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BIRATIONAL MODULI AND NONABELIAN COHOMOLOGY

>

by

Alexandru BUIUM

0. INTRODUCTION. THE ABSTRACT SETTING

‘Coarse moduli spaces fail to exist for various basic Objects

. such as finite dimensional algebras, function fields, affine va-

rieties, singularities, linear algebraic groups. The moral of this
paper is that for large classes of such objects one can construct
"birational moduli spaces"; roughly speaking by a "birational mo-
F
M O*
fields k(x) satisfying formally the basic properties of the

duli space" we mean a set M together with a family (k(x))#é

residue fields at the (nonnecessarv glbsed)'points.of a coarse

moduli space. Of course birational moduli spaces are very rough
"moduli spaces since they carry no topological structure; in par-

“ticular they do not reflect degeneraticn phenomena. Nevertheless

in many cases they are the best global moduli spaces one:can
expect to dispose of.
The ideologv of "birational moduli" originates in the work

of Matsusaka and Shimura; Matsusaka essentially constructed Ekﬂ‘

.(see also [?Hl[Koizj) the fields k(x) for polarized nonsingular

complete varieties. In this paper we construct (by an entirely
different method) the fields k(x) for several other'typés of

objects namely for: finite dimensional algebras, function fields



of general type, affine varietieéxofhnbnhegative Kodairé dimen-
.sién, algebraisable singulafities, liﬁear algebraic groups.

our method has an intereét in itseif becguse it .relates
"bifétionél moduli" to the honabeliaﬁ"cohomology of éeftaih non-
profinite groups. R |
- In what follows we introduce our concepts, state'our main

result and discuss the -strategy ofiproving'it."

¥

{0.1) Throughout this paper we fix a around fieldYof charac-
teristic p70. By a field we will aiways mean a field extension of
k; any field.homomorphism (in particular any field automorphism)

will be over k. Denote by(}fthe category of fields.

(0.2) By a birational space we will mean a set X such that
for each x€X we are given a field k(x) finitely generaﬁed over k.

Any such X induces a functor hX;If——;>Ens

hy (¥) =] (x,u) :xex, ueHom,K(.k(x),K@

Two birational spaces X and Y are called isomorphic if there is

‘a bijection £:X—>Y such that k(x)xk(f(x)) for all xéX.

(0.3) A functorfﬁl:]{Q’—>Ens is called pséudo—representabie
if there exist a biratioﬁal space M and a functorial homomorphism
mm—-——>hm such that the map IR(K)-—+>hM(K) is an ispmorphism for
any algebraically closed field K. Such an M is said.to quasi—ré—,.
" ‘present 7| and it is aﬁ easy exercise to chéck that in characte-

ristic zero M is uniquely determined up to isomorphism.

{0.4) Lettg be a fibred category over X ; by this we mean

here that for any Ke¢Oob (k) we are given a category %é of



"objects over K", for any ueHomjc(K,K') we are given a "base
change" functor %1: %;_—e>%%, and for any pair (u,v)é& Hom(K,K')><
><'Hom (K',K") we are given a functorial isomorphism %1 v’¢61° %i

r

~‘>%Zvu, all these data being subject to certain compatibility

axioms for which we send to Grothendieck's exposition LGr]. Given

"_%Z one can define thé "moduli functor" M :J —— Ens by

mn(K)=Ob(%ZK)/isoéset of isomorphism classes of objects in,‘g%).

- If a birational space 4 quasi-represents the moduli functor ‘WL'

we say that M is a birational moduli space for %? (so in charac-

teristic zero birational moduli spaces ,if they exist, they are

unique up to isomorphisms).
The present paper is devoted to the problem of constructing

birational moduli spaces .for various special ‘g‘s.

(0.5) An example (trivial from our viewpoint) when birational
moduli spaces exist is the following: let 4 be the.restrictioﬁ

a4 .
of some fibred category %f over the category of k-schemes; if

there is a coarse moduli space C for"g then a birational moduli
space for %? can be obtained by just takinog the underlying set of -

(nonnecessary closed) points of C-togéther with the residue.

fields at these points. Of course our main interest is to construct

birational -moduli spaces in cases when coarse moduli spaces fail

to exist (or at least are not known to exist).

Here is our main result:’

(0.6) THEORE!1. Birational moduli spaces exist if chark(k)=0

and_%g is one of the following:

a) %ZK=catedory of finite dimensional K-algebras,

b) %fK=category of finitely generated regular field exten- .

sions of K of general type,
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c) ‘6K=Categ0ry»of affine K?ﬁarietieS'of”honnegative Kodaira
dimension,
d) %ZK=category of algebraisable formal.Kfalqebrasf(kzm),'

e) %fK=category of linear algebfaic K-groﬁps.

>

. For the precise definitions of the above five fibréd'cété—
gorie; appearing in the statement above we-send .to Sections 3—5f

In particular a formal‘K-algebra means a- local complete noetherian
K—algeb}a A with‘residue fieldtK;'such an A 'is called algebra-
isable-if Ka‘@ KA is the completion of some finitely generated
'Ka—algebra at some maximal idealf(Ka=algebraic closure of K). noref.

over the Kodaira dimension of an affine K-variety U is by defini-

tion the Kodaira dlmgnSLOn of the Ka—varlétyﬂy‘_(U ® KKa}reg a?&.

To prove Theorem (0.6) we first feduce'it‘via formél ar§u—'
ments to certain statements about "fields éf definition" and
"fields of moduii" (see the defiﬁitions(0.7) and Theofem (0;11)
-below). Then we investigate the relaﬁionship-betweeh.the two types
of fieldé.above in the speciél cases a)-e); this will be'done‘in
SectionsB—S by using idéas from [ﬁu1} gnd a technicai resul£ on
killing nonabelian cocycles  (cf. Sectioﬁs 1-2). Our killing pro-
cedufe is in some sense qndbgue to the onevuséd by Kolchih [%Ql]
p. 394 to construct Picard-Vessiot extensions associated to a _
given linear differential equation; Kolchin’s_derivations are
;epléced here by automorpﬁisms. Note tha£ most of fhé material

in Section 1-4 holds in arbitrary characteristic.

(0.7) In the rest of this Section we introduce fields of

. 7
definition and fields of moduli for any object AéOb(‘é;) (¢ a
fibred category over RQ, K an algebraically closed field) and



discuss the reduction of Theorem (0.6) to a pfoblem concerning

these fields. So we make the following definitions (which are

inspired from Efia] )ESh] )[Koiz])[Z\MP:[) o

1) A subfield Ko of K is called a field of definition for
"A‘ if A:v_‘gj(A°) for some A"eOb((gK )} (where j denotes the inclusion
- . ’ O s
Koc K and % means "isomorphism in ‘KK") . Call D(A,‘g) the set of

all subfields of K which are fields of definition for A.

2) Define the group =(Aa, ‘67)= % ¢ Aut (K) 5 AeAr?S where
-1 (A). A subfield KO of K is called a field of moduli for

3

A if Z(A,‘g)#\ut(K/Ko). call M(a,4¥) the set of all subfields of

K which are fields of moduli for A.

(0.8) Some general easfy remarks are in order. Suppose K is
-an algebraically closed field and A€Ob <€K) . Then the following

hold:

1) p(a,€), =k,€), m(a,¥) depend only on the isomorphism
-class of A in (gK i.e. only.on the image of A in M(K) . 7

2) If K eD(2, %) then Aut(K/K)) & X(A,€); in particular

Za, ¥) C X, (here for any group I aéting'

Cif Ko is perfect then K
on a field E we denote by E the field of [ -invariant elements

of E).

3) Lef: KA be thé intersection of all members of D(A, ‘g), It
~may happen that KAgéD(A,(g)_ even in quite reasonlable cases (fb'r
inétance if L€K=cdtegory of smooth projective curves over K in
chaxfacteristic zero, see ’[Sh]) . In particular it may happen that

¢\
K Z(a, % '4:_D(A,'\;ﬂ) . However what one should expect in reasonable
) /

Sa,¥)

cases 1is that (K )aED(A,‘g) (where for any subfield E of



K we agree to denote by E, the algebraic closure of E in K); com-

pare with Theorem (0.10) below.

