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INTRODUCTION

In the study of flowchart schemes we use a new operation called feedback
(Figure 4.c) instead of the iteration to model the loops. As in the definition of the
iteration appear implicitly an identification of the return points with the inputs, the use

of iteration implies the use of tupling (Figure 10 bis), therefore the algebraic theories

have had a main place in the study of flowchart schemes. The use of feedback permits

to leave out the tupling. Our conviction is that the symmetric strict monoidal
categories [ 9 Jare the most adequate algebraic structures to study acyeclic flowchart
schemes. To study flowchart schemes we use a symmetric strict monoidal category
endowed with an adequate axiomatized feedback.

The aim of this paper- is just to. provide motivation. Proofs will be g‘llve'n

elsewhere.

1. A FORMAL REPRESENTATION OF FLOWCHART SCHEMES

1.1. A representation by pairs

The usual computation processes may be represented by flowchart pictures as in
Figure 1. The meaning of the picture is the usual one: start the computation beginning

with the inpﬁt vertex (START) and execute the statements in the order given by arrows
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until an output vertex is reached; in the case a statement has more than one output E
arrow (exit) its execution gives at the same time the information regarding the output
arrow on which the execution is continued.

The (abstract) flowchart schemes will be obtained by a double abstraction of

these concrete flowehart pictures: an abstraction of statements and an abstraction of

connections.

The first abstraction is easier to understand. It consists of replacing the concrete
statements used to label the vertices in flowehart pictures by abstract symbols
(variables). Since the statements we use may have more than one entry and one exit,

the set of variables is a double-indexed set {X(m,n)}m hEN® An element x € X(m,n) is
9

considered as a unknown computation process with m entries and n exits (a still

unspecified computation process). Denote by X the disjoint union of this family of
variables. Two functions i,0: X=+N specify the numbers of entries and of exits
respectively,.corr'esponding to a variable. :

The result of this abstraction is the usual notion of "flowchart séheme" studied in
the seventies (Manna, Greibach, Kotov): An X-flowchart scheme is a finite, locally
ordered, oriented graph whoée vertices are coherently labelled by syﬁwbols in X. Such an
abstraction of the flowechart pieture in Figure 1 is given in Figure 2, where
xl,x3,x4,x5,xaeX(l,l)'an'd xzéX(1,2).

-The second abstr'aétion is more complicated, and at the present stage of the
presentation only a vague definition can be given. Note tha-t every flowchart pieture
can be rearranged in a normal. way be putting on a first level tﬁe statements of the
seheme and on a second-level the connections of the scheme. For example, the scheme
in Figure 2 can be arranged in a normal form as in Figure 3. In this way we can image
the possibility of using a "theory" for connections. (What "theory" means will be

explained later.) In our concrete case, this theory is the theory of finite functions Fn

given by the family of sets
Frn(m,n) = {f[ £:[ml=In] function}, for m,n€ N

where typically [n] = {1,2,...,n}. An element f€Fn(m,n) used as a connection indicates
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~ the redirecting of flow of control. For the scheme in Figure 3 the connection g cFn(8,7)

is given in the following table

e s e N e
g(j)523451673

At the abstract level we shall use for connections a "support" theory T given by a

family of sets {T(m,n)}m nene An_element feT(m,n) is considered as a known
, N

computation process with m entries and n exits.

The result of this double abstraction is the concept of representation of an

X-flowehart scheme over T. It can be defined as follows. For x in the free monoid X*
we denote by [x{ the length of the word x, and for j&[|x|] we denote by X; the j-th
letter of x. Hence x = X XgeeeX Nk Also we _lvjse the_ notation: i(x) = 1(x1) + ...t ix Ix l)

and o(x) = o(xl) + ...+ o(x i ). A representation of an X-flowehart scheme over T with

m entries and n exits is defined as a pair

F=ixf)

where x = X e X x| e 7 specifies the vertices of the scheme, ordered in a linear way,
and TET(m + ofx), n + i(x)) specifies the connection of the scheme. The scheme in
Figure 3 may be represented as (x1x2x3x4x5x6, g), where g€Fn(8,7) is the function
defined above. '

It must be emphasized that there may be more representations which correspond
to a ﬂowchart scheme. The difference between these represéntations is generated by
the way in which the statements of the scheme are linearly ordered as a string R,

We denote by Fl the set of representations of X - flowehart sehemes over T.

b )

More precisely,

Fl, o(m,n) = §(x,0)[xex*, fE€T(m + o), n+ix) | .

X,T

~

1.2. Operations

- While. the above representation of schemes by pairs F = (x,f) is convenient for

theoretical purposes, for practical purposes it is inconvenient in the sense that it does
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not show how the scheme F can be obtained from the components x and f of its
representation. To fill in this gap we introduce here operations on flowchart schems .

If we look at the normal representation of schemes given in Figure 3, then we
can deduce that every scheme can be obtained from the components‘ of its

representations using the operations in Figure 4, called sum, composition and feedback.

More precisely, a flowehart scheme F represented by the pair (x,f)'eFIX T(m,n) can also
y 9

be represented by a formal expression

((]'m + X‘ +

e <+ Xixl

where ’T‘I(X) denotes the application of the feedback by i(x) times, and 1.€ T(m,m) is
the ‘scheme without (internal) vertices which directly connects the i-th entry on the

i-th exit. _ b

1.2.1. The elements of T are considered as particular schemes having only
connections between entries and exits (i.e., without internal vertices). Therefore, if the
operations above have sense in FIX T then they must be defined in T, too. The usual

flowehart schemes have as support theory subtheox‘v of the theory of finite relahono

Rel defined by the family of sets
Rel(m,n) = {r lrc[m] x [n] relation}, for m,neN.

Here the operations in Figure 4 have the following meaning.

The operations in Rel. For r €[mlx[n] and r'€[p]x [q] the sum

r+r'clm+plx[n+dl is‘defined by
r = rUiim+ gt DG Ner'].

For r ¢[mlx [n] and r'< [n]x [p] the composite r r'c[m]lx[p] is the usual one defmed by
rep= {(j,j‘) ! there exists u G.[n] such that (j,u)e r and (u,j") € r'}.

For r€[m + 1]1x[n .+ 1] the feedback r?%[mlx[n] is defined by

ed= 3G, Ghie ror [(G;n + 1€ r and (m + 1,erl} .



(The ‘m‘eaning of 1m€Rel(m,m) is clear: lm = {(j,j)fjé[m]j. In the sequal we shall use
some distinghuished morphisms of the support theory T, namely me< neT(m + n, n+ m),
mVme T(m + m,m), Omé T(0,m), .LnéT(n,O) and mAme T(m, m + m), whose meaning in
Rel is: meéen = {(j,n + D ]ielml] Ud(m +j,)]jenli; mVm = {(j,j):)je[m]z] U

Lim+jlielml}; 0 =@, L =0, mAm= G| jelmiuiGm+ plietmi

Note. The subtheory of partial, finite functions in Rel, denoted by Pfn and de- -

fined by the family of sets
Pfn(m,n) = $f{f: {m]«@[n] partially defined function ﬁ, for myn€N

is closed under the aforementioned operations. The theory Fn defined in @1.1 is not
closed under _feedback, hence it is inconvenient to use Fn as a support theory for
deterministic flowchéf't schemes (since Fn(1,0) = @, for the unique function f €Fn(2,1)
we have f’T‘;éFn(l,O)_). The use of Pfn as support theory in the deterministic case is
equivalent to the extension of the concept of usual flowchart scheme to the concept of
partial flowchart scheme. A partial flowchart scheme is obtained from a usual
flowchart scheme by deleting some arrows, and one interprets such an absence of arrow
as a connection to an endless loop. For the sake of contrast, sometimes the usuél
flowechart schemes (over Fn) will be called compléte flowchart schemes.

‘1.2.2. Conversely, in the following section we shall see that it is easv to extend

the oper‘ations in Figure 4 from T to Fl , supposing T "contains" bijective, finite

X

funetions.

We collect these facts as the following slogan:

In order to define algebra FIX T We have to specify:
: -

- g double indexed set X;

- a support theory T containing finite bijections and

- endowed with operations acting as in Figure 4.




1.3. The algebra of representations (le T)
Fef? b

In order to extend our operations from T to FIX s T has to contain some
b .
distinghished elements m<>n€T(m + n, n+ m) representing the "block transpositions"

" . In the theory Rel the morphisms m<>n were defined inél.?,.l.,

“ m /
where m,n &N, i.e. ><
£ ~§m

n

The flowehart secheme in the normal form corresponding to a representation of
X - flowehart over T F = (x,f) is illustrated in Figure 5. The operations on flowehart
scheme representations can be obtained by applying first the operations in Figure 4 on
the pictures corresponding to the given representations, then by rearranging the
obtained result in an adequate, normal form, and finally by writing the representation
associated to the final picture.

