
INSTITUTUL
I D E '

MATEMATICA

I N$TifnU-:-lU,L NAT.! O NA,L
PE{N6RR'U CREATIE

,S.li"t ffi iF,,|rGA sl r Etrtlltil,eA
' , ' ' , . 1

ts s trt 0,250

*

1,

-.BUCUiBESTI

*t', 
. .

l  : , 1 ,- . , ]
, ,  

'  
, . i'  

. , ' ; , -  , j
t  

r  
" : l t '  l
t X

1".il
:' "13

/ , t " razut ts '



' - - - - - g

, , 1
' '  

i
!

i

t.

TOTVARDS A NEW ALGEBRAIC FOUNDATIOT'I OF

nlciwcirnnr scHEME THEoRY

by

virgil g,mil cAzAruescu*) and Gheorghe )TEFXnescu**)

December 7987

*) Faculty of Mathemctics, Universfty of Bucharest' Str'

Aead.emiei 14, 70109 Bucharest, Romcnic

n*) De.portment of Mathemotics, The Notfonal /nstitute for

Scientfffc and Technicat Creation, Bd" Pdcii 220' 79622

Buchdrest, Romania-

: ' : ; ' ,  '

: l  r '  i r 1

':., , ,.: ::', '.

:

$



TOTVARDS A NEW ALCEtsRAIC FOU}SDATIOXS

OF FLCIXlNCI{AFIT SCTIHffiE THEORY

virg i l  gmi i  cAzANEScU*)  and Gheorghe $TEFXNESCU**)

*) Faeulty of Mathematics, University of Bueharest,

'  St r .  Aeademiei  14,  ?0109 Bueharest ,  Romania

**)  Depar tment  of  Mathemat ies,  The Nat ional  Inst i tu te for  Seient i f ie

and Teehnieal creation, Bcl. Pfiei i  220, 79622 Bueharest, Romania.

INTRODUCTION

In the study of f lowehart schemes we use a new operation called feedbael<

(Figure 4.e) . instead of  the i terat ion to  model  the loops.  As in  the def in i t ion of  the

iteration appear implieit ly an identif ieation of the return points with the inputs, the use

of i teration implies the use of tupl ing (Figure 10 bis), therefore the algebraie theories

have had a main plaee in the study of f lowehart schemes. The use of feedbaek permits

to leave out the tupling. Our eonvietion is that t lre sym metrie str iet monoidal

categories I I  ]are the most adequate algebraie struetttres to study aeyelie f iowehart

sehemes. To studv f lowchart sehemes we use a symmetrie str iet monoidal eategory

endowed wi th  an adequate ax iomat ized feedback.

The aim of this paper is just to provicle motivation. Proofs wil l  be given

elsewhere.

1. A F'OBMAL REPRESENTATIO}'I OF FLOTI'CT{ART SCTTEMES

1.1" A representation bY Pairs

be represented by f lowehart pietures &s ln

usual  one:  s tar t  the eomputat ion beginning

the statements in the order given by arrows

The usual eomputation proeesses may

Figure 1. The meaning of t lre pieture is the

with the input vertex (START) and execttte
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unti l  an output .vertex is reaehed; in the ease a

aryow (ex i t )  i ts  exeeut ion g ives at  the same t ime

arrow on which the exeeution is continued.

T'he (abstraet) f lowchart schemes wil i  be

th ese eon erete flow eh a rt pi etures: q--qbg!ry9-!!-9!

statement  has more than one outPut

the in format ion regard ing the output

obtained bir a

of  s tatements

double abstraction

and an abstraet. ion

n f

O I

eot lneet lons.

The f irst abstraetion is easier to understand. It  eonsists of replaeing the eonerete

statements used to label the vert iees in f lowehart pietures by abstraet symbols

(variables). Sinee the statements we use lnay have more than one entrv and one exit,

the set  o f  var iab les is  a  double- indexed set  {X(m,n)}m,n€*.  An e lement  xFX(m,d is

c o n s i d e r e d a s a u n k n o w n e o m p t t t a t ! o 4 - ( a s t i 1 l

unspeeif ied eomputation proeess). Denote by X the disjoint union of this farni ly of

var iab les.  Two funet ions i ,o  :  X-+N speei fv  the numbers of  ent r ies and of  ex i ts

Irespeetively, eoruesponding to a variable.

The result of this abstraction is the usual notion of "f lowehart sehemen stttdied in

the sevent ies (Manna,  Gre ibaeh,  I {o tov) :  An X- f lowehar t  seheme is  a f in i te ,  loea} ly

ordered, oriented graph rvhose vert ices are eoherently labelied by symbols in X. Suel^r an

abstract ion of  the f lowehar t  p ie ture in  F igure L is  g iven in  F igure 2, '  where

x1,x3,x4,xb,x6 € X(L,1)  and x,  e  X(1 '2) .

The second abstraetion is more eompiicated, and at the present stage of the

presentation oniy e vague definit ion ean be given. Note that every f lowehart pietUre

ean be rearranged in a normal way be putt ing on a f irst level the statements of the

seheme and on a seeond levei the eonnections of the scheme. For example, the seheme

in Figure 2 ean be arrangted in a normal form as in Fip;ure 3. In this way we can image

the possibi l i ty of using a "theory" for eonnections. ( irynat ' t theory" means wii l  be

explained later.) in our eonerete iase, this theorV is the theory of f inite funetions Fn

for  mrn€ N

given by the familY of sets

Fn(m,n )  =  
[ r l f  :  Im ]+ [n1  fune t i on ] ,

where typ ieal lV Jn1 = { t ,2 , . . . ,n} .  An e lement  f  € .Fn(m,n)  used as a eonneet io t t  ind iet i tc :s
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the redireeting of f low of eontrol. For the scheme in Figure 3 the

is given in the fol lowing table

conneet ion g€Fn(8,?)

i l*1_ 2 3 4 5_ 6 _? 8
I

s ( j ) l  2  3  4  5  1  6  7  3

At the abstraet ievel we shall  use for eonneetions a trsupport 'r theorv T given

fami ly of  sets i f tm,n[m,n€N. An element f€T(Tr,n) is eonsidered as a

eornputation proeess with m entries and n exits

The result of this double abstraction is the eoncept of representation of an

X-ftowchart seheme over T. I t  ean be defined as fol lows. Foi x in the free monoid X*

we denote by lx l  t f re  length of  the word x ,  and for  je t lx l l  we denote by x i  the j - th

le t ter  o f  x .  Henee Also we use the notat ion:  i (x)  = i (x , )  *  . . . ;  i (x , - . ,  )I  x  = x1x2. . . * l " l  .  A lso we use the notat ion:  i (x)  = i (x .
r  l x  I

and o(x) - o(x.,) + .. .  + o(x r., . ,  ).  A representation of an X-f lowehart seheme over T n,i th
l ^ l

m entries and.n exits is defined as a pair

F = ( x , f )

where X = X, . . .x  i . - ,6  X*  speei f ies the ver t iees of  the seheme, ordered in  a l inear  wav,
I  I X I -

and f€T(m + o(x) ,  n  + i (x) )  speci f ies the conneet ion of  the seheme. The seheme in

Figure 3 may be represented as (*L*2*3*4xbx6,  g) ,  where geFn(8,?)  is  the funet ion

def ined above.

I t  must  be emphasized that  there may be more representat ions which correspond

to a f lowehart seheme. The differenee between these representations is generate<l by

the way in  which the s tatements of  the scheme are l inear ly  ordered as a s t r ing x€X*.

We denote by FIX,T the set of representations of X - f lowehart seLernes over T"

Nlore precisely,

1.2" Operations

White the above representation of sehemes by pairs F = (x,f) is eonvenient for

theoretieal purposes, for practieal purposes it  is ineonvenient in the sense that i t  does

b y a

known
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not show how the seheme F ean be obtained from the eomponents x and f of i ts

representation, To f i i l  in this gap nre introduee here operations on f lowehart sehems "

If we look at the normal representation of sehemes given in Figure 3, then we

ean deduce that every seheme ean be obtained from the eomponents of i ts

representations using the operations in Figure 4, ealled sum, composit ion and feedbaek.

More preeiselv, a f lowehart seheme F represented by the pair (x,f)€Flr. ,"(m,n) ean aiso'  A r  I

'
be represented bv a formal expression

( ( 1 -  +  1 .  *  . . .  *  X , . . ,  1 .  1 1 1 i ( x )  ,, , ,  " 1  "  
l x l  

.

: 1 -  - \

where f ' tx) d"notes the application of the feedbaek bv i(x) t imes, and 1,n€ T(m'm) is

the'seheme without ( internai) vert iees whieh direetly eonneets the i-th entry on the

i - th  ex i t .

1 .2.1.  The e lements of  T are eonsidered as par t ieu lar  sehemes having only

eonneetions between entries and exits ( i .e., without internal vert iees). Therefore, i f  the

\
operations above have sense in F1"," then they must be defined in T, too' The usuai

f lowehart sehemes have as support theory a subtlreorv of the theory of f inite relations

Rel defined by the familY of sets

Rel(m,n) = 
{ t  l re tml X [n]  re lat ionJ,  for  m,n€l{ .

Here the operations in Figure 4 have the following meaning'

The operat ions in  Rel .  For  r€" Im]x[n]  and r 'e [pJx[q]  the sum

r  +  r f  9 [m  +  p ]  x [n  +  q l  i s  de f i ned  by

r  *  r ,  =  r  u  l (m + j ,n  + I )  t ( j , j ' )er 'J .

For  r9 [m]x [n ]  and  r ' 9 . [ n ] x [pJ  t t re  compos i te  r ' r t c Im ]x [p ]  i s  t he  usua l  one  de f i ned  by

r  "  r r=  i ( j , j , ) [ t f , u r .  ex i s t s  u€ [n ]  sueh  tha t  ( j , u )e  r  and  (u , j ' ) e r ' ] .

Fo r  r€ [m +  1 ]x ln+  1 l  t he  feec lback  r f9 [m]x ln l  i s  de f i ned  by

.1=  l ( j , j ' ) l ( j , j ' ) e  r  o r  [ ( j , n  +  1 )G  r  and  (m +  l , j ' ) e  r l J  '
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(The meaning of . t r€Rel(m,m) is  e lear :  1nr  = { ( j , j ) f  :e tmt} .  In  the sequal  we shal l  use

some dist inghuished morphisms of t lre support theorlT T, narnely m<) n eT(m * nr n + m),

rnVm€T(m +  f f i ,m) ,  O*€T(Onm) ,  I ne  T (n ,0 )  and  mAme T (m,  m +  m) ,  whose  mean ing  i n

Re l  i s :  r n<en  =  { ( j , n+  j ) l j e  tm l j u { - t r  +  j , j ) l j e  t n l J ;  mvm =  i ( j , j ) } i e f  m l J  U

u t (m  +  j , j ) l j € tm l3 ;  om =  @,  rn  =  e ,  nAm =  l t : , : l l j € tm l3u { ( j , r  +  j ) i j e  tm l l . )

Note. The subtheory of part ial,  f inite funetions in Rel, denote<j by Pfn and de-

f ined by the famity of sets

Pfn(m,n) = l f  l f  :  Inr]-+>[nl part ial ly defined funetion ], fo. mrn €l.tr

is  e losed under  the aforement ioned operat ions.  The theory Fn def ined in  Qt . f  is  not

elosed under feedbaek, henee it  is ineonvenient to use Fn as a support theory for

determin is t ie  f lowehar t  sehemes (s ince Fn(L,0)  = @, for  the unique funct ion f  eFn(2,1)

we have fffFn(l,0)). f fre use of Pfn as support theorv in the determinist ie ease is

equivalent to'the extension of the eoneept of usual f lowchart seheme to the coneept of

part ial f lowehart seheme. A part ial f lowehart seheme is obtained from a usual

f lowehart seheme by deleting some arrows, and one interprets sueh an absenee of arrow

as a eonnection to an endless loop. For the sal<e of eontrast, sofretimes the usual

f lowehar t  sehemes (over  Fn)  wi l l  be eal led eomplete f lowehar t  sehemes.
\

1.2.2.  Conversely ,  in  the fo l lowing seet ion we shal l  see that  i t  is  easv to  extend

the operat ions in  F igure 4 f rom T to  FI*  T,  supposing T "eonta ins l  b i jeet ive,  f in i te

funetions.

