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LP'AND ALMOST SURE APPROXIMATION FOR THE SOLUTIONS
OF STCCEASTIC EQUATIONS

by Vlad Bally

The.sﬁarting point of -this paper is an open problem presented by
Tkeda and.Watanabe: they prove an almost sure approximation theo-
rem for the solutions of stochdstic equations and for their deri-
vatives (with réspect to the initial condition) in the case of the
poligonal line approximation model and they ask the question if
this may be done for more ceneral models. This is done in the pre-
sent paper.
We consider a sguare integ;able, continuous nrultidimensional mar-
tingale M satisfying the condition [¢md> (k) - (M (8)|L K]tlwsf
and the equation

ax(t, D @) = <(£, 7, X) + @le, 3, NaM(L) + Y(t, A, X)at,
where '\ is an abstract parameter and & ’?-t%’ are nonanticipa-
tive functions.

A general approximation model Mg, €50 is defined. M are

€
cadlag processes with finite variation on compact time intervals.
The approximating equations will be
dXe(t,%,m) = ,“‘fe(trh ¥ Xé) + (ﬁ?(t, A Xé)dME (t) +
i ‘t)é\(trkr Xg)ﬁt

L ‘
where dﬁé(t} designes a sort of discrete stochastic integration.

.The coefficients <. , ?; and %q_are nonanticipative and converge

<



e
uniformly to « , respectively to ?> and ¢ . Conditions for .ﬁp
convergence of XE to X are derived. In the second section
we consider the Markovian case: £ (t, A, X) = « (£, A, X(t)) and
the same form for the other coefficidnts. Here A is a real mul-
tidimensional parameter and infinite differentiébly is assumed
for the function ()i x) = o (£, A %) and for_the other ccoeffi-
cients. Then i§(ﬂ~EM£ is replaced by g%ldmi ~~§géAEdt where

2 ) &
dM8 designes a Stiel#jes integral, g& depends on Me an@ Aé
on %k . We are now in the classical context. We prove that one

may choose a seguence er“* 0 such that

lim sup suplxﬁ (Ep-Ap@ ) = Xty A MO))I= 0 a.s.
n—eo tg¢T A it o :

The same convergence is proved for the derivatives of

PR D QR & W S I

. INTRODUCTION

Let M be a square integrable continuous multidimensional mar-
tingale fulfiling the hypothesis {M> (t) - < M> (8) g K(t~s)
for every 0 { 8 ( t. We are interested in giving approximation’

theorems for the solution of the equation

(B) = aXd{e, X ,00) = ex{k, X, X) + P (e, X)aM(E) + Y (£, X ,X)dt,
where A is an abstract parameter and ,?>,qi are continuous
@

nonanticipative functions fulfiling convenient boundness and
Lipschitz conditions (see (2.1) ~ (2.4) below).

In Section 1 we define a general approximation model for M :Mg, 4
€ > 0 will be cadlag (right continuous with left hand linmits)
processes with finite variation on compact time intervals fulfi-

ling the following assumptions: Mr(ka ) = M(kg ) for every k€ N
<

and Ma(

.

t) is Fy. measu;able for .the .t £ ke, vhere (Ft)t;.o

is the filtration with respect to which M; is a martingale.



...3.,.
(Although a large intersection with the general model presentéd

by Ikeda and Watanabe in /1/ exists, the two models are far from

being idantical: the first vestriction (Ma(ke) = M(ke)) constrains

us to leave out the important example of the mollifiers and, on

the other land, our model is more general in two ways: firat-of

all we deal with cadlag instead of piecewise differentiable ap-
. the,

proximants and then, no "time omogenity" condition of "type

"M (ket+t) = Mﬁ(ke) + Mg(t, @ka)" igs assumed). Except for the two

hypotheses above we shall consider the following assumptions:

(a) ECLVP[F) eyt /

where V? is the variation of M& on (ke, (k+1){} and p is a
nétural number. V

Then we define a sort of "discrete stochastic integral" with res-
pect tb Mo In order to do this}one defines first a "discrete
compensator": for a cadlag process A(t),lt > 0 the discrete com-
'peﬁéator will be a process Cg (&) (which is in fact explicitely
definéd in (1.8)) such that Aa(ke) - CE(A)(kg))k e N is a mar-
tingale with respect to (Fk&)kegN' Then the discrete stochastic'

integral will be §ﬁ7dma =3 S%>6M& - Ca(fa:dmg), where f?’dma

) i
is a Stieltjes integral. Except for the symnetry motivation

(2%

( (?dM is a martingale and so chdMi should also be a martingale)

the above definition has a calculating reason: the errors of

0

order ¢ which appear in the calculus involving g%>dH£ decrease

to g2 if one replaces this integral by §77dma,

[—,

Except for N ¢S5 0 we have to use other approximants, M.,

€ >0. These are equal to .M, up to T, = £k, where
Eg = min { k : V? > 53/8§,, and equal to zero after T, . As

The "stochastic

O
o
o]
=

T&’Foo as ¢l 0, M, is rather close
tegral” S?’dﬁa is defined in the same way as with respect to

M&. For. this integral a Burkhdlder type inequality is proved



((1.10) below). The proof of this inequality {ag many other
proofs in the paper) is ba aad on a version of Burkhdlder’s ine-
y ] ¢ g * b 1 *
gquality for discrete time martin gales which is presented in the
In section 2 we deal with the L' approximation of X. One as-
PE

fines the eguationsg

(B,)  a¥p (£, 2,0) = X (&, A, X))+ Gle, A, Xddi +

(hr )dt,
B
here ¢ , %2, Y. are nonanticipative, fulfil boundness and

)

Lipschitz conditions ((2.1) - (Z2.4) baliow) , aﬁd converge uni-
fafmly to « respectively ¢ and ¢ {In fact in both equations
(2) 3na (Bg) a perturbation /6 respectively /% is useful to be
consldered (:e@ (2.6), (2.10) and (2.8)). The first result of

. ) o
this section is that/un&er converge to X in LY

. .
:‘_\- g
"p(p+1))’ Vg
(Theorem 2.1).

The second theorem is a version of the first one: by replacis

M by M, the same result is derived wunder weaker assumptions

' Cedy :

on the coefficicnts (boundhess is rupgaced bv liniar incremsnts
to infinity). Tha thixd ﬁhaor&m deals with replacing the sompens

by a drift S g, A dt, where g depends on Mg and Ag is

gator C%ﬁ g? dE&) (walch appears in the deflnition of
g

calonlated starting from " With this theorem we come back
4 i 3
to the classical approximation context. Botn gs and As are

analogous with the abjects considered.by lkeda and Watanabe in

/1/ Cap.VI.7 except one difforence: they assuire that

i d:m g = g Ffor some function ¢, which is unnecessary here.
E»o ¢

This  because there, the above mentloned drift doss not appear

as a compensator (in fact an "afy mptotic compensator"”, belng
only . asymptotically egulvalent to (ja\f

rection in the liwit equaﬁbm (). We are also doing this step
: i rs ﬁ 4




B By o

in Corrolary 2.4. Returning to A, Wwe mention that in ordexr

to be able to compute 1t one has to assume that T% is gsomehow
more particular: ?;(t,% ¢ %) = %E‘(t,) . Xét)) and depends on
o= Xét) in a twice differentiable way. The argument permitting
to replace the discrete compensator by a drift is based on
Taylor’s formula applied to 72 in thne compengator.

In Section 3 we deal with almost sure coavergence. Here the
equations considered are Markovian {i.e. o (B, &, X) =

= «(t, D, X(t)) and the same for the other coefficients) and A
is a real multidimensional parameter. wWe also assume that

(.)’ %)~ g (b, Py K) and the resi of the 'coeffi-

cients are infinitely differentiable. Under this ass umptio

A ~¢-Xa(t,?\,u>) ig infinitely differentiable and we shall

prove that one may find a version of ¥ having the same proper-

ks Convergenée : for the derivatives, will be discussed
to o, <§E§§D

The interesting approx1mublng equation here will not be E&)'but

(Fe) X, (6, 2, 0) = & (£, 2, X (8)) + ¢ (£, A, B ley)yad, -

g&(t)Ag(tfi\, Xa(t))dt + %&(t,}\, Xg(t))ﬁt

The main result of the section is Theorem 3.3 which asserts that
Hhat g«e% o7 S PEID
under the absumleor\( "An and its derivative s converge in
D s . . .
any L7, p& N to X and respectively to its derivatives.