The sum of two fovmal flowcha_rt sechemes illl;lstrates in Figure 6.a can be

rearr‘ahged in the normal form given in Figure 6.b. Hence, we can formally define the

sum of twa representations (x,f)€ Fl,, .(m,n) and (v,g) € Fly ~(p,q) by
. X,T X
(x,£) + (y,8) = (xy,(1 + p&o(x) + lo(y))(f Supil i(x)e»q + 1i(y))) ;

The composite of two normal flowehart sechemes illustrated in Figure 7.a can be
rearranged in the normal form given in Figure 7.b. Hence, we can formally define the

composite of two representations (x,f)€ FlX T(m,n) and (y,g)eFlX T(n,p) by
o)

B

(x,£) = (v,g) = (xy,(f + 10(\]))(1'n + i(x) 4> o(v))(g + li(x))(lp' + i(v) & 1(x))).

" The feedback of a normal flowchart scheme illustrated in Figure 8.a can be
rearranged in the normal form given in Figure 8.b. Hence, we can formally define the
feedback of a representation (x,f)EF].X’T(m +31,n+ 1) by

(5,64 = (I + ol e DIL + 1 iGN
Let us mention that the embeddings of X and T into FIX‘,T are given by the :
following applications:

ET(f) = (¢,f) for f&T(m,n), where ceX” is the empty word;

EX(X) = (x,m <> n) for x €X(m,n) .



| (The last equality can be extended to embed X™ into FlX T° }X(x) = (x,i(x)<>o(x)) for

A= G

We do not insist on the algebraic rules satisfied by the flowchart scheme repre-
sentations since this study is interesting only from a technical viewpoint. We only men-
tion that an algebraic structure, called flow, has been singled out, which is preserved by
passing from T to FlX,T’ and that FlX,T satisfies a universal property partially _'similar
to that satisfied by polynomials (those interpretations of X and T in a flow that satisfy

a certain supplementary condition can be naturally extended in a unique way to FIX T).
9

1.4. Flownomisls, ﬂow—calcﬁlus

As we pointed out in él 2 a flowchart scheme repr‘esented by a picture in a
normal form may also be repr'esented by a formal expression of the partlcular form.
(@ + %yt Xl f)‘[‘l(x )+ +1(xk) The final form of the calculus is obtained by

allowing arbitrary formal expressions written with It M ond YA,

Flownomieal expressions. Let X and T be as above. Define the sets EXPX,T(m,n)
of flownomial X-expressions over T of type m—>n as-follows:

(i) atomic elements x €X(m,n) and f&T(m,n) are flownomial expresions" of the
type m—;n;

(ii) combine flownomial expressions: if Fl s m->n, F2 : p->q, F3 : n->q and
F:m+1->n+1 are flownomial expressions of the indicated type then
Fl + F2 :m* p o= nta; F1 C F3 : m=-rqg and F1: m-—.>n are flownomial expressions of
the indicated type.

(iii) all flownomial expressions are obtained by using rules (i) and (ii).

A flownomial expression of the form ((1m * Xy i it xk) -4 r, where
Pz i(xl) ik i(xk) is said to be in a normal form; in the sequel we shall use the
i P "€ 5 1 ° = b J)e st — ? » ('_
following standard notation: x EKk = i(x) = >*J<k (x) o( )= ZJ<ko(x) x'= 2 j<y'>\3

ete. When T is closed with respect to +, - and 1 and contains the block transp051t10ns

: m@n, every flownomial expression can be brought to a normal form by usmxf the



following rules:

(R1) replace subexpressions involving only elements in T by the corresponding
value computed in T;‘

(RZ) the normal form pf feT(m,h) is (]_m . f)@‘G and of xeX(m,n) is

(um+m-mem¢%

(R3) the normal form of ((1m + %) »f)’i‘i(x) + ((1p +x" e f‘)’[*i(x‘) is

Gi e,

m+p

X+ X')[(]_m + peolx) + 1O{X,))(f + f')(ln +ix)eoq+ 1i(x’)

(R4) the normal . form  of ((1m e f)’i‘i(X) ] ((1n e f')Ti(X') s
Wl (e + Lol * 1€ oI + 1)1 + i) e TRISWALE S DN

(R5) the normal form of (1 +x)- f)Ti(X)’r wis

m+1
(1 + 01+ oo DI + 1< i,

Using these rules every flownomial exﬁressioh can be brought to a unique normal
form, hence ﬂownomial expressions in normel form give a eémplete and independent
system of representations for the congruence relation R generated by t_he rules (R1 - 5)
in the algebra of expressions EXPX,T' In addition, it can be proved that thg algebra of

representations Fl is isomorphic to the quotient algebra EXP' ./R. Consequently,
: G

> S|

in this enlarged frame we have the following identification:

representations by pairs = flownomial expressions in normal form.

The examples we shall give in this paper are related to the flowchart scheme in
Figuré 9.a. They use the variables x&X(1,3), yeX(1,1) and z€X(2,1). The support
_theory T is the theory of finite éartial funetions, i.e., T = Pfn. An element f€Pfn(m,n)
is represented by the sequence of its values, i.e., (Rl),f@),...,i‘—(m))n, where f(i) = "if
£(i) = undefined then .1 else f(i)", for i€[m]. For instance: the function fePfn(4,4)
given by f(1) = 1, f(2) = £(4) = 3, f(3) = 2 is represented by (1,3,2,3)4; (l,l.)3 represents
the funetion f€Pfn(2,3) given by £(1) = 1 and f(2) = undefined. (This representation of
finite partial functions is not elegant, and is éimilar to the representation of natural

numbers by bars, i.e., 7= tH 1 ete.)



Example. In this example we prove that the following identity holds in flow-cal-

culus:
[V 1=, + =11y +x+ x)(5,1,2,6,3,4,5)6m~2 ,

i.e., the normal form of the left-hand-side expression is the right-hand-side expression.

Indeed:
@x=[(1 +x)1<’~>3ﬁ‘:[(1 +-x)(4,1,2,3)4]’l‘;

el V]-x~[1 - (1,1)4 ]’ro [(1, + %41, 2;3) M
= {1, + 0L, + 1)1y + 00 34,129, I CIRS PR LR
=G x)(4,4,1,2,3), 11

o1, tx=ily" _(1,2)2]/r0 UL x)(4,1,2,3)4]1‘1 e
= (1, * WL, + 100+ 1L, + (41,2,9),)(15 + 093 ¢ TNILE
= [(14 + %)(1,2,6,3,4,5) 14 5

o (1V 131, +x) = [T+ x)(4,4,1,2,3) AL 10,4 x1,2,6,3,4 s)él’r] =

={(1?+x+x)[((44123) +1 )(13+1e->3)((126,34o)6+1 M1 +1<->1)]3’r
= [(1, + x + X)(6,6,1,2,7,3,4,5);] 142

ol(1 V 1+ x)(1 n)}’r [(12+x+x)(66127345) 1424 =
= {1, +x+x)[(1 +64~>1)(6612734J)7(]4+1®2)M‘M‘2

= [(1,1 =X+ x)(5,1,2,6,3,4,5)6]

2. SEMANTIC MODELS

The basic model for the study of semantics of deterministic flowchart schemes
has been introduced by C.C. Elgot. It consists in the following: Let S be the set of va-
lue-vectors denoting the states of memory in a computing device (the values in the re-
gisters of memory). A deterministic flowchart scheme F with m entries and n exits is
interpreted via an interpretation 1 as a partial funetion FI :[m]x 8 <>[nlx S with the
meaning that ”FI(j,s) is defined and equal to (j',sH" iff "if the execution of the program
obtained by interpreting F via I begins at entry j of the program with initial state of

memory s, then the execution halts at exit j' of the program, the resulted state of



memory being s'."

If we denote by
Pfn_ (m n)= {f|f:[mlxS-e[n)x$S partial functlonj for m,n€N

we obtain a "theory", in a vague sense, Pfﬂ which is the basic semantic model in the
deterministic case.

Note that in the particular case when S has exactly one element ans can be
identified with Pfn defined above (él.?@f}. In this case the stress is laid on flow of
control, whereas the memory Sstate remains unehangéd.