We eolleet these facts as the follolv.ing siogan:

In order to define algebra tt"," we. have to speeify:

- a double indexed set X;

- a support theory T eontaining f inite bi jeetions and

' endowed with operations aeting as in Figure 4.
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1"3. The algehra of representations (Ut"rf)

In order to extend our operations from T to Flr,T, T has to eontain some

distinghished elements m<+n€T(m * n, n + m) representing the t 'bloek transposit ionsrt

where  m,n€N,  i . " .  *Vn . In  the  theo ryRe l  t he  morph isms  m< 'n  were  de f i neo  i n ! f  . 2 . t . .
n l  {m

The f lowchart seheme in the normal form corresponding to a representation of

X - f lowchart over T F = (x,f) is i l lustrated in Figure 5. The operations on f lowchart

seheme representations can be obtained by apptying f irst the operations in Fig"ure 4 on
f

the pictures eorresponding to the given representations, then by rearranging the

obtained result in an arjequateo normal form, and f inal ly by writ ing the representation

assoeiated to  the f ina i  P ieture.

. The sum of two fto.trrnaL f loweha*rt sehemes i i lustrates in Figure 6.a can be

rearydnged in the normal form given in Figure 6.b. Henee, we can formaliy define the'

sum of  two representat ions (x , f )€  FI* , " (m,n)  and (y ,g)e F l* , " (P 'q)  by

(x, f )  +  (y ,g)  = (xy, ( t ,n  *  p*o(x)  + 1o(v)Xf  + gXln+ i (x)<+q + 1,1u1))  '

The eornposite of two normal f lowehart sehemes i l lustrated in Figure ?.a ean be

rearranpled in the normal form given in Figure ?.b. Henee, we ean formall lz define the

composi te  of  two representat ions (x , f )€  F l ; . .p(m,n)  and (y ,g)e F l " , r (n ,p)  by

(x, f ) ' (y ,g)  = (xy, ( f  +  1o(v)X1n + i (x)+r  o(y)Xg + 1 i (x)Xlp+ i (y)e i (x) ) ) '

The feedbaek of a normal f lowehart seheme i l lustrated in Figure 8.a ean be

rearranged in the normal form given in Figure 8.b. I ' Ienee, we ean formaliy define the

feeboaek of  a  representat ion (x , f )gFI* , " (m + 1,n + 1)  by

(x, f ) t  =  (x , [ ( tm + o(x)++ 1) f (1n + 1<t  i (x) ) ] f )  '

Let us mention that the embeddings of X and T into F1"," are given by the

fol lowi ng applieations:

E" ( f )  =  ( t , f )  f o r  f €T (m,n ) ,  where  €€X*  i s  t he  emptv  word ;

E" , (x)  = (x , rner  n)  for  x  eX(m,n)  .
1\
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(The last equality ean be extended to embed X* into FrX,": E"(x) = (x,i(x)+ro(x)) for

x  e  x * . )

We do not insist on the algebraie rules satisf ied by the f lowehart seheme repre-

sentations sinee this study is interesting only from a teehnieal viewpoint. lVe only men-

tion that an algebraic strueture, eailed f low, has been singled out, whieh is preserved by

passing from T to F11,1r and that tt", ,  satisf ies a universal property part ial ly.similar

to that satisf ied by polynomials (those interpretations of X qnd T in a. f low that satisfy

a eertain supplementary eondit ion ean be natural ly extended in a unique way to FIX,T)'

1.4. Flownomials, flow-ealeulus

. As we pointed out in !t.Z a flowehart seheme represented by a pieture in a

no1.11uf form. may also be represented by a formal expression of the partieular form

((t ,n + *1 * . . . .  *  x l . ) ' i l t i ( t l_: i t1:Kt The f inal  form of  the ealet t lus is obtained bv

allowing arbitrary formal expressions written with "*tt, rr 'fr and frftr '

Flownomial expressions. Let X and T be as above. Define the

of f lorvnomial X-expressions over T of type m*>n as foi lows:

( i )  a tomie e lements x  €X(m'n)  and f  e  T(m'n)  are f lownomial

sets  EXP.,  - (m,n)
A l  r

expresions of the

type m*n;

( i i )  combine f lownomiai  express ions:  i f  F1 ,  m->n,  F2 ,  p+q,  F3 ,  n-+q and

F : m + 1-) n + I are f lownomial expressions of the indieated type then

F1 *  n2 :  m + p -+ n *  q ,  F1 .  F3,  m-+q add Ff  :  m->n are f lownomial  express ions of

the ind ieated tYPe.

(i i i )  al l  f lownornial expressions are obtained by using rules ( i) and (i i) '

A f lownomial expression of the form ((t* + *1 o " '  + xu) "f)t  
r '  where

r = i(x1) + .. .  + i(xu) is said to be in a normal form; in the sequel we shali  use the

following standard notation: x = Xj<kx5, i(x) = Ii<1i(xi), o(x) = I;apo(*3); x'= XjSO'*i

ete. When T is elosed with respeet to +r - and t an<i eontains the block transpositions

m<)11r every f lownomial  expression can be brought to a normal form by using thc
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fol lowing rules:

involving only elements in T by the eorresponding(R1) replaee subexpressions

value eomputed in T;

(R2) the norrnal  form of  f  e T(m,n) is (1m .  f ) t0 ancl  of  x e X(m,n) is

( ( t *  +  x )  ' m < + n ) t m ;

(R3) the normal form of ( ( r ,  + x) ' r ) f i (x)  + ((ro + x ' ) '  1 ' ;1t(x ' )  is

((16+p + x + x')[(1ln * pelo(x) + lo(x,)Xf a f 'X1p + i(x)+>q + t,,.*,,)]f i(**o');

(R4) the .normal form of ( ( rn l  + x) '  r ) t i (*) '  ( ( rn + x ' )  "  1 '11i(x ' )  is

( ( t r + x + x ' ) [ ( f * 1 o 1 * , ; X t n + i ( x ) < + o ( x ' ) X f ' + 1 i k ) X l q + i ( x ' ) + r i ( x ) ) ] ) C k o x ' ) ;

(R5)  the normal  form

(( t*  + x) [ (1*  + o(x)+ l1) f (1n + 1ei (x) ) ] t ) t r (x)  '

of ((16+t + x)  '  f ) f i (x)+ is

Using these rules every f lownomial expression ean be brought to a unique normal

form, henee f lownomial expressions in normal form give a eomplete and independent

system of representations for the eongruenee relation R generated by the rules (R1 - 5)

in the algebra of expressions EXP",T. In addit ion, i t  ean be proved that the algebra of

representations F1",, is isomorphie to the quotient algebra EXPX,T/R. Conseqttently,

in this enlarged frame we have the fol lowing identif ieation:

representations by pairs = f lownomial expressiotrs in normal form.

The examples we shall  give in this paper are related to the f lolvehart seheme in

Figure 9.a.  Thev use the var iqb ' les x€X(1,3) ,  y€X( l ,1)  anc i  z€X(2,1 ' ) .  The suppor t

theory T is the theory of f inite part ial funetionsn i.e., T = Pfn. An element f €Pfn(m,n)

is  represented by the sequence of  i ts  va lubs,  i .€ . ,  ( f ( r ) , t (z) , . . . , f rm))n,  where I ( i )  =  " i f

f ( i )  =  undef ined then -L e lse f ( i ) " ,  for  i€ [m] .  For  instanee:  the funet ion f  €Pfn(4 '4)

g iven by f (1)  = 1,  f (2)  = f (4)  = 3,  f (3)  = 2 is  represented b i r  (1 ,3,2,3)n;  (1 , I ) ,  represents

the f lnction fe Pfn(2,3) given by f(1) = 1 and fQ) = undefined. (This representation of

f inite part ial funetions is not elegant, and is r,t ,ru. to the representation'of natural

n u m b e r s b v b a r s ,  i . e . ,  ?  =  i t l l l l l  e t e . )
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Example. In this example we prove that the following identity holds in flow-eal-

culus:

x ) l t =  [ ( r ,  +  x  +  x X 5 , 1 , 2 , 6 , 3 , 4 , 5 ) 6 ] t 2 ,

of the left-hand-side expression is the right-hand-side expression'

t ( r v t ' * X l z *

i .e., the normal form

Indeed:

o x

o l "

= [ ( t  1 
+ x)1 +]  3 l f  = t ( r ,  + xx4,1,2,3)nl  f  ; ,

v  1 .  x  = l r z . ( 1 , 1 ) 1 1 t 0  -  t ( r ,  +  x X 4 , L , 2 ; 3 ) 4 1 t 1  =  
n + 1

=  { ( 1 2  +  x X ( ( 1 , 1 ) r  +  1 r X r 1 +  0 q , 3 X ( 4 , 1 , 2 , 3 ) 4  +  1 0 X 1 1  +  L + r 0 ) l J + 0 + 1  =

= [ (12  +  xx4 ,4 ,1 ,2 ,3 )4 ] t  ;

aLz+r  = [ t r  -  (1 ,2)z ] t0  + [ (1r  +  v \ (4 ,1 ,2,3)4] f1  =

= l (13 + x) [ (12 + 1<t  0  + 13X(1,2) r+ 14,1,2,3\4)Oz+o < ' B  +  1 1 ) 1 1 + o + 1  =

t
I

.

= [ (1g  + 'xX1,2n6,3 ,4 ,5 )u ] f  ;  
'

' t  - .

o(1 v  i .  xX12 + x)  =  t ( r ,  +  x) i (4 ,4 ,7,2,3)41t l  '  t ( t ,  +  1) (1 ,2,6,3,4,5)uJt1 =

=[12 + x  + x) [ ( (4 ,4 , ! ,2 ,3)4+ lgx lg  + 1 €3X(1n2,6,3 '4 '5)G + l tX1s + \  <e1) ]  1+2

. ,

.  
= [ (12 + x  + xX6 16r1r2, '1r3r4,5)r1 f " ;

e t ( t  v  1 ' x x l z  +  x ) l t =  [ ( 1 2  +  x +  x x 6  ' 6 ' r ' 2 ' 7 ) 3 ' 4 ' 5 h ] t 2 f  
=

=  { ( r t + x + x ) t ( t , + 6 € 1 X 6  ' 6 ' 1 1 ' 2 ' 7 ' 3 ' 4 ' 5 ) ? ( 1 4 +  L e , z ) l f  l t 2  = ' .  ,

=  [ (11 .  +  x  +  x ) (5 ,1 ,2 ,6 ,3 '4 ' 5 )6 ] t " '

2. SEMANTTIC IYIODEI-S

T h e b a s i e m o d e l f o r t h e s t u d y o f s e m a n t i e s o f d e t e r m i n i s t i e f l o w e h a r t s e h e m e s

h a s b e e n i n t r o d u e e d b y c . c . E l g o t . l t e o n s i s t s i n t h e f o l l o w i n g : L e t s b e t h e s e t o f v a -

lue-veetors denoting the states of memory in a eomputing device (the values in the re-

gisters of memory). A determinist ie f lowehart seheme F with m entries and n exits is

interpretecl via an interpretation I as a part ial funetion F, : [m1x S'e][n]x s rryith the

meaning that ,,Fr(j ,s) is defined and equal to ( j f ,s ')" i f f  " i f  the exeettt ion of the program

obtained by interpreting F via I begins at entrv j  of the program with init ial state of

memory s, then the exeeution halls at exit j '  of the program' the resulted state of
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memory being sr.tr

.lf we denote by

Ffnr(mon) = t  f  l f  :  Im]r  S-or ln lxS part ia l  funet ionJ ,  for  m,n€N

we obtain a 'rtheorv", in a vague sense, Pfn, whieh is the basie semantie model in the

determin is t ie  ease.