4) If .‘i(A,Lg);fQﬁ then KZ’(A A <€ and moreover M (A, "ﬂ

consists precisely of those subfields of K whose perfect closure

(a,4)

in K equals K . Furthermore if char(k)=0 it is easy to check

(a,4)

thatbthe extension K : c:KA is normal algebraic prdvided K is
not the algebraic closure of KA' Of course this does not imply
apriori that there is a member of D(A,%g) algebralc over K A %g
Our main cohcefn will be in fact to prove that this happens in va-
rious special cases. Note that an interesting problem is to decide-’

Z(n,¢)

whether K =KA (see [Eoiz ); we will not discuss this

problem here.

5) A remark which will play a key role later is the fdilowinq.

Suppose the-e is a finite extension K of KZZHZ“C@? contained in K
with KOéZD(A,%Z){ Then K (A’qg (A %Z ). This can be seéen as folldws:
| e, C ) '

we méy suppose KO/K is'normal.ﬁBy 2) we have

'Au’C(K/KO) = Zn,9)= aut (k/k = (A €) )

Upon letting H to be the image of ZHA,%Z) under the projection

S(a, € ) Z](A,"g))

Aut (K/K ‘ )-—aAut(KO/K . we have by usual Galois
theory that H=Aut(KO/(KO)H) hence 22(A,%3)=Aut(K/KO)H) and we are

done byi4).

6) There is a remarkable exact sequence in our general situa-

- tion némely

T == Butl (A)=—% ca,f)—==m,4) —>1

where AutK(A) is. the group of automorphisms of A as an object in



(é‘K and G ( ‘g) is the group described as follows Its elements

are pairs s=(0",v) with ¢ («_,Z(A,Lu) and viA——>a7 an isomorphism

in é 7 the multiplication is defined by the rule

K
(0, v) (T ,w)=(0T,c ov © ow)
.I 4 7 GJ’-C
W S R 7 L e . -
where v =~ = _— (v) g Hom(A =, (A" ) ) and c = Lg 1 ] (A) &

- T a’rT ‘ el ’t_

. o°T ’ z
. & Hom ( (A OJ)_C JA ). The projection G(A,@)@Z(Aﬁf) is of course

-given by (g7, v)r~> 0°..

As an example, if Cg}{:category of ‘associateive unitary
K-algebras (and if for any A Ob(LgK) we view K as a subset of A)
then G(A,_‘g) is precisely the group of all ring automorohisms s
of A such that s (K) =K. _ »

Note that in general G(A ‘é) acts on K via Zi(a, ‘5) and
:clearly K (B %) Z(A 6)

A key point in our approach will be to kill: cocycles of

G(A,‘@) with values in general linear gr'oups GLn(K).

7) Finally let's explain the relation between our setting
here 'and Weil's C;élois descent [W];. we won't need this remark
later oﬁ Let K "be Ia subfield of K If K éD (a, C@ , then one can
find by 2) a group homomort)hlsm s:Aut ( K/K ) —> G (A, C@) whlch
composed w1th the projection " :G(A,(g)--»d_, A,‘@ ) yelds the na-
tufal in.clus.iornl Aut(K/Ko.)ic:.Z(A,‘g) such an s'..will be called a
section of % over KO. ’Conversel.y, if such a section.s for T ov-er
"K _ -exists one. can esk whether KOéD(A,‘g); upon i_etting s(a‘)z(cf,s )

o a

for o7 e Aut(K/KO) with S 5 (A AT  we see that we have
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for all ¢, T i.e. that the.famii§*i§€¢rr satisfiés a condition
'énélogué to Weil's "coéycle éonditioﬂ;;[W]. So if we assume in
addition that K/KO is a finite (algebraic) extension, Weil's
Galdis_desCent will yeld for "reasonableispeciai Qg's" (for ins-
tance for %?as in Theorem.(0.6)) that KOGD(A,Qg),:Weil's_methdd

>

does not apply however to the case when‘K/Ko is transcendental.

(0.9) In case quécategory of polariéed nénsingular complete
K-Vafieties, the-relationship between fiélds of definition and
fieldsof moduli was investigated in detail in [ﬁé][éh][koiz].
Their approach was via Chow>coordinates (see also the remark
‘at (0.12) below).

In case ‘g,zcateqorv of formal K—alqebras the problem of
understanding the relationship between the two tymes of fields
above was left open in [AMP} p. 192. |

Oour main_results in Sections 3;5 (cf. (3.9), {4.6) , (5;5))

show in particular that:

(0.10) THEOREM. In all the situations a)-e) from Theorem

(a,Y) (Z(a, )

(0.6) we have (K ) ;€D (A, §) and EM(A,¢) for-.all

algebraically closed field K and all object AEEOb(QfK).

Oon the other hand we have the following'quasi—representabi-

lity criterion:

{0.11) THEOREM. Assume char({k)=0 and let‘é be:a fibred ca-
.- tegory over:K satisfying the following conditions (70 denotes in

what follows the moduli functor associated to %g )z

/

1) For any algebraically closed field K and any AéOb(%}K}

e

there is a member of D(A,¢ ) which is finitely generated over k.

2) For any field K we have MUK)=1im 7(E) where E runs through
' ——

the ordered set of all subfields of K which are countably generated

over k.
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3) For any extension KcK' of\'al_gebraically closed fields
the map T(K) — 7M(K') is injective.

Then the following conditions are equivalent:’

) 7n is quasi-representable,’

P) For any algebréically closed field K of infinite trans-

-

cendence degree over k and for any Aéiob(‘ég) we have

KZ_(A’(g) L €D (B, ¢,

Moreover if conditions &) {%) hold -and if K is algebrai-
cally closed, M is a birational moduli space for'%f, AéOb(%ZK) and
(XA,uA)eghM( ) corresponds to A ‘under the bijection 7/(K ”’h (K)

(where x,eM, u :k(x,) —> K) then we have Uy (k(x J )= =g =B, %)GM(A t@

(0.12) Now conditions 1), 2), 3) in Theorem (0.11) are
easily seen to be satisfied in cases a)—e) ffbm.Theorem (0;6)p
So Theorem (0.6) follows immediately from Thebrems {0.10) and |

(0.11). Note also that if axiom 1) in Thedrem (0.11) holds then conditios

xZEE)) o€
2B,

impheg that there exists a finite extension K, of

‘belonging to D(A,%Z).which already implies‘by,remark 5) in (0.8) .

N

that K e M(A, %Z). So the  hard part in (0.10) is to

Z‘J(A“@

prove that (K el)( %Z) and this will be our main concern

in Sections 1-5. Note that one could try to prove this fact in
a "geometric way" as follows:

Each object AéOb(Qg ) can be viewed as a "family" over

K

Spec (K). Then one can try to replace Spec(K) by an algebraic

(A, 9)

k-variety Spec(S) (K _=K K& S<X) on which 2l (a, 4y acts

O

by birational automorphisms and then try to (prove and) use

representability of the functor of isomorphisms between "objects .-
~S

in ‘68" where €7is an "extension" of‘67to the category of



’

KO;sChemes. There are some serioue\difficulties with this approachs
First, although one can always find in each of the cases a)— )
a field of definition K1 for A which is flnltely generated over
Ko 1t is not at all clear that one can flnd such a K1 which in
addition is stable under .>; A,%Z . Secondly even 1f such. a stable
’K1 was found (and Spec(S) is a model OE,K1/KO) it may>ﬁappenvthat
the isomorphisms between "objects in (6g" form an infinite dimen-
sional object over S (as it' is.the case for formal algebras) or
a finite dimensional object with infinitely~many compenents (as
it may‘oceur in the case of linear algebraic groﬁps).