Then, Sobolev’s inequality applied in a classical way ensures

that the above convergence holds also under sup su \-j
+

A &
for every T > 0 almost surely. This result is proved by Ikeda

and Watanabe in /1/ VJ, 7. in the cage in which M ig the
Brownian motion and Mo is the Oollwon 1 line approximation.
They set as an cpen problem whether such results might be ob-

tained for more general approximation models.

e A PRI T




1. THE APPROXIMATION MODEL

Let (JJ_,,.»Z'E‘;, I;?) be a probability space with a standard {ight con-

tinuous and complete) fi}.t;:'a'i:imn (Ft)té 0° Fix d € N and consi-

der a d- dim,nolonal éom::i.nuous, square int cgrable martincale

M [C‘-,w)},{w("z. - Rd,' M = ‘(Ml', G g Md) . We shall assume that

(1.1) Por every.: TV> 0 there ls a constant Cin such.that
by (£) - <H'> (s) § eple - 8)

NPT . . i .
for every 0 ¢ 8 g t{T and 4 g d (<MD is the compensator

Let now fix an € > 0 and make some general notations. First

of all we put I]g = (ke, (k+1)e] »for 'k € N. Then, for a func~

tion £ [O, oo }—p R we C(’“Qép

£(s}|

H
i

3 £5)

NG
.

0

ﬁ\}z Flllkexiie )im £lke )
B]g L= supg}f(t) " f(kg)il : kegt L (k'i‘l)€}

o
1

0
'
i

We shall now define the processes approximating M. Let

d

“e g

process with finite variation on compact time intervals and such

that:
(1.2) i) Ma(ke) = M(keg) for any k € N
14}  Mo0E): 48 Fre measurable for any o  t g ke
fine i
Define thaw -
Vo(ed) = max sup{ - {:i{ '+1"C“)) - M](t.,Co)} tRe =
igd §=0 J J
5 ].v ] ("F’r
=t < t, coe < b= (kH1)E]
Clearly V};_ .L3 ~the maximur. of i variatic:ms of M]:E on

ke, tET. - \a&

The following assumption will be essential « through 'the paper.

: . be
) 1 d -
Mo LO w)lx O »R -, M, = (ME r ol 1«1&_ )\’aj - dimensional cadlag
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() For every fixed T 0 there is a constant e = e (T)
P i : P R
such that

k! i”gg
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o
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=
s
(&9}
N
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)
AR
¥
»
=3
Py
g

E( [V

where » € N. Assuming that (hz) is fulfiled one may define

(“ij‘ = .}. 4 ( ‘\/‘fj € o - »”’é: M- (s : ) SN G
(1.3) ‘€;f<:(°"’) - L(k}](f@(,, b= MGREY )¢ 1g( 1 F ) (@) and
Ig
o3 i* 3 J
g, w) = gé?k for t € IE,

L1 are
£

an analogous of S..( yodefined dn JLE L NL e a3 ) Ikeda and

17 2 o
Note that [qgj(t){ 4 a5 oo for t.g7T. The fungkion g

Watanabe assume that 1lim sﬁ:(g )} exists ((An/) in the ahove
. g0 I
mentioned work). It turne out that this is not really necessary

A

(see Theorem 2.3 and Corollarv 2.4 below).
There are situations in which we are interested in stopping M

when V becomes large. So we shall de=fine

(1.4) EE = min-{k o O Il } and T, = éiig

Note that TE is not a stopping time with respect to the fil-.

tration (Ft)_,_> o but it is with respect to (¥

also that if (A ) holds for some p > 8,"&Reﬁ
0 ‘

t+a)t 5 0° Note

(3.5 1 i BAT T) = 0 for every T » 0.
: e € >

Then we define

€

(1.6) M_ (t,w) =M (t AT, @)
and denote by Vk the maximum of the variations of 1 s 1&g 4

A

on [kE ’ (k+1)£] Then %z Ve ERE el K nd

1
:t.—_a
¥
n
&
®
J;
<4
1
o

™

‘for: k.» kg. It is alsc clear that Vg

n
LA
A

6




% : > o 8 . &/Qaat ? ﬁﬁnmgkg;u&wéiﬂf

e, o

,‘K(-v-um -

Let now introduce the norm we shall work with: for affunction

Cﬂ?: [O,w)v xQ —>» R, p EN and 0T, §

o w | /0
(107) ‘(‘C} tgr i = I:(S U*L) i é;}} JD /l
' kj .L‘} ¢ ‘1 t &: ;‘[1> ({) l |
= & 1w iy m P 1/p
Pl e = Blaup  fPiTetaead: = @ RaRsl] =)
‘f i tg 8 E Cf
Note that {[¢ll 5 ¢ o £ | ffii e @l ,T,8 and, if (0) =0,

then ”“f’gp,OfS“ 1!‘{’&{;

We go on and define a "discrete compensator” for ?:[a)w)x.ﬂ_ R
PO i | g v e - . - 1. o P g, b 2in ‘% (3] i~ —
cadlag and measurable. aAssumc that E( C{? (T)) < oo for every

> 0. and Gefine

s
¥
i

1 L
s E(Ag«f[;.waﬁ)‘, k € N
i=0 ;

i

il

(1.8) Cglp) (ke

cg(cf)u:) = C (cfa for k€ § t < (k+1)€

Then one may. define a “discrete stochastic integral' ‘with res~
AP § o amd W
pect to Mg and I..ﬁ,

fs(s ;G ) A E(b,w) e

‘ b
C'E(S @ g ) (@)

et

& iy o
SO P (s, w)afy(s,w) = got.f(syw)c3.IV’E£(<$,@) k5

- Ce gﬁ afi, ) (£,0),

We shall now present an analogue of Burkhdlder’s inequality:

Lema 1.1, Fix an even p 3 4 and assume that (A , ..,) holds.
e AR Ll pl{ptl)
Then there exists a constant k\ such that (]_,1.(‘:) holds for every

&)

W0, 0885 & l) £ such that 5"7 < S 2 and every
Cf - [Or,w) X £ - 'R such that E( 6{7”(‘1‘)) {oo .,

1/p

1.10) uf ‘f"*”e b es €% 5Pl s

Loiebiee oo TRt




e

Proof. Put k_ = [T/¢] and ko= L(T+8) /el . For k g k', and
f oo .
088X sueh Lzm,,i we+t £ T+ S
ke #¢ ke+t

K ‘.!‘ Zfew §

Then, as € £ 5
T e .
S oL N kqa‘f e
€ 5 z
1/p
258 il ,T+‘>
We shall now apply Lemma 4.1. (see Appendix) to\{ﬁiértingale
]f'
L S ‘fdﬂa' K& W Fix . 2.£ g p-Ll sand . kg Bl selhen by HEl-

- der’s lliCC{dul ty and CA ) hypothesis we have

2 E( cf (T+8) }v}f k€)<

: - io
Bl o~ Bo ) £

S 2('13( C{’%(Ti'S).ip/ (P“l) leg) (p“l)/p E(\v};{ipipka)l/p

/AN

&

RER R 0.V R (p-1)/p 1 (1/2
| 2°E( ¢ (T+8) 13? ", o4 £
It follows that
k.~¢
pls, g =
<HD, (k) <HDY, (k) L_ B(lE, , - 5717 0€

L 11 - 4 e ey
\< lg ; j—- ei/‘z max E( (‘lo (tr,;,,s)"i';p/(p l)]F )(pl)/p
pJ. k <k’ ke .
&

since 1 2> 2 one has S»é‘”}g i & £ S . Then, by Dood’s inequality

E(|{H) ; (k[+1) - <H>’i(k£)lp/i)l/p\<
4 l<esl/p E(max E( c?*(T.{.S)ip/(p-—l) |Fy ) (P”l)/i)l/pg

k\~. ké

$K! sl/p E(max
£ kg k)

s‘vK"F, s1/P & ( @*(r+s) yPy1/p

E ( c,?%(T—P-S)p[Fk& (B <

For 1 =p

: P
B - Bl Plrg) & 250 @ P P i<

P .
<2"5( ¢lors)P(r, ) xe%P/
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Then Dood’'s ineguality yields

5 i s Tl » 1/p WL 0 B L
§(<H>P(La+1i <H>p(k£)‘) KB E(‘f (T+8)*)

¥ )
i
Using now (4.1) the proof of the Lemma ls complete.

-O_.EGDQ

2. 1P APPROXIMATION FOR THE SOLUTIONS OF NON MARKOV EQUATIONS

Consider W = {w : 0,00) —» B & e w(t) 1s continuous } with

the ¢-algebra W, = G (w(s) : s  t) and W = {ié}' : [0,00)—
T W(t) cadlag } with the ¢~ algebra 'is!t = g (W(s):sgt).
Let [ be an abstract set of parameters .and (f)ﬁ(zfo’aa)xw—&zz ){&aé I

The following assumptions will be considered:
o measurable for every t » 0 and

and t W-Cf@d(t,w) is cadlag (W,__ m:SZt Wy e ‘

(2.1) 1) F = @ (E@ s W

For every T » 0 there exist some constants K, K,]'?, X Kfif and

T!
Kégv < oo such that for every /yéf' , W, W E 55, € > 0, k g T/g ;

0 gt ¢ T and 0 £ s g¢

ii) kai(t,“'?f)\ $ Ky #+ KL sup | % ()]
s< t

iii) ic@(tﬁfr) - cp,gxt,@f)! & K sup lW(s) - W (sl
J s <t
iv) [Lﬁx‘(kﬁm,ﬁv) ~ ‘-ﬁ?(k&,%})] S Ke + I{EIE‘V ﬁgk{?