Note that in the part ieular ease when S has exaetly one element Pfn, ean be

identif ied with Pfn ciefined above tQf.t.{).  In this ease the stress is laid on f low of

eontro l ,  whereas the memorv s tate remains unehanged.

In a similar way has been introdueed the basie semantie model in the

noncleterminist ie ease. A nondeterminist ie f lowehart seheme F with m entries and n

exi ts  is  in terp i .e ted,  v ia  an in terpretat ion I ,  as a re la t ion Fr€( [mlxS)x11n]xS)  wi th  the

meaning that "(( j ,s)o(j ' ,s ')) € FI" i f f  uif  the exeeution of the program obtained by

interpret ing F v ia  I  begins at  ent ry  j  o f  the program wi th in i t ia l  s ta te of  memory s ,  then

the execution may halts, on one variant, at exit j  of the program, the resulted state of

memory being s'." I f  we denote by

Re l r (m,n )  =  { r l r s ( lm lxS)x11n lxS)J ,  f o r  m ,n€N l .

then we obtain a theory Rel, whieh is the basie semantie model in the noncleterminist ie

ease.

'As 
above, in the pr{rt ieuiar ease when S has exaetlv one elementr Rel, can be

ident i f ied rv i th  Rel  def ined in  Qt .Z. t .

In Rel^ many operations and algebraie struetures may be eonsidered. The
. S

operations which interest us (sum, eomposit ion and feedbaek) have the fol lowing

def i  n i t ions.

For r€Relr(m,n) and r '€ Relr(p,q) the sum r * r '€Relr(m * p,n + q) is defined by

r  *  r r= r  u{ ( (m + 5,s)o(n + j "s ' ) )  l ( ( j , r ) , ( j " r ' ) )e  r 'J  .

For  r€Relr (m,n)  and r '€Rel r (n,p l  ,n"  eomposi te  r  r teRel r (m,p)  is  the usual

one, defined by

,  \ t t r  \  / . r  r \ \  r  - 1  / .  \  -  r  1  - ^  . ' r  t t .  \
r .  pr  = l ( ( j ,s) , ( j ' ,s ' ) )13 ( jo,so)€[n]xs wi th (( jos),( jo,so))€r and (( jo,so),( l ' ,s ' ) )e r 'J  .
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In order to define the feedbaek let us note that every relation v€Rel.(nr,n) is

given by a fami ly of  re lat ions ui , j€ S * S, for  i  e Im],  1e [nJ,  where

ui , j  = t (s,s ' )  l ( ( i ,s) , ( j ,s ' ) )e vJ .  r . tenote by vo the ref lexivc-transi t ive elosure of  a relnt ion

v s S x 5 ,  i . e . ,  v u  =  1 S U v U v 2 . . . ,  w h e r e  t ,  =  { ( s , s ) { s e  S J .  l l s i n g  t h e s e  f a e t s ,  f o r

r€RelU(m + 1,  n + 1) the feedtrack r fe&eIU(m,n) is def ined bv

( t f  ) i , j  =  t i , j r r i ,n+1 "  rm+1,n+1 *  "  l 'm+1, j  ,  fo r  ie  Im] ,  3e tn ]

We finish this seetion be defining the natural embedding of ltel in Relu, given bv

the appl ieat ion

r  s{( i ,s) l j ,s)) I  i i , j )e r,  s e s}.

Partieularltz, this applieation shows how various elasses of f inite relations in R"etr

(bi j 'ective funetions, injeetive funetions, ete.) ean be thought of as being elernents in an

arbitrary l telr.

3. SY}ITACTIC A'ONELS

In order to formalize some aspects regarding the studv of f lowehart sehemes:

isomorphism, aeeessib i l i ty ,  reduet ion,  min i rn izat ion wi th  respeet  to  the input  (s te i r -by-

-s tep)  behaviour ,  eoaceessib i l i tv ,  min imizat ion n ' i th  respeet  to  the input*output  (s tep-

-by-step) behaviour, the f low-ealeulus, introdueed in Qterhas to be aug;mented with

some ru les of  ident i f icat ion for  f lownomiais .  I t  is  an impor tant  test  for  th is  ea lcu ius

wheth 'er  the ident i f ieat ions eorresponding to  the natura l  a forement ioned prcper t ies can

be (easily) definect. This task ean be done. The most interesting faet is that for the

above proper t ies there is  a  unique ru le  of  ident i f ieat ion ( i .e . ,  the equiva lence reJat ion

generated b5r sirnulation) t l iat has as part ieular eases the identif ication rules neeessarv

for eaeh propel ' t \ / .

3.1. The sirnulation relation. Let F = ((1* o *1 + .. .  + xU) . f)tr and
' r l

F'= ( (1,n *  
" l  

+  . . .  +  x [ , )  "  f ' ) t '  be t r ryo f lon 'nomia l  express ions in  normal  form,  hav ing

the same tvpe m-)n,  and y€I t .e i ( l< ,k ' )  ( th ink of  v  as a re la t ion betweet t  the s tatements
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t i 0'[,y';

xl , . . rx l .  of  F and the statements x ' r r . . . rx l . r

v ia y ( in svmbols F*|uFt)  i f :

( i) ( j, j ')€ v impties xj = xlr ;

(i i) the natural [bloek" extensions

i(y) ,  and to the outputs of  the statements,

of Fr). We that  F and F'  are in s imul.at ionsay

of y to the ihputs of the statements, denoted

denoted o(y), fulf i l

f  -  (1 + i(v)) = (1 + o(v)) " f '' m

(this equali tv makes sense when T is closed under ecimposit ion and the relations i(y), o(y)

arerrembeddedtr  in  T) .

Let us expiain in more detai ls what we mean by "bloekrt extensions and by

t 'embedding'". Suppose we are given the sequenees xl,. . .rxk and xl,. . . ,xlur and the relation

y€Rel(k ,k ' )  sat is fv ing ' ( i ) .  Def ine the b lo ik  extension of  y  to  the inputs of  the

statements i(y)€Re(Xraui(xr),  Ei51., i (*1,)) as fol lows: An s€[{ j<ki(xr) l  ean be wri t ten

in a unique way as s= I j .n(s) i(* j)  + p(s),  where d(s)elkl  and f ' (s)e[ i(xq(r))]  (reaci

th is:  s is the input that  has the number p(s) of  the staternent that  has the number q,(s)

in the sequenee xl , . . . ,xk).  Simi lar ly,  everv s '  G IX1<p, i (x] , ) l  ean be wri t ten as

s'-  Xi ,< q,1r, ; i (x l , )  + pr(s ' ) .  Now the relat ion i (y)  is  def ined by

i (v )  =  l (s ,s ' ) l (o ( (s ) ,  d ' {s ' ) )€y  and p(s )  =  
f  

' ( s ' )J  .

The bloek extension of y to outputs o(v)€Re[(E.,r,,o(x'), X.,r,.,o(x',)) is defined irr a
t \ l \  |  t \ n  I

s imi lar  wav.

At a f irst stage we ean translate "embedding't '  by "inelrrsiont ' .  Later on we shall

girre a more general meaning to t 'embedding" that eontains, as a part ieular ease, the

embedcJing of  Rel  in  Rel^  def ined in  Qr.  
t )

The meaning of F -+UF' depends on the tvpe of v and wil l  be given below for eaeh

partieular elass of relations used .for 
y. I{e onlv mention here that this notion of

simulation is the result of an historieal proeess aiming to formalize some flowchart

seheme propert ies. Init ial ly we had found that isomorphism and reduetion ean be

captured using simulations via bi jective and surjeetive funetion, respeetively. Later on

we found thnt aeeessibi l i ty coulcl also be lnociel led by simulation, nanrely by simulation

{ ' l  f : l r r r - r  r ' l  q n  t h r '  A r r n r a n . l  i v  J r n - l n r . r
, -  l  l r ' : J !  v v * l | Y t .
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via injeetive funetions, and the input (step-by-step) behaviour eould be eaptured using

simulations via funetions. Coaeeessibi l i ty ean be modelied by simulation via eonverses

of injeetive funetions, and the input-output (step-bv-step) behaviour, in the

determinist ie ease, ean be eaptured using simulations via part ial ly defined funetions.

3.?. Equivalenees generated by simudatiorrc" For a subset A of Rel let us denote

by -)4 the simu'iat ion via A-relations, namelv "F -+AF' i f f  there exists y in A sueh

that F *oF' "o and by = 
A the equivalenee relation generated by *R. By the above

eomments.i t  fol lor,vs that the lnost interesting subsets A of Rel are: Bi (bi jeetive

functions), In ( injee(ive funetions), Sur (surjeetive funetions), Fn (funetions), [n-1

(eonverses of injective funetions), Pfn, Sur-l  (eonverses of surjeetive funetions), and

Rel.

In the ease when A is elosed with respeet to sum and eomposit ion, = 
O is a

eongruence relation, henee the operations ean be defined in the quotient strueture

Ut*,r/ = 
O. The resulted algebraie struetures FlX,f/ = 

A , for eertain X,T and A, are

the..basie syntaetie models for f lowehart seheme theory.

4" FLOI{CIIART SCT{EMES

In seet ion € t . f  we emphasized that  more representat ions by pai rs  (or

equivalently, f lolvnomial expressions in normal form) corresponds to a f lowelrart

seheme, the differenee being generated by the way the statements of the seheme are

l inearly ordered. This observation suggests the identif ieation of a f lowehart seheme

with the class of i ts representations. The mathematieal formulation of the faet that

two representations represent the same flowehart-picture is eapturated by the

simulation via bi jeetive funetions.

4.t. The simutation via bijeetive funetions (isorncrphisnr). Suppose the support

theory T I 'eontains" bi jeetive f inite funetions. Tlre meaning of the wording "eontain'r wil l

be speeif ied later on. In the usual ease T is a subtheorv of Rel, hence the meaning is
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elear :  T3ts i .

The definit ion of simulation via bi jeetive funetions is obtainecl form the general

def in i t ion,  g iven in  $3.1,  us ing for  y  mr: rph isms in  Bi .

In the part icular ease nrhen T is a subtheorv of Rel the meaning of the simulation

"F -+uF' with y in BiI is "F and Fr represent the same flowehart seheme, the bi jeetion y

c lo ing the eonneet ion between the l inear ly  ordered statements of  F 'anc i  o f  F" . r '

Therefore, the simulation via bi jeetive functions ean be named "isomorphismf'.

Now we turn back to the generai sett ing. For the eongruenee relation = 
*i ;

generated by -+ni ,  the fol lowing equivalent characterizations ean be given:

(i) = 
tt  

= *Bi (henee -+", is a congruenee);

( i i)  = 
B. is the eongruenee relation generated by the identif ieations

(+>X)  ( x  +  x ' )  .  ne>  g  =  
B i  m<+  p .  ( x ,  +  x ) ,  where  xeX(m,n )  and  x ,e .X (p ,q )

(see Figure 10.a) .

4.2" The mathematieal eoncept af flowehar:t sehemes. The above facts show that,

in  the ease T€f te l ,  a  f lowchar t  seheme ean be ident i f ied wi th  an e lement  in  the

quot ient  s t rueture F lX, t /  =  
* r .  Genera l iz ing,  we say

the e lements in  a FIX.T/ = 
Bi are (abstraet) f lowehart sehemes.

4.3. The algebra of flowehart sehernes (biflow). We had seleeted some identities;

rvr i t ten in  terms of  ' r+r ,  r . r ,  f r4 \ " ,  1m and m+>n,  and sat is f ied by f lowchar t  sehemes,  in

order to define an algebraie strueture, ealled bif low. The identit ies are l isted in table 1

and i l lust rated in  F igure 11.  The main point  is  that  th is  set  o f  ident i t ies is  complete.  i .e .

they suff iee to prove that f lownomial expressions over Rel, whieh represent the same

flowehart seheme, are equal. Consequently, the identit ies, I isted in table 1, eompletely

charaeterizes f lowehart sehemes from the algebraie point of view.