Note also that one could try to prove that I(ZE(A’QZ))a &
& D(A,%f) by extending the method of Matsusaka-Shimura. There are

difficulties also with this approach. Indeed, in their method

it is essential that the moduli functor be of the form

=1 |8, (K) /R, (K)

“with H; certain quasi—projective k-schemes aﬁd Rf:Hi>< H;, certain
"algebraic equivalence relations". Although our M has thie'fofm ine
cases a) and b) from Theorem k0.6) one does not expeet M to take
'this form in cases c¢), 4), e). |

| Note finally that our cohomoloéical,method yeld%@ofe than
quasi-representability of 7n,(e.g. it yelds the "splitting"
assertions in Theorems (373%(4,5L(5}ﬂ) which we did not eXplain

in our Introduction but have an interest in themselves).

(0.13) We close this section by sketchina the proof of
Theorem (0.11). Although the proof-is purely formal it'is some-

what tricky. Implication uJ::>P) is routine. In proving P) = ol )



it is convenient to make the fo}lowing definition: M is said to
be quasi-representable on a subcategory :k% of ]C if there is

a birational space M and a functorial hombmorphism
ml iy
Jco hM{‘Ko

which induces isomorphisms on the algebraically closed fields
of :Kb' We say that M quasi-represents M, on X%. Then we proceed

in three steps.

8tep| 1. ret (L be an aigebraicélly closed field of infinite~
transcendence degree over k. Denote by :k&L the subcateéory of‘]{
whose objects a;s-the sﬁbfields of {1 and whose morphisms are
those field homomorphisms between subfieldsvofJQ.which can be ‘
lifted tg automorphisms of.gl; clearly jél is'not a full subcate-
gsry of j& . Then one proves that WZis quasi—pepﬁesented:on JCLL-
.by»Ms TQ(XL)/Aut(XL) (where Aut ({1) acts on M({L) in the natu-
ral way aﬁd the fields k(x) are defined as follbst.one takes
an arbitrary section s?M->7n(£L) of the projection M (L)—> M

and éuts k(x)=j2_2:(s(x)’q2)),

-Step 2. Let :k;} be the 'full subcategory of:K‘whose objects
are the countably geherated field extensions of k. Ifgl is any
algebraically closed.field of uncountable transcendence degree
over k then one can construct_a functor Jf“)—4>}CSL sending each

' 2 N . . )
field Keob(}Cw,) into a subfield K of{) isomorphic to K and each
. ) g s ~/ 1
morphisms K—>E in J%u, into a morphism K—E in 1{Q’compat1ble
with the isomorphisms Kﬂ!g, E&;E: Then one checks that if M

Jquasi-represents T on ?zjl. then M also quasi-represents 772

v/
on .:}VLU



Step 3. If- Y 7n4}/ ~T~>hw[76\\ is a functorial homomorphism
v @ L " .

i o

making M quasi-represent M on :k@, then ¥ can be extended to a

natural functorial homomorphism 71, m@;hqvby

ot

aking direct limits
(use property 2) in (0.11)). Note that our construction was non-
canonical at several points (the choice of the sectién_s}M;~4§0n(jl)
the choice of the functor :Kw —> R&L). However the quasi—repfe—

senting object is, as we already remarked, unique up to isomor-

phism.

1. KILLING NONABELIAN COCYCLES

Let G be‘a topological group; unlike in_{?I} and [}er}
we will not assume here (and this will be important in what
follows) that G is finite or profinite: For the results stated
in ﬁhe introduction, discrete tqpologies on our groupS_G would
suffice; however to get a satisfactory picture of the situatioﬁ
it is convenient to take nondiscrete topologies Antovaccount too
and so we will.

By a G-field (respectively G—group,,q—riﬁg) we will under-
stand a field (respectively a group, a ring) X toqether with a-
G-action on X by field,(respectivély group, rinjj automorphisms;
such a G-field (respectively G-group, G-rihq) will be called
discrete if the action map G>< X —> X is continuous where X is
given the discrete topology (equivalently if for any .x#X the

" isotropy group of x is.an open subgroup of G); we will also say

that .G acts_continuousiy on X. If K is'a discrete G-field and L.
is a linear algebraic‘KG—group then'L(K)((the group of K-points
of L, has a'natural structure of discrete G-group.

PR ' B 3 ~ <t ] T L rv1 i A
Now if {' is a discrete G-group define the set Z'( Al

03]



continuous 1-cocycles as the set®uf all continuous maps f:G —>[7

satisfying f(st)=f(s)s{f(t)) for all s,t€G; in this definition

@]
3

o

®

replaced by the egquivalent condition
(1) is an open subgroup of G. A continuous cocycle f’

will be called a coboundary if there exists xe[' such that

f(s)=x—1sx for all "s&G.
By an extension of discrete G-fields'we mean a field ex-
tension E/K of discrete G-fields such that the G-actions on K

and E agreé; such an extension will be called constrained if

*ﬂG /T.'G
ia /AN

L 7 4 ~ 4 1o =1 5 I v 3
the extension is algebraic.

One more definition: a subgroup G1 of G is called cofinite

if there exists a sequence of subgroups G1cGzc...cG“=G such that
1

G, 1is normal and of finite index in Gi for 1€i¢m-1; Clearly

i +1

G e .
the extension K 1/KG is then necessarily finite algebraic

Our main result in this section is. the following:

(1.1) THEOREM. Let G be a topolégical group, K a discrete
G-field, L a linear algebraic KG—group and er1(G,L(K)) a conti-
‘nuous- cocycle. Then there exists an open cofinite subgroup G1 of

G and a finitely generated constrained extension of G, -fields

;
,K1/K such that the image of f via the natural map

1

2" (6,L(K) —> 2 (G,,L(K,))

is a coboundary.

" Proof. Embed L into GLN for some N and suppose L is defined
in erI bv an ideal I, where X=(X,.) and d=det(X). Due to the
Lodq 4 1] .
formula f(st)=f(s)s(£(t)) for s,t€G, there is a unigue G-action
on K[Xl which -agrees with our G-action on K and such that

inj:ZZXip(f(s))pj whe;e f(s)eL(K) is Vlewed as an element in



GLN(K). Since f"1(1) is open, K[X] is a diScrete G-ring. Since
sd;det(f(s))d the action above continuously extends to a .G-action
on K(de; clearly J=IK[X]d is globally invafiant under G. Let S
be the. set. of all Jddeals:J’.in K[XJd satisfying the following
properties:_.

;, 1) JY contains J and

2) J' is G'-invariant for some open cofinite subgroup G' in

1

G1’the corresponding open cofinite subgroup from condition 2). We

By noetherianity S has a maximal membér;:call it J, and call

claim J1 is a prime ideal..Indeed‘let M=£P1,...,Pm§'be the set of

all prime ideals in K[de which are minimal over J Clearly G1

1

acts oh M and put G =Ker(GT—~A>Aut(M)) which will still be open

2

and cofinite in G. Since P1 is_GZ—invariant, we must have P1¢S

:hence by maximality of J1 we have P1=J1 which proves our claim.

We let now K, be the quotient field of R1:K[X]d/Jﬂ and xeL(K1)

1 @7 1°

Clearly G1 acts continuously on K1 and f(s)=x"1sx for all seG

be the K,-point of L corresponding to the map kLX} /I —» K

1

i e .
so the cocycle.G —_ G——#~* L(K)——Q»L(K1) is a coboundary. We are

1

, G - :
~left to prove that K11/KG is algebraic. It is sufficient to check
, G . ,
that any element a€K11 is algebraic over K; indeed if
an+b1an—1+...+bn=0 with biGK is an equation of minimal degree

satisfied by a then'for.any SeG1 we will have (b1~sb1)an-1+J..
watilB =sh j:O and hence by minimality, sb.=b. for all i and SEG

n n . : i 1. e .
In-other words a turns out to be algebraic over K 1.
G
1

a contradiction. By Chevalley's constructibility theorem there

'E

Assume there exists a€k ‘transcendental over K and look for

exists geK|a|, g#0 such that the image of the map Spec(R,[al)-—>
1

*“*'SPEC(K[?J) contains Spec(K[?]g) (where R1[§] denotes of course



- ’]5 —

generated by a and analogously for K[H]).