(2.2) The hypothesis (2.1) with the supplementary assumption that

one may choose 'K‘]f', <1, K £ 1 and K,?év< 1.

(2.3) The hypothesis (2.1) with K,I"1 = 0

7
0, X <1 and L\%‘ < 1.

il

(2.4) The hypothesis (2.1) with K
We shall use the above hypothesis also for functions defined on
[0,90) x W. The only difference will be that ¢ (t,.) will be W,
measurable instead of ﬁt_ ,measurable.

Let now consider another abstract set of parameters, N, and the



W o

process ... [0 ao) 2{/\§1m --» R, cadlag and such that

t

@)m@,E (t,Z,ﬁu)_ is F measurable for every (t,A) e [O,Mm)le,

Define:

N ’
LB Iz = gup IR {., A )l
(2.5) d[g!ip',ﬂ M-z;\: uP(,, - ,,%p,,l,

|

AEN -
for p €N, T:8 > 0.

1BV, 2,5 = SSRUBC/ A, )by o s

For a family /% » &€ > 0 of such processes we shall be interested

- in the properties

) gt ) .
(Ip) : H!ﬁ ”P: { oo for every T > 0.

sup
&
(J_.} There is another family of processes K € >0 fulfiling

P - e’
(Ip) and such that . for every even- i1 ¢ p; £ 0 - and kel

=~ k . 1 /i, _ %, . _3/8
E([A & [kg[ IF}«: ) \4 Kg(hﬁ)ﬁ.
We are now able to define the eguations we are interested in.

Consider some functions ¢ : [0,%) x A x Woow B Rd,

okl ; R Y T i
(f)..(g‘f" )J.de’c(’\V’[o'm)x/\'Xd -» R, 66 = (K )isd'
o= (‘f’l)i< q @and a cadlag adapted process b : [(0,00) xAx.0—
e 1% ;

- R, ﬁ = (1&i>i<’d° Consider then the eguation
(2.6) X(t,2,0) = B(t,A,@0) + &(t, A, X) #

155 ' : t :
S &g?(s} A, X)adM(s) + S &f/(uk ; X)ds,

Q

or, componentwise

O N ot

, = , d
e, N, 0) = /31<t,x,ao) + X, %) 2 T
=1

t -
: 1 . _
+ 5 y/ (8. X X)ds, Lol A
AT .
(207) Mcmark: Undexr hypothesia (2.2) for o and (2.1) for ¢
and Wy the above equation has at most one solution. In the case

iﬁmﬁhich « = 0 or [5 = 0 4t is also known that at least one .

@™ (s,0,x)07 (5)



N
solutions exists. But in fact we are not especially interested
in the existence of some solution. So we shall use the expression
"Let X be the solution of (2.6)" with the reserve "if such a
solution exists".
The same will be grue for the approximating equations ((2.10)
-, belor) . | ‘
(2:8.) . B@@gg&: F> may be regarded as a perturbation. See for
example the wéy in which Theorem 2.3 follows from Theorem 2.1.

To the perturbation in (2.6) there correspond some other pertur-

o

-

bﬁﬁégns /%2, €50 dpl2.50]) .
{ In ordéfuﬁéwééém'ipﬂwéggﬁéégéﬁéé these perturbations have to ful-
h%ii/}lp) and (Jp)' This is the meaning of these assumptions: they
characterize "good perturbations®.
(2.9). Remark: In fact the system (2.6) of equations is more ge-
neral than it seems to be: one may assume that of, ? and gj de~
..pend not only on X but also on M. That is

(206%) . Bl Al m /3(1:,?\,&3) + (e, A, M, X) +

€ £
% S Pls, A, M, X)aM + 5 (s, >, M, X)ds,
Q O

The system (2.6’)‘is reductible to a system of type (2.6) b§ ad-
ding the trivial equatlions Mi(t) = gtj dMi(s), i d and taking
2 = (M, X) instead of X. In particulgr all the theorems in the
pape?%ﬂﬁy be considered as approximation theorems for the stochas-
tic integrals: one takes 1 :;A =y = 0 tand %9 independent

of X. Then (2.6’)‘bec0mes X{t, A, ) = f Cf(s,)\, M)dM(s) .

In order to avoid notational complicationz we restrict ourselves
o (2.6) .

Let now define the approximating equations. For every € > 0

o s i1
consider: <f€: [O,Qo) x/\;cVJ-azd X Rd, %2:: p$aj)i,j$ ar



?MM
T e ; . R 4
A S and pﬂ:tﬂﬁc)xAxﬁkw Ry

7 g d & :
ﬁéxr (ﬁ;'}i, a’ the last ones being cadlag and adapted processes.
“w e o i

Consider the equation

(2100 X Qe Koy = P,“(t,k )+ eﬁsé(t,y\; X)) +

€
5 B
:¢~ S c}f?a(sr A _Xe)di}qg'(s) + g ‘ﬂg, (8, 3d Xg)ds’
‘ = A

or, componentwise

¢
a
. i . it
X (B2, w) = Bolt,d,@) + &7 (t, A, X,) + 52:1 S?;f‘w,;\ 1K) -
O

i

: diM%(s) * ¥ (s,X, X )ds, 1g d.

R—@‘N\CXY‘L,:

£¢-ﬂ3~!‘ﬂ'~m~sm»‘mu«

By a solution of equation (2.10) we shall understand an adapted

cadlag process X . = (Xé, % & 57 Xz) such that E(X?{T)) { co

O~ ot

for.every T > 0 and a version of the conditional expectations

b(g}’(f)gj(gl A XE)dMJ(S)i:{kE), 1 séJ-FJ \< 4, k. e 1\1'. such that

I . ¢
S = o1 =
X€ verifies (2.10) in which Cg(g; CFE (s, A, X%)gmé(s))

1 1,3 £ @ are defined by meaﬂs of the above mentioned varsioﬁs
of the conditional expectations ( C%( icﬁjj dMg) is involved in-
the definition of ‘cﬁij ﬁMj).

the) it il
As forvgﬁuations (2.6) uniqueness is easily proved and existence
of solutions is not especially interesting. If Kax:O or /%Z: 0,
existance may be proved by using an inductive algorithm on the
intervals Ig, k é N. As above, the expression "Let Xé be d 8O-
Jution of equation (2.10)" will be ysed under reserve that such
a solution exists.
Finally, we have to specify the "distance"” between the coefficients

of (2.6) and those of (2.10). For T 0 and p € N

5( & = 5%3(& Y and Jion ‘will be positive numbers such that
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for-every 0 (t LT, W €W, AEA and €5s

"

(2.11) 1) max{}( og -o0) (t,2,W) ]

E

o

I <ng - ) (£, w”) K P =y ) (tr«A;"‘\f")i}i‘é

< K ( e+ max Z\w ii W)
kg t/e =

. /\ ‘
i) Rl 4 g 8,

We shall now formulate the LP approximation result in the case

of bounded éeefficients,

Theorem 2.1. Fix an even p } 6 such that (A»

AmmmaﬂmttMaﬂmUy ?ij, %;% Ti,%gﬁl $ijgd,
" i

0 <€, A€N fulfils (2.3) and the family « T, Wy 1 dg 4,

U C e, AeABulEils (2.4).
Assume alsoc that {fsé', 1£igd, 0 <eg fulfils (Jp-r-l} and that

lLim ¢P(e) = 0. Then
E-.-fp(} L

' lim fix, - xq0, = 0,
€0 P '

Remark (2.12) below and the Borel Cantelli’s Lemma ensure that

; .1/2p
such that fn £ < oo

if one chooses a sequence ( & )
: SRS < n

€N
than, for every fixed AEA

Iim: sup |x (t, A, @) »«}:(t,:\,m)l = 0 &a.s.
n tg¢T - En ‘
But the null set above depends on AEA . The really interes-

ting result of almost sure convergence will be obtained only in
section 3 (Theorem 3.3): there the exceptional set does not depend
on )\ and the convergence is uniform with respect to NEA
ggﬁoof_. For simplicity we shall use unidimensional notations, Fix

T 540 K:i’ i =1,2, ... will be constants depending on p and T

0nly} we shall prove that :
. /\ . X l//é‘ip .
{2+12) ",XE"Xup,T‘éKl(g + 6/‘2‘6))