In more detai ls, a bif low B is an abstraet strueture given by:

a  fam i l y  o f  se ts  {n (m,n ) } r , n rO ;  t he  d i s t i ngu i shed  morph isms  tn€B(n ,n ) ,
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.  m<rn€B(m *  n ,  n  +  m) ;  t h ree  ope ra t i ons :  compos i t i on  . :  B (m,n )XB(n ,p )

+B(m,p ) ,  sum + :  B (m,n )xB(p ,q )+B( rn  +  p ,  n  +  q )  and  feec iL raek  f :  B (p  +  1 ,

n  +  1 )  - )B (m,n )

and sat is fy ing the ident i t ies l is ted in  tab le 1.  The ax ioms (81-6)  show that  a  b i f lux B is  a

str iet monoidal category; (81*10) show that t l  is a sl lmmetric str iet monoiclal eategory

and the f in i te  b i ject ive funct ions are embedded in  B;  (Bt f - tS)  ax iomat ize the feedback.

(81) (fg)h = f(g'h)

( 8 2 )  l m f  =  f  =  f l n

( 8 3 ) ( f + g ) + h = f + ( g n r ' )

( 8 4 ) 1 0 + f = f - f + 1 0

{ B 5 )  1 m  *  1 n  =  1 m + n

( 8 6 ) ( f + g X u + v ) = f u + g v

for m tn 5p, m'.Srn'}p'

m+t n - n <+n't = 1
m + n

$ < + p = L  = n + 0
n

(Bg )  m<+(n  +  p )  -  (m+n  +  lOX1n  +  m<+p)

(810 )  ( f  +  g )  .  n t+q  =  mo*p ,  (g  +  f )

for  f  :  rn<-)n,  g  !  pe>g

(B?)

(BB)

Semant ic  models :

Bi in Rel, (ef" QZ), are

Pfn and [tel are bif lows.

Table 1. These axioms define a bif low

Rel, and al l  of i ts subtheories, whieh eontain the enrbedding of

bif lows, Part ieularly, Bi, In, PSur (part ial,  su*rjeetive funetions)

S5rntaetie models: I f  T is a bif low, then FI",, f /  = 
Bi is a bif l<lrn'.

Genera l iy ,  the suppor t  theory T for  t l re  f lowehar t  sehetnes whieh in terest  us,  has

at ieast a strueture of bif low. Sinee Bi is an init ial bif low (in the sense of eategory

theory: for every bif low B there exists a unique morphism of bif lovvs from Bi to B), the

in i t ia l  n 'ord ing I ' the suppor t  theory T conta ins b i jeet ionsrr  gets  a preeise meaning,  when

T is  a b i f low.

(811) t(etqh = ((f  + 1o)s(h + 1o))fP

(812) (f + g)fP = f '

(813) ( f (1n + g))+P

f o r f : m + p

( 8 1 4 )  1 r f  =  t o

( 8 1 5 )  1 < - u 1 f  =  l t

+ c'4P

= ( f ' l  +" - m

- > n  *  Q ,

gx)fq

g : q + p
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4,4. The unlEersal property. In order to get an interpretation of flownornial

express ions in  EXPT,T (or  representa i ions in  Ut" , " )  in  a b i f lon '  B we have to  in terpret

the variable i .n X using ,a ranl<-preserving applieation I..  :  X-*B (i"e.,- . , n '

x e X(m,n) t - r l . . (x)e B(nr ,n) )  anc l  the morphisrns in  T us ing a morphism of  b i f lows' x '

I * . :  T- )B ( i .e . ,  I .F  is  g iven by a fami ly  of  appl ieat ions I " :  T(m,n)- )B(m,n)  whieh
I

preserve the eonstants 1,nr m4)n and. the operations rr+it,  rt .rrr and t ' f  t t).  Now the inter-

pretat ion of  a  f lownomial  express ion in  normal  form F = ( (1,  *  *1 +. . .  +  xO) ' f ) f r
' €

€ EXPX.T(m,n)  is  ( I " , l r ) ' ( I r )eF(m,n) ,  g iven by

tr*r" l tr l  = ((1m + I"(xr) + ...  + I"(xu)) . IT(f)) fr .

(Of eourse, the restr iet ion to normal form is inessential.)

The above formula makes sense in ea,eh abstraet strueture B endowed with 1*,

t r+r r ,  r f - r t ,  andtr f  t t .  
T"  

have. taken a b i f low B in  order  that  the in terpretat ion ( l - - . t * ) f
x '  l '

eommute wi th  the operat ions and in  order  that  the = 
Bi  

-  equiva lent  f lownomial  expres-

sions have the same interpretation. The latter statement shows that the extension

t .  .  t f  ,  '  - r  ! -  ^ l(IX,IT)'  makes sense for Fl",r/  = 
U, too, and in that ease we denote the eoruesponding

applieation by (1.,, I")bf r El" 

" 

/  = 
Ri-tB." L '

In the usual eases T is a subtheory of Rel, B is a subtheory in a Relr, I" gives the

semant ies for  eaeh statement  x€X,  and I ,  is  the rest r ie t ion to  T of  the embecld ing of

Rel into Relr, In this eases the interpretation (IX,IT)f(F) gives the behaviour of the

program obtained by interpreting via I" the f lowehart seheme eorresponding to the

flownomial expression F.
h h

Let  (E[ ,  E i )  be the embedding of  (X,T)

embedding (EX,  Er)  o f  (x ,T)  i l  t t " , r ,  def ined in

from Fl",T to FIX,T / = 
Bi. The universal propertv

that satisf ied by the polvnomials, nameiy

"for every bif low B and every interpretation ( l"r I") of (X,T) in B there exists a

ramelv,  ( Ix ,  I r )b f  def ined

above) sueh that u? .  tot = I* and u?' tot -  Ir ."

in to  F1*, "  /  =  
Bi  obta ined us ing the

€ f .S,  and the eanonieal  pro ject ion

sat is f ied bV F1" , " /  =  
Bi  i t  s imi lar  to
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In a eategorical language this propertv shows that Ft- -1 = , '= is the eoproduet of the
x , I  I ' l

bif low T and the one freely generated by X in the eategory of bif lows.

4.b. Bi*fio&'*ealeulus. The ealeulus with flownomials assoeiated to florrychart

sehemes, cal ied bi-f low-ealeulus, is obtained by adding to t lre rules (R1-5), that define

the f lonr-eale,.r lus ( i .e., the ealeulus for representations introdueed in Qf"4), the rule

whieh eonsists in the identif ieation of = 
Bi 

- eehivalent f lownomial expressions.

Another methgd to define the same bi-f low-caleulus is to eonsider f lownomial

X - expresions over T together with the aigebraie rules that define a bif low. I\4ore

prec ise ly ,  the ealeulus is  def ined bv the ru le  (R1)  in  [ f .a  anC (81-4 '  86,810-13)  in

tab le 1.  (S inee T is  a  b i f low,  the other  ru les (B5,  B?-9,814-15)  are eovered by (R1) . )

Example. In this example we shall  prove that the fol lowing identity holds in bi-

-f low-ealculus

( r v t - x ( 1 r + y + x ) ) f ( 1 3 + y x 1 ' 3 ' 2 ' 3 ) 3 = ( 1 v 1 " " x ( t r + x ) ) 4 $ , 3 , 2 , 4 ) 4 ( 1 2 * ( y + y ) 1 V 1 ) .

(a)  proof .  Using normal  for rns:  As in  example in  Qi .4  the normal  form of  the

l e f t - h a n d s i d e e x p r e s s i o n i s . N F l = t ( f r + x + Y + a + y ) ( 4 , 1 - , 5 , 6 ) 3 , 2 , 7 , 4 , 3 ) ? l f 4 a n d o f t h e

r i g h t - h a n d  s i d e  e x p r e s s i o n  i s N F 2 = t ( f ,  + x * x *  y + y )  ( 4 , 1 u 6 , 5 , 2 , 7 r 4 r 3 , 3 ) ? l  f 4 .  W e  s h a l l

prove that  NF,  *y  *U,  for  the b i jeet ion y  = (L,3,2,4)n.  Note that  y  preserves the

statements wi th  respeet  to  the sequenees (x ,v ,x ,y)  and (xrxoY,y) ,  henee eondi t ion ( i )  in

def in i t ion 9 l . f  ho lds.  The extension of  y  to  inputs is  ( i ,3 ,2,4)4 and to  outputs  is

(1 ,2 ,1 ,7 ,4 , s ,6 ,8 )g .  s inee  (4 ,1 ,5 ,6  ,3 ,2 ,7 ,4 rs )z (1g  *  f t , 31214)4 )  =  (4 ,1  ,6 ,513 ,2 ,7 ,4 ,3 )?  
=

(11  *  (1 ,2 ,3 ,? ,4 ,5 ,6 ,8 )g )  ,  ( 4 , I , 6 ,5 ,2 ,? ,4 ,3 ,3 ) ,  eond i t i on  ( i i )  i n  de f i n i t i on  {S . r  ho lds ,  t oo '

(b)  proof .  Using the a lgebra ie ru les (wi thout  mark ing the appl ieat ion of  the ru les

(Rl )  and (81-a)) :

( l v r  -  x ( t ,  +  v  +  x ) ) t  (1 ,  +  y ;11 ,3 ,2 ,3 ) ,  =

=  [ 1 V 1  -  x ( t ,  +  x X ( t 1  n  y *  1 2 )  +  1 1 ) ] f ( t U  +  y X t ; 3 ' Z ' 3 ) ,

:  ( 1 v 1  :  x ( 1 ,  +  x ) ) f ( 1 1  +  y  +  1 2 X 1 3  +  v X l , 3 , 2 , 3 ) 3

)Ld '  
L \ /  q  (

by 86

bv  811
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=  ( 1 V 1  .  x ( 1 2  +  x ) ) t ( 1 1  - F  y  +  i ,  +  y X l 1  *  1 * 1  +  i 1 X 1 Z

=  ( 1 \ r t  "  x ( 1 ,  +  x ) ) 4 ( 1 1  +  1 < + t ( 1 1  *  y )  + ' y x i 2  +  1 V 1 )

=  ( l v t  .  x ! r+  x ) ) f  (1 ,3 ,2 ,4 )4(12  *  (y  *  ) , )  "  1V1)

lV l )  by BG

b y  8 6 ,  B 1 0

b v 8 6 .

5. ACCESSItsILIT'Y 
S)'

A f iowchart seheme is a notation of a sequential computation process. In the

proees"s of eornputation only the vert ices that ean be reached by paths going from inputs

matter; these vert iees form the aeeessible part of the seherne. Flere we regard as

equivalent tnro f lowelrart sehemes that have the same aeeessible part. In a formai

approach accessibi l i ty is captured by sinrulation via injeetive funetions.

5,1. The simulation via injeetive funetion$ the resulted eongruenee. Suppose that

the suppor t  theory T "eonta ins"  in ject ive f in i te  funct ions.  In  the case T9Rel  th is  means

T 3 I n .

The def in i t ion of  s innulat ion v ia  in jeet ive lunet ions is  obta ined f ront  the genera l

def in i t ion,  g iven in  {1. t ,  us ing for  v  morp l r isms in  In .

In  the par t ieu lar  ease wl ren T is  a  subtheory of  Ret  the meaning of  the s imulat ion

t 'F 4V Fr  n, i th  y  in  In i '  is  r rF '  ean be.obta ined f rom F bV adding a par t  inaecessib le  f ron

F, namelv that eorresponding to the vert iees that are not in the image of y". Of eourse,

the re la t ion +In is  not  svmmetr ie ,  the meaning of  the eonverse re la t ion F '  j : *  F bei i ' rg

uF ean be obta ined f rom F '  by delet ing the par t  eorrcsponding to  the eomplement  of  the

image of  y ;  th is  par t  is  not  aeeessib le  f rom the remained one" .