. the R,~subalgebra of K,

5 in G and a Gznlnva—

riant prime ideal P#0 in RL@] not containing g. If the field

G
K ! is infinite we may simply take G

G . :
ceK 1, g(c)#0. To prove the claim in general note that there is at

4 G, _ S
least one polynomial h¢K 1La] none of whose prime factors hq,...,h

We: claim there exist.an;open cofinite group G

2:G1 and P:(afc)Kléj wherev

m

in K[@] divides g. Clearly G, acts continuously on K[a] and also

1
on the finite set of ideals F={h1K[aj,...,th[é]}. Then the claim

follows by taking G,=Ker (G,—> Aut(F)). With P at hand consider

2 1

the set E:%Q{""’QS& of minimal,primes in the fibre of the map
Spec(RTEal)-4>Spec(K[§]) at P; clearly G, acts continuously on

R1(é1 and also acts on E. Then if we let G.=KerlG.<is Aut(B)) we’

3 2

get that Q=Q1 is G3?invariant, hence so will be'QnR

will be the inverse ,image of QAR

17 hence so

1 1n‘KLX]d which we call J,.
Now Q#0 hence QaR,#0 (because R{ and RTEé] have the same quotient
field) so J3 strictly contains J1; Since G3 is ‘cofinite in G, this

‘ contradicts the maximality of J1 and our theorem is proved.

(1.2) In view of Theorem (1.1) a special role will be

:played by topological groups G havingmthe prdperty

(*) G has no open normal subgroups of finite index except

G itself.

Clearly if G satisfies (*) then G has no open cofinite subgrouns
except G itself hence‘G1=G in Theorem (1.1). Let us discuss a
remarkable exam?le of.a group with prdperty (*). For any field
extension K/Ko give Aut(K/KO) the unique structure of topological

group for which the identity has a fundamental system of neigh-

bourhoods consisting of all subgroups of the form Aut(K/E) with -



KOcEcK, E finitely generated over Ko" see [R}; this topoloqy

will be called the natural topology on Aut(K/Ko)

(1.3) LEMMA. Let K/K be an extension of algebraically
closed fields with K of infinite transcendence dngree over K

»

’Then Aut ( K/h ) “with: itgsnatural topology has property (*),

Proof. Let H be an open normél subgroup of finite index
N in'G;Aut(K/KO),and let E be a finitely generated extension
of Ko in K such that\Aut(K/E)cH. ﬁe claim that for any. ¢ G
one Cén find an automorphism te/G such that 7~17:NéAut(K/E);
“this will imply that G=H. To prove our claim let EF denote the
compositum of E and F=o“E in K and let \:Q (BF @ F c>,.; ® F)—>K

be an embedding extending the inclusion EFcK (here the tensor

roducts are over K_ , the number of factors is N and O denotes
, o 2

“taking the quotient field"). Put F2=?(1 RF® 1@ .o @ 1),...,
FN=?(1 @ ... @& 1 @ F). Now let td:EFz...FNazFFZ...FN be the’
isomorphism induced via ‘¥ by the isomorphism E @ F @ ... ® Fo
— F®F® ... ®F given by
x1 & X2 ® ... ®.XN#~%>X2 @ ... & XNVQ O’x1
-k

: : £ ! =
Nok+1 (1€k€N, F.=F) and

‘C§x= U'x. We conclude by letting T&€ G to be any extension of T

Then for any X&E we have- uoxéF

o
K[G|-1opuLES

(2.1) Let G be a tooolog¢ca1 group and K a discrete G-fiel
Denote by K!GJ the c}few group K- algebra of G; recall. that as a
K-linear space, K[b] has a basis consisting of the elements of

G while the multiplication is defined by the formula



(0151)(0252)=(c1s1 (c ))(s S ) for all c1,¢2(gK and s1,s2€G.
We.will be interested here. in the category of K[C]—modules

(noté that the (G,K)-spaces from [?L] are K[@]-modules while the
converse is not true since we do not assﬁme that the map G~»Aut(K)
defining the G-action on K is injective). The basic relation in
la KLGJ module M is s(cx) (s )(sx) for all s€G, c€K, x¢M. When

we say a K[Gj—module'is finite dimensiocnal we.mean_it has finite
‘dimension as a K-linear space. A K[G]—module'is called discrete
if it is so as a G—gfoup. The field K itself ig a discrete
K[Gl—module in a natural way.

G

Now for any K[G]—module M put M =%x€M; sx=x for all séG};

MG is a KG—linear space and we have a natural injective K-linear
map
‘ . . _
‘K ® G(-i ) ——> M, cC ® X l—> cx
K .

We will often identify K & G x

. K :
If this map is also surjective we say that M is-a.split K[@]~module;

(M7) with the image of the above map.

'clearly M is split if.-and ohly if it has a K-basis contained in
MG (see also [KL] for related dlscu551on, however the main resulta
» dn [KL] involve only finite groups G so thev are not suff1c1ent
for our purpose). '-

Note that any‘split K[@]—module is a discrete K[@j-module.
If KT/K is an extension of ‘G-fields and if 1.is a (discretei
K[?}-module then K1 D KM has a .natural structure_of (discretey

K1[G]—module defined by s(c ® xX)=sc @ sx for all s€G, c¢X XEM.

1’

(2.2) A useful remark is that if M is a split K[@]—module.
G1 is an open subéroup of G and K1/K is an extension of diScrete

G,-fields then the following hold: q:%7
i N .

Ao et



1) K, @ M is a split K [Qﬁjrmodule and

2) the natural map

-is an isomorphism.

1 ® KM has a K1—ba51s

consisting of G-invariant elements in M. To prove the second

The first assertion is clear since K

'assertionAit~is sufficent to check that f becomes an isomorphism
after tensorisation with K., over K 1( But after tensorisation

1 1
both the source ana the target of f naturally identify With
K1 Q KM and we are done. ‘
Now aécordihg with a general principle [KQ] our resu}t
(1.17) on "killing coéycles“ leads to "existencé of invariant

S 2

bases":

(2.3) COROLLARY. Let K'be a discrete G-field and M a .
discrete K[C]Lmodule of finite dimenéion. Then tﬁere—eXist.an
open éofinite subgroup G1 of G aﬁd é finitely generatedicbn~
strained extgnsion K1/K of_discrete GT—fieldS such that K1 @ M

ig a split K1L911—module.

Proof. It is similar to an argument from [gL]; for conve-

nience we repeat the argument below. Let Xi,}..,xm be a K-basis
-of M and write sxi=22aij(s)xj with s€G, a(s)z(aij(s))egGLm(R)u
The map f:G——%-GLm(K), f(s)=(a(s))_1 is a continuous 1-cocycle,

hence by (1.#) one can find a cofinite G1, a finitely generated
-constrained extension K1/K of G1—fields and a matrix

b= (b, ,)ECL, (K;) such that f£(s)=b 'sb for all s€G,. Put

\

1

inZibinj for 14i4m. Upon letting x and y to be the column



- ‘'vectors with entries xj,...,xm‘and yi)...,ym respectively we have

for all séG1:

sy:(sb)(sx)z(bf(s))(a(s)x)=bx=y

G >
_hence yiQ(K1 @)KM) L and we are done.