In a similar way has been introduced the basic semantic model in the
nondeterministic case. A nondeterministic flowchart scheme F with m entries and n
exité is interpreted, via an interpretation I, as a relation FIC,‘([m]X‘S)X([n]XS) with the
meaning that "((j,s),(j’,s‘))eFI" iff "if the execution of the program obtained by
interpreting F vial begin‘s at entry j of the program with initial state of memory s, then
the execution may halts, on one variant, at exit j of the program, the rjesulted state of

memory being s'." If we denote by

Rel (m,n) = srfre(mlx8)x([n]xS)y, for mneN

then we obtain a theory Rels which is the basie sémantic model in the nondeterministic
_case. |

‘As above, in the particular case when S has exactly one element, Rels can be
identified with Rel defined in ©1.2.1.

In Rels mgny operations and algebraic structures may be considered. The
operations which interest us (sum, composition and feedback) have the following
definitions.

For r‘éRels(m,n) and r'e Relq(paq) the sum r + r'e Eels(m + p,n + q) is defined by
r+ et = USm + §,8),(n + 3,80 [((, s) (sNery.

For rERelS(m,n) and r'eEelS(n,p) the composite r - r'eRels(m,p) is the usual

one, defined by

pert = 3(03,8),3G,sN [ 3 G 055 € [n]x8 with ((G,s),(G ;s N€r and (35, ),(§',s1) Uﬁ



In order to define the feedback let us note that every relation vERelS(m,n) is
givén by a family of relations vi J.QSX 8, for delml, jelnl, . where
: 4
Ve {(s,8) [(G,9),(G,sN € v} . Denote by v* the reflexive-transitive closure of a relation
3 :

vVESXS, i.e., v*:-lstUvz,.n, where 152{(395)15683. Using these facts, for

r ER@ls(m +1, n+ 1) the feedback rf€ ﬁeig(m,n) is defined by

= ? L] * © > -- 3 -
5= B Y0 " Pyt " e,y Tor V€L, jelnl

We finish this section be defining the natural embedding of Rel in Rel , given by

the application
r !-*%((i,s)y{j,s))}(i,j)é r, s€S§.

Particularly, this application shows how various classes of finite relations in Rel
(bijective functions, injective functions, ete.) can be thought of as being elements in an

arbitrary Rels.

3. SYNTACTIC MODELS

In order to formalize some aspects regarding the study of flowechart schemes:
isomorphism, accessibility, reduction, minimization with r'es.pect to the input (step-by-
-step) behaviour, coaceessibility, minimization with respect to the input-output (step-
—by—steb) behaviour, the flow—calc'ulusv, introduced in @1.4,has to be augmented with
some rules of identification for flownomials. It is an important test for this calculus
whether the identifications corresponding to the natural aforementioned properties can
be (easily) defined. This task ean be done. The most. interesting fact is that for the
above properties there is a unique rule of identification (f.e., the equivalence relation
generated by simulation) that has as particular cases the identification rules necessary

for each property.

3.1. The - simulation relation. Let F = ((1m Xyt Xk) - 4T . and

I . . ’ :
Bl R ot xi(,) « Y be two flownomial expressions in normal form, having

the same type m-»n, and y € Rel(k,k") (think of v as a relation between the statements
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Xg5eey¥y Of F and‘the statements X} ;...,X), of F'). We say that F and F' are in simulation
via v (in symbols F—-—;E»VF‘) ifs

(i) (,iN €y implies X; = x}, :

(ii) the natural "block" extensions of y to the inputs of the statements, denoted

i(y), and to the outputs of the statements, denoted o(y), fulfil
fe(l +iy)= (1 *+oly)-f .

(this equality makes sense when T is closed under composition and the relations i(y), oly)
are "embedded" in T).

Let us explain in more details what we mean by "block" extensions and by
"embedding”. Suppose we are given the sequences XseesXp énd x'l,...,x'k, and the relation
ve Rel(k,k") satisfying (i). Define the block extension of y to the inputs of the
. statements x(v)CRel( J 1(x) ZJ’Q ,1(x ) as follows: An se[S,J(k
in a unique way as s = Zj<o<(s)l(xj) f?v(s), where «(s)€[k] and ﬁ(s)?[l

x.)] can be written

(s ))] (read

this: s is the input that has the number @(s) of the statement that has the number « (s)

. . ok e
in the sequence xl,...,xk).‘ Similarly, every &' ¢ [Zj'ﬁk

de i< o(,(S)x(x )+ @'(s"). Now the relation i(y) is defined by

,i(x’j,)] can be written as

ity) = {(ss)l(o((s) (s ey and p(s) = fsH].

The block extension of y to outputs o(y)é‘ReR(Z‘Kko(xj), > (x’j)) is defined in a

i<k
similar way.

At a first stage we can _transléte "émbedding" by "ineclusion". Later on we shall
give a more general meaning to "embedding" that contains, as a particular case, the
embedding of Rel in Rel _ defined in &2, £)

The meaning of F ~+VF‘ »depends on the tvpe of v and will be given below for each
particular class of relations used for y. We only mention here that this notion of
simulation is the result of an historical process aiming to formalize some flowchart
scheme properties. Initially we had found that isomorphism and reduction can be

captured using simulations via bijective and surjective funetion, respectively. Later on

we found that accessibility could also be modelled by simulation, namely by simulation

[ ——

£) See also the Appendix below.



A
via injective functions, and the input (step-by-step) behaviour eould be captured using
simulations via functions. Coaccessibility can be modelled by simulation via eonverses
of injective functions, and the input-output (step-by-step) behaviour, in - the

deterministic case, can be captured using simulations via partially defined functions.

3.2. Equivalences generated by simulations. For a subset A of Rel let us denote
by -, the simulation via A-relations, namely "F m}AF' iff there exists y in A such
that F -->va' " and by = , the eqfxivalen}ce relation generated by —75- By the abové
comments it follows that the most interesting subsets A of Rel are: Bi (bijective
functions), In (injective functions), Sur (surjective funetions), Fn (functions), in~ 1
(converses of injective functions), Pfn, Sur ™! (converses of surjective functions), and
Rel.

In the case when A is closed with respect to sum and composition, = A is a
cong¥uence relation, hence the operations can be defined in the quotient structure
FIX,T/ = A The resulted algebraic structures FIX,T/ 2 gea for certain X,T and A, are

. the basic syntactic models for flowchart secheme theory.

4, FLOWCHART SCHEMES

In seection §1.1 we emphasized that more representations by pairs (or
equivalently, flownomial expressions in normal form) corresponds to a flowchar.i;
scheme, the difference being generated by the way the statements of the scheme are
linearly ordered. This observation suggests the identification of a flowehart scheme
with the class of its representations. The mathematical formulation of the fact that
two representations represent the same flowchart-picture is capturated by the

simulation via bijective -functions.

4.1. The simulation via i)ijéctive funetions (isomorphism). Suppose the support
theory T "contains" bijective finite functions. The meaning of the wording "contain" will

be specified later on. In the usual case T is a subt-heory of Rel, hence the meaning is



clear: T2Bi.

The definition of simulation via bijective functions is obtained form the géneral
definition, given in £3.1, using for y morphisms in Bi. |

In the particular case when T is a subtheory of Rel the meaning of the simulation
"g «—>»yF’ with y in Bi" is "F and F' represent the same flowchart scheme, the bijection y
doing the connection between the linearly ordered statements of F and of F."
Therefore, the simulation via bijective funections can be named "isomorphism".

Now we turn back to the gfenerai setting. For the congruence relation =

Bi’
generated by ~>Bj ’ the following equivalent characterizations can be given:

(i) = g

: T g (hence —¥p; is a congruence);

(ii) = Bi is the congruence relation generated by the identifications
(<= X)(x+x)neqg= pgimeDp: (x' + x), where x & X(m,n) and x' € X(p,q)

(see Figure 10.a).

4.2. The mathematical concept of flowehart schemes. The above facts show that,
" in the case T&Rel, a flowchart scheme can be identified with an element in the

quotient structure FIX,T/ = B Generalizing, we say

the elements in a Fl / = . are (abstract) flowchart schemes.
X1 Bi

4.3. The glgebra of flowechart schemes (biflow). We had selected some identities,
writteﬁ in terms of TR el Vs }‘m and m<>n, and satisfied by flqw’chart schemes, in
order to define an algebraic structure, called biflow. The identities are listed in table 1
and illustrated in Figure 11. Thé main point is that this set of identities is complete, i.e.
they suffice to prove that flownomial expressions over Rel, which represent the same
flowehart scheme, are équal. Consequently, the identities, listed in table 1, completely
characterizes ﬂowchart schemes from the algebraic point of view.