{gov sufﬁ‘c;bnf/g small g,



s o (&mcf S,5"'are ,m@/ﬁ;p/m wféﬁ

¥ o) - : a : -y 1, I (l :
Fix. 0 £ 8' and 0S¢l such that S’%—Sg”xwyf Write

AN R e .
(291.3) ; {i }kg - X “"{“),S”;S “ [E F z » mr
7 & /\ b I/‘ ‘ ~ B8 'A
+ -l o -y sr,s _‘)O P umg -«So @ an hp,S B
L N ; -A
[} ¢ ds - bds |l
LHS(‘;(TJE-C% : So% ' lprsrrs :
Using (2.11) (i) and (2.4) iii) we obtain
(2.14) (I« ‘l!A < Ha»( e<HA ;
® L.~ C’( " ~ F o
] & B.81,5 % p:S’ + Jot - effl 5745 <
' S i S,
<2 drgd e x; Mx, - % o, g0 * K3l Zg = XU oris
with K <1. Then, by (2.11) (i) and (2.3) (ii)
’ .o 1 ' .a ‘ /\‘ : A .
St “;fﬁ"gd* k i‘f“‘"’ p,sr,s € SUfe-Ylp srug €
: - A
$xECEe) + UX- %1, gryg).
By (2,317 (4L) |
216 i p, -pl" L < 265G,
& P, S
Put kf5 = ‘(S’+~S)A5 ; ké = 8'/¢e and write
~ : A '
{2407 LS P - c;\':-dM I s g
£ sup E(max (5 ? dN )lp)l/p +
nen kg T/g
+ sup E(max (S £€ p 1/0
neA K& T/c:
ke ke
+ sup E(max [S Lf€aME - S %}dﬂ#pgl/P = Jé + Jé + Jg.
aeA k' < k{k g :
SI 4 Sl
Since _
k o5 == : k -
( dam ). = 5 aM_ ) L K. V.°, one gets
§9 ({)2 Fariee SD\ﬁa &7 NI
J1 \4 Ky u(m ax \ }‘}D Y/p < K E(( . Vg‘p/z)%l/p
. \gT/z & }; £ 9% :
s ‘ P/2 5 gP/4 _
P‘_}’ (A}JI/E)IE(‘V ! ‘ ki) <'< 6 and bY (Ap)




- G e

(vg)pi b By gp/z” Then (4.2) yields
l Jézgh)/ R BT BV E"’/ |Fpe )) }l/? +
o ; k& T/z:

s30T R P
kgl - o
: Lo TR WO, -5 b Y ) ; 1/2
K Kg ((T/€)RE e & 2 o L T T T e

We conclude that

o o 1/1.)
(2.18) | ,S‘ KlO £

Burkeholder’s inequality together with assumptions (1.1) and

(2.3) (ii) vields

|p/2 p/4 ., p/4
h(‘S (deD’I{ ﬂL g I\llL(‘f 7 d(al}l [}}\&: {(1’12&_ g
g _ Iﬁ
and, by the same computation:
Q(Uf ¢ an | ? ) gxmap’fz
Then, the same argurent as above yilelds
2 % ~1/p
(2.19) J. S Ky €

Let us now evaluate J§, By (2.4) (iv) and (2.3) (LE)

'-‘k ‘ -
Gt A &pw\ﬂ. 6&&: +1<17v3;)

g

. ko + PR,
with K. (1. By moving hlGZSS Xe in the left side of the

inequality ane gets

B o & A
| Rf X Ra( €+ A5 R + V),
Define now
Zf(t_,%,?.z):j:i C;?(}z,k,"@)
3 K |ke  (k+1)E) %

and note that by (2.3) (iv), for every t € lke,(k+1)e ) and XGEA
T e L e P k
(2.200 1§ -Gl (e, N\ %) Kol 8+ BgXg) & Kyo(E+ N B+ V).

5 ; . a5 i AN
On the other hand, as M_(ke) = M(ke) and E(ASM \Fki).m &



sl ik

E{m a X{( m”@zm - & (f ip)l/P<
kgkﬂ ) lg " ¢
s’ s’

gE(ﬁx*axlg ((!J——c.f )dMi 1/}:04~

k ke
k£
. ’ L/ 4 A5
+E(max[§ ( )-;-I{n) = J + 4
.kgk& Lf {f € =
5" '

Burkholder’s inequality, (2.20) and (1.1) vield

\

S Lk l/}?
SR ,s.,(mc.x {- €+ A ]5 V 1 E)

k,py1/p

ko (Py1/P , o | vE [Py /P,
Ky, e+Emax|A¢ Y P 4 E(pax e :
Kok ¥ gk Fil R &x%

(Jp) and a calculus analogue to the one used to estimate Ji‘:

yield E(m a x [;&h F;Elp)l/_}?\( Ko 61/29. We conclude that

k ke &

5 l/iif’
(2.21) il \<1<23 £

; -4 - ' :
To estimate Js we shall use Lemma 4.1. for the martingale
ke

= §) .( ¢ - 5{3& )dM_ . We write
}r

AT | 1/i -k fi kL
B(lHeyy = B 1Fe) 77 Ky BUCEF AgRe + )T () I

For 2. i £ p, HSlder's inequality, (J__,) and (A

p+1 p(pt+1)) ¥ield
TR i iy v R il 1/ (i+1 < i (i+1 1/4(i+1
B8 f-’ai{ ce) T ¢ BURT P B Mgt O ey /\<
- 2 /
< ﬁ;(ke ) €378 o) e1y 7 § Kyg KT (ke £ i

3 41)+ Analogous esti-

: I 3 “
, 2 ? 52 . ks o
mations may be done for €Vg and |V |“. Since i > 2

Med 21463

K being the processes attached to /3¢ by (J‘.’J
= I

Pl

i

one gets



k.~1
e % 783
<HD>, (k) < - (Kyp (Kg (ke) + 1) <
* . ol
¢ Ky (k% (57 4 5) + nhed

A
Now, by using (4.1) and the fact that sup }hté 7 {oo we
. ¥4p. . noq 51 g6 1g
that J; g K, g ¢ 4P.. Together with (2,21} ?h’n yvields
JZ $‘Kéa €1/4P 4+ sup E( ™Mmax ] S (cf (f)dyfp l/p
g ¥ AEN ‘( < kfk
By (2.¥1){i) emd (2.3%) (111}

. : ‘,\ ra “""k
s 2r %) - 0| { Kyptdle) +max Agx+
g " kgk
+ qu}AQ(t,/\,Ca)-—X(t,/\,‘w)})f
I3 L=
£gST+S _
for s £ S’'+S. Burkholdersinequality, (1.1) and an _ _

1 ) |
tion of E(m a x IA 5 A’lp WP czm/mma,) To Yhal wied ¥, forr 3‘ witdls B
, }x<]{

3 ) 1 VA2 )
Je $K3 (¢ /4P 4 s /4(&,2) kg, =&l .

By us lng the inequalities we have already proved one gets

E co 1/4 w i
by X“P s, gk Bagl §tg). + BH A HESTT R PR Y
) | 2’. 1/2 Ll /\
-+ (1‘(3 b K4S + 1\31 )" X X”p" gfeg .

As K3 < 1 one may choose S 'sufficiently small to get

. 1/2 ) . P
Ky + K8 + K48 < 1: Then, by writing | b M up,S”+S‘$
' o > 5 n “{ G SE and m 4 T T SR (,}./Zp\
< | R~ hl’p,s’ 3 l{o gr,g an moving (\3 £,8 Kqy 8 )

A
A ox - Xl 7 in the right side of the ineguality, one gets
3 p,5’,8

el ol G figy cL/4p sl X,;/\

' p?r*')

By using the above inequality for S’ =0, S, 2S5, ... one gets

! bp . .
l x - X ll XS,S ‘éRBS( $(e) + g]" *?) for every k <T/S. Then
oy

A e A 4 leép
kv — 7 J v - 7 o - i /

k< T/8
and so the proof is complete.

Q‘Ech

s conclude

avalua-

i (insteed of V¢ yrelds |
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Now we want to extend the above result to unbounded coefficients .
having liniar increments at the infinite (hypothesis (2.1)). In
order to do this we have to stop M * at T and consider the
eguations

(2.22) X _(t, N ,0) = polts X, o) + o (8,2, K, +
= (A :
Bl , t
+ g ¢ (s, 2, X)dH,(s) + j Y s, X, X,)as.
¢ &
O o
Theorem 2.2. Consider an even p );, ¢ such that (A

(o+1) (p+2))

. i3 i 13 i ;
holds. Assume that the family f J, Y, faj, %E, T g, J5d,
‘ i
0<E& , NEA fulfils (2.1) and the family &<, “ai' 1¢igd,
0<e » NeA fulfils (2.2). Assume also that [gii, 1 ¢ 1g 4,

' $ oy o o 4 — s . }3 : - e
0 <& fulfils (Ip+l) and \Jp+l) and Jéirg ST (€) .o. Then
: , - VAN
limf X, - x| oo =0
g =0 uil
Proof., Put g = p¥l.’ We shall prove that
e i
(2.23) sup § X i q.m £ eo.
£ > 0 o O e

d

For a fixed N » 0 let consider a Lipschitz function q,) R —p Rd

N

‘ t N
such theat (éjm(x) —« x for l_:‘.l £ N and CF N(X‘) = N+l for (x|} I\Hl,
- s ’ e e == . \ir 7q 4 W =3 = r =3
Define g ¢ (£, 2 ,%) Ke (£, X, W) with ¥ (s) = b (F(s)).