Now n,e. turn baek to the general sett ing. For the cong'ruence relation = 
1n,

generated by +ln, the foi lolving equirralent eharacterizations ean be given:

. ( i )  = I n = l n f  ' * I n t

.  ( i i )  =  
In  i ,  the eongruenee re lat ion generated by the ident i f ieat ions (  4> X)  in

QA" t  anO the  i den t i f i ea t i ons

((1n,  + * ) r ) f i ( * )  =  ( (1 ,n + ;  +  y)g)* i (x  
+ v)  when f (1n *  1 i ( * )  o  o i (y) )  =

= (1,n n 1o(x) r. oo(o))* ,  ,

ill f ri or,iolnei'i;r- anci $;'stct,t 'dhcory tirc si rnilell propcr''r;y is ca.llcri

" J:CACi.\.tf i l :Llify't (c:i l , / i ::b:Lb*l, ia.nes ) ,



wherex arid

( i i i )

( p \. , .rn,

{,i
I r /

y are f inite sums of variables;

r o is the eongruetlee reiation ,^'  satisfvinS
tn

"F(ln + ,v) .v (1,n n y)G + F t P- G fq where

F  :  m  +  p+n  +  p ,  G  :  m  +  q - -Pn  +  q  and  Ve In (p ,q ) "

generated by the identif ieatioi l 's ( <+ X) and the identif ieations

(oX)  omx On ,  where  x€  X (m,n ) (see Figure 10.b) .

Commelts. Bv (i) trryo f lowehart sehemes are = 
Ir, 

- equivalent i f f  they ean be

transformed into the same seheme by deleting inaeeessible par:ts. In ( i i)o by using

separate simulations via bi jective funetions, we can stlppose that the in3ective funetion

y has the part ieular form 1r + Os, and, in this ease, the meaning of the formula of

s imulat ion is  mueh e learer .  Mueh more in terest ing is  the eharaeter izat ion ( i i i ) ,  s inee i t

reduees the generators to (€X) + (OX) by restr iet ing the class of the congruenee

relations, used to generate = 
1n, to those satisfying (PIn).

f.Z.The mathematieal eoneept of aeeessibte flor.sehart seheme. The above faets

show that ,  in  the ease T€Retr ,  ever5r  equiva lenee e lass wi th  respeet  to  = 
nn,  eonta ins an

aceessib le  f lowehar t  seheme, unique up to  an isonrorphism. Consequent ly  we ean

identifv an aeeessible f lowchart seheme to i ts = 
In 

- equivalenee elass" Generalizing we

say

the e lements in  a F l " . " /  =
Irr are aceessibleflourchart schernes.

b.g, 5.4. I{e do not insist on the algebraie rules satisf ied by aeeessible f lowehart

sehenles. tVe oniy ntention that the eorresponding algebraie strtteture, ealled inf low, is a

b i f low,  conta ins in ject ions ( in  order  to  generate in jeet ions l {e  use the d is t inguished

morphisms On :  0-*n) ,  and sat is f ies:

( I 1 )  O * f  =

( I2)  f ( tn  +

where

n
n

v ) =

f .

,  for f  :  nt*F n;

( 1 n . . , * y ) g * f f P = S f Q ,

m +  p  -+n  +  p ,  $  :  m  - l -  q+p+  q  and  V  i s  an  i n jee t i on :  p - *q '
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b.b. In f"low*celculus. The caiculus with flownomials assoeiated to aeeessibie

flowelrart sehelmes, calied in-flow-ealculus, is obtained by adding to the rules that

define the bi-f lor,v-ealculus in $ +"S ttre rule whieh consists in the identif ieation of

r  
"-  

-  equivajent expressions,
-LI  I

For t1re algebrt i ie version, we add the rules ( iF2) above to the rules (R1, BJ--4'

' iite
86, Bl0-13) in $a's t l . 'at define algebraieati i t lul-f tow-ealeulus'

Exarnple. In in-f lonr-caiculus the foi lowing identity holds;

( ( r ,  +  v  +  x  +  yX1 ,3 ,2 ,3 ,  2 ,5 ,4 ,4 )s )  t 2  =  (1s+  5 rX1 ,3 ,2 ,3 )B  .

(a) proqf. Using normal forms: The normai form of l€ft-hand side expression (G in

F i g u r e  g )  i s . N F r = [ ( 1 + + y + x + y ) ( 1 , 3 , 2 , 4 , 3 , 2 , 6 , 5 , 5 ) 6 ] t 3  a n d  o f  ( 1 r + v X 1 , 3 , 2 , 3 ) ,  i s

- ?
NF2 = t ( tn  + y) ( I ,3 ,2,4, tU f  

' .  \ (e  shal l  prove that  NFz +y NFl  for  the in jeet ion

y = 11 *  02 (1)r .  Note that  y  preserves the s tatements u ' i th  respeet  to  the sequences

(y)  anO ( l , ,x ,y) ,  henee eondi t ion ( i )  in  def in i t ion {  3 .1 hoids.  ' fhe extension of  y  to  input  is  '

( i ) 3  and  to  ou tpu ts  i s  (1 )b .  S ince  ( I , 3 ,2 ,4 ,3 )a (1g  *  (1 ) r )  =  (L ,3 ,2 ,4 ,3 )6  =  (14  +  (1 )5 )  '

,  (1 ,3,2,4,3,2,6,5,5)6 the eondi t ion ( i i )  in  def in i t ion Q f  . t  ho lds,  too.

(b)  proof ,  Using a lgebra ie ru les (mar l< ing. the appl ieat ion of  the new ru les ( I1-2)

only) :  Note that  or (x  + V)  = (O'  + otXx + v)  = 01*  *  OLV = (by 11)  03 o Ot  = O 4,  henee

( tn  n [6 r iX t ,  +  Y  +  x  +  v ) (1 ,3 ,2 ,3 ,  2 ,5 ,4 ,4 )s -  ( t ,  +  y  +  o4X1 '3 '2 '3 '2 '5 '4 '4 ) r=
";s 

+ vxt ,  + orxr  g. ,2,3,2 '5 '4.n4)5 = (13 + yx1'3 '2 '3)3(13 - f f i1 '

Usins (12)  we obta in

[ ( r ,  +  v  +  x  +  y X 1 , 3 , 2 , 3 ,  2 , 5 , 4 , 4 ) 5 ] { 2  =  t ( 1 1  +  y ) ( 1 , 3 , 2 , 3 ) 3 1  f 0

henee the eonelusion fol lot t 's.

c )
6" RED{JC"TION

We rePeat :

FlETutonata
l r  ^ 1 1 - , ^ - i r , ^ i . . i  I  . i  1 - - , i l

v v ! u t  v d v ! ! I  u J

a f iowehart sclreme is a notation of a sequentia. l  eomputation proeess'

^ r r r r  o ' n i a r ' r  * i r nn l r ;  'UhC  
S :L i : i i l A f  n r ^n /a -n ' i : r l - i  c  no l - l gd

J U  ' J A I J

(c1 ' .  ; l rb ib- l ' r i r i ]og,  ,J ' .  i 'L t re / t1r1, l I .  hJ- ;c  r - r ra 611,1 '1 ' r )  
'21?2- '24, i , )  

.
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Flenee the result.  of the eoinputation depends on the seqllenees of statements to be

exeeutecl only. The (step-bv-step) behaviour of a vertex ipi=4 f lrrwchart sehelne is the set

of al l  f inite and inf inite sequences of statements that ean be exeeuterl beginning with

the g iven ver tex.  In  a f t rowehar t  se l reme we ean ic lent i fy  the ver t iccs that  have the same

behaviour and obtain a f lowehart seheme that denotes the same computation proeess. A

flowehart seheme wil l  be ealled reduced if  i t  has no different vert iees having the same

behaviour. I lere v,re regard as equivalent two f lowehart sehemes that ean be redueed to

the same seheme by ident i fy ing ver t ices wi th  the same behaviour .  In  a formal  approaeh

reduetion is eaptured by simulation via surjeetive funetions.

6.1. The simulation via surjeetive funetions; the resulted congruenee. Suppose

that the support theory T 'reontains" surjeetive, f inite functions. In the.ease T CRel this

means T? Sur .

The definit ion of simulation via surjeetive funetions is obtained from the general

definit ion, given in I t . f  ,  h17 using for y morphisms in Sur.

In the part ieular ease when T is a subtheorv of Rel the meaning of the simulation

nF 
a 

Fr with v in Surrr is rrFr ean be obtainecl from F by identifying vert iees whieh have

the same label and whose output eonneetions are equal after identif ieation". Of eourse'

the relation *Su, is not symmetrie, the meaning of the eonverse relation Fr 
fr 

F

being, ,F ean be obta ined f rom F 'by (par t ia l ly )  unfo ld ing same ver t iees" .

Now we turn baek to the general sett ing. For the eongruence relation = 
$ur,

generated by *Su", the foi lowing equivalent eharaeterizations ean be given:

( i )  = 
r* .  

= -)  
sur 'Sur# i

(i i) = gup is the eon€fruenee relation rw

(Psur)  "F( ln + y)ru (1,  *  y)G 4 FtP -  Gt9,

where F :  rn + p->f l  + p,  G :  m + q +n

satisfying

+ q and ye Sur(p,g)"

generated by the ident i f ieat ions (eX)  and the ident i f icat ior rs

( v X )  m V m .  x  =  ( x  +  x ) .  n v n ,  w h e r e  x € X ( m , n )  ( s e e  F i g u r e  t o  e ) .



q q
q"qh.

Cornments. 'By ( i) two f lowehart sehemes are = 
Su, 

- equivalent i f f  they ean be

redueed to the same seheme by ident i fy ing eer ta in  ver t iees.  The eharaeter izat ion ( i i )

gives very sinrple generators for = 
Su" 

by restr iet ing the class of congruenee relations

used to generate = 
Srrr.

6.2. The rnathernetieal ecneept of redueed flowehart seherne. The above faets

show in the ease Te Rel every equivaienee elass, wit lr  respeet to = 
Sur, eontains a

reduced f lowehart seheme, unique up to an isomorphism. Consequently, we eah identify

a redueed f lowehart seheme to i ts = 
S", 

- equivalenee elass. Generalizing we say:

thb elements in u FIX.T/ = 
Su, are redueed f lowehart schemes.

6.3, 6.4" I{e do not insist on the algebraie rules satisf ied by redueed f lowehart

sehemes. I{ 'e only mention that the eorresponding algebr:aic strueture, ealled surf low, is

a bif low, contains surjeetions (in order to generate surjeetions we use the dist inghuished

morphisms mVm :  m *  m +m),  and sat is f ies:

(S1)  mVm .  f  =  ( f  +  f )  "  nVn,  for  f  :  m->n;

(S2)  f ( in  + v)  = (1n. ,  *  y)g *  f  fP = Bf9,

where  f  :  m  +  p+n  +  p ,  $  :  m  *  q+n  +  q  and  y  i s  a  su r jec t i on :  p - rq .

6.5. Surflow-ealeulus. The ealeulus with flownomials assoeiated to reduced

flowchart sehemes, ealled sur*f low-ealeulus, is obtained by adding to the bi-f low-

ealeulus the rule whieh eonsists in the identif ieation of = 
Sur 

- equivalent expressions.

For the algebraie version, we add the rules (S1-2) above to the rules that

' t['a
algebraieally defffi6i-ftow-ealeulus in Q+.s.