In more details, a biflow B is an abstract structure given by:

a family of sets {B(m,n)}m n>0’ the distinguished morphisms lnE{B(n,n);
I



=

men €B(m + n, n+ m); three operations: composition < : B(m,n) X B(n,p)
-»B(m,p), sum + : B(m,n)xB(p,q) =>B(m + p, n+ q) and feedback 4: B{m + 1,
n+ 1) ~>B(m,n) '
and satisfying the identities listed in table 1. The axioms (B1-6) show that a biflux B is a
strict monoidal category; (B1-10) show that B is a symmetric strict monoidal category

and the finite bijective functions are embedded in B; (B11-15) axiomatize the feedback.

(B1) (fg)h = f(gh) (B9) me>(n + p) = (me>n + l.p)(ln + m<>p)
(B2) 1 _f=f=f1_ (B10) (f +g)- ne>g=me>p- (g + f)
(B3)(f+g)+h=f+(g+h) forf:men, gt perg
(B4) 1+ f=f=f+1, (B11) fg4h = (£ + 1 )g(h + 1 N1P
. " Bt al

(2 I (B12) (f +g)t =1 tgt
(B6) (f + g)u+ v) =fu+gv (B13) (f(ln + AP = (@ 2)f) 49

for m fgn Eap, m'-g>n’—\—'>p’ forf:m+p-=>n+qg,g:q->p
(B7) i nom= 1 (B}4)11'?‘=10
(B8) 0«>n=1_=n0 (Bl&]&%1¢z11

Table 1. These axioms define a biflow

Semantic models: Eels and all of its subtheories, which contain the embedding of
Bi in Rels (cf. §2), are biflows. Particularly, Bi, In, PSur (partial, su_rjective functions)
Pfn and Rel are biflows.

Syntactic models: If T is a biflow, then Fl ; is a biflow.

x,7/ 7B

Generally, the support theory T for the flowechart schemes which interest us, has
at least a structure of biflow. Since Bi is an initial biflow (in the sense of category
theory: for every biflow B there exists a unique morphism of biflows from Bi to B), the

initial wording "the support theorv T contains bijections" gets a precise meaning, when

T is a biflow.
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4.4. The universal property. In order to get an interpretation of flownomial

expressions in EXP (or representations in Fl,, ,.) in a biflow B we have to interpret

X% i

the variable in X using a rank-preserving application IX:X~~>—B (i.e.,

XGX(m,n)HIX(x)eB(m,n)) and the morphisms in T using a morphism of biflows
Ipt T>B (l.e,, Ip is given by a family of applications IT:T(m,n)-?*B(m,n) which
preserve the constants 1m’ mé&>n and the operations "+", ™", and "4". Now the inter-

| pretation of a flownomial expression in normal form F = ((1m FR st xk) o i

€EXPX,T(m,n) is .(IX,IT)f(F)EB(m,n), given by -
(xx,x,r)f(m = (1 + T(x) + o + Tl ) = L (D AT

(Of course, the restriction to normal form is inessential.)

The above formula makes sense in each abstract structure B endowed with 1m’

menomeM gnd "4 ". We have taken a biflow B in order that the interpretation (IX,IT)f

commute with the operations and in order that the = Bi " equivalent flownomial expres-~

sions have the same interpretation. The latter statement shows that the extension

E \f makes sense for Fl,, ./ = 5. t00, and in that case we denote the corresponding
T X&' ~Bi
)bf :

application by (IX,IT -=>B.

Fly g/ = gj

In the usual cases T is a subthéory of Rel, Bisa subtheory in a Rels, IX gives the
semantics for each statement x €X, and IT is the restriction to T of the embedding of
Rel into Rel. In this cases the interpretation (IX,IT)f(F) gives the behaviour of the

program obtained by interpreting via IX the flowchart scheme corresponding to the

flownomial expression F.

b
X ‘T

embedding (EX JT) of (X )i Bl

Let (E ) be the embedding of (X,T) into Fl T/ Bi obtained using the

X,T? defmed in §1 3, and the canonical projection

from Fl o . The universal property satisfied by FIX T/ = Bi is similar to
5 9

}xT/

that satisfled by the polynomials, namely

"for every biflow B and every interpretation (IX, IT) of (X,T) in B there exists a

. 5 : ol R bf :
unique morphism of biflows I ‘FIX,T/." Bi Yy~ defined

above).such that Et;q -t Iy and F,t% 1P - Ip."

— B (namely, (IX, I



e
A

In a categorical language this property shows that FIX T/ = B; is the coproduct of the

biflow T and the one freely generated by X in the category of biflows.

4.5. BFﬂﬁW»eaiéuims. The caleulus with flownomials associated to flowechart
schemes, called bi-flow-ealculus, is obtained by adding to the rules (R1-5), that define
the flow-caleulus (i.e., the calculus for representations introduced in @1,4), the rule
which consists in the identification of = Bi - echivalent flownomial expressions.

Another method to dgfine the same bi-flow-calculus is to consider flownomial
X - expresions over T together with the algebraic rules that define a biflow. More
precisely, the calculus is defined by the rule (R1) in 8)1.4 and (B1-4, B6, B10-13) in
table 1. (Since T is a biflow, the other rules (B5, B7-9, B14-15) are covered by (R1).)

Example. In this example we shall prove ’éhat the following identity holds in bi-

-flow-caleulus
(1v1 - x(l1 + y+ x4t (14 + y)(1,3,2,3)4 = (1v1 - x(l2 + ) 4(1,3,2,4) (15 * (y +y)ivil).

(a) Proof. Using normal forms: As in example in §1.4 the normal form of the
left-hand side expression is NF, = [(11 tx+y+x+yN4,1,5,6,3,2,7,4,3),] A% and of the
right-hand side expression is NF2 = [(11 + gt x+y+y) (4,1,6,5,2,7,4,3,3)7] ’F4. We shall

il

statements with respect to the sequences (x,v,x,y) and (x,x,v,y), hence condition (i) in

pr*ove"that NF »-%y NFZ' for the bijection y = (].,3,2,4)4. Note that y preseryves the
definition @3.1 holds. The extension of y to inputs is (1,3,2,4)4 and to outputs is
(1,2,3,7,4,5,6,8)q. Si_nce' (4,1,5,6,3,2,7,4,3)5(1g + (1,3,2;4)4) = (4,1,6,5,3,2,7,4,3)7 =
(11 +(1,2,3,7,4,5,6,8)g) (451,8,5,2,7,4,3,_3)7 condition (ii) in definition §3.1 holds, too.

(b) Proof. Using the algebraie rules (without marking the application of the rules
(R1) and (B1-4)):

(V1 X(1, 4y + D8 (1 + 91,3,2,8)5 =

S TIVE - R (1 + y+ 1) 1Ry + 91,32, by B6

C= (V1 x(1 + VAL, +y 1), + 9)(1,3,2,3), by B11
: 2 1 2 g 9



=1V e x(l2 + %)) 4‘(11 et ek y)(l1 + 141+ 11)(12 +1V1) by B6
= (1V1 - x(1, + (L, + 11l + y) +y)1, + 1V1) by B6, B10
= (1V1 - x(1, + )4 (1,3,2,4) (1, + (y + ¥) - e B by B6 .

5. ACCESSIBILITY ©

A flowchart scheme is a notation of a sequential computation process. In the
process of computation only the vertices that can be reached by. paths going from inputs
matter; these vertices form the accessible part of the scheme. Here we regard as
equivalent two flowchart schemes that have the same accessible part. In a formal
approach accessibility is captured by simulation via injective functions.

5.1. The simulation via injective functions; the resulted congruence. Suppose that
the support theory T "contains" injective finite functions. In the case T Rel this means
T21In.

The definition of simulation via injective functions is obtained from the ger1eral
definition, given in ¢3.1, using for y morphisms in In.

In the particular case when T is a subtheory of Rel the meaning of the simulation
g5 ~'>\’7 F' with y in In" is "F' can be .obtained from F by adding a part inaccessible from
F, namely that corresponding to the vertices that are not in the image of y". Of course,

- the relation o ™ is not symmetric, the meaning of the converse relation F' ;——- F being
"F can be obtained from F' by deleting the part corresponding to the complement of the
image of y; this part is not accessible from the remained one".

Now we turn back to the general setting. For the congruence relation =

in’
generated by —> = the following equivalent characterizations can be given:
° i = prssd e -——} °
e e e
- (if) = is the congruence relation generated by the identifications (€>X) in

& 4.1 and the identifications

@+ 00 =@ rxryd Y when f1 1 % Oy =

= (1m - ]_O(x) + Oo(y))g 4

I) In automata and system theory the similar property is called
"peachability" (cf, bib-Manes),




S
e >

where x and y are finite sums of variables;
< (ii)) = In is the congruence relation o~ satisfying
D YUR 9 + P o p e
(,_m) 1(1n V)~ (lm y)G = FA "~ G P where

F:m+p-sn+p, G:m+qg->n+qandyeinp,q)"
generated by the identifications ( «* X) and the identifications
(OX) 0. %= O, , where x& X(m,n) (see Figure 10.b).