Then e« o is bounded and eqgual to K, up to the time TN(?{?‘) =
Ny

= 1 g—‘ I R 3 i by Aafir 1 : T 721N
111:’51{, bR E S IR o0 | I -yg., e u.k.,_-l.he! in the same way (ﬁ\’,i and

\‘f)N ¢ and consider the equation
: 4

(2280 R (£ X0 Xy o

N,

y +

£

t £

¢ ( 8 bie \_‘f\“ff = B ) ’ X :
+ 5 g ler 20 By 0 () +5 Yig.e (552, Xy o)as,

o O

: i = : T (X ; ¥.). Bs X. _(s) and X._(s S
Fix &t « N,g N( \L\‘)E) N TN &‘) lL‘J,L(O) ‘5-‘( <

are the solutions of the same eguation, the uniqueness ensures

that they are egual. In particular, as «(_ is previsible, it fol=
vy AT ol e 2 1 'i'? P m ; B s r 3 S AMmMe
lows that N,E(“N,E e e (;{'é:(.l.r\!,ﬁp Ae Xg) The sam

e
is true for <fo . L{-’E and ‘if N g,":/a'a , By using again the equa-
¢ N0 4



tions one

gets “N gkww e ;o= Lo (qug ). It follows that
¢ ;*:ﬂ« e\(ﬂfcff(ﬂli’ Fid []/
= TN<X£‘) = Ty g o A3 E(X_ (T) )< oo ¥V one concludes that

L¥] £z - »,

> T a.s8.for every ' T > 0. In particular (2.23) shall

be a bmﬂuhfu nce of

where Kl

on p and

(and also Kz, K3 ... below) is a constant depending

T only,

Let us now prove (2.25). Fix 0 ¢S’ and 0 { Sg1 such that

S'+§> &
fox °<N,€
“XN,E U

s w e W A ) 5
4.5 Ky + Kl xﬁ,gl(qés’ + (K, + 8 KS)le

B g1l A % for @ AN ' o2 )i
By wsing (2.1)(i1) for P, e ind YN,E (2.2 {i4)

' (Ia) for lgg and (1.10) one gets

A
nellg,sr4s

with K, < 1. One may choose S such that K4 + Sl/p KS < 1. Write

then Wl X
1

N
(K, + S /by

(The fact
boundness

which

One gets

As in the

We are now
and (2.1@)

same way a

and X%{E
and crm,a
: th.‘a.t }RN e

It follows

A o A + X R and move
E “q’b '}‘E) \<‘ u;%i\] &MUC{;S! N € A rS

B il X N, gi‘q gt .8 in .the left hand side of the inewuaEmty

. N ' i . a

that U - - 57,8 {oo is a simple consequence of the
I J i .

of the coefficients of (2.24) : iroexcept for

fulfils (I.)).

"km,e\‘q,SP,s § K + K, “xmygﬂ g,

proof of Theorem 2.1, by using the above inequality forx

28, -one gets (2 25%) .

Jey
going oaftaa proof itself. Consider the equations (2.6)
stopped at TN(X) and #\ ) respectively in the

s (2.22) was stopped in Qrder to get (2.24). Let o

respectively denote the solutions of these equations

e ?N}El a /\T ( 9 UDE is defined in (l1.4)). Note

r i s \““ P P b 3 3 - o o {""
(L) Xg ( ) =Xy e (t). and KN(t) Xle) for E < 3N,£
that
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. - e k¥ -
(2.26) Hxﬁmﬁiﬂpqqggupﬁﬂzuplxgw-XHt,A,@)p,E% c:.<’}:')1”~”}
<. s >\ 't‘f‘ 'I_i §op
X W
U TNg K TS 1l -
, o ks m‘avfav {0’ X, C"Z "‘*!" :'z,emw;rci
BY £2.23) with g = .1 for g g and?an analogous leduOMLHC}_
3 =i )

¢

‘based on Burholder's ineguality instead of (l.lO)’/it follows that'

= ﬂ Wk \'PCNE:KT) BTy (X) < 1) + BT < TG

g
$ Kg o+ P(T.< T),

Holder’s inequality and (2.23) ensures then that the first term

in the right hand side of (2.26) is dominated by

(Il X

NEHQT llxll

q, ) (Ksz.\fl -Ff;(‘fg &2 T))l/P(p+1)<

Ry e Bz g M)y /PEHD)

By {1s5) 4 3m P(Tg < T) = 0 and by Theorem 2.1.

e T
lim WX - X\l = 0. Then, for every fixed N
g =0 N,& e P
..—-__.,,... o A \'..-l/p (p..[,.l)
Lin X, - % “p,‘l‘ < Kol

By letting N Toe the proof finishes.

Q.E.D.

Int@gration with respect to IEMS presents the disadvantage that
the ”compensator“ c:g (j%’dMg } may generally not be explicifely
calculated. If ?Z(t,'k, W) depends only on Ww(t-),more exactly
in a twice differentiable way, then the above "compensator" may

be replaced by an "asgymptotic compensator". This will be a‘drift-
which is asdymptotically close to Cf Skfdyc) This will be done
in Theorem 2.3.

Consider ?,%2) [0 o@) - WL Rd-wa Rd % R £ >0, twice dif-
ferentiable-in X e R .- We shall denote

WAL LS U COLRr Y L. . :
I Qfg (t'?"‘x) TN Gga (tf;\’x)’ Bog il 9,



B

The same notation will be used for any function of this type.

We need the hypothesis

k lg

(2.27) 14 ijf 3 ui'r!hji (}h Ok(f) Ljr 1L £ dahayhs d
are bounded uniformly with respect to € > 0, AEA and t é?[G,T}
for every T > 0. ‘

;i 1 ' |
1) ¢ 9y ﬂj L3k g d fulfils (2.4) (iv)

b=

Let us then define

(2.28) alr3 (¢, x)ua.,_., ?h'wt,% %) 2, P, A,
¢ h=11€& £ -
b4k & s
Consider the equatioﬁs '
(2.29) .xi(t,k,w)mf t>\a))+o/ (t,,\,x>+

d
+ ) S 13(3 A,x(w A a)))d"fx (8) =
I=kidg

d t :
' 1,490
- L j 5,087 (5,0 %, (5,210 ))ds +

i L ;
+ ﬁ% (s, A ,Xg)ds, - -

ON— + i~

with g3€ defined in (1.3).

2
Theorem 2.3. Consider an even p » 6 such that (A o ) holds.
CwifE k 3; -5 )
Assume that ({ fulfils (2.27)y, X, fulfils (e )\f fulfile
(2.3), P fulfils {2.&0)4;@!@0 and lim SP(g) = 0. Let X be
£ o1 )
the solution of (2.6) (in which %>lj(s,>s,x) are- replaced by

Cflj (&, N Xis) )) and X, the solution of (2.29). Then
_ : :
limlix, - x|, . = 0.
Ty £ 0 £ P.T
(2.30)  BgPe < Kye fov Mvg €50 awd £gT/E.
Proof. Denote

<::£<ga %),h X rs»-))c'nf«zii(sn(t)

/'X\ij(t Ty o
Eiiglgi (S)AE (S,/X,Xg(s))ds,
f=1o "
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We shall prove that

Since gw o A H , €720  are egually bounded, f(‘{\jj, £ > 0

J }. 8o, theorem 2.3. will be a consequence of Theorem

Let us prove (2.31). XK,, 1 = 1,2, ... will be constants depending

i
on p and T only. We shall denote by ()E =G (w), € > 0 any
family of functions such that 1lim g E(Eoﬁip)l/p = 0,

' £ 0
Note that

) -k i ey k. - A
(2.32) A, X, ¢EALE A V), 1lgd

We shall prcve.‘t/)cti’

i
0
g

29 . T ij | b4 I o ’ . . ' i
{2..33) E(Sktfa (s; A '“E(Q e 'y .))dff&(s, )QP}{E){QJ)
I

3 a |
+£Z, qfé’,e,(ﬁo) A"L&Jf(ka,?\, };E(kg,)\,@))g,
:::l (4‘:.

Then by using (2.32), (2.31) appears as a simple consequence of

(2.33) In eorder to prove (2.33) we write the therm in the left

hand side as Jé o+ -J‘; + Jé where

1 (13 i,
= B “(z, A, X (s~ - W7 (g X . (k =
d. e - '
& pid C ke ) (2 (s - %D wd 8.y
i I 705X o X kO (X (s) = X(RENQ () Fy ) )
J2 = ( g ( .3 (S }\ ¥ (}{& ) \fT',’W:’ ! e ) ( T )
& I}( fa r 7 *a /V-—e_\ 41\8 ’
a ‘e
T e h
3= omf 2y, ¢3s, 2, x ke xY(s-) -
i st Y : £ e
A ﬁ;’-‘l IJ& /
T aenand ) [F,)
i - g \EE g k"
Taylor's formula, -hypothesis (2.27) (i) and (2.32) yields
Bhers o TH N R i 1 ‘
i M e\ Tl B v Pl S 5 WS 1& = % I
\JE{ ST S8 S wi(rk&) It follows that J; = ()



Ir
Next, as E(/A M. [F,.) =0
P . 4 ¢, € l k& ?
32 =6y, (99,2 x ke ) - oM ke A, x xke)) ailis)iE,).
g <l TL g £ £ ke
i i L2 oL k 3/2
i} o o A g - > 3 ) ' o
By (2.27)(ii) and (A;) one gets iJgj <K, € }z,(_vg{rkg) XK€ .

