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by
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Apstract. We give a wayifor obtaining on finite element
subspaces the best constants of norms equivalence in terms of
preconditioning between the Gramians of the'basis. As application
of this model, we obtain for'HgQQ) ,JL:.Rd, d€2, the best estima=

tions as in classical literature.

1+ INZRODUCTEION

Many‘of the practical or theoretical preblems concerning
the finite element discretizations request a norms equivalence
estimation. For this, using the natural framework :from [1]; for-.
malized in [2], here shorfly presented, we give in this paper
an practical tool.

Let "H be an real separable Hilbert space for the inner pro-
duct Coredy and let.%Shii, 129,22, 550, an finite dimension elosed
subspaces sequence in”H,lcorresponding at the discretization
parametersihi§; The main suppositions on this sequence are

l

(1.1) S neS

and the following approximation property holds:
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for every uecH, equivalently with i~7<®, where P,r1 is the orthogonal

projection operator onH onto Sh. The first-is the hatural choice
of the multilevel discretizations and the second is a caracteris-—
tic proeperty "of the Finite element method. |

Now, let Sh be spanned by the linear independent family
g‘ég}jxj,nhg in H, -and R, »e the Euclidean real space of same
dimension, equipped with the Euclidean inner product (.,.)h.

Consequently, we use same subscripts for the induced norms and

for induced operator norms on Sh and Rh respectively.

i ieﬂ;jz1,nh§ is the canonical basis of Rh r We note by

Jh the bijection operator Jhe,I(Rh,Sh) defined as follows:

h 3—¢h, gl nh. Thus, for every ﬁh&Rh ; Vector of the components

n
h
(uh)i.’ the corresponding function in Sh is.uy := Z: ) ?h

=

Let Jheuf(sh,ﬂh) the adjoint operator of Jh, i.e., for every

u, €S v, ER

e et

o = s

With this wsual notions, we can able to construct our

framework. Let G.€ B(R

n be defined by

)
hl

:=J Jh=G*>O

(1+3) Gy, B =

whose matrix representation in canonical basis is the Gram matrix
corresponding at the basis§43ﬂ§, denoted by convenience with same
simbol Gh’ as well any linear operator on Rh. By {(1.3) Gh admits

a Cholesky factorisation in Rh ¥



(1.4) GthhLﬁ v Ly € B(Rh)

where Lh has a low-triangular matrix representation. Then, for

every uh:=JhEh@Sh y
= *7
(1.5) Wy = NTg g
o~
et Ahe. (Sh), the corresponding Galerkin and preconditioned
2 o~
Galerkin matrices, are the matrix representations of Ah=JhAth,

-1 %

A =
respectively of Ah:Lh Ath“, in cannonical basis.

1.1. PROPOSITION. Let A €L(B(S),B(R,)) defined by

land = _‘l = h -
(1.6) A=, 302 (IL, )

Then_[\_h is an isomorphic mapping of operator algebras what pre-

serves the spectrum and the norm, i.e.:

gy G, (2))=G(A,) ' | i
(1.8) (A ED b =130

Kad
for every Ahe B(Sh) 3

Proof. Sketehing, from (1.3) and (1.:4) it is easy to ob-
serve that (1.6) is a similarity relation. This observation and

(1.5) are used in [2] for prouving our affirmation.

2. DISCRETE NORMS EQUIVALENCE

Let <./, be a different inner product defined on "H.
With Jh e k=1,2 we denote the adjoints of Jh corresponding at
7 x
the ours inner products on H, as above. Then, for every uh,vﬁfshl

we have:
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et
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where G NB( h) is the one of the operators of the discrete norms

equivalence:

2.2 Tt i
(2.2) ”h'—dh;1,2 Gaiiothy

Now; by (1.6) the spectral equivalent operator of this on Rh 15

A ~F -1 -k

~
(2.3 Chi=6h;1,2"Mn, 2 G =Ly 26, 1Lh 2

what is symmetric and poéitive definite. Then, holds:

2.7. PROPOSITION. The constants of the discrete norms equi-

valence on Sh are given by the spectral norms of the precondi-

tioned Gram matrices, i.e.

(2.4) o Hugl 2 el 2P 1 ugu 2 o s,
where .

(2.5) c£15=ﬂ 8h;2;1ﬁ b

(2.6) cg2’=uvé‘h;1,2uh

and this is the best choice of them:

Proof. We prove only the second inequality in (2.4). By

(2.1) and (2.2) r

| mﬁﬁ1$=<a;uh'uh>2$“2%132 “uhlkgzuA}hZ(a;)“h “uhllgz

. o 5
=“Gh;1,2“h ﬂuhﬂz



(2)
h

%'ﬁish the eigenfunction corresponding at the largest eigenvalue

C is the best constant because if C is the best, then for

Fd e

£ Cya=dlG
e ;\max(’h)'—RG

h\\2 , then,

~
G 2

“*11“$:<g£hv7h>2:’Vhﬁ32“*h1\2

P

thus thnGh\\z. By a similar way, the first inequality in (2.4)

" can be proved.
' )

T | . (2), . (2)
2.1. REMARK. Obviously, if Shg.sh ;, then Ch gCh

T =ate il i i+1

because foriY L as above, we have
i

NN

WY n 4 3: I a;i“ 2 Whi“ 4—”2;111”“ 2 | Ll“hi-“ g

2 (a6
*Ch. and analogously, Ch” ;Ch

3 i+1 i 147

Hence C Now, if the sequen-

(

h

ces {Cé1’2)§ are bounded, then by the approximation property,
i §

we can extind at the whole i the norms equivalence. In this case,

A A
(3.7} ¢ @ erim ¢/ ictin G, o0 =lin g (G

) )
10 h?0 . h+0 il 2

~This is a way to obtain, as application of our model, the
best constants of the norms equivalence on Sobolev space Hé(ﬂ) '

what are as in the classical literature of inequalities [5].