Comments. By (i) two flowchart schemes are :I/n - equivalent iff they can be
transformed into the same scheme by deleting inaccessible parts: In (ii), by using
separate simulations via bijective functions, we can suppose that the injective function
y has the particular form 1[‘ + Os’ and, in this case, the meaning of the formula of
simulation is much clearer. Much more interesting is the characferization (iii), since it
reduces the generators to (¢>X)+ (OX) by restricting the class of the congfuenee

relations, used to generate =, to those satisfying (Pln)'

5.2. The mathematical concept of accessible flowehart scheme. The above facts
show that, in the case T.CTRel, every equivalence class with respect to =, contains an
aceessi.ble flowchart scheme, unique up to ah isomorphism. Consequently we can .
identify an accessible flowchart scheme to its = e equivalence class. Generalizing we

say

the elements in a FIX,T/ =y 800 accessible flowehart schemes.

5.3, 5.4. We do not insist on the algebraic rules satisfied by accessible flowehart
sechemes. We only mention that the corresponding algebraie structure, called inflow, is a
biflow, contains i‘njections (in order to generate injections we use the distinguished

morphisms O : 0~>n), and satisfies:

(1) -0 _t=0_, ford emre>un;
m n
(2) 8, k=1 +yle 4P = g9,

where f:m+p-—>n+p,g:m+qg->ntqgandy is an injection: p—-Q.
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5.5. In flow-caleulus. The caiculus with flownomials associated to access:iblé
flowehart schemes, called in-flow-calculus, is obtained by adding to the rules that
define the bi-flow-caleulus in f’wi‘j the rule which consists in the identification of
= s equivalent expressions.

For the algebraic version, we add the rules (11-2) above to the rules (R1, B1-4,
the

; i B
B6, B10-13) in Q4.5 that define algebraicallyibi-flow-calculus.

Example. In in-flow-calculus the following identity holds;

(1g+ 3+ x + Y(1,3,2,3,2,5,4,4),) B2 533,80

(a) Proof. Using normal forms: The normal form of 1éft-hand side expression (G in

Figure 0) is. NF, =[(1, +y+x+ y)(1,3,2,4,3,2,6,5,5)6]’f‘?’ and of (15 +y)(1,3,2,3), is

' NFz:[(14+y)(1,3,2,4,3)11]’f‘3. We shall prove that NF2 "*y NT, for the injection

yELH 0, = ’(1)3. Note that y preserves the statements with respect to the sequences
(y) and (v,x,y), hence condition (i) in definition § 3.1 holds. The extension of y to input is
(1) and to outputs is (1)5. Since (1,3,2,4,3),(14 + (1)3) = (1,3,2,4,3-)6 =41 0% (1)5) .

- (1,3,2,4,3,2,6 ’5’5)6 the condition (ii) in definition § 3.1 holds, too.

(b) Proof. Using algebraic rules (marking -the application of the new rules (I11-2)

only): Note that Oz(x +y) =,(O] + 01)(X +y)= Ox+ 0y9.# (by I1) Oq + e 04, hence

: (14 +0, )(13 oy ok y)(1,3,2,3,2,5,4,,4)5 = (13 F ik 04)(1,3,2,3,2,5,4,4)5 =

= (]3 * _\7)(]_4 G5 04)(1,3,2,3,2,5,4,4)5 = (13 + y)(1,3,-2,3)3(13 +10,).

Using (12) we obtain
(15 4y + %+ VN1,3,2,3,2,5,4,05147 = [0+ ¥)1,3,2,3)3) 20
hence the conclusion follows.

£)

6. REDUCTION

We repeat: a flowchart scheme is a notation of a sequential computation process.

T e e S e N PO Ry ¥ . , - T - 4
observability" (ef. Arbib-bManes, J. Pure Appl. Algebra 6(1975) 313-%44),
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Hence the result. of the computation depends on the sequences of statements to be
executed only. The (step-by-step) behaviour of a vertex in'a flowchart scheme is the set
of all finite and infinite sequences of statements that can be executed beginning with
the given vertex. In a flowchart scheme we can identify the vertices that have the same
behaviour and obtain a flowchart scheme that denotes the same computation process. A
flowehart scheme will be called reduced if it has no different vertices having the same
behaviour. Here we regard as equivalent two flowchart schemes that ean be reduced to
the same scheme by idéntifying vertices with the same behaviour. In a formal approach

reduction is captured by simulation via surjective functions.

6.1. The simulation via surjective functions; the resulted congruence. Suppose
that the support theory T "containg" surjective, finite functions. In the case T €Rel this
means T2 Sur. | |

The définition of simulatién via surjective funetions is obtained from the general
definition, given in § 3.1, by using for y morphisms in Sur.

In the particular case when T is a subtheory of Rel thé meaning of the simulation
e ~>§7 F' with y in Sur" is "F' can be obtained from F by identifying vertices which have
the same label and whose output connections are equal after identification". Of course,

the relation —> is not symmetrie, the meaning of the converse relation F' ;f"‘ F

A Sur _ .
being "F can be obtained from F' by (partially) unfolding same vertices'.
Now we turn back to the ‘general setting. For the congruence relation = gpp?

generated by ‘%Sur’ the following equivalent characterizations can be given:

TR e T S

(ii) = Sur is the congruence relation ~ satisfying

(P, ) "F(1_+y)~ (1 +y)G =F4Pn gAY,

Sur
where F:m+ p=>n+p, G: m+ q->n+qand y€Sur(p,q)"

generated by the identifications (¢>X) and the identifications

(VX) mVm - x = (x + X) - nVn, where x € X(m,n) (see Figure 10 e).



Comments. By (i) two flowchart schemes are R equivalent iff they can be
reduced to the same scheme by identifying certain vertices. The characterization (ii)
gives very simple generators for = Sur byy restricting the class of congruence relations
used to generate = Sur’

6.2. The mathematical concept of reduced flowchart scheme. The above facts
show in the case TERel every equivalence class, with respect to g contains a
reduced flowchart scheme, unique up to an isomorphism. Consequently, we can identify

~a reduced flowehart scheme to its = i equivalence class. Generalizing we say:

the elements in a FIX,T/ = g are reduced flowchart schemes.

6.3, 6.4. We do not insist on the algebraic rules satisfied by reduced flowchart
schemes. We only mention that the corresponding algebraic structure, called surflow, is
a biflow, contains surjections (in order to generate surjections we use the distinghuished

morphisms mVm : m + m ->m), and satisfies:

(S1) mVm =« f=(f+f)enVn, for f : m—>n;
(5211 _+y) =1, +yg > 4P =g,

wheref: m+p->n+p,g: m+g->n+ qgandy is a surjection: p-> q.

6.5. Sur-flow-calculus. The éalculus .with flownomials associated to reduced
flowchart schemes, called 'sur-flow—calculus, is obtained by adding to the bi-flow-
calculus the rule which consists in the identification of = Sup = equivalent expressions.

For the algebraic version, we add the rules (S1-2) above to the rules that

Lthe ' )
algebraically define\bi-flow-calculus in §4.5.

Examples. In sur-flow-caleulus the following identities hold:
(a) (1V1 - x(l2 + x))’f‘(,l.,l,.l.,l)1 =(1V1 » x)P (L ,1)1;

(b) (1V1 - x(1, + v+ xDH (1, +9)1,3,2,8)5 = (AVL - x(1, + N (1,3,2,3)5(1, + y) -
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Proof of (a) using normsal forms: The normal form of the left-hand side

expression is NF1 = [(11 g+ ><)(Z,J-,1,3,,L,I,Z)S]’F2 and that of the right-hand side

expression is NF2 — [(11 + x)(2,i,1,2)2]’f‘1

. We shall prove that NF1*~>’V NF2 for the
surjection y = (],1)16 Note that y preserves the statements with respect to the sequences
(x,x) and (x), hence the condition (i) in definition § 3.1 holds. The extension of y to-
51y +(1,1),) =
= (29-1»,172,-1—,1,2)2 = (11 + (1,2,3,1,2,3)3)(‘2,..L,1,2)2 the condition (ii) in definition §3.1

inputs is (1,1)1 and to outputs is (1,2,3,1,2,3)3. Sinee (2,1,1,3,.L.1.2)

holds, too.
Proof of (b) using algebraic rules. By the example in &§ 4.5 the left-hand side

expression is equal to
(1v1 - x(lz + ><))'i\(1,3,2,4)4(12 +(y+y)-1V1) =
=V >-:(12 + ><))’f~(1,3,2,4)4(12 +1V1-y) by (S1)

=(1V1 - x(1y + x))$(1,3,2,3)3(12 +y).