3. LOCALLY FINITE K[G]—ALGEBRAS

(3.1) By a K-algebra we will mean here either an associa-
tive'ﬁnitary'(not necessarily commutative !) K-algebra or a Lie
‘K-algebra. By a locally finite sﬁructure on a K-algebra A wé will
mean a sequence (An)n;O of finite dimensionél'K—linear subspaces
of A such that A=22Ah (the sum need not be direct !) and 16AO
(if there is a unit 1 in A). By a locally fiﬁite K—algebfa_ |
we mean a K-algebra A together with a lécally finite structure-
(An) on it. The locally finite K—algebraé form a category; a
‘morphism between two locally finite K;algebrés (A,(Aﬁ)) and
(B,(Bn)) is by definition a K-algebra map f:A—>B such ﬁﬁat
:f(An)c:Bn for all n30. |
| Here are some standard examples of locally finite K-alge-
bras; Any graded K—algébga A with finite dimeﬁsional homoéenoqs
pieces has a natural structure of locally finite K-algebra (pu£
An=piece of>degrée n). Any finite dimensional K-algébra A is

. a locally‘finite K-algebra in a standard.way (we pﬁt‘An=A for
ali n). Given aﬁ affine K-variety Spec(A) there is no "canonical"_
locaily finite structure on A;.however if we are giyen a smooth
compactification X of U=Spec(A) thén assoéiafed télit there is
a canonical locally finite structure on A defined by An=

=HO(X,C9x(nD)) where D is the reduced divisor whose support equals

XN\ U (heré by a compactification of a K-variety U we mean a



.cohplete K-variety containing U asxakzeriski open set). A quite
general class of finitely generated commutative K-algebras A
poesessing a "cahonical" locally finite,structure will be
deseiibed in (3.8): it is the class of those A for which
Spec(A) is a K-variety with non negative Kodeira dimension.
-For any field K denote by of% the category of finitely
generated locally finite K—algebrae; for aﬁy field homomerphism
K —> K! define the base chande.functor efy ‘*c%ﬂ ,(An))
+—> (K' ® 'A (K' @ k> n )). We have defined a fibred category £

over the category of fields. Clearly (An) define a gradation

~if and only if (K' @ KAn) define a gradation.

(3.2) Following LNWJ p.952 if-G is a tonological group and
K is a discrete G- field then by a K[ﬁj algebra we mean a K- algebra
A which is also a KLG]—module such that the multiplication map
A® A-—é‘A and the unit K—> A (if there is any) are K[@] ~-module
maps (where A ® A is a K[?]— module via s(a gba ) sa1 & sa2
for sEG a1,a2€A). By a locally finite.KLQJ—algebra we will mean
.a locally finite K-algebra A which is also a K[@]—algebra such .
.that A is a K[?lwsubmodule of A for all néO;'A'(locally finite) -
K[?}—algebra is ealle@ discrete if i? is so ae a K[@]—mo@ule
(i.e. as a G-group).

Following [ﬁw] p.957 we say that the (locally finite)
K{?l—algebra A is split if there is an isomorphism ef (locally
(2°)

-finite) K-algebras A¥K ® for some (locally finite) KG—al~

G
. : K ; .
gebra A® such that for the induced K[@]—algebra structure on
K&
K© _ 3
Clearly any split (locally finite) K[@J-algebra is a discrete

A O 3 Bl - . .
(A7) we have s(c ®.x)=sc @ x for all s¢G, c€K, x€A

KLQ}-algebra..



The main result of this secfion is:

(3.3) THEOREM. Let A be a finitely generated locally
finite discrete K[?]—algebra. :

1) If K is algebraically closed then (KG)aéD(A,of).

>

2) If G has property (*) then there exists a constrained
extension ﬁ/K of disc:ete G-fields such that.%ﬂ@ KA is a split

4 (2% .
locally finite K[Q]-algebra.

Proof. If (An) is the locally finite structure on A then
An are finite dimensional K[@]—submodules of A. Using (2.3)
we may construct inductively a sequence GDGODG1D... of opeh

cofinite subgroups of G and a sequence KCKécK1c... of field

extensions of K such that for all n;O.the following conditions

are satisfied:

a) K_ is a discrete G_-field (put k_=K_
s n T n 'n

).

b) K'n/Kn_1 is an extension of discrete Gn—fields (where

1 is an algebraic extension (where k"1=KG).

< kn/kn v _
d) Kn‘® RAn is a split Kn[Cﬁ]—moéulé (call it Bn and. put

" . da. o~ ‘ g 7.
Moreover define K—&JKn ,vk—k)kn, An—k @)kncn and
- 5

AO=\J(Kn QfKA)-n. Then A° is easily seen to be a sub-k-algebra

of E’® KA. We claim that the natural map §’®'EAO-;—%>§'® KA is

§ "4 .
an isomorphisms of K-algebras (which we shall think of from now
on as the identity). Indeed our map is surjective because
§'® A:ZIE‘® A =2§§;® - B_ and any eleméng of B~ is a XK_-linear
K ' K'n Kn n n n

. i :
combination of elements from Cn hence it is a K-linear combination

of elements from A°. To prove that our map is injective, let



~ :
x1;...,xp be k-linearly independent elements from A% and let's
check that they remain k~linearly independent as elements of

s ' n
K & KA' If ;;?aixi=0 with aiéK then there exists an integer n»0

vvvvvvv | :
. n
such that Ayree.sa éKn,x1,...,x e(Kn Q)KA)

& 5 Since the map

_is injective and x "Xp are kn—linearly independent they will

AR

remain Kn-linearly independent hence a .=aé20 and our claim

1:.‘
is proved.

Next note that

hence the natural maps Ag ~%;AO are injective and Ao=2§A§ SO

(0]

L)) is a finitely generated locally finite k~algebra.

e}
(A7, (A
Now assertion 2). in our theorem follows because if G has  proper-
_ : o~ MG IR o .. G
ty (*) then Gn—G for all ny0 hence k=K~ and A7=(K @ KA) . To
prove assertion‘1)'note'that since A is finitely generated

there is a finitely generated K-subalgebra R of K such that

R® (K@«

o, _ . ‘
K kA ) =R @)KA. Then for all n70 we have

R® ,(K@®yANC(R @ (A ~K® A )-R® A

By symmetry the converse inclusion also holds so we have
i . . ; ) | .Y |
R.® KAn—R g)K(thkan) for all n»0. We conclude by reducing
the equality R & K(K @)EAO):R<® KA modulo any maximal ideal of R.

(3.4) COROLLARY. Let K be algebraically closed and AéOb(x;).

Then A has a natural structure of locally finite K[@]—algebra



(GzG(A,of)) . in particular (K;gfé’ig))aéD(A,df). If in eddition

. . : . —
A 1is either commutative or finite dimensional then'Kzu(A’df)é
EM(A,L). Furthermore if tr.deg. K/k= co-and if s: ['=Aut( K/K —

Aaf)

—>G(A,L) is a section of G(A;l) —> Jl(a,L) over K —(K

(e, 7) in (0.8)) making A a discrete K[ﬁ]—algebra then A splits
over some constr&ned extension of K (here f7=Aut(K/KO) is

viewed with its natural topology cf. (1.2)).

PrQof. Recall that the elements of G=G(A,af) are pairs .
=(qg’,v) Where G“GEKA,af) and v:A-———?»AOv is an isomorphism in
OKK' Then K becomes a discrete G-field and A becomes a -locally
finite K[Q]—algebr%@y letting se=p¢jv(a)) for Bl S lE w88
and aéA where g}ﬁfféb 1A:Aq;a>A.'We conclude by (3.3) and remark

5) in (0.8). ' : .
~NO"Le that sections s as in the statemeht of (3.4) always

‘exist by 2) in (0.8).

(3.5) We will give a "birational" applicaﬁioh of (3:4).

For any field K denote by.@

X the category of finitely genera-

tedvregular field extensions of K; if K —>K' is any_field
homomofphism define the base change functor jZK“;Z%K' by

" F t—> ﬁ' where F'! is the quotient field of the integral domain

K' @;KF. We have defined a fibred category ﬁzever the category
of_fieids. Note that for any FEODb ( ? , A (F, @3 identifies with
the group %c%;Aut(K); there exists U%}Aut(F) such that_S:/K=;r}.
The.fields of definition relative to'@,are quite significant in
algebraic geometry: they can be interpreted as "birational
fields of definition" for algebraic varieties. Schimura's coun-
?F@

terexamples rsﬁ] show that K need not be a field of



definition for F (even if K=complex field, tr. deg. KF=1). Here

is what our method yelds:

(3.6) COROLLARY. Let K be algebrdically closed and
E‘EOb(G{K) a regular field extension of K of general type. Then
Slr,R)

‘»(KZ(F’i))aéD(F,@,) and K eaFj

In the above statement by F/K being of qenerel type we
mean (1n arbitrary characterlstlc) that there is a non-singular
projective model V of F/K and an integer ny] such that the
n-canonical rational map fnzvh;uu>E‘ is birational onto its

image.