Examples. In sur-flow-caleulus the following identit ies hold:

( a )  ( t v t  -  x ( 1 ,  +  x ) ) f  ( J , 1 , r , 1 ) 1  =  ( 1 V 1  .  x ) f  ( a , 1 ) 1 ;

(n )  ( tv t  -  x (1 ,  +  y  +  x ) ) f ( t ,  +  : /X1 ,3 ,2 ,3 )3  =  ( i v l  .  x (1 ,  +  x ) ) f  (1 ,3 ,2 ,3 )g(12  +  y )  .
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Proof of (a) usir lg normal forms: The normal form of the left-hand side

exp ress ion  i s  NF . ,  =  [ (1 . ,  +  x  +  xX2 , I , 1 ,3 ,1 - ,1 ,2 )a ] f  2  
anO tha t  o f  t he  r i gh t -hand  s ide-  r  L  ' J '

1

express ion  i s  NF ,  =  [ (11+  xX2 ,  L , l , ,Z )Z ]1 r .  \ t ' e  sha l l  p rove  tha t  * t r *U  NF ,  fo r :  g re

sur ject ion y  = ( . l ,1)1.  Ncte that  y  preserves the s tatements wi th  respeet  to  the sequenecs

(x,x)  and (x) ,  hence the condi t ion ( i )  in  def in i t ion !  f  . t  ho lds.  ' lhe cxtens ion of  y  to

i n p r r t s  i s  ( 1 , 1 ) . ,  a n d  t o  o u t p u t s  i s  ( 1 , 2 , 3 , 1  , 2 , 8 ) , , .  S i n e e  ( 2 , , - L , \ , 8 , J , 1 , 2 ) o ( 1 .  +  ( 1 , 1 ) " ) =
I  .  '  '  . J  ' ^ ' ' '  ' * r _ , J . _ I  ' _ ' _ ' l

=  ( 2 , - l - , r ) 2 , . L , L , 2 ) r =  ( t i  o  ( 1  , 2 , 3 , 1 , 2 , 3 ) r X z , . . t - , 1 , 2 ) 2  t h e  e o n d i t i o n  ( i i )  i n  d e f i n i t i o n  Q s . t

holds, too.

Proof of (b) using algebraie ruies. Bv the example in Q +.s the left-hancl side

expression is equal to

( t v t  -  x ( 1 .  +  x ) ) f  ( r , 8 , 2 , 4 ) n ( 1 , . '  +  ( y  +  y ) .  1 V 1 )  =z  - ' - '  - ' 4 ' - z

=  (1V1  .  x (1o  +  x ) ) f  ( I , J ,2 ,4 )A ( rn  i  t v t  .  y )  by  (S t )
A 1 Z

= .  (1v1  -  x (1o  +  x ) )  t ( 1 ,3 ,2 ,3 )a ( l  n  +  v ) .

7. THE ['O{PUT BEIIAVIOT}R (CONTPLETE E{INTMIZATIOFT)

A f lowchar t  scheme denotes a sequent ia l  computat ion proeess"  For  an input  o f

the seheme le t  us consider  the set  o f  f in i te  and in f in i te  sequenees of  s tatements that

ean be exect t ted beginning rv i th  th is  input .  (This  set  ean be ident i f ied wi th  the t ree

obta ined by eomplet iy  unfo ld ing the seheme beginning wi th  the g iven input . )  By (s tep*

by-step) input behaviour of a f lowehart scheme we mean the tuple of the sets obtained

as above for ea.eh input. I t  is natural to regard as equivalent two f lowehart sehernes

that  have the same i r rput  behaviour .  In  the e lass of  the f lowchar t  sehemes that  have a

given behaviour  there is  a  min imal  one,  un ique up to  an isomorphism. This  min imizat ion

preserves the eompleteness of  the seheme, namely the min imal  f lowehar t  scheme in

Flx,pfn of a seheme over Fn is over Fn, too * henee the name. In a formal approaeh the

(step*by-step) input behaviour is eaptureci bv simulation via funetions.
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?.!.. The simulation via funetions; the rewlted eongruenee. Suppose tha.t the

support theory T leontains'r funetions. In the ease TSReI this means TlFn.

The def in i t ion of  s imulat ion v ia  funct ions is  obta ined f rom the genera l  def in i t ion,

g iven in  $ 3. t ,  bv us ing for  v  rnorphisms in  Fn.

In  the genera i  ease **Fn€'*so,* -  - ) In 'henee in  the case TsFtet  the meaning

of the simulation "F 9V F' with v in Fn" is I 'Fr ean be obtained from F in two steps: f irst

by identifying vert ices with eommon labels ancl eoherent eontinuations, and seeond b\r

adding inaeeessible vert icesrr. The rneaning of the equivalenee relation = 
Fn, 

generated

by *Fn, is I 'F = 
FnF' " i f f  "F and F' have the same (step-by-step) input behaviour (or

. eh€-
equivalently, by eompletiy unfolci ing F and Ft we geTl same tuple of trees)" i f f  "by

identifying vert ices and deleting inaecessible ones F and F'r ean be transformed into the

same min imal  f lowehar t  (wi th  respeet  to  the input  behaviour  ) , , .
'  

For the eongruenee relation = 
Fn, 

generated by *Fn, the fol lowing equivalent

eharacteri zationean be Eiven:

/ i \  -\ r / - F n  -

( i i)  = 
,r,  is

(PEn) ' tF( ln  + y)

where F :

generated by the

' -s " r ' In*  '  * In  'suF

the.eongruenee relation ^r

- (1n,, + y)G "+ F +P^ G tQ,

satisving

m +  p - )n  +  p ,  G  :  m  +  g ->n  +  q  and  l reFn(p ,q ) "

i c l en t i f i ea t i ons  ( . .>  X )  i n  6 ,4 .10  (OX)  i n  Q5 .1  anC (VX)  i n  Q0 . t .

Comments.  By ( i )  two f lowehar t  sehemes are = 
Fn 

-  equiva lent  i f f  by ident i fy ing

vert iees and deleting' inaccessible ones they ean be transformed into the same seheme.

Again in ( i i)  we get verv simple generators (now for = 
nn) restr iet ing the elass of

eongruenee relations used for generation.

?.2. Cornputation proeesses (or rninimal flowehart sehemes with respeet to the

input behaviouri" In the ease TCReI every = 
Fn 

- equivalenee elass has a minimal

f lowchar t ,  un ique up to  an isornorphism. Sinee two schemes are = 
Fn 

-  equiva lent  i f f



thev have the s&-lr ' |e eomputation

eomputat ion proeess that eonsist

General iz ing we say

.q  ( '
/ \

sequences, w€ ean identify sueh a elass to B

in f in i te and inf in i te sequenees of  statemetns"

The elements in n Fl  /  = oFz).*  - ' X . 1 '  -  
F l l  

d '  t r '

- minimal f lowehart sehernes with respeet to the input behaviour;

- com putationprocesses.

7 -3- The algebra of minimal fiowehart seheme (with respeet to the input

behaviour)- We had selected some identit ies satisf ied by such minimal sehemes (namely,

the ident i t ies l is ted in  Table 2 and i l lust rated in  F igure 12) ,  in  order  to  def ine an

algebraie strueture, eailed funflow. The main point is that the set of iclenti t ies (81-

tS)  + (pr  -  6) ,  suf f iees to  prove that  f lovvnomia l  express ions over  pf ,n ,  which represent

the same eomputation proeesd, are equal.

Rigorously, a funflux (formerlv a strong iteration algebraie theory) is a bif low B,

w i th  some d i s t i ngu i shed  morph isms  O*eB(0 ,m)  and  mVm€B(m +  m,m) ,  and  sa t i s f5 r i ng

t.he algebraip rules l isted in Tabie 2 ( i t  should be emphasized that (F6) is not an

equat ion,  but  an impl ieat ion) .  The ax ioms (g i - t0)  + (F1 -  b)  g ive a presentat ion of

algebraie theories - in the sense of Lawvere - in terms of sum and composit ion, henee

finite funetions are embedded in eaeh funflow.

(F5 )

(F6 )

m + > n = ( O n * 1 r * 1 n + O m )

f ( tn + v)  = ( tn. ,  + y)g 9f  fP =

f o r f : m + p - l n + p r S : m +

and ye Fn(p,q)

( n + n r ) V ( n + m )

s t q

Q ' ) n + 9 ,

Table 2.  The ax ioms in  Table 1 together  wi th  these ones def ine a funf low

ri
5

E

l
?
E{
&
F

I
I
t
&
E
i':

i
*
r
t

c f
' ? i

f

( F 1 )  O O  =  1 o

( F 2 ) O  f = Om n

(F3) (nVn + 1n) -  nvn = ( tn + nYnl .  nvn

( F 4 )  m V m - f = ( f + f )  - m V n

Semant ic  models :  Rel ,  and a l l  o f  i ts  subtheonies,  which eonta in the enrbecld ing of
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Fn in Relg, are funflows. Part ieularlv, Ffn and Rel. are funflows, Pfn being an init ial

funflow.

Synta"11.  models :  I f  T  is  a  funf low,  then Fi* . r /  =  
Fn is  a  funf low.

?.4. The universal pnopenty. Let tE!, ffl be tlre embedding of (X,T) into

FIX,T/ = 
U" obtained by using the embedding (E1, Er) of (X,T) into Fl*,", defined in

I t .g, and the canonical projeetion from t1",, to Fl",r/  = 
Fn' 

The universal property

satisf ied by FlX,t/ = 
Fn is

lfor every funflow F and every interpretation (IX, ir) of (X,T) in F there exists a

f f f

unique morphism of funflow, If f  ,  FIX.T/ = 
Fn* 

F sueh that E! '  Ir i  = I* and

- f t f

"The ax iom (F6)  ensures that  the in terpretat ion ( IX, lT) f ,  def ined in  I  + .a,  ident i f ies

r n- - equivalent f lownomial expressions. The morphism lff  above is that indueed by (I",
r n

In.l f  in the quotient strueture FIu. r/ = 
Fn.t  A r  I  r - l l

?.S. Frrflow-ealeulus. The ealculus with flownomials assoeiated to eomputation

proeesses(or to minimal f lowehart sehemes, with respect to the input behaviour)eal}ed

fn-f low-caleulus, is obtained by adding to the bi-f iow-ealeulus the rule which eonsists in

the identif ieation of = 
Fn 

- equivalent expressions.

For the algebraie version, we add the rules (F2, F4, F6) in Table 2 to the rules

rtha
that atgebraieally defin{ bi-flow-ealeulus.

Examples. In fn-flow-ealeulus the following identit5r holds

t - y ) z ) f + y J ,

' o

where  F :=  [1V] - .  x (1 ,  +  y .+  x ) l  f ,  G:=  [ (13  +  y  +  x  +  Vx1,3 ,2 ,312,514 ' ,4 )5 ]+2  and

H := ((11 + 1V1 .  y lz) f  + t t .  1\4oreover,  the lef t*hand side expression;s = 
Un-mir imal '



Indeed, bV

F . G t = [ 1 V 1  " x ( ] ^ +

expression ir = 
F"

aceessible.

example !5.5 C

x) l  t ( t ,3 ,2 ,3)g( i  z

* rninimal since

q * :

/ - I

= (1^  +  vX1.3 .2 .3 )^  = :  G '  and bv  example  r fo . r .U. J  
J  '

+ y). I-Ienee the identitv ho1ds" ' i lhe left-hand side

the associated f lowchart scheme is redueed and

8" COACCESSTBILITY

Somet imes in  a eomputat ion process we are in terested in  suceessfu l  computat ion

sequenees only ( i .e., eomputation paths that f inesh normally by reaching an output), In

that case, in the execution proeess only the vert iees that belong to paths gioing to

outputs matter; these rrert iees form the eoaeeessible part of the seheme. Here we

regarcl as equivalent two f lowehart seheme that have the same eoaeeessible part. In a

formai approaeh eoaeeessibi i i ty is captured by simulation via relations whose converses

represent injeetive funetions.

Tf re s tudy of  eoaeeessib i l i ty  ean be reduced to the s tudy of  access ib i l i ty ,  made in

{ -
9 5,  by us ing a pr inc ip le  of  dual i tv :  The dual  f lowehar t  seheme assoeiated to  a seheme F

wi th m inputs and n outputs ,  is  the seheme Fo,  wi th  n inputs and m outputs ,  obta ined by

reversing an'ows of F ( in the abstraet ease this method eonsists in taking the duai

eomposit ion in the clual eategor5r). In this way the eoaeeessible part of a seheme F is ihe

aeeessib ie  par t  o f  the dual  seheme Fo.