So J. is also-an O. .

Let us now evaluate J&' By (2.7) (ii) one deduces

ol G o 5 | . oh
G Oa + 3: 9}1?& (ke ,ZK,XE(ka))E(Sik(A£<S») e
= Ig
h e
- X (kg ))am=(s)) |7, ),
2 . A
Next, by (2.29)

"y
, I

o ST TR j 3 b 5 6 7
(X (s=) Xe(ka))dmg(s)(fkg) = J, Al T+ T

< €
£
with
. 4 = 5 5 - h i o l‘"j 3 8
I B ( [7 (s~ FE(kE P A ) )aM; (s)[ P L),
;f zz(gh(xh P A h)-x Pke .2, x))wﬂ(mlqp
- i 5 <
Al (k+1)¢ s~ €
38 = T m(f (7 0P, 2, x(u-nyanfwad () |7, )
& 7 ) ) \E & <, & ke 2
& KE ke
(k*l‘l'}%. /\ a [
gl =imy (( 7 ¢ Al T w,n x @)+
ke ki Euf 4
) 0 1 b 3 & .ﬁj '\ i Mwm‘m
o kI/ (w, A ,AQ))uu \IE.‘.&:((}); er), \W(ZL/ K T*O}

‘ : 4
2 i P.')*é. {(2,30) 4. i afi- 0.  Byp-di.4) (v} i*’
A - (%

&

: dom . 5 . k= by

follows that |JJ| ¢ K3 ECVy | Tp.) 2 ,
.WA!‘C{Q dgean O . Using the boundnes‘s of gr&:"g, Ahe,ré’ and k{)gh

one concludes that J; is also an Op ¢ Then

d (k+1l)e , s~
a® = o + 1l ‘fh€(I{E A, X (ke))E( S d?nig(u)de(s)[iE‘ ) =
£y B pog e A € £ ke
i ke k& ' '



Q
T e . '
i OE‘: e ‘J"“'" g - (k-gp ;\ Vi };Q(:{T&:) )(3:,),{‘)‘},<CL)) E:-‘
A=y ' E = o8
e E
So we have proved that
/ 1
Qj C
Te =0+ 2 3y Qo ke, A X ke T @0 ke ,
e - P;El - '(:"":1 <
a
oo W;"W'M - j’ fj \L‘ ) » j'( )
=0+ /. A ke Tolke] bt b barin
< Zﬂ«_: e (k r;\lp é‘(&)}jik(cd){;

and so the proof is completed.

Bia

Q.E.D.

AP

Lo

{ke) )gzi"(x‘:«)) & =

G

_ .
The convergence problem presented above may appear from another

point of view: someone dealing with a stochastic model may be

interested in the equations

(2.34) Xz(t,)\,&)) Gt
ad t
13 ;4
F S e 3(3,“,\,x£(s~))d,1»i?(s)
jml O &
e
o+ j %ﬁ (s, A\, Xé)ds, iig a,
s
o
and wonder if Xg

In this case no "compensator" appears

i::(%:,-l,m) 4 Mé‘(t,’k, xg) 4

converges as £ —» 0 and whal, is the limit.

, neither exect one, nor

asgymptotic. It is natural to look for this compensator in the

limiting eguation. In order to <SOfUQ this problem we have to

make an addition

(Bp) There is a cadlag adapted process
¢ ‘such that

vin ol - g -

: e

g-»0 p,T

1 assumption on M., € > 09
s

g:[0,60) x Ax_ 0 -»rR"x

-

RQ

0 for every T >0, 4,] ( 4.

This hypothesis is an analogous of (A.7) in /1/ Cap.VI,7. There)

this is a starting assumption and of course it is fulfiled by a



in the right hand side of (2.34).

i

large class of éxamples. We shall also assume that

Dot : S Ky
(2.38)  1limn' sup BUp l %}%ﬁp j(tF 05
g-»0 XEN 2eT 2 '

h T

for every kg d.

TSGR

Undex

4%

these supplementary assumptions X

the solution of

a6k ey Kt A W), i,
gt .
4 2 5 T 3(5 D, X(s))dmd(s) +
: d ﬁ .
% 2%~ S gJE(S)Ai'jb(s,)\, X(s))
jri:’l o = ;
2 3 '6‘3&?2‘?
{T?v& {{e. }

Corollary 2.4. In the context of Theorem 2.

assumptions (} ) and (2.325)
lim \{x - X =0
: o
E—rc :

where X is the solution of (2.38) and X

Proof. ILa order to
l d f _
BL a0 5 I Sl ¥, x
j,l=1 % £ &

- g3lsy At (s, A, x (8)

type as

L BLl

(2.29) with the perturbation /g; =
3 &

7yl
£ d ((PIT

o & Ky maxlg
A

_'+1<

sup [Ai’jg -

Zmax sup 5

~ e S Laegt A T
o L S

Hy (B,) and (2. 34), Lim BN, ¢ =0

Fonsay &> 0

Q.E.D. ‘ s

be .able to apply Theorem 2.3,ve

and the proof finishes.

g r&kﬁjj&j(tr%r X)% = {

will converge to X,

2, X 4+
T

ds + 5 lt}i(SI ;\lx)dgl
Q

*

3 and the supplementary

£ is the solution of

add and suobstract

c(s))

))ds

We get an equation of the same

/QC,-PE;; . Note that

at M, x, %,
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3. ALMOST SURE APPROXTMATION FOR THE CJLU’ TONS. : '

OF MARKOV.
In this'section we shall study almost ‘sure conver gence, T thié é
end all the set of n»pef: 2sis will be strengthened: the parameter %
Py will ba a e¢al multidimensional one, the co&ffiaienis 3

?(t, A, ¢) and Lf(t,k » *) will depend on X by means of X(t)

only and « will not devend on ¥X. Indefinite differentiability

with respect to A and x. will be assumed. Then both X and X
e

o

will be inacfinltely differentiable in A . Under the assumption i

o

that (A ) holds for every p g€ N we shall prove that the deriva-

<

rivatives of X. Then by using Sobolev’s inequality in the same way

tives of any order of X, converae, in every Lp, P € N, to the de- |
; 5 -

as Ikeda and Watanabe

2

ges in Proposition 2.2, €hap.V in /1/, one
obtaines almost sure convergence, uniform with respect to A eA-and
t in a compact interval, both for Yg — X and their derivatives

of any order.

: P e a
Let us introduce the new hypothesis. Fix d € N and A c R and
i 5 renl. : 4 . T e
consider some functions f, f£ : [O,ow) XA\ANX R — R, €3> 0. O )
, it ; f
such a family of functions we shall maké the hy potia is: 3 |

{3.1) The functions f& anad . f are indefinitely differentiable
, 3 dies :

with respeet to A e/ and xeR'. For every T > 0 there is a
constant X, such that

LY S g, '

14) zf: (et X&) = £, (ke Al g En€ . :
forévery kéA,xeRd,O\(th, giN S L O s i and k\<'T‘/g,

ddi)y ime. Bue  Sup  surp
el SeN X [y A

o)
™
:(:‘
>
i
-+
=
>
i

The same properties are assumed for the derivatives of any order of

f and fa (the constant KT do;ondg on the ordn* of the conside-
red derivative). ; . s |

Consider now a family of functions g, [0,00) *xA\A-—» R, €>0.!

P

L0 e oo Femperid s (el (RN v ) TR 0 [Pm o W IR T R Y, | SR e



(3.2) The family g, g , € S 0 fulfils (3.1) in which =x & Rd do

not appear.
Finally let us introduce a notation: for a function
B2 LO,@@-) x/\ 2. —~» R which is indefinitely differentiable

with respect to N €A and for a multi-~index ?’\ s NP, (N T
. ] } ¢ 1 ¢
1g ,{Y\ié d we denote
W ' ~ 3 3 B
(3.3) Dh(t, A ,0) g eee Op R, A,©) with O RN
j g 7 ¢ m Ik

. . a
Considered now some functions: Lf), C{DQ = [G,oa) x N\ x Rd —s R* x-grd,
i s

‘%),\FQ:EO,%) b AT B i 32 - ana C{"’,b{b :[O,c\a) x A\ —> Rd,

i
Q)

&> 0. rssume that (3.1) holds for ¢*J, ¢, 1,9¢ d, € > 0

L=
i i . . - . ) 1 i
and ‘f’ 7 \i»’ i€ @ 820 and (3.2) holds for =", R P

i d, €3> 0. The eguations we are interested in are

(343 X P, Ny} = uet (LAY ¢ L \ f*J(u, , X(5, 2,6 ))amd (s)