7. THE INPUT BEHAVIOUR (COMPLETE MINIMIZATION)

A flowchart scheme denotes a sequential coﬁputation process. For an input of
the scheme let us consider the set of finite and-infinite sequences of statements that
can be executed beginning with this input. (This set can be identified with the tree
obtained by completly unfolding the scheme beginning with the given input.) By (step-
by-step) input behaviour of a flowchart scheme we mean the tuple of the sets obtained
as above for each input. It is natural to .regar‘d as equivalent two flowechart schem'es
that have the same input behaviour. In the class of the flowchart schemes that have a
given behaviour there is a minimal one, unique up to an isomorphism. This minimization
preserves the completeness of the scheme, namely the minimal flowehart scheme in
FlX,an of a scheme over Fn is over Fn, too - hence the name. In a formal approacvh the ‘

(step-by-step) input behaviour is captured by simulation via functions.



)]
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~ 7.1. The simulation via funetions; the resulted congruence. Suppose that the'
support theory T "contains" functions. In the case TS Rel this means T 2Fn.
The definition of simulation via functions is obtained from the general defimtion,
given in § 3.1, by using for v morphisms in Fn.
| . —> g hence in the case T GRel the meaning

In the general case ~»,. & —>
& 2 Fn Sup

of the simulation "F .°"'>y F' with v in Fn" is "F' can be obtairjed from F in two steps: first
by identifying vertices with common labels and coherent continuations, and second by
adding inaccessif)le vertices". The meaning of the equivalence relation = Fr’ generated
by -—%Fn, is "F = FnF' & iff WE and F' have the same (step-by-step) input behaviour (or
equivalently, by completly unfolding F and F' we g‘c—f\/?«s&ame tuple of trees)" iff "by
identifying vertices and deleting inaccessible énes F and F' can be transformed into the
same minimal flowechart (with respect to the input behaviour )". -

For the congruence relation = Fr’ generated by ”‘)Fn’ the foilowihg equivalent

characterization can be given:

s

= —> o E— e = o .
Fn Sur In in Sur !

(ii) = Fp 18 .the_congruence relation ~ satisying
(Pp ) "F(L +y)~ (1 +y)G =F4EnG 19,
where F : m+p->n+p, G: m+qg->n+qand veFnlp,q)

generated by the identifications (<> X) in §4.1, (OX) in §5.1 and (VX) in &6.1.

Comments. By (i) two flowehart schemes are = oy equivalent iff by identifving
vertices and deleting inaccessible ones they can be transformed into the same scheme.
Again in (ii) we get very simple generators (now for :Fn) restricting the class of
congruence relations used for generation.

7.2. Computation proeesses {or minimal flowechart schemes with respect to the
input behaviour). In the case T&Rel every = - equivalence class has a minimal

Fn

flowchart, unique up to an isomorphism. Since two schemes are = i equivalent iff



Lo

they have the same computation sequences, we can identify such a eclass to g
computation process that consist in finite and infinite sequences of statemetns,

Generalizing we say

The elements in a MX,T/ = pp &re:

- minimal flowehart schemes with respect to the input behaviour;

- computation processes.

7.3. The algebra of minimal flowchart scheme (with respect to the input
behaviéur). We had selected some identities satisfied by such minimal schemes (namely,
the identities li‘sted in Table 2 and illustratgd in Figure 12), in order to define an
algebraicv structure, called funflow. The main point ié that the set of identities (B1-
15‘) +(F1 - 8), suffices to prove that flownomial expressions over Pfn, which represént
the same computation process, are equal.

Rigorously, a funflux (formerly a strong iteration algebraic theory) is a biflow B,
with some distinguishéd morphisms OmEB(O,m) and mVm €B(m + m,m), and satisfying
the algebraic rules listed in Table 2 (it should be emphasized that (F6) is not an
equation, but an implicatioﬁ).' The axioms (B1~10);(F1 - 5) give a presentation of
algebraie. theories - in the sense of Lawvere - in terms of sum and composition, hence

finite functions are embedded in each funflow.

-

L(F1) o0 &1 } (F5) me>n = (on i R Om) (n + m)V(n + m)

0
] = : 3 ‘ - y P q
H(F2) O _f=0_ -. (FG)f(lnfy) @ T Yy L =it
'(F3)(nVn+ln)-n\’n:(1n+nVn)-nVn forf:m+psn+p,g:m+qg->n+aq,

(F4) mVm e« f=(f+f)> mVn and y € Fn(p,q)

Table 2. The axioms in Table 1 together with these ones define a funflow

Semantic models: RelS and all of its subtheories, which contain the embedding of




Fn in Rels, are funflows. Particularly, Pfn and Rel are funflow‘s, Pfn being an initial
funflow.

Syntaatic models: If T is a funflow, then Fl,, ../ = . isa funflow.

Xl Fn

7.4. The universal property. Let (E;, Erfp) be the embedding of (X,T) into
FIX,T/ = obtained by using the embedding (EX, ET) of (‘X,T) into FlX,T’ defined in

s ' anoni jection fr o B P iversal proper
§1.3? and the canpmeal projection from FIX,T o IlX,T/ Fn The universal property
satisfied by FIX,T/ = pp 18

"for every funflow F and every interpretation (IX, IT) of (X,T) in F there exists a
G- A

: : ff

‘F 7 . * o= e =
unique morphism of funflows I .FIX’T/ an%}? such that EX I IX and
E'fr'lff:IT"'

" The axiom (F6) ensures that the interpretation (IX’IT)f’ defined in & 4.4, identifies
SRy equivalent flownomial expressions. The morphism Iff above is that induced by (IX,

b ; &
IT) in the quotleni structure FIX’T/ = Fn°

7.5. Fn-flow-ealeulus. The caleculus with flownomials associated to computatiqn
processes{or to minimal flowchart schemes, with respect to the inpuf behaviour}écal}ed
fn-flow-caleulus, is obtained by adding to the bi-flow-caleulus the rule which consists i'n‘
the identification of = T equivalent expressions.

For the algebraic version, we add the rules (F2, F4, F6) in Table 2 to the rules

: \_ﬁ?f\.@,
that algebraically define)bi-flow-caleulus.

Examples. In fn-flow-caleulus the following identity holds
F. G- H=[1V1x(1, + 01 (1,3,2,3),[(1; + 1V1- Vz) & + vl

where F :=[1V1- x(l1 3 s G = [(13 +y+xt y)(1,3,2,3,2,5,4,4)5] '7‘2 and

H = 1V1-y)z) t+ +1,. Moreover, the left-hand side expression is = Fn—mi\nimal.
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Indeed, by example §5.5 G= (15+y)X1,3,2,3), =2 G' and by example @6,5.!)‘ '
FeG=[1V1 °X(}'2 + x)] #(1,3,2,3)3(12 + v). Hence the identity holds. The left-hand side

expression is G minimal since the associated flowechart scheme is reduced and

accessible,

8. COACCESSIBILITY

Sometimeg in a computation process we are invter'ested in successful computation
seqt'!ences only (i.e., computation paths that finesh normally by reaching an output). In
that case, in the execution process only the vertices that belong to paths g:oing‘to
outputs matter; these vertices form the coaccessible part of the scheme. Here we
regard as equivalent two flowchart scheme that have the same coacecessible part. In a
formal approach coaceessibility is ecaptured by simulation via relation.s whose converses
-repres.ent injective functions.

The study of coaccessibility can be reduced to the study of accessibility, made i’n
é 5, bv using a principle of duality: The dual fiowchar*t scheme associated to a scheme F
with m inputs and n outputs, is the secheme Fo, with n inputs and m outputs, obtained by
reversing arrows of F (in the abstraect case this method consists in taking the dual
composition in the dual category). In this way the coaccessible part of a scheme F is the
accessible part of the dual scheme I*"O.

For this reason we omit any details here.

9. THE INPUT-OUTPUT BEHAVIOUR {DETEE MINISTIC MINIMIZATION)

The input-output behaviour of a scheme is the restriction of the (step-by-step)
input behaviour to the successful (terminal) paths. Here we regard as equivlaent two
flowchart schemes that have the same input-output behaviour. In the class of the
schemes that have a gi-ven input-output behaviour there is a minimal one, unique up to
an isomorphism. Thé minimization with respect to the input-output behaviour does not
preserve the completeness of a scheme, i.e., the minimal scheme associated to a

'scheme over Fn may be over Pfn \Fn. However, this minimization preserves the



determinism of a scheme, i.e., the minimal scheme in FiX Rel of a scheme over Pfn is
b 2
over Pfn, too - hence the name. Formally the input-output behaviour is captured by

simulation via pertially defined functions.