For  th is  reason we omi t  any deta i ls  here.

9. T'}iE II{P UT-O UTPUT' BEH AVIO UR {DETEE },4INtrSTIC MXNIMIZ ATION}

The input-output behaviour of a seheme is the restr iet ion of the (step*by-step)

input behaviour to the sueeessful (terminal) paths. Here we regard as equivlaent tv,ro

flowehart sehemes that have the same input-output behaviour. In the elass of the

sehemes that  have a g iven input : -output  behaviour  there is  a  min imal  one,  un ique up to

an isomorphisrn.  The min imizat ion wi th  respect  to  the input-output  behaviour  does not

preserve the eorr rp le teness of  a  seheme, i .e . ,  the min imal  seheme assoeiated to  a

seheme over  Fn may be over  Pfn rFn.  F lowever ,  th is  min imizat ion preserves the
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c letermin ism of  a  $cher t re,  i "e . ,  the min imal

over Ffn, too * hence t l ie name' Irormail ' t

simulution via purt ial ly defined funetions'

seheme i t ,  Ut r , ** ,  o f  a  seheme over  Ffn is

the inptrt-cr-ttput belrarriour is captureo b-1t

-  < _ .  - _ 1- S u r .  
I n '  '

satisfvinS

q and y€Pfn(P,q)"

9.L. The sirnulation wia partial funetior,iq ttre resulted conffruenee" suppose that

the support theory Trreontains'r pai"t ial funetions' In the ease Ts;R'gX this nreans T"Pfn'

fneJ*finit ion of simrrlat ion l , ia, part ial funetions is obtained from the general

dcf in i t ion,  g !ven in  f  f  . t ,  bv us ing for  y  morphisms in  Pfn '

. In the general case *Ff*9 *In-1 "*Sur" sln' henee in the ease TeTdel the

rreaning of  the s imulat ion "F. . ->yF'  wi th  v  in  pfn"  is  "F 'ean be obta ined f rom F in  three

steps: f irst bv deleting noncoseeessible vert iees, seeond by identifying vert iees with

eommon labels and eoherent eontinuations, and f inal iy by adcling inaeeessible vert iees"'

The meaning of the equivalenee relation = 
Pfn' 

generatecJ by *Pfn' iu

,,F = pf*F, 
,,  i f f  i lF and Ft have the same inptrt-output belraviottr" i f f  "by deleting

noneoaccessib le  ver t iees,  ident i fV ing ver t ices wi th  eommon labels  and eol terent

continuations, and deleting inaeeessibie vert iees F and F' ean be transformed into the

same min imal  seheme (nr i th  respeet  to  the input-output  behaviour)" '

For the eongfuenee reiation = pfn, gnerated by +pfn, the fol lowing equivaient
;:

eharacter izat ion ean be g iven:

( i ) = r r n  =  * I n * 1  ' * S u o " I n + ' l n

( i i)  = 
ngn 

is the eongruence relation rv

(Pp fn )  "F (1n  +  y )  n ,  (1 tn  *  Y )G I  F4P-G+q ,

w h e r e  F  :  m  +  p * n  *  P ,  G  :  m  +  q - t n  +

genera ted  by  the  i den t i f i ca t i ons (<+X)  i n  €+ . f ,  (OX)  i n  QS. f ,  (VX)  i n  $O ' t  and

(ax )  * ' j n  =  jm  ,  where  x  €X(m 'n )  ( see  f i gu re  10  d ) '

Cornments" By (i) two f lowehart sehemes are = pfn - eqtt ivalent i f f  by deleting
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noneoaeeessible veri iees, identifying vert iees and deleting inaceessible ones they ean

transformed into the same seheme. In ( i i)  we get very simple generators for = 
Ffn,

restr iet ing the elas of eongruenee relations usecl to g'enerat,t = 
Xrfn.

S"?. $ueeessful eomputaticn proeilsses {qrr mininrai" f}owehart sehernes e**itEt

respeet to the input-output. behaviour). In the ease T EReI every = pfn 
- equivalence

elass has a min imal  seheme, unique up to  an isomorphism. $ inee two sehemes are

= pfn - equivalent i f f  they have the same sueeessful eomputation proeesses' we ean

iclentifV such a elass to a sueeessful eomputation proeess that eonsists in f inite tertninal

seqrrenees of  s tatements.  Cenera l iz !ng we sBy:

be

by

-. minimal f lorvehart sehemes with respeet to the input*outpur behaviour;

- successful computation proeesses.

g"l,9.4" We onl5r mention that the algebraie strueture eorresponding to sueees-

sful eomputation proeesses, ealled parfunflow, is a funflow, eontains part ial.  funetions

( in  order  to  generate par t ia l  funet ions we use the d is t inguished morphisms "A* :  m +0) ,

ancl satisf ies:

The elements in a Fly.1/ = pf 'n are:

( P 1 ) f  . I n =  I * ,  f o r f  :

(P2)  f (1n + y)  = ( im + y)g

w h e r e f : m + . p + n +

m r + n ;

= + f f P = S 4 9 ,

pr g:  m + g -)  n + q and yePfn(p,q) .

g.5. Pfn-flow-ealeulus. The ealeuius with flownomials assoeiated to suceessful

computation proeess (or, to nrinimal f lowehaqt sehemes, with respeet to the input-

output behaviour), eal led pfn-f lorv-eaieulus, is obtained by adding to the bi-f low-

ealcu lus the ru le  whieh eonsis ts  in  the ident i f ieat ion of  = pf , rn  -  equiva ient  express ions.

For the algebraic version, we add the rtr les (P1-2) above to the rules t l tat
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algebraical lv defirL\fn-f low-caleulus in { Z.t i .

Exumple" In pfn-f lorv*ealeulus the foi loy,r ing identitv holtJs

F  "  G  "  H  =  (1v1  "  x ) f ( . ] - ,  +  v ) ,

v,rhere F,G,l- l  a.re those definecl in example Q Z.S. I\4oreover, the }eft-hand side

express ion i *  =  pf*  -  min imal

I n d e e d  1 0 =  I 0 ,  h e n e e  [ ( t ,  + 1 v t . y ) z ] f  = [ ( 1 ,  + l v j . . y ] z l $ "  1 o =

= [ (1 ] .  +  lV1 "  y)z l+ -  . I0  = (by P1)Jr .  Conseguent ly ,  us ing the example$.S nre obta in

F  -  G  "  F I  =  l l v l  -  x (1 ,  +  x ) l ' F ( i , s , z , J ) ( r z+  y )  =  ( t r r t  -  x ( t ,  +  x ) ) t ( -1 ,1 , J ,1 )1y

Finally, using the exampieFe.a the desired identity fol l .ows easitv. The left-hand side

expression is =nto-minimal sinee the assoeiated f lowel^iart seheme is eoaeeessibie,

redueed and aeeessible.

10. coltEDUC?IOI{

In the ease we are interested in the study of input-output behaviours we ean

sueeessfu l iy  use the dual i ty  def ined in  {  A.  tne input  behaviour  is  not  preserved bv

dttal i ty '  while the input-output behaviour is preservecl. More exactly, the input*outi l i t

belravior"rr of a dual seherne eontains the same eomputation sequenees as the givpn

seheme, but having the statements eoneatenated in the reverse order. Let us cal l  (step*

-by-step) cobehaviour of a vertex in a seheme, the.(step-bv-step) behaviour of the

eorresponding ver tex in  the dual  seheme, def ined as in  Q6. In a seheme vre ean ic ient i t 'v

ver t iees that  have the same eobehavionr ,  wi thout  ehanging the input-output  behaviour

of the seheme. A f lolchart seheme wil i  be ealled eoredueed if  i t  has no cl i f ferent

vert iees having the same eobelraviour. In a formal approaeh eoreduetion is eaptured bv

simulation via relations whose eonverses represent surjeetive funetions.

This  eorec l i te t ion eonnnt  be used proper ly  in  the eontext  o f  deterrn in is t ie

f iowchart schemes. The reason is the fol lovving. Bv reduetion we identifSr vert iees

prov idec l  a f ter  ident i f ieat ion they have the same output  ar rows ancl  br ing together  the
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corresponding input arrows. By eorerluetion we lrarre to identify vertiees provl0e(1

af ter identif ication thev ltarre the sanre inpr'rt  arrows and bring together l 'he

correspon<ling output arrot{; hence a nondeterminist ie elroiee between different otttpttt

arrows of continr.tat ion can appear'

More c le ta i ls  can be obta ined f rom !6 bv dual i tv '

11"Not.{tr}ET,.EIt}.IINnsffCFLO[vCI{AIIT.SCFIEF'4Es

The featuru of  f lowel rar t  seheme we take now in to aeeount  is r rnondet 'ermin is t ic

ehoiee,,, i .e., the possibi l i ty in a point of a seheme (input, or eortt inuation after a
t-1t"t*',r' ii'-' c'l'-'

statement) to have more arrows of continuation for the f low of eotltrol) ln<i the

execution proeess ehooses one variant irr a random way. Conseqttentiy, in the eontext of

uSual f lowchart Sehemes, represented as in €t.f  ,  the basic support theorv for thls

necreterminist ie case is Rel, while in the determinist ie ease i lre basic support theorv

was Pfn. In the presence of the nondeterrninist ic ehoiee we are interested in considering

the input-output  behaviour ,  ra ther  than the input  behaviour '  For  model ing the input-

. -ou! ,put  behaviouro in  th is  nondetermin is t ie  ease we ean t ry  to  applv  s imulat ion v ia

re l .a t ions.  This  syntaet ie  t ransformat ion of  f lowehar t  se l remes is  again usefu l :  i t  is

correet, in the sense it  preserves the input-outprrt behaviottr,  but at the present t ime

we do not know whether i t  is eomplete, i .e. we do not know vrhether two ttst lal

nondeterminist ie sehemes, having the same input-otrtput behaviour' ean be eonneeted tty

a ehain of  s imulat ions.

L1.1,. The sirnulation via relations; the resulted eongruenee' suppose that the

support theory T ' teontains" f inite relations. In the ease of usual f lowehart sehemes this

means T = Rel. The definit ion of the simulation via relations was given in { S'f '

In the general ease ' ' f t . l  G *Ir-1 '  '*S*o*1 '  
- l t '  

*I" '  henee in the ease

T = Rel  the meaning of  the s imul i t ior r  i lp- ioFrr t  is  r rFr  ean be obta ined f rom F in  four

steps: f irst by deleting noneoaeeessible vert iees, seeond by mult ipiying vert ices
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keepping f ix the inputs and sharing the outputs, then by

the same outputs and bring together the eorresponding

inaeeessib le  ver t iees ' t .  The mcaning of  the eqt t iva lenee

*FRol, is st i l l  uneiear. I{e eonjeetr-rre that "U = 
Ourt '",

input-output behaviour".

For the eongnrenee relation = 
R*1, 

generated by *Rul, the fol lowing equivaient

eharacterization ean be given:

( i )=u"r '=  f f ' f r ,  
' , f , r  ' f ; r

(i i) = 
O", is the eongruenee relation ru satisfving

(Pnut )  "F(1n  +  y ) ru (1*  *  y )G =eFf  P-  G t9 ,

where  F  :  m +  p+n +  p ,  G :  m +  q+n +  Q and yeRel (p ,q ) "

genera ter j  by  the  ident i f iea t ions  (eX)  in  94 . t , (OX)  in  E5.1 , (VX)  in  Q0. t '  ( ;LX)  in

Q 9 . r  ano

( A X )  x .  n A n  =  m A m  -  ( x  +  x ) ,  w h e r e  x € X ( m , n )  ( s e e  F i g t r r e  1 0  e )  .