" S L‘;i(s,x, K(s, A ,w)ds, 1gd,

i 4 : | 19 | el
(3.5) Xa(t,,\,.co) = x7(E, ) 4 ?; S ol (5, 2,2 (s, 2 ,0))am) (s)

d t

- jcﬁ(q ca)rxl 35<«~,?a,u (s,,\ co))ds +
3,6 1

in
(o7}

&

t
+§ Li’é(s,}, X (8, A &5 )d8, i
0

anol



(3.6) i'é(t,/\,w} = 0<§'{t,?\}‘“§““
d t
. L S,(;)ij{(u;ﬁp X (8-, ,w))df)(s) -
:;-;:1 e e -
d B '
- ‘? § oIt (s, ey ale 3 (s, A, X (s, 2 ,w))ds +
E=1 -

]
t ;

+ S Yis, XN, B (s, 2,0 ))ds, 1ga
Q

In order to prove the annonced result we have to give two preiimi«
nary lemmas. Consider for every 1 g’ig,é g d and_ € » 0 a cadlag
adapted process /%é : [0,03) 2 f\xwﬁxﬁlR and the functioﬁs

Gljjg, gzé s oo mIN % 2 R, indefinitely dlfferextiable
in (A, x)eEN x Rd. Consider the ecuations

. i _ i, :
(3:7) Ye(ta;\#w) o ﬁg’(t/?\;.‘*}) 4
é

(o) X e Y (s, N L) diig(s) +

+
™
Ok/”i#
;—a.
L S}
ae
£
>
e

SSN(S A, Xg (s, M, 0NYi(s, X, e)ds, 184,

v,

with X the solution of (3.6)"

Consider also the following stronger form of (JQ:

(3%)‘ There is a family of cadlag adapted processes K., §& > o
fulfiling (ID) and such that for every € >0 and k & N

-k . € =k ‘

® 1i£ i s
Bg Pe € Kgl ) (Vg +&8), C
) ) j—nt/ g

Lemma 3.1. Assume that (mp) holds for every »p & N, chJ " 3;3,
1¢1,3,6¢ d, 0<€ , AEA fulfil (3.1) B et L AP

and  Pgs 1$ig¢d, € > 0, N€A fulfil (1)) and

(35) for every p € N. Then, if Yé, 1§igd, &£ > 0, AEN verify

(3.7), they fulfil (1) and (Tfp) for every p & N.
N

Proof, The idea of the proof is the same as for The@xo a 2.3.: one

uses Taylor’s formula. To avoid notational compliratlon we shall



consider the

5

the left hand side of the inequality

one~dimensional case only:; (there are no real euxtra
~@ifficunlties in the ﬁULLlQTW nsional case).
Fix p € N g - T3> 0. Ki,'i = 1, 2, ... Will be constants depen—
ding on p and T only. Note that
381 RET e R s gv, g8
3 e E 4.&,. 6: 1 Ve & 2 X
- S - 3 £54 r‘|£; oo L I ] S Y ¥ . i . ey 3
For. N > 0 define Py inf 4t > 0 : !&a(un > N}' and
£
i W) =¥ (& ;& for £ < B % AL ey) =
N,&(t )\ # C)) E_( Ib)\ & J) —‘O( = < if.l’ N,E(t’/ 7 )
oy o " A
5 Ya(lﬁm,} pUTNS SRS - e Ty
Then | ¥, . | £ N oo , Write
f\!fé'
proedl < X - Kk : , ' ) * 1
7 : o LY. (ke ~ V. 4 <
A L_N'E_(g[la F’%‘- A ;Sn\m_(_,ﬁ. LYE 0 +r )&
;’é e ) 2/8-:.1{’
L K 16 LS : > o
SR (xgtke) + y'N (k€)) (Vg +£) + 2 K/ AL v, o
where Kg, £ > 0 are the processes assoclated with }%:,4€>;>in
(3"). For small & 2 K 83/8<’ 1. So, by passing 2 K 23/8&}4‘)/ :‘«n‘.
Gl : : 5 : 5 € /N ¢

and get

; =k : T o =k
(3.9) Ag¥y,e € Kp(Ko(k8) + ¥ o (k€)) (Vg +2)¢
P S & 3/8
RO im't__f};a))g /¢
Letting N tend to infinity one gets the same inequality for
}\ S8 L 5 £ o b ks | 7o
ph & So, if we prove (Ip) for YE’ € »o, then (Jp) follows
Erom (3:9).
e .
For £ £ Ty one may write &
i t—3 t] + % Ly e
Yy,e (8) = B8 G, (/2. Xg(s-))
o
N ‘ . ;
o ,:.?‘ g 1 o 3 :’ o +
g,e (57 () + Co ({0 vy i) (0)
& o
+S (502 X (s)) Y, o (s) ds,
Fix 0%S’ 8nd 0¢Sg1 such that S’ + 8 < T. By (1.10) and
: for ¢ 0  one gets
(Ip) ﬁai {,7 0 ._:,‘



\‘J\\ 3

(3.10) [l'y

We wish to evaluate

inequality. To this

gSl§°UE(S,K

€.
~
i

sl Y— S
to = § [ote,
IE

Xg (k&)Y

- S, A,
G:g(

- ‘Q‘_ ng(s,ﬁ
D%

XE(k&))(YN

H

&ils, D
&

it

3% (x)
N

‘h

il
Q/"\H

Ji_(k)

4
J_ (k
‘E,()

it
H S

By £3.8); (3.9} and

one gets

Then, let us write

a =j, ( Q’E<§,>\,

B = (;"é(ks,?\

S 0‘(3»7\, Ko

e 8 AR
S R s R s TG ; oy
N;iﬁ- }:’,E}‘ y&) ;ﬁ<~'}\b}’ 5 i,U’) 1‘ \[l\],@’” pyu)"‘&"b
s AN
(€ o v i Hg S,
) S; P 1 \{ I‘L L& 24 .&‘t B ra

the last term in the right hand side of the

and we write
4

» Bel8))¥y ¢ (s-) dig(s) = 52“"1 JJ k)

/ (» )) ¢ (8-)

&(«:&) e

. Xg(ka))YN’E(na)(XE(S") = Xa(k&)) -

(s-) = Yy g(ke) )] d’ﬂ&(é‘s),

i e

(ka})meg(k&)dﬂa(gb

s, A, X (ke))Yy o (ke) (X (=) = K (ke))AM (s)
g (k&) i (s).

Taylor's formula for £(x,y) = G s, X, x)y

K (K?(kg ) + Yy (ke)) &R

2 . y
= Es o
J£ Aa B& with

“}E&,(ka)) - T(kE, A, X (ke)))Y, (ke)aM (),

T\]"

s A IR



By (3,00 (d) 4o .x KU AR g,“‘/a, As z:(&gm PR o) =0
0 ki f i v ot k il ; ,}{ '3)/ 3 7 X =
| E( Aarli_&_:[t&ki)g [1.,,(32 f‘? Vi e ;IM,( =
o 1 i S8 o k.2 3/2
- makn, vEy e 0n gl ¢ 2O PlRg)
: Je ¢ 3/185 . 'ﬁ/z y /:‘ 48 LS 2 1/2 1/2
s T Rt ¢ R B Y B 5T g
O R R v S |
§}\14 & E{ h’g% ﬁi’f@;) \< 1\15 &
: feen Mt o e e
Since (. is bounded, it follows that ‘T(b {7 }9)(<KI¢YM E(ka)gq
& y 8 § N g

We conclude that
2 4w “2 i " 3
(3.12) ‘{J.J(Jamirkg)( € Byq N,;awg
By (3.8) and (3.1)(i)
‘ B ¥ k
4ok - T 0 R : X V. ¥
(3.13) (E(I; () [Py ) Ky Yy el L)l(&( e lfieis
oo ; k k
7 el B o !
éhigyl\f,f_ f‘_t)hj((\]a i E-)\-ia T
By (2.1)(1) and the first inequallty in (%.9)one gets
(3714 B 74'(1»~‘ B % €% 1"(“}‘:1’ “ki )
(3:14) BT (K| [Fyed & Koy BllQgYyg e ke €
§ X224 { K, (ke) + v ke ((v +e)VEIR, )¢
K,.ia ( Kitke) + ¥.0 _(kE))E
LR gi N,E e

£ >0 fulfils

-
[

Resuning {3.11) = (3.14) and noting that Kgf

we conclude that

N

N : .
\C(SG" mgﬂp;s},ﬁ €8 Ky, (1 + vy B ).
Pew kS
Then, (3.,10) yields
PRY e s Y N
Wl M5 or g §Rpg + Ry 8777 WY ol gryg €
: VAR

SR £ <L1/p

\<}\25 + 1\268 ‘Q¥IJ,£E§13yS, i ch : u YN,E“p,S’yS &

gy taking S such that K,/§ ( 4 owe %@fjﬁ
N\

¢
o ISR @

Ry Al

N,&

| A
{Ropp (1l M o)

By using the above inequality for S’ = 0, BunRBiiau,. Ethe prock

finishes. O T



o

and so (jﬂ) is proved. Then
L
(3.16) u{p
o

Let us now denote

O0,00) x A xL2 -> R, £ > 0: B, £> 0 are c:
& Lo :

£
o)
it
ol
Q

adapted processes fulfiling (Ep) and {3w} for every p € N
: ke -

Lsgad

Lemma 3.2, f{ﬁ\is closed under summation, pxom uct and multipli-

-

cation by any wprocess fulfilin {3:.1). 1E (iﬁ ) € ;L ., then
" 3 : E O f\
.. 7 L TR, . -1 .
2 )\f\ o o é. bVt YO & n
(A/‘Q/Jg alty) g (2/% ds) g H‘/\ (Mg is one of My, A<d)
Proof. The only nontrivial point is /3(&% o5 Oé}éA o Fix P & N
and T > 0. As above, Ri‘ i = 1,2, ... will be constants depending

"on p and T only. Ké, € >0 is the family of processes agssoclated

with ., €>0 by (;‘?p). Note first that

- g i ¥ veg ) <~k pod o
¥ o T -k
<L petke) + K (ke) (V7 +€))7;

LR
+{!C€(§ Padmg)ﬁ

I..LQJI 1y DT

By (1.10) and (Ip) for /ﬁf €>0, the first term in the right hand
side of the above inequality is bounded, uniformly with respec o}
to & > 0.