9.1. The simulation via partial functions; the resulted congruence. Suppose that
the support theory T "contains" partial functions. In the case T ¢Rel this means T2¥

'I’heéxfinition of simulation via partial functions is obtained from the general
definition, given in &3.1, Ey using for y morphisms in Pfn.

-1 +=>, = =, hence in the case T CRel the

: . s —> o
In the general case Pfn " hr Sur In’

meaning of the simulation "F '~'>yF' with vy in Pn" is "F' can be obtained from F in three
steps: first by deleting noncoaeceésible vertices, second by identifying vertices with
common labels and coherent cpntinuations, and finally by adding inaccessible vertices".

'is

he meaning'of the equivalence relation , generated by @?f

~ Pfn 0’

"F-“-Pf P iff "F and F' have the same input-output behaviour" 1ff "py deleting
noncoaccessible vertices, identifying vertices with common labcls and coherent
continuations, and deleting inaccessible vertices F and F' can be transformed into the
same minimal scheme (with respeet to the input-output behaviour)".

For the congruence relatlon P’ gnerated by 'an’ the following equivaleht

characterization can be given:

()= e =Pl P = L & s T
Pin In Sur In In Sur In !

(ii) = Pfn is the congruence relation v satisfying

(Ppyg) "E(L. + A (L + g)G= pA P~ GAY,

Pfn
where F:m+p=->n+p, G:m+g-=n+qand v & Pfn(p,q)"

generated by the identifications (<>X) in §4.1, (0X) in §5.1, (VX) in 66.1 and

(LX) xd =4 where x € X(m,n) (see figure 10 d).

Comments. By (i) two flowchart schemes are = pe, = equivalent iff by deleting



g O :
A

noncoacecessible vertices, identifying vertices and deleting inaccessible ones they can be
transformed into the same scheme. In (ii) we get very simple generafgors for = Pen’ by
i‘estrieti‘ng'the clas of congruence relations used to generate = Pfn”

9.2. Successful computation processes (or minimel flowehart schemes with
respeet to the input-output behaviour). In the case T SRel every = Pfn "~ equivalence
class has a minimal scheme, unique up to an isomorphism. Since two schemes are
= pepy equivalent iff they have the same successful cqmputation processes, we can

identify such a class to a successful computation process that consists in finite terminal

sequences of statements. Generalizing we say:

The elements in a FIX’T/ = pep 80
- minimal flowchart schemes with respeet to the input-outpur behaviour;

- suecessful computation processes.

9.3, 9.4. We only mention that the algebraic structure corresponding to succes-
sful computation processes, called parfunflow, is a funflow, contains partial functions

(_in order to generate partial functions we use the distinguished morphisms ‘Lm s m->»0),

and satisfies:

(P1) £ - 'Ln = <'Lm’ for £ : m=> n;

(P2) f(1n +y) = (1m +y)g = f 4P = ngﬂ,

where f : m+p->n+p,g: m+qg->n+qandycPinlp,q) .

9.5. Pin-flow-ealeulus. The caleulus with flownomials assoeciated to successful
computation process (or, to minimal flowchart schemes, with respeet to the input-
output‘ behaviour), called pfn-flow-calculus, is obtained by adding to the bi-flow-
caleulus thg rule which consists in the identification of = Pfﬁ - equivalent expressions.

For the algebraic version, we add the rules (P1-2) above to the rules that



O3
<z

1P
\_IL'\@
algebraically definé\fn-flow-caleulus in & 7.5.

Example. In pfn-flow-calculus the following identity holds
B+ G e 00w BEL: ¢ ),

where F,G,H are those defined in example &§ 7.5. Moreover, the left-hand side
expression is = Pfn " minimal.
Indeed 1,= 'LO’ hence 3+ 1L el k= [(11 +1V1 - yzl % 1, =

=gy 1L sogl R L 0 = (by P1).L o+ Consequently, using the exampleg{?.S we obtain
F-G-H=[VL.x(1, +x]11,3,2,3)(L, +y) = (1V1 - x(1y + DT (L,1,4,1) v

Finally, using the exampleéﬁ.a the desired identity follows easily. The left-hand side
expresgion is :an-minimal since the associated flowehart scheme is coaccessible,

reduced and accessible.

10. COREDUCTIORN

In the case we are interested in the study of input-output behaviours we ean
successfully use the duality defined in @8. The input behaviour is not preserved by
dixality, while the input-output behavidur is preserved. More exactly, the input-output'
behaviour of a dual scheme contains ‘the same computation sequences as. the givgen‘
scheme, but having the statements concatenated in the reverse order. Let us call (step-
-by-step) cobehaviour of a vertex in a scheme, the ‘(step-by-step) behaviour of the
corresponding vertex in the dual seheme, defined as in ©6. In a scheme we can identify
vértiees that have the same cobehaviour, without changing the input-output behaviour
of the scheme. A flowchart scheme will be called coreduced if it has no different
vertices having the same cobehaviour. In a formal .approach‘ coreduétion is captured by
simulation via relations whose converses represent surjective functions.

This coreduction connot be used properly‘ in the context of deterministic
flowchart schemes. The reason is the following. By reduction we identify vertices

provided after identification they have the same output arrows and bring together the
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corresponding input érrows. By coreduction we have to identify vertices provided
after identification they have the -same input arrows and bring together | ii,he
corresponding output arrow; hence a nondeterministic choice -be’tween different output
arrows of continuation can appear.

More details can be obtained from §6 by duality.

. 11. NONDETERMINISTIC FLOWCHART SCHEMI ES

The feature of flowehart scheme we take now into account is "nondeterministic
choice", i.e., the possibility in a point of a scheme (input, or contmuatlon after‘ a
4 20, wm o1

statement) to have more arrows of continuation for the flow of control) and the
~ execution process chooses one variant in a random way. Consequently, in the context of
usual flowehart schemes, represented as in §1.1, the basic support theo'ry for this
nedeterministic case is Rel, while in the deterministic case the basic support theory
was Pfn. In the presence of the nondeterministic choice we are interested in considering
the -input-output behaviour, rather than the input behaviour. For modeling the input-
- -output behaviour, in this nondeterministic case we can try to apply simulation via
relations. This syntactic transformation of flowchart schemes is again useful: it is
correct, in the sense it preserves the input-output behaviour, but at the present‘ time
we do not know whether it is complete, i.e. we do not know whether two usual
nondeterministiec schemes, having the same input-output behaviour, can be connected by

a chain of simulations.

11.1. The simulation via relations; the resulted congruence. Suppose that the
support theory T "eontains” finite relations. In the case of usual flowchart schemes this
means T = Rel. The definition of the simulation via relations was given in c§ 3.1.

C = =1« > I T A 3 n Qg

In the general case “Zp. %= Ty, 1 - 1 She hence in the case

T = Rel the meaning of the simulation "F~»F'" is "F' can be obtained from F in four

steps: first by deleting noncoaccessible vertices, second by multiplying ‘\Iel“UCC“



keepping fix the inputs and sharing the outputs, then by identifying vertices that give
the same outputs and bring together the corresponding inputs, and finally by adding
inaccessible vertices". The meaning of the equivalence relation = Rel’ generated by
*&?}Rel’ is still unclear. We conjecture that "F = RelF' n iff "F and F' have the same
input-output behaviour".

For the congruence relation = Rel’ generated by %Rel’ the following equivalent

characterization can be given:

B T e T T R R

(1) Ty = 2= ;
Rel 1, Sur ! sur! Sur In R e

(ii) = Rel is the congruence relation ~ satisfying

(P, ) "R £y)nll + G=>F4Pr G4,

Rel
where F:m+p->n+p,G: m+g->n+qandy<ERel(p,q)"
generated by the identifications (&X) in §4.1, (0X) in §5.1, (VX) in §86.1, (LX) in

§ 9.1 and
(AX)x-nAn=mAm - (x + x), where x £X(m,n) (see Figure 10 e) .

As we do not know the semantic meaning of = Rel W€ do not insist on this

syntactic study which has been done as a natural extension of the above ones.

HISTORICAL COMMENTS

It is well known that the operations pf’(struc'tured program mingi,’i.e.,composition,
if-then-else and while-do are not enough for representing all flowchart scheme
behaviours, essentially due to their one-input/one-exit feature. However they suffice,
provided additional memory is permitted.