As we do not

syntaet ie  s tudy whieh

iclentifving vert iees that give

inputs, and f inal iy by adding

relation = 
ReI, 

generated by

iff  "F and F' have the $arne

. - - > . - - + .
Sur In

know the semant ic  meaning of  = 
R" l  we do not  ins is t  on th is

has been done as a natural extension of the above ones.

HISTORICAL CON{fuIENTS

It is well  knor,r,n that the operations of kstruetured programmingli .e.reomposit ion,

if-therrelse and whiledo are not enough for representing all flowchart seheme

behaviours, essential ly due to their one-input/one-exit feature. However they suff iee,

provided addit ional memory is permitted.

The basie Elgot's idea in t3l is to use many-input/many-exit f lowehart sehemes,

having eomposition, tupling and. sealar iteration as basie operations. These operations

suff iee for representing al l  f lowehart selteme behaviours. I \{ore preciselv, everv

flowehart seheme is !tstrongly equivalent" ( i .e., is equivalent with respect to the inpttt
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bchaviour)  to  a set rerne bui l t  up f rom atonr ic  sehemes and t r iv ia l  ones by rneans of  thcse

operations. I lolever, for representing al l  f lowehart sehemes (pietures) in this sett ing

one needs a veetorial i teration, which is not obtained by a repeated applieation of the

sea la r  i t e ra t i on "

The feedbaek operation rvas introduced in []  21. It  is a I 'seal&r't  operation and it

seems that this operatiori  is more adeqrrate to studv (eyeiic) f lgchart sehemes t lran

sealar i teration. One reason is the fol lowing: All  f lowehart schemes (pietures) ean be

buil t  up from atomic schemes and tr ivial 6nes by means of eornposit ion, (separated) srrn

and (sealar) feedbaek"

(1) The representation of f lowehart schemes by pairs (or bv tr iples, provided that

the eonneet ion rnorphism is  sp l i t ted in to i ts  " input ' r  par t  and i ts  t ' t ransfer"  par t )  is  due

to Elgot ;  see [3 ,14,4,2] .  At  that  s tage the s ihemes were over  Fn [3 ] ,  Sur  [4 ] ,  or  Pfn I2 l

(although it  was not thought of eonnee.t ions as being morphisms in a i l theor5r"), and the

operations on f lowehart schemes were verbaily defined. In [8] the conneetions rvere

thought of as being mor:phisnrs in an "algebraie theory with i terate". Part ieularlv , this

eondit ion implies that in the ease of usual f lowehart sehemes one has to replaee fn Uy

i ts  e losure wi th  respect  to  i terat ion,  namel l ,  Pfn.  The operat ions on f lowchar t

sehemes were defined formally by extending those of the theory of eonneetions. The

representation of f lowehart sehemes by f lolvnomial expressions in nor:mal form was

int rodueed in  [12,  13] .  The extension to  arb i t rarv  f lownomial  express ions was g iven in

f d l
t  a  l .

(2) The results of Seetion 1 and 4 are nen,. The detai ls for Seetion 1 were given in

[6] . ,Wi thout  ax iomat iz ing f in i te  b i jeet ions t l re  resul t  o f  Seet ion 4 was sketehed in  [13] .

The resul ts  in  Q1 and Q A are s t ronpter  and mueh more natura l  than those in  [8 ,5,2] .

Aetually a t lreory with i terate, as introdueed in [8], may be defined as a bif low over an

algebra ic  theory;  see [6 ] "  The main resul t  in . [B]  eharaeter izes the representat ions in

Fl.,  -,  where T is a theorv with i terate, as being the frT-modul with i terate" freelv
1 \ . l '

generatecJ by X.  The extension to  sehemes in  F l* , " /  =  
Bi  was g iven in  [5 ] .  ' l 'he main

obstruetion in obtaining a natural resrrl t  regarding the algebra' ic eharaeterization of
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f lowehart sehenres in [8,5] rryas the using of an algebraie theorv as support theorv.

Indeed, the f lowehart sehemes clo not have a stnretrrre of an algebraie theory but oniv of

a s t r ie t  monoidal  eategory.  This  comment  appl ics a lso to  [2 ] "

(3) ' lhe resul ts  of  Seet ion ? are t l ie  t rans lat ion in  ter tns of  fecdbaek oI l  t l re

results in [10]. In the translation of these resuits the use of the new set of operations

(cornposit ion-sum-feedbacl<) al lows to separate the stud-v of aeeessibi l i ty, given i ir

Seetion 5, from the study of reduetion, g' iven in Section 6. The results of Seetions 5 ancl

6 are new and cannot be properly done using aigebraie theories and iteration.

(4) In section I we have given some detai is for the extension of the ealeulus for

deternrinis' fue f lonrehart sehemes announeed in [10, Seetion 7.a]. The results appear here

for the f irst t ime but a weaker variant direetty fol lows from the results in the

nondetermin is t ie  ease in  I t t ] .  f  f re  paper  [11]  eovers the resul t  o f  Seet ion 11,  too.
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In tiLis appenclix r+e give an abstract of our worlc regarding the axiomatizing

of  thc  ver ious  c ta iscs  o f  f in i te  re l -a t i -ons  usec l  bc fo rc :  b i - jec t ions ,  in jcc i ionr ;

c tc .  I t  has  bcen r+r i t t cn  fo r " the  l jas t  l Juropcan Catcgory  Sen inar  ( l J lLCStBB,

?ror la l : r  -  l1 r r1 r ' : r r i s ,  I ' ebrua : ' y  28  - I ' i axc | r  J ,  19 t lS) ,  l t cnce  i t  i s  r , r r :L t 'Len  in  ar  r  v s v r c ! t

n o * n o n y i n o ' l  
' l  ̂ l a , i r a r . c  o n r " r  - i - : ^ n  n 1 { a f , j - O : l  a f C  d i f f e f C n b  f f O m  t h C S e  U S e , l  i n  t h eu c l  u v i ' r L , I  f , . u 4 . - L  r c ! - r ' . r v - t - r :  ) ! /  a : r u

v.os l :  n- i '  l ;hr :  n : rncr"  (  j te l -^*  as uscd hele i  s ' r  r rot  Rcl - .  "bhat  r , las in t rnrJrr r :cd ot r  nnaer v D v  v *  _ J '  " : : - - s

1Ol )  Ann l : i ro r .  t i t le  fo r  the  Sarae r ro r l<  iS  " f in i - te  re la t ions  as  in i t ia l  abs t : ,ac"bI  v  t  /  i r r r v  w a r v r

d.a ta  types ' r  * 'bh is ' r ; i t le  i s  no : :e  ac lequate  fo r  the  theore t ic ,a l  computer  sc ien t is ts .

ON SOME SYMMETRIC STRtrCT MONOIDAI CATECORIES

Virgi l  Cdzdnescu and Gheorghe $tefdnescu

lVe have found that eaeh of some subcategories of the category of f inite S-sorted

relations Rel.U is freeiy generated by the set S of objeets in a category of symmetrie str ict

monoidal categories (ssme-ies, for short) [2] endowed with an adequate addit ional strueture.

RdS as a category: An object of Rel, is an element in the free monoid (St,n,e), i .e. I

denotes juxtaposit ion and e the empty str ing. Notation: A str ing a€S* is denoted as foi lows

a  =  a r n  u z B  . . .  i f a  1 s 1 ,  w h e r e . a i € s ;  [ n ]  =  1 t , 2 , . . . , n 1  .  A  m o r p h i s m  f  € R e t r ( a , b )  i s  a  r e l a t i o n

f  g  t t a l l x t l b l l  suc f r  t ha t  ( i , j ) e  f  jmp l i es  u i  =  b j .  The  eompos i t i on  and  the  i den t i t y  morph isms

are the usual ones.

f6gets .e l r (aDe,bt rd)  as f  u{ (  la l  +  i ,  lb l  +  i ) l ( i , j )e  g l  ;

W u , b , =  t ( i ,  l u t  + i ) l i e t l a t l l u  t ( l a l  + i , i ) l j e  t l u l i J .
subeategories PRelr: To define them let us consider the relations:

ava=  l t i , i l l i e t l a i lS , . ,  l ( l a l  + i , i ) l i e t l a l  t Jene r r (aEa ,a ) , ou=@GRe l r (e ,a ) ,
aAu =  l1 i , i ) l i € t  l a l  I 9  U  1  ( i , l u l  +  i ) l i € t  l a l  l i €na r {a ,aDa) ,  Ju=  Q€ .Re l r (a ,e ) ,

a n d  t h e  f o l l o w i n g  s e t s  R u = { a v a l a e s * J ,  R A = { a A a f a € s * i ,  R o =  { o u l a e  s * J  a n d

RI = l fu lacs*3 .  By using a parameter PeA:= ton,on,Ro,Rt- l  the subeategory PRet,

is defined as the least ssme of Ret, which has t lre same objects as Rel, and contains the

morphisms U|n lneej .  For  instanee,  OReIS is  the eategory of  f in i te  S-sor ted b i ject ions,

I nu !n*6 that of surjections, I nol nur, that of i i r iections, lou,no I ner, that of

functions ete.

T'he addit ional structure (the functor Gr): Let C be the category of ssme-ies, NI that of

monoids and Ob: C-+.M the functor whieh forgets-the morphisms. The definit ion of Gn: C -)M

is obtainecl from the definit ion of GO, given below, by restr ict ion to components eorresponding

to elements of P. The funetor GO is defined by:

o For a ssnre (8, B,e, y) t fre corresponding monoid Gp(B) is defined as fol lows:

Rel ,  as a ssme (RelS,E,e,y) :  For  f€Relr (a,b)  and g€Relr (erd)  we def ine

The



bT

( i )  I ts elements are 5-tuples (a,V, n,O, -L),  where a €Ob(B),  V € B(aFa,a),  A 6B(a,atra),

O€B(e,a) and I€B(a,e) sat isfy the fo l lowing ident i t iesr

( r )  ( vn lu )V  =  ( l aBv )v

(z) y",rv = v

(3 )  ( lan  O)V =  1u

j  ( 4 ) o v = o [ o

( 5 )  O I  =

( 6 )  A V  =

i  (? )Vn =  (n  nnx laD 1p; ,uo tu) (vnv) ;
( i i )  I t s  opera t ion  is  de f ined by  (a ,V ,n ,O, -L)  -  (U ,V ' ,  N ,O ' ,1 t )  =  (a [b ,  ( f "nSU.un tuXvnV ' ) ,
(A [  ^ . 'X1ut r  \ ru ,bn1b) ,  ono ' ,  ro r 'h
a.For  a morphism I - I€C(B,B' )  t t re  eorresponding morphism GA(H) maps (a,V,A,o,J)  in to

(H(a) ,  I { (V ) ,  H(  n ) ,  H(o) ,  H(r ) ) .

The categories Cr: The objects are pairs (B,F), which consist of"un object B of C and of a
(monoid)  morphism f  ,  OO(e)+Gp(B) sueh that  FU;  = lOU(e) ,  where UP:  Gn+Ob is  the natura l

transformation which. forgets the addit ional struture, i .e., Ut(a, .  .  .  ) - a. The morphisms of

CP((B,F),(B',F')) are those morphisms H GC(B,B') t trat fulf i l  F Gp(H) = ob(H) F'.

PReIS as an object in Cp, namely (PRel*Fn): The definit ion of F, is obtained from the

definit ion of F6, given below, by restr iet ion to components eorresponding to elements of P.

The monoid morphism FU : Ob(ARelr) = S**+ GA(Relr) is defined by FO(a) = (&,aVa,aAanOu,Ju).

THEOREM. If (B,F) is an objeet in Cnr then every monoid morphism H : S*->Ob(B) has a

unique extension to a morphism in C, from (PR.el",FO) to 1g,p;.

COBOLLARY. The category of f inite S-sorted bi jections @Relo forms the ssme freely -

generated by t l ie set S of objects.

Our interest in f inite relations eomes from theoretical computer seienee. In the theory of

f lowchart selremes the f inite reiations ptay a similar role as the numbers in classieat algebra [1i.
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