Note then

0] ( ,,,:_‘7 ¢ }t [ ] E:—: w0 ] M"k' < ped
IL(%g\agl‘J ‘kg)\< Be k) VE(A TR 0 + BOA, ‘"e.vi?.i ke

LR B (ke) + K (xa)}tn

- - A
We conclude that sup NC¢(3 : dmg)ﬂ -

o o <{eo and so the proof
£ < Q!E‘_ P :

finishes.

Q.E.D
A last remarke is mecqsgmqin the sequel we shall differentlate in
{(3.6) with respect to A EA and consider the system VArli led by

—"

Xe and. its derivatives up to a gilven order k.



£

This new system of equations may pe written in a square form by

adding null ;0~;£1 cients. One has also to verify that this new
system is well compensated” in the sense in which (3.6) is. That
@&
O .
: e B A P P AR o
i1g, a drift of the form. L Y q:”(.) &p’" (s, », Z)}ds has to
] jy'o &< Co
g o 4 % P - s P N
appear. Here A, shall be calculateda by (2.28) starting with the

coefficients of the new systeW and & iz the vector made of Xg

and its derivatives. A rather long but simple calculation shows

that the neaded drift appears by differentiating with respect to

A\ the initial "assymptotlc compensator” in (3.6). We leave out
this calculation.

we may now state the main result of this section:

Theorem 3.3. Assuine that_(ﬁp) is fulfiled for every ©p € Nj . $EF
Yoy, . €50, nE/ Fulfil (3.1) and &, ¥, £> 0, NeA fulfil

(3.2}« Let X, uﬁi&ﬁd Xeg be the solutions of equations (3.4)

and res spectively (3.5)'and (3.6). Then

(1) One may choose a modification of X guch that X-? Xk, N @)

is indefinitely ulifer@ntlabie for every t 2 0 and we L.

(14)Fox every p €N, T >0 and every multisindex /
b _ ¥ ¢

> v

1im WD.X - DAl = 0,
5»0 st e e, e

For every seguence ani'O one may choose a subseguence which

we denote acgain by g,., R € N such that

3

(i1i) 1im sup sup D? e G D,g.\“}:’f% (t,> ,w)f =0 a.s.
n-see Yen LT 1 |
(iv) lim sup = a.s

L= ]

gng St @) - D, X (£, )]

(R

LA

s
n -y L E N g

-

for every T >0 and every malti-index 4 .

Proof. As the proaf is guite analogous with that of Theorem 2.3.

in /1/ Cap.¥. we shall sketch it only. The first step is to prove

'thagﬂfax every I ulti index g&, DM xg, € > 0  fulfils (10) and (JP)

%Sr_every P erL This follows by 1nductLon on the length of 4‘ by



using Lemma 3.1 and Lemma 3.2, Consider then Xsﬁ and all its de~
rivatives up to a given order k. As we remavked above they verify
a system of the séanme form as (3.6) or (2.29) (with dﬂp instead

of dM. 7). Unfortunately this

c 25 unbounded coefficients. By

st Theovrfue 2. ij’

e

(I }r one may reduces the pro-

QP

based

using a truncation argumer
blem to the case in which the mcefficients are bounded.

8,

Then, by using Theorema 2.3 (the fact tha

o+
o
f\l‘
joe
b
{D
>
o
O
o
Oy
o
|\<‘

di, does not represent real difficulty: see the final part of

the proof of Theorema 2.2) one concludes that DuXg., € > 0 is
! . A g . .. .
Cauchy under I - I p,T An argument based on Sckolev’s inequality
2 Cap.V in /1/) ensures that one may choose a
sequence Eﬁﬂ*o such that D, X . , n €N 13 Cauchy under
N ) ¢ i
sup suple | . Then (i), (ii) and (iii) are proved. The last
point follows from (iii) and (1.5).
D.E.D.

A corollary of the same type as Corollary 2.4. may be given:

Corollary 2.4. Under the hypothese of Theorem 3.3., if (2.34)

and (BP) hold for every v € N, the assymptotic compensator may be

moved in the limit equatioﬁ,

DIX: A VERSION OF BUPR}JLDQE'S IWE L\TTTY
S S

ToOoRTIn AT AT T
1OR DJ.A.CL\...:I‘...} I’tﬁi‘\ill"it}f&.jﬁl&

.

Let (Q , F, P) be a probability space with a filtration (F?)“é N
LR Vg
and My:42~¢ R. k € N a martingale. For a fixed even natural

= S

L]

number p = q doFi

n

g .r i 9 A 1
<M, Laa mlmmhs IF ), 1 {iL P neEN

Lemma 4.1. For every p = 2q, ¢ € N there is a cons tant K

c P
depending on- p only suvch that for every martinjale (Mk)kezw and

avery. n & K



i
L
<

i

/a8

. i e P e i - , R i s ke
(4,1) E(max M ) /1 K max BE(L{M> ‘(n)P/z )1/p

kgn 4 1€

Proof. Dencte
LA RS _—

(1 i, )2 d N PIRRY

N, = (M - M, ). and N, = b 1

. kEL -k i s gy
By Burkholder's inequality for discrete martingales

/
5 P » =
Blmax 132&»\“ 3og K, E (N,
- SEE L /.

mvm{;fé_gﬂfﬂ (;!élpﬁmaﬁi%ﬂg an P G'W‘gf-

Let us now evaliuate the term in the right hand side. of the above

B = B, + N N B o+ BOG ) 4

el ‘n=1 = b pwl)

’ - s =T
b Ky IOl oW = B (® ) +

=1

o g
~1) N L(”nml

, =GR K
+ X, 2= E(N> B, _1F .00,
k=1 aih

; . - . . ~ g o » . e Gl
We write. the same inequality for b(ﬂ;ml) and dominate N hy

e

§97%. one gets
“n-1 eg

= B | > st LR, 2

5 (R ¢ B(R2 e L) 4 xy L. E(MG T E(NC JF
L(“n~l> G LR E@¥,.5) s e BN, n 21Fy 2) ).

By using inductively this type of inegualities one concludes that

e

2
et
%
i
v
i
ot

-1 ‘
] T S e B8 + K, 5 (NS5 (XD BN ;Fé Nide
£=0 ‘

W 4 =

o
H
o]
i
}..J
S
it
o
5

= B( <MD + K, JT ENZ_TIMD>

k=1
g-1
o g 5 I (a~k) /a . q/k.k/q
\gn(<h>%§~+ﬁzl : L@%mﬁ /"‘m(<k>2k0ﬂ‘ :

Denote x = B(N _ ;). a»xk = B({H>, (n) )

%\ = m a'x /yg
18 kL g i !

With this notations the above inecuality becomes



ol aq 4
% & éAg gl Lla-k)/q 2k o T (qwk)/g?\zk
: ety ‘

k=1 '

p
§ o , . e} 3 X 1/p, 2k .
Elementary operations yield X, g J. (?A/K 17 . At leasgt one

. . . . ; -1 .
of the terms in the sum has to dominate XK,=:(g K2) . Then, for

) T T H y 1/n
L o A % o 5 4 3 r .
at ‘least one k, QA 3 KQ/ b4 e . Kyx /P and so the proof’ is
ot

Q.E.D.
A more general form of the above assertion will be useful:

Corollary 4.2. For every even p € N there is a constant K

such that for every sequence of integrable random variables

fy i —» Ry k € § such that fk is Fk measurable
F 17 n-1
(4.2) E max]}_ﬁ ’*’\< BE(l I= E(f

k <n 1_4 k=0

k+1

E p"'l ~
+ X max Bl L(l£?+l “ileﬁp/éi)l/p
Yf Aol pf D 1e=0 b

Proof. (4.2) is .a consequence of Lemma 4.1. applied to the martin-

_ n=1 _
gale. Mg 1];@ (F B (T ).
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