3. NORMS EQUIVALENCE ON HY(R).

Let §L be a bounded domain in Rd, d¢2. It is knowed the
) _
classical result based on the Poincare-Friedrichs inequality

(L6}, E7]f, that for every u&HgLQ),



(3. 1) full 2 ¢ cow full ]

where the Sobolev norms in:(3.1) are given by the corresponding

inner products, changing the ¢lassical notations in our contexts:

<Q,v>1:<u,v> 2 FLE N

L (R) “
<u,v>2= E: <l Dy 9
fiy =1 L™ (sy)
Moreover, in the following, the subscripts 0,1,2 refere at the

norms Lz(ﬂ), (I 17 e\l 2—respectively.

In order to obtain our estimations, the choise of the finite
element discretization is such that the Gram matrix in (.,.)2—inner
product be the discrete Laplace matrix corresponding at the finite
difference discretization. So, Sh is spanned by a piecewise lihear

functions family for the uniform grid th. For d=2 this is obtain-

ed by a triangulation where ipotenuses lies on the lines x+y=kh.

In conformitv with the previous sections we have:

3.1. PROPOSITION. For H;((O,1)d), d&2 the following inequa-
lity holds
2 42) ) 2
(3.2) Pull fecy” @ -lull 3

where CéZ)(&)::céZ) is the best constant, approximated by

)

i d+1 1
¢ Cq () =1 Gy

(2
(830 Ca 7 )
Proof. Fimstly, let d=1. Then h(nh+1):1 and with previous

notations we have

B PN ,

h'1 h,o hI2
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By 2.1 Proposition, the best constant Céz) is

2 =] =i 2 -1
(2, h . (o) (o) (o) _q il i) (o)
B =0T eln 5 %n,ofn,2 |=tigmgen”s G
Choosing hi=2hi+1 and Shi‘zshiJr1 , we have by 2.1 Remark, that
% Céz)g is,increasing, and bounded by (3.1), because Céz) are the
i - i
pest. Thus, there exists Céz)=lim Céz), and this constant is also
h+0

the best on the whole Hé(ﬂ) by the following argument. Let ueHé(&i;
by the approximation property (1.2), for every €70, there exists

h such+that, 1€ he¢h ’
u €,u

14 r

(3.5) i[u—Phu hq &€
Now, '
gy & lu-ppu i+ epu g ge+ 22 e i,
s+m”’ 2 fpglt
Because [flull ﬁP pull 5 & fu-Ppull, ¢ llu-pyu |}, we have

“Phufiz —» {jull , for h20. In the last inequality passing to

limit for h -~ 0, we obtain

(2))1/2‘

fuil e e icd Lull,



for any £ , i.e. our affirmation (3.2) ‘helds.

(2)

Moreover, (3.4) permits a very good upper bound of Cd :

2 e '
(2) h (o) L= (o)
SHE R i i oh, 2

~—

“ Gé?é“llé1+h2/ﬂ

(o)

h,o)' Because the eigen-

by Gersghorin theorem applied for ¢€ (G

(o) A

values of Gh,2 are _h,k=2(1—cos eh,k)’ eh'k=kﬁhé(0,ﬂ), corres-—

ponding of the eigenfunctions b ¢ éxizsin (xT¥x), xéJZh, (18l), we
14

obtain

c}(l‘z’s 1+h2/2(1—cos_“ﬂ’ n) .

For h=0,

(2) Beias 9
o ‘*cd(m“”“z , d=1 .

For d=2, our choice of finite element subspaces conducts at

. i g ]
h2
Gh,2— =4 4 -1 r Gh,ozTE 1: 2 %2 1
-1 1 1]

is the local matrix representations. Because the eigenvalues of

= - - & ) } L ner
Gh,2 are 7\h;k,l 242 cos{:*}»h’k cos ! we optain in same manne
that;

(2) W -
Cq L Cqlt)=1+7 72 y 4=2,

i.en (3.3) helds.
1]

3.1, REMAREK. If \Q;CIJ is an interval of the length &K ,

0 OO, DR /ST [ et (SR VT |



For ‘ﬂ,CRz an rectangle of the dimensions CXX?, we obtain,
it 252 DD D)
Cq () =1+383 /2 (a"+pIN

(2)

obviously, the constant of Poincaré-Friedrichs is Cd

-1 and his

evaluation by CdQR)—1 is same as in literature ,

Now, we discuss on the approximation property (1.2). By
the polinomial basis of finite element choise, we have (L4l
on Hz(ﬁji]H;(ﬂ) the following propertyi

inf f u-v || 1 ,.rz.é"Ch“ u ll

veSh

2 1
20 , ueH(ﬂMHOmJ

so, choosing h, such that Ch fu |, r% € , we obtain (3.5). Now,
, 1

14

by the density of Hz(n)ﬂ Hé(n) in H;(R) the approximation pro-

perty can be extinded at the whole Hl(ﬂ).
Finally, we refere to [3] for preconditioning, to Edds ..
for finite element discretizations on Sobolev spaces and [6], [71

for Poincaré-Friedrichs inequality.
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