Proof. Let KLRnl be the K-subalgebra of the canonical ring

® m),u) =canonical buﬁdle on V)

.— ’ '. - O
R=( Ry (Rp=H™ (V, W, V/K

m»0 m’ K
generated by Rn' Then K[kﬁ] has a natural structure of finitely
generated locally finite K-algebra induced from the gradation.

Moreover we by EZ(K[RH];Jf)= (F @3) and D(KL? 1 AL )=D( G%)

so we may conclude by (3.4) and remark 5) in (0.8).

(3.7) We-wiT} 8sw, now an "affihe".apolicationvof (3.4).
For any field K denote Dby J4 the category of flnltely generated
geometrically integral commutative K-algebras (which is of course
anti-isomorphic to the category of affine K-varieties): the ca-
tegories @QK together with the obvieus base chancoe functors

yeld a fibred categoryLA‘over the category of fields. Clearly

d

once again we have an identification petween ~.(a,sr) and the
\ , , e ~ g
group iG%EAut(K}; there exists o&Aut(A) such that 'T/K: oy,

Here Aut (A) denotes the group of ring automorphisms of A.



(3.8 COROLLARY. Let K be aljebraically closed of charac-

teristic zero and U=Spec(A) an affine K-variety. Suppose U has

sia, A

non-negative Kodaira dimension. Then (X

s, o)

BT cr(n,dy.

LD(A, A) and

-

In-the apove statement py the Kodaira dimension of an affine
K-variety U we understand the Kodaira dimension of .the nencomplete

manifold Urég(msmooth part of U) in Sazkai's sense [?a].

Proof. By the proof of (3.4) it is sufficient to prove that -~

A has a locally finite structure (A_) such that for any vé?ﬂA,&Q)

n

: . o '
and any K-isomorphism v:A —>» A we have V(Z\n):AY1 for all n>0

(here the upper ¢ will alwavs mean "applying the functor Koi®>K 2"

-

a . . ; ‘n : . .
where K. 1is K itself viewed as a K-algebra via the isomorphism

e ik—> k).

e perform the following construction. Let Ureq be the smooth -

~

locus 0of U and let X be a smooth projective compactification of

U such that X\U is the support of a reduced divisor D on X
reg reg :

with normal crossings. Let W be the canonical sheaf. on X and

X/K
; S @m
choose an integer m)»1 such that SL(X,D);zﬁ (X V/V‘ ({(m=1)D) #:O°

Put A= zféA; f-'pﬁwﬁl@--@ﬁvaﬂm(x,m) for aH_- pi,,..,pne%n(y;,b')%)

where. we view A as a subspace of the field K(X) of rational func-
tions on X and we view vy}(X,D) (pzt

as Subspaces of the stalk of LUX/K QDP. at the generic point of X.

Clearly A=\_UA_, léZAO and dimYAn<a>for all n»0. Suppose now

L7 ; ; ; . .
ViA—> A is a K-isomorphism; we get an induced K-isomorphism
pe ' a’ o7 g~

¢:U ;~—?-U. Clearly (Uxeg) =(U )reg hgnce f((Ureg) ):Ureg'



: T ;
We will still denote by ¥ :X ----%X the rational map induced by

¢ i By[ﬁﬂﬁﬂwe get induced K-isomorphisms:

il y%(X,D)

N\

7.y;(XG:DSij;(X,D)o— for p21

hence v induces K-isomorphisms An—J>Aérwhich closes our proof.

(3.9) We close this section by making the followihg remark.
Let J,Cg be fibped categories over }6; we say thatc® is a regu¥
lar fibred subcategovy of %Zif for all K€ O0b (k) , ‘%K is a full
subcategory of ‘6 , the base change functors. ;a -’9°2 , are
1nduced by the corresponding functors ‘é -%(€ , and moreover

the following conditions hold:

1) 1 AEObQﬁK), Beob(%K) and A¥B in %1 then BéOb(ﬁK)

2) suppose K cK is a field extension , A%EOb(@% )
' ' e}
and AéOb(@%) is deduced by base change from A° via KdﬁK; then
o. ;b . , ) 0 '
AT€ODb { K ) if and only if AeObQﬂK).
o

Note that if K is algebraically closed and AéOb(ﬁy) then

pa,d=pna,d, = a9 -5m,L), nn,)=um, ).

Define the flbred subcategorles offln 5den, &4+ as fpl—

o

lows: for each field K let i ", X3, k¥ be the full subca-

. ) - .
tegories of c[K, JQK' @4K whose objects are the finite dimen-
sional algepras (viewed as locally finite in the standard way) ,

) - . _
the fields F in ‘kK such that the extension Ka.QDKF/Ka is of

geheral type (Ka=algebraic closure of K) and respectively. the



K-algebras A in OéK such that tbe Kauvariety Spec(Ka,QDKA) has
nonegative Kodaira dimension. N “
<xffin is a regular fibred subcategory Oft{fand in charac-
teristic zero so are the subcategories ﬁagen,‘4+ of j@,d% respec-
tively. With this remark in mind our'Corollaries (3.4),'(3.6),
(3.8)-imply that Theofem (0.10) from the Introduction holds in
the cases a), b),'c) (wﬁichvcorrespond to %fzaffin’jagen,v4+

respectivély).

4. FORIAL K[G}ALGEBRAS

(4.1) Recall that by a formal K-algebra we mean a local

4]

noetherian complete K-algebra with residue field K. Denote by
§¥K the category of formal K-algebras; for any field homoriorphism
K—» K" define the base change functor j'Kw’»j v bY A K ® (A

' A
(where @ 1s the completed tensor product). We have defined a
fibred categoryv?'over the category of fields. Exactly as in
(3.5) and (3.7) for any A€Ob(F,), S1(a,F) identifies with the

group of all isomorphisms of XK which can be lifted to ring auto-

morphisms of A.

"(4.2) Let K be a discrete G-field (G a topoiogical group) .

By a formal K[C]—algebra we mean a formal K~-algebra which
is also a KES]malgebra.'A is a called a continuous formal
K[Q}-algebra if for all n21 the K[@j—algebras A/Mn are discrgte
whergMzM(A) is the maximal ideal of A. The definition of a split
formal K[@]—élgebra is analogue to the definition of a spli£
_K[?lfalgebra in (3.2): one has to replace & by -%). Any split

formal K[?}—algebra obvdously 1s a continuous formal K[@J—alqebra.



g g

(4.3) THEOREYM. Let A be a continuous formal K[G]-alqebra.
1) IE-Ris algebraically closed then (K(J)aeD(A,?f).
2} If & has property (*)} then there exists a constrained

. ~S
extension E(J/K of discrete G-fields such that K & KA is a solit
formal K[@j—algebra. '

proof. For all nzqQ, An=A/Mn is.a finite dimensional discrete
K[@jwalgebra. Using (2.3) we may construct once again sequences

(G_) .., and (K satisfying properties a)=d) in the proof of

n) ny0
(3.3). Let kn,Bn,Cn,E,g,Ag be defined by the same formulae as in

O

the proof of (3.3). Then, exactly as in (3.3) An is a k-subalge-

% ) ns le) o £ !
bra of K ® KAn and we have K @T\g(An)—K &® KAn‘ }or all n21. Since

—

the natural map fn:BnH'A’“ 1 & Kan is a map of Kn+1il,c’n+1j_mo_
dules we get by (2.2) that

£ (C )C: (K B )Gn+1-7 ) C

n' n+l n+1 @ K o “n+ ®kn n

N @) O
—> K ®-KAn send A onto A

‘ N
Consequently the maps K & Bn et By

n+1

P
We claim that with these data one can construct a formal k-alge-

bra A~ ‘and a K-isomorphism f:K A}EA —=K® KA; -moreover if G has

property (*) we claim that we can chopse f such that the G-action

s ) A A
induced via £ on K & T{fAO is given by s(c @ x)=sc ® x for s¢G, c€kK,

xéAO.
First note that our claim closes the prcof of Theorem (4.3).