The basic Elgbt‘s idea in [3] is to use many-input/many-exit flowchart schemes,
having eomposition, tupling and_sealar iteration as basic operations. These operations
suffice for representing all flowchart scheme behaviours. More precisely, everv

flowehart scheme is "strongly equivalent" (i.e., is equivalent with respect to the input



behaviour) to a scheme built up from atomic schemes and trivial ones by means of these
operations. However, for representing all flowchart schemes (pictures) in this settiﬁg
one needs a veetorial iteration, which is not obtained by a repeated application of the
scalar iteration.

Th;f;ilg?eedback operation was introduced in [12]. It is a "scalar" operation and it
seems that this operation is more adequate to study (eyelic) flachart schemes than
scalar iteration..One reason is the following: All flowehart schemes (pictures) can be
built up from atomic schemes and trivial ones by means qf composition, (separated) sum
and (scalar) feedback.

(1) The representation of flowchart schemes by pairs (or by triples, provided that
the.connection morphism is sp-li“cted into its "input" part and its "transfer" part) is due
to Elgot; see [3,14,4,2]. At that stage the schemes were over Fn [3], Sur [4], or Pfn [2]
(although it was not tlwoughf of connections as being morphisrﬁs in a "theorv"), and the
operations 0;1 flowehart schemes were verbally defined. In [8] the connections were
thought of as being morphisms in an "algebraic theory with iterate". ?articularly , this
condition implies that in the case of usual flowchart schemes one has to ,replace Fn by
its closure with respect to iteration, namely ,A Pfn. The operaﬁons on flowechart
schérnes were defined formally by extending those of the theory of connections. The
representation of flowchart Schemes by flownomial expressions in normal form was
introdueed in f12, 13]. The extension to arbitrary flownomial expressions was given in
(7.

(2) The results of Sectioﬁ 1 and 4 are new. The details for Séction 1 were given in.
[6]. Without axiomatizing finite bijections the result of Section 4 was sketched in [13].
The results in &1 and §4 are stronger and much more natural than thdse in [8,5,2].
Actually a theory with iterate, as introduced in [8], may be defined as a biflow over an
algebraic theory; see [6]. The main result in [8] characterizes the representations in
FIX.,T’ where T is a theory with iterate, as being the "T-modul with iterate" freely
generated .by X. The extension to schemes in FIX,T/ :Bi, was given in [5]. The main

obstruction in obtaining a natural result regarding the algebraic characterization of



3

flowehart schemes in [8,5] was the using of an algebraic theory as support theory.
Indeed, the flowechart sechemes do not have a strizcture of an algebraic theory but only of
a strict monoidal category. This comment applies also to [2].-

(3) The results of Section 7 are the translation in terms of feedback of‘; the
results in [10]. In the translation of. these results the use of the new set of operations
(composition-sum-feedback) allows to separate the study of accessibility, given in
Section 5, from the study of reduction, given in Section 6. The results of Sections 5 and
6 aré new and cannot be Iproper‘ly done using algebraic theories and iteration.

(4) In section 9 we have given some details for the extension of the calculus for
deterministic flowehart schemes announced in [10, Section 7.a]. The results appear here
for the first time but a weaker variant directly follows from the results in the

nondeterministic case in [11]. The paper [11] covers the result of Seetion 11, too.
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APPENDIX 2

In this appendix we give an abstract of our work regarding the axiomatizing
of the verious classes of finite relations used before: bijections, injections
etc, It has been written for the East European Category Seminar (BECS'8E
Predela, Bulgaria, February 28 -March 5, 1988), hence it is written in a
categorical language and the notation are different from those used in the .

rest of the paper. (iiil as used here,is not ioim that was introduced on page

10!) Another title for the same work is "Finite relations as initial abstract

data types" - thig title is more adequate for the theoretical computer scientist

S

ON SOME SYMMETRIC STRICT MONOIDAL. CATEGORIES

Virgil Cézénescu and Gheorghe Stefénescu

We have found that each of some subcategories of the category‘ of finite S-sorted
relations Reis is freely generated by the set S of objects in a category of symmetric strict
monoidal categories (ssme-ies, for short) [2] endowed with an adequate additional structure.

.Rels as a category: An object of Relg is an element in the free monoid (8¥,0,e), i.e. O
denotes juxtaposition and e the empty string Notation: A string a€ S* is denoted as follows
a= alt\ aztj ek Gal ? where a €S; il 2y ...,0Y . A morphism fGReLS(a b) is a relation

< [lat]x[Ib]] such that (,])C‘flmplle gy bJ The composition and the identity morphisms
are the usual ones. e
Relg as a ssme (Rels, [,e, ) For féRelS(a,b) and ge‘RelS(c,d) we define
fngeRelglane,bnd) as fuf(lal +1, Ibl + DlGdegd;
Vo= 16101+ D lielialliu L) + 5D lielibll.

The subcategories PReiS: To define them let us consider the relations: A
aVa={,Dliellal1i0 § (la] +ii)]icllal]jeRel(ata,a), O, = DERelg(e,a),
afa=RGDliellallf UG, lal +1>1ie[tangems(a,aaw, a-@gm (8,0,

and the following sets R, = javalaes*y, /\z%a/\afaés*ﬂ " = {O |acs™¢ and

= {.L |acs*} . By using a parameter PSA := 3R vBA Rop B} the subcategory PRelg
is defmed as the least ssme of Relg which has the same objects as Relg and contains the
morphisms USLR\ Re Pﬁ . For instance, @Rels is the category of finite S-sorted bijections,
{ Rvﬁkels that of surjections, %ROE Rels that of injections, {R\I,RoﬁRels that of
funections ete.

The additional structure (the functor Gp): Let C be the category of ssme-ies, M that of
monoids and Ob: C~>M the functor which forgets the morphisms. The definition of G 1 C =M
is obtained from the definition of GA’ given below, by restriction to components correspondmg
to elements of P. The functor G, is defined by:

@ For a ssmc (B, [,e, ) the corresponding monoid GP(B) is defined as follows:




(i) Its elements eare S5-tuples (a,V, A0, L), where a€Ob(B), V€ B(aa,a), A\ € B(a,ana),
O €B(e,a) and L € B(a,e) satisfy the following identitiess

(1) (VB1)V= (1, 0BV)V 1% A(ADL) =AQ D /\)
2N : @A = O
3@ bov=1, @)A1 B )=
(49 oV =000 @) el L
(50l = 1e
6) AV = 1a

(TNEA = LA8 /\)(1a D Wa,am 1a)(vt:\v);

(ii) Its operation is defined by (a,V,A,0,1)- (b,V', A,0O', 1") = (aQb, uaDV\b,aD 13)(V'Y1V'),
(AR AN A \ra’bmb), OB, La.t% :

@ For a morphism Hé& C(B,B') the corresponding morphism GA(H) maps (a,V,A\,0,.1) into
(H(a), H(V ), H(A), H(O), H(.L)). |

The categories CP: The objects are pairs (B,F), which consist of an object B of C and of a

" (monoid) morphism F Ob(B)—a—GP(B) such that FUg = lOb(B p~> Ob is the natural
transformation which. forgets the additional struture, i.e., U (a,...)=a. The morphisms of
CP((B,F),(B‘,F’)) are those morphisms H €C(B,B'") that fulfil F GP(H) = Ob(H) F".

PRelg as an object in Cp, namely -(PRelS,FP): The definition of F, is obtained from the

y where UP : G

definition of FA, given below, by restriction to components corresponding to elements of P.

The monoid morphism F , : Ob(ARelg) = s*— G, (Relg) is defineq by F ,(a) = (a,aVa,aAa,0 4, -1 ).

THEOREM. If (B,F) is an object in CP
unigue extension to a morphism in CP from (PRelS,FP) to (B,F).

, then every monoid morphism H : 5% =>0Db(B) has a

COROLLARY. The category of finite S-sorted bijections @Rels forms the ssme freely -
generated by the set S of objects.
Our interest in finite relations comes from theoretical computer science. In the theory of

flowehart schemes the finite relations play a similar role as the numbers in classical algebra [1].

[1] C#&z&nescu V.E., Stefdnescu Gh., Towards a new algebraic foundation of flowehart scheme
theory, INCREST Preprint Series in Mathematics No.43/1987.

[2]. MaecLane S., Categories for the working mathematician, Springer-Verlag, 1971.

Virgil Emil Cézanescu Gheorghe Stefénescu

Faculty of Mathematies " Department of Mathematies
University of Bucharest INCREST
Str. Academiei 14 Bdul Pacii 220

70109 Bucharest, Romania. 76 922 Bucharest, Romania.
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The axioms (B4), (B8) and (B14) cannot be illustrated.

Figure 11 (continued).
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Figure 12, The axioms that are to be added to those

in Pigure 11 in order to define a funflow.
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