an admissible sd must be a compressive

discontinuity or, equivalently, that) the velocity must decrease in a transition throuah

gl sd, ‘Isdepicted Inifiighs? (which presentsthe minimal, intermediate and maximal shape

of it). Here we have an ad hoc (specific) admissibility criterion instead of CEL. Also
this figure‘makes evidence of the possibility that the Hugoniot curves should go out of

the convexity (and hyperbolicity) region.

Now, let us distincuish in (209)2 between the two branches [vl]=#(...)[u] and corres-
pondingly denote (209)i the obtained sets ofrjumb relations. fn differentiatinq (209%t
in the space U it is easy to verify thét (the RH curve Hl/resnectively Hh consist of an:
arc of Hugoniot curve associated to (209),/respectively (209)_ and an arc of field line

R,/ respectively Ry, and) the remark R30(i) has an analogue here,

RL9, If two states are connected to each other by a sd then in space u,v,p they are

laid on different nressure hills corresponding to different values of S but having the sa-

= ’ 3 : - ()_,
me V, V [cf. L10 and (232)].

. R50 (L,Prandt]l [ 531, T.Meyer [48])., The considerations 6.3 and the definition D7 ha-

1
ve an analogue here

R51. A well-known orthogonality relation, corresponding to a genuinely nonlinear

index, between the set of characteristics in x,y (Mach lines) and the set of epicycloids

! Gasdynamic terminology: Prandtl-Meyer flow (instead of simple waves region).
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in u,v results from (230). The important (and specific) fact indicated by this relation

is that a compression simple waves solution can be selfsimilar (fig..33).

R52, As is well-known, in a steady adiabatic gasdynamic flow (i) on ‘each streamline
2 .
we have S=constant and the Bernoulli law %M + ?gT,=K=qonstant holds (the censtants de-

pend on streamline generally) and, on the other hand, (ii) if Ksconstant ,S% cqnstént

" in a certain region D in x,y then the flow is irrotational in that reaion: we have

ou IV :
e O i,

Cf. (217) the streamlines of the flow governed by the system (20€) can be characte-
ristics (of index 2 or 3) for this system, Yet, here are an important «result concerning

the nature of the streamlines:

L13. In a region where Ksconstant, SZconstant the streamlines are not characteristics.

4 Argument 1, To:the équations of the isentropic gasdynamfcs we add the requirement of

irrotationality [cf.R52(ii)1,
law in order to obtain a system in u,v. For this

Argument 2. We use the Bernoulli

system the streamlines are not characteristics,

R53. The result L13 shows the importance of the ad hoc (specific) admissibility

criterion presented in RE8 . Also, according to- this result we can prescribe data alona a

streamline (for example along an obstacle),

In the sequel we allow the half-lines x<0, x>0 in (171) to be laid-on possib]y“
noncoltinear rays (fig.34). Then let, for the RP considered, K£=K(U£), Kr=K(Ur)' We sepa-~

rately discuss the cases K£=Kr=K and K£¢Kr,
We notice (according to L10) that K can change through a cd only.

Let us assume K£¢Kr and KK’ Kr conveniently close to each other. We consider data

in RK fﬁRK (UE’ U_are also conveniently close to each other) ,

2 P

5k, Cf, R51 there are two RHs (see D26): RHs, (the projection in u,v of its imace

A n U, v, p Is presented . in fig.35a) and RHs, (the projection in u,v of its image in

u,v,0,p is presented in fig.35b; these two projections are‘presentéd together in fig.

35¢c), Each of these RHs can serve, depending on the contour in x,y on which the data are

prescribed, for:the resolution of RP, The RHs2 has no analogue in the unsteady case.

i
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R55..0n taking RHs, into account we can see that an analogue of_T]Z,holdé;‘lnciden~

tally, it can be shown that if the construction in the hodograph space can be put in
. D : , :
x,y then the ambiguous character of the choice of R, R is not felt by the solution, Thus,

~ the choice RL2 is satisfactory. i

R56, In the solution of RP K is piecewisexconstant (with a jump along the cd).

wnsmn

R57. The flow around a dihedral supplies exémp]es of PP without solution in &L

(the'circumstances presented in fig,36 a,b - for which the'waves’ of genuinely nonlinear
index are not depicted - are not acceptable), In fact, for each of these circumstances,

there is a significant connection between the data UK’ UE of a resolvable RP.

Here is an example of RP which is always (locally) resolvable in €L,

E10, In-fig.37 the data are so chosen that the contotr C on which they are pres-v

cribed is quasitransversal to the velocity directions, An analvsis similar to that of ;
fig.33 shows that for such a contour to the solution (in x»0) of the RP only RHs, con~
tributes,

The cd can be assimilated to a straight line profile on which [p] = 0.

e

"R58, The Glimm theorem ([21]) can be adapted (see [12]) to the solution in x>0 cor-

responding to quasiconstant data prescribed on a quasitransversal contour (in the sense

of B0y see : Flg.38)

R59., The considerations of this item depend on the choice of axes x,y. In particts

lar, the convexity partition (Rh1) reflects this choice,

We also notice that in L9 the x-axis is in the direction of the velocity.

R60, For the RP solution S and K are piecewise constant.

féﬂ: In the sequel we shall replace the exnression (219) by

(243)

) e '- 2

; - ' 1.2
corresponding to the requirement that d(;V + )=0 along a line of .the field R. Then

we have
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; 5.2
R 2¢7V : ’ ;
A= s ATAZABAR%O

(-1 (v .YWT) (P Pochy 12

instead of (225).

Bég. In case K€=Kr=K the system (193) can be reduced, according to

i
152 cEn
'”2-\/ - MY'”] K, to

o g MRS
-5;(ou)-i~§7(0v)~0

Y 1 2 2 : '
(Ouv +meD'w«-K Y+1 - lwmu B =0

Here n=3 and the formulas (196)-(208) have an obvious analogue. The system
(2L4) is parametrized byt K. Paptiicularly, we obtain for the present matrix A(U). the-
eigenelements

i ;uvic(u2+v2«c2)1/2

=Y L
- L el ! (245)
u ~c
1./2
13 L, ch+u(u +v2 2)1/2_ 4cu+v(u +v o ) ¢ (246)
SR =A1 3L1 TR ) ) ) )
(u 4v =c ) (uP+vP=c?)
o)
2 s
, b gy - )
R=A, [ s, 1, V] (247)
2 2'1 2 c2 ' '
o
The eigenvector (247) corresponds, according to R61, to (?q3) 50, the eigenvectors

(218) and (246) are respectively related aroordlng to (228).

R63. The system (206) is of a mixed type. Other exanples of such systems can be
found in M.Shearer [60], H.Holden 231, Partlcularly, in [60] the case of a system
(191) for which the fraph @i o e d@plcted in

Flg 39 is considered.

Thgudd
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