This is clear for statement 2) in (4.3). To prove statement 1)

. ' ~ . ¢ ~ A AR
we have to "specialize" the K-isomorphism K & KAxK &® K(K & A7) i

k
this is possible due to Seidenberg's criterion of analytic equi-

g i
valence, see LSe_J.

Now the claim above can be proved using an argument from



[ﬁu{], Chapter II, Section 5; we réproduce it here for conve-
nience.
For any field F put FN=F[1X1,.;.,XNiﬂ the power series

F-algebra in N indeterminates. If N is the embedding dimension

N

of A one can find surjective maps pn:kN-AVAg which agree with
the projections A§+1 — Ag. Upon lettinag J =Ker(b ) we have
n . NP s

K-isomorphisms KN/JnKN mf(é@ A which are compatlble with the

projections obtained by "passing from n+1 to n", hence we have
an injective map
il : AL . s / AL . ~ /\
KN//\(JHKN) —> Lim (K /T K )& Lin(RK @ LA ) K® A

N < K
n n

This map is also surjective, because it is so when composed with

~ A A .
the map K C)KA —» K @)KAZ. Put J_ //“\\J ; we shall be done if

n>1
we prove that /;:?\(jn N) JOKN because 1f it so we conclude by
v . ' A - ~
putting a%=% /J . Upon letting In=Jn/Joc:C=kN/JO and B=KN/JOKN

¥e are reduced to proving that for any extension CecB of local
noetherian rinas with C complete and for any sequence of ideals

(I.) in C with //“\\I =0 we have /’\\(I B)=0. The last state-
. n’'nyl . .
ny1 ny 1 ,
ment can be proved as follows: by [ﬁa} p.103 there is a function

e (M(c))™ for all n, hence /(I
ny1

m:N-—> N such that I
m(n)

e N\ B20. This closes the proof of (4.3).
ny1

m(n)

(4.4) Define the fibred subcategory Sfalq of ¥ by putting

) 9yalg_

K full suocategory of :T/ whose obJects are

for any fleld K,

the algebraisable formal-K-algebras; reca]l that AeOb(\f ) is

K

A
called alaeoralsaole if k @)KA is the completlon of a finitely

generated Ka—algebra at some maximal ideal; in particular if K



is algebraically closed then any:AEOb(?;lg) has a field of de-

finition Koé D(A, F) finitely generated over k. It is an easy
exercise to check that if k is uncountable then 33alg is a reqgu~+

lar fibred subcategory of F . we have the following:

"(4.5) COROLLARY. If K is algebraically closed and A is a

formal K-algebra then KO=(K2§(A’QY))aéD(A;3Y). If in addition
k-is uncountable and A is algebraisable then K:S(A’j'th(A,gf).
Finally if tr.deg.K/k=oco and if s:['=Aut(K/K_)~> G(&,¥) is a

section of G(A,F)—>3>(a,F ) over KO making A a continuous
formal K[F] —algebra then A splits over a constrained éxtension

of K.

Proof. First assertion follows from (4.3) exactly as in

- A
(3.4). To prove the second assertion write AXK ® (A7),

K
o

since 19 is reqular in ¥, A% is still alge-

braisable, in particular D(A®,% ) cortains a field E finitely

generated over k. Clearly the compositum EKL(A’?/) in K is a

SR T ) g belongs to D(A,F ) so we may

finite extension of K
conclude by remark 5) in (0.8). The third assertion also follows
from (4.3). Note that exactly as in (3.4) sections s as in the

statement of (4.5) always exist by 2) in (0.8).

R 45 F, corollary

(4.6) Due to the regularity of &
(4.5) shows that Theorem (0.10) from the Introduction holds

in case d) (which corresponds to %f=:;alg).

' 5. HOPF K[G|-ALGEBRAS

©

(5.1) Hopf algebra terminology will be freely borrowed



: from'[éw][ﬁSwj. Denote by:KKfthe category of finitely generated
commutative Hopf K-algebras; for any field homomorphism K-—> K'
7

define the base change functor?ﬂK — 7}

(O by Alb— XK' &® KA We

have defined a fibred categofy over the category of fields;
Qall it 27 . >

- As well known.J@K is anti-equivalent to the category of
linear algebraic K-groups; if AEOb(ij) the'corrésponding linear
algebraic K-group. will be L=Spec (A) with-the multiplication in-
duced by the comultiplication of A; We will éften identify A

and L‘ébove if there is no dange; of confusion. Moreover if K

is algebraically closed we will sometimes use the letter L to

denote also the group L(K) of K-points of L.

(5.2) Following iﬁW] p.952, by a Hopf K[?]—algebra we mean
a Hopf K?algebra A which is also a K[@]jalgebra such that the
comultiplication [x:A-% A Q>KA and counit & :A — K ére

K[?}—module maps.

(5;3) THEOREM. Let K be an algebraically closed G-field of
characteristic zero and A a Hopf K[G]—algebra which is commuta-

tive and finitely generated. Then (KG)aéD(A)gé)u.
The above theorem will be deduced from the following:

(5.4) THEOREM. Let K be algebraically closed of characteris-.
tic zero Koc:K an algebraically closed Sﬁbfield and L a linear
algebraic K-group with unipotent radical U. Then KOED(L,QQ) if
and only if KOED(Lie(U),df) where Lie(U) is the Lie algebra of U
and is viewed in a can&niéal way as a locally finite K-algebra

(cE. {3.1)).



Theorems (5.3), (5.4), Corollary (3.4) and remark 4) in (0.3)

yeld:

(5.5) COROLLARY. If L and U are as in Theorem (5.4) then
Z(L,“o‘%)) L, ¥)

(K aeD(L;§£) and K Q‘M(Lriﬁ)- Moreover we have
(KZ(L,}L}) :(KZHLie(U))é))

- a : far’

(5.6) Proof of Theorem (5.4). If L-L° ® , K with 1L° a
, o)
linear algebraic Ko—group then U=UO<® K K where U° is the uni-
_ & ‘
potent radical of U hence KO is a field of definition for U, in

-

particular for Lie(U). Conversely, if KO is a field of definitioﬁ
for Lie(U) then so it will be forVU because -U is isomorphic as

an affine variety-Wiﬁh the spectrum of the symmetric algebra on
Lie(U), the isomorphism being gi&en by "exp" while the multipli-
cation‘onxU is defined by the Caﬁpbell—Hausdorff‘formula which
involves only rational coefficients [ﬁo} p.228. So we may write

u~u® ® y K for some unipotent K ~group U°. Now by [ﬁd} p.117"
I is a semidirect product of U with some linearly reductive

~subgroup PcL. P is then reductive and in particular P:PO<2)K K
. . _ - O
for some reductive Ko—group p° [?é}. By (ﬁé] p.218 the group

Aut (U) of algebraic group automorphisms of U is an algebraic’

K-group; moreover we must have Aut(U)=Aut(Uo)(X>K K as one can
— o)
see from the discussion at L?o p.217. Furthermore the group

homomorphism U[):P——-a»Auﬁ(U) defined byv \f(p)u=p jup (peP, ué&l)

is also algebraic. We claim there is a K-point ¢g” of Aut(U) and

a morphism of algebraic Ko—groups Jfo:POoma-Aut(Uo) such that

o _ 'o NS £ At : 2 v
dﬁ é)lK"InnG'Jg where Inng_CAuL(Aut(U)) is defined by

1

.Inng(t):ﬁr +Te(§ . Indeed since P is linearly reductive, by

©

[PGa " p.194 we have in particular H1(P, Lie (Aut(U)))=0 (with



P acting on Lie(Aut (U)) viajp and%the‘adjoint representation of
group
Aut{U)) «. By [bel p.116 the above cohomology/identifies with the

space of "first order deformations” ofdp modulo the "first order
deformations arrising from infinitesimal inner automorphisms

of ‘Rutd{Uu)". Now theexistence .of JPO and 0 follows for instance

from [Euzj, Theorem 2.11 plus an obvious specialisation argument.

With .fo and 0" at hand we may define an isomorphism of algebraic

K-groups
Y:L=U>x P —> U B

by the formula W(u,p)=((7—1(u),p)-where U %%P is set theoreti-

cally UXP with ﬁﬁltiplication given by (u1,p1)(u?,p2)=

=0t n. ). s ) and Use P ig defined similarily with r=¢° @ 1
! 2P e ) r 1 : I

instead of p . But Ux P=(0°x P°) @ x K and Theorem.(5.4) is
i TR |
proved. : : :
(5.7) Proof of Theorem (5.3). A is the cocrdinate HopT -al=
‘gebra-of an algebraic K-group L. Let U be the unipotent-radical
of L and J the defining prime ideal of U in A. We cléim that

s (J)=0J for all s€G. Indeed upon letting 0" to be the image of s

<

Fi : "
in--Aut (K) it.is suffdcient to vprove that the. natural map %*:L~“»J;

given.in some matrix representation by (x

Aij)kww mw%j) carries

the ﬁnipotent radical of’Lgv onto. the unipotent-radical of L
(herg of course La;Spec(AOv). But this follows from the fact that
thé map Py ié an abstract group isomorphism (of course not én
algebraic. K~group lsomegphism L), it takes Zariski closed seks

into Zariski closed sets.and takes unipotent matrices into uni-

potent matrices, so our claim follows. We deduce that the coordi-

€



nate Hopf alyebra A/J of U is a Hdpf Kféj*algébra. We need the

following:

- . 2 ) ; ; ' :
(5.8) LEMMA. Let %7be»a linear algebraic K-group and H
its coordinate Hopf K—alﬁebra. Suppose H has a structure of
>

Hopf K[p}~algebra. Then Lie(?) has a (naturally induced) struc-

ture  of K{?]—algebra.»A

Proof, Reecall from [éw][ﬂSwj that H*=HomK(H,K) has. @ F-als

gebra structure with multiplicatien given by cenvelution.d{for

LA

1E2 1 , (12 =i
“used the "sigma notationﬁ,&x=2§x(1) @)x(z)). On the other hand

€H*, xX¢H we have (f. =* fz)gx)=$1f (x )£ ) where we

=1

H* has a natural structure of K[§}~module défined by {(sf) (x)=

=s (£ (s 1X))-for s&G, fEH*, x€H. Using the fact'that/ﬁ and £
are K[?]—module maps it is straightfofwafd t6 check tﬂat with
the above K[Gl~module structure, H*-is'in fact a K[Q}ralgebra,
Let (H*)Lie be the K-algebra whése underlyinq K-linear space
is H* and whose bracket is defined by [f,g];f *rg—g'* f.. Then
Lie

clearly (H*) is still a K[@]-algebra. Now recall from

[gsﬁl P29 it the K—linearvspace

Der;KH,K)=%féH*; f(xy)zf(x)é(y)+2(x)f(y) .for all x,yeH}

igan Lide K«subalgebra of (H*)Lie and is isomorphic to Lie(%;).
On the other hand Derng,K) is a K[@]—submodulé ofaH* as one

" ‘can see immediatelv by using the fact that & is a K[¢]~module

map., Conéequentiy Der;(H,K) has a strﬁcture of K[?lwsubalgebra

of (H*)Lla and we are done.



(5.9) Returning to the proof of (5.3) and recalling our no=-

tations frem {5.7): we get by Lemma.(5.8) that liel(U) dis & K[C]—

‘~algebra. By Theorem (3.3) (KG

KG

)aQD(Lie(U),qf) hence by Theorem

(5.4) (K7) _€D(L,¥) which.closes our proof..

g (5. 10) Lt -worths noting that, &g well Khown [@e] reductive
groups "don't have moduli" in the sense that they are defined over
the algebraic closure of the ‘prime field. This is not the case with
L, ¥

unipotent groups [EOH] so K in (5.5) may be transcendental

over k.

(B 11) We‘close by explaining how one can obtain a splitting
result for linear algebraic groups similar th-splitting assertions
in Theorems (3.3) and (4.3). First make ‘the usual definitions: .a
Hopva[gj;algebra is called disc;ete ifFit is s0 as a K[@]—module:
-1t i8 called split if there is a Hopf K-algebra isomoréhism -

O

A K & (A7) for some Hopf KG—algebra i suéh that the induced

G
KEGl—algebra structure on K® - G(AO) is given by s{c @® x)f,sc & x
for all seG, cCEK, x€A®. Once again teplit® implies "discreteﬁ.

The topological group G will be said to hévé‘property (k%)
if ‘for any open normal subgrdup.H of G. the quotieﬁt group G/H is
divisible. Clearly pfoperty (**) implies property (*) from (1.2).
On the other hand note that the proof of Lemma (1.3):shows that

the topological group Aut(K/Ko) (KO, K algebraically closed, tr.

“deg. K/Ko=oo) has property (**) as well.

(5.12) THEORE!1. Let G be a topoldgical group with property
(**), let K be an algebraically closed discrete G-field of charac-
teristic zero and A a discrete Hopf Rf@]—algebra which is commuta-.

tive and finitely generated. Then there is a constrained extension



s 36 e

oS : A - : A -
K/K of.discrete G-fields such thaﬁ;Kc@ KA isa split Hopt KZG]~

~algebra.

Proof. Since G has property (*), KG must be algebraically

O

vclosed; we denote it by KO. By (5.3) we have Aék & (A Yo Eor

Tk KO
some Hopf'KO~algebra AO; K @)K (A°) will inherit from A a struc-

: i 5
ture of discrete Hopf KLGj—algebra. Let Lo_be the linear algebraic

Kougroup corresponding to AQ. Bv [BS} the functor of Automorphisms
of L° is representable (on the category of reduced Ko-éChemeé)

by a locally algebraic gféup scheme ﬁ'over-Ko which is an exten- .
sion of an arithmetic groupz@ by a linéar algebraic Ko—group ﬁ%.
1

We: may construct a .continuous cocycle fez ' (G, ?(K)) as follows:

for any s&G define f(s)&f?(K) to be: the K-automorphiesms of: 1=

=1.° @}K,K obtained by'composing the k-automorphism a l—>» sa of

O O

K @ . (A°) with the k-automorphism ¢ @ x +> 0" '¢ @ x of the same

)
algebra. We have an exact sequence of pointed sets (cf. fBS]);

K

' (6, G, (k) > u (G, $®) —H (G, A)

with G actithtrivialiy on./\; Now it is easy.to check that theré
are no nontrivial homomorphisms from a divisible group to GLnKZi).
This immediétely implies that there are no nontri&ial coﬁtinuoué
homomorphisms from a topological group with prbperty (%) Anto-an
arithmetic group, in pafticular H1(G,/\)=1 so the.elass of «f
iifts to some element f1min H1(G,f§1(K)). By Theorem (1.7) one

can find a constrained extension §7K of discrete G-fields such

1 (4 o

that the image of f1 via the map HT(G,t§1(K)%~»II (G, j1(K)) igcil
Ly . - e . 1 <§ 1 2 el
This implies that f is mapped to 1 via H (G, J(K))—>H (G, ¢ (K)).

: .
Finally this implies by standard arguments that K @?KA is a split



G

i ) 0,
Hopf K[Ql~alqebra and Theorem (5.712) is proved.

(5.13) “COROLLARY . .TF Ii-and Ussare asin  (5.4) and if

tr.deg. K/k=25¢ and s:lﬁrAut(K/Ké)~“¥ G(L,ﬁf) is a section of-

G(L, ¥ ) —»Z(L,¥) over K_=(K Z (L, %),

5 making the coordinate
‘Hopf aiéébra A of I, a discrete Hopf K[F] - algebra then A splits
is viewed with its

over a constrained extension of K (again f7

natural topology).
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