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- : THF COMPO EhYTS OF A POgITIVE-GPERATOR

Dan Tudox »UaA

0, Introduetion

1o his paper {16 |, de Pagter proved th e following theorer:
¥

Al )’ (

THEOREM O, t, Let E,F be ordey comnlc te Riesy Spaces guch that PO (the

order continuous dual of F) separates F, Then the set of components ¢, of sny

v
positive operator ViE - F can be obtained from the set U%v of simple components

by a three —~ stepsup - down processy more precisely,

( i) ) Cv e SD).)M ﬂv
- : 0
sec §1 and &4 for definitione and notations),

Soon after, Alj prantis and Burkinshaw gave in_t?] a shorter proof for
de Pagter's result., Actually, they asked for B only the principal projection

roperty instead of order completeness, However, thev still kept the h pothesis
¥ : ? i) A _

“that FX is gvparatlno,

-1

In this paper we_uhow-tbat theorem 0,1 still holds when F belongs to

" the so0 - ealled class 700 which strictly ineludes the class of order-complete
- Riesz spaces with separating order continuous dual, Moreover, we give a version
of theorem 0,1 which holds for an arbitrary order complete Riesz space ¥, More

' precisely, we introduce the classes cé;'(cl being an‘arbitrary ordinal) snd we

>

show that the three »eteps up ~ down proecess in (f) is rcplaced by . an up - domw

process depending: on thp lndnx ol of the elass to which F belongsy each order

complete Riesz space is a member of some %g

The paper is divided into four sections,

'§1‘is devoted to basic def iﬁ]tl@na an notations,

-

.§2 has a‘technical character, Its aim is to construct the theor ry of

- systems, which is a b““LP tool to be used jxyéd.fbr the proof of our results S,
Iniéﬁ the classes %? are introdueed and some >twb11¢1“ ;fop rties of
o :
them are given. It is shown that fﬁ strictly codtains the class of order comp 1 ete
= 0



Riesz opqceL with Hemérﬁtin dxﬁeW*éontinuoﬁf dual, For every ordinal L, an
example of an ordéf complets Riﬂsi space not in %i is prcduc&&a
S?é“contains the maim results of.,'She paper. B@side the extensions of
: : P .
theorem 0.1 we preseni some results coﬁe&rﬁing the oxder “pprcyzmktécﬂ of the -

operators im the order intervsl LMAVl, VEJ by‘@?@mentg in the submodule generated

(7

by v (V being an order bounded not necessarily positive operator); these results
are useful in the case when E lacks order projections, but instead ié a 50 « @alle
npriﬁcipalbﬁégulgﬂ_ We also give.an up « down theorem in the center cf LTﬁE,F}
which répre sents an extensiom om the lines of the previous discussion of the

corres?onding result proved by Buskes, Dodds, de Pagter and Schep [ 27 énly for

Riesz spaces with separating order continuous dual,

1. Preliminaries

1E will be the identity map of a set B,
C(X) wild be'ﬁhe Riesz space cf‘allncontinuous real - valued funetions
on: the compacf space X, ' ' _ | ] .
FO” 1hy Riesz space B and any X€E, we denote by E the order ideal
genéfated'bg x and by Bx., the ban@ gen@rated by %, The set of all compcnenﬁa’.

of xEE, (that is, the elemente YEE verifying-y/\(x e y) =0} is denoted by G

Whenever B is Archimedeam, we shall consider the norm || ”x om E_

givem by -
umﬁ m—mﬁf{ \ﬁe <. : iyle \x\} S e ;
Let (::TE,,).,{,,:x be = net fin B and let x€E, Ve write xsﬁi§ % §if thexe
: o ‘
is a met (w E such tha% x wx\dy and y. 0. We write x_ x 3
. 55&6 | | & e ysxl{ SR X
there is

3;7&}:. such that |lx. - xl} .w% 0
T Bl ‘
A map T between two Bi 8% Upwces is ealled order econtinuous if‘xs ﬁip x

implies T(xg) Ly 1(x),

X

We shall denote by E the Riesz ﬁpaég of #11 ordey continuous order

bounded linear forms om the Riesz space E, We say that E is separating if for

%Q$ﬁ¢h £f(x) 0,

every x€E N{0}% there 4s fEE
If E,F are Riesz spaces with F order compiet@, Lr(E’F) will be the

‘Riesz space of all order bourded linear maps from E into F,



B

A'band B $n & Riesz spaece B is called = projection band :i;ﬁ‘:‘“e:-very' TER

1 ol :
can be writtenm as x, % x, witl €8 and x c,“"” 3 the map X b= x, is called the

1

ordex projectiom onto B, By an order projection we shall alwsys mean a projection

associated with a projection band ; the set of all order projections om B will
'b'ié Cv“nm” by Q}W(T;), -

Whenever }B%X is a projection band, we shall dencte by L&l the pronj_ectiam
associated with §t. A Riesz space.E is said to have the prﬁm:ibal projec‘ciun DEGow -
perty if BX- is a })Z’Ojﬁ(“‘blo‘l band for every XE€XE, j

For the pr p;rtie% cf order prowf‘tions, see [‘;‘xj Ve shall especially
need the following eness:

i) Eaeh order projecticn is an o:cder cop‘ciﬂuous Riesz homomorphism,

iii) 99('13) is a Boolean a].gebra; we have

P,(x) = (P AP )(X) = P (X)/\P - 9

(P ‘\/PZ)(X) s t(,L,\v’xa(x)

for every P, P C@(I‘) and xE€E, .

f .
134) Whenever B, is a projection band and Pé@(w), then Ptxj [}?(x)l
Recall that an £ - algebrx :k\ a Riesz space A endowed with = mnltj_puw
cation such that A+A+C A+ ang aeAb = ca-/\b = 0 for anyva,b,e €A+ with @Al} = 0.
.. Im 'this paper, howev.er', the word "f B algehra".'vﬁ]_l be exclusivély emplayed to
design an Archimedean f - algebra adnitting an element e as an a'lgebr:;ic' _unﬂ_
as well as a strong order unit. "
As examples of if - algebras which will be used_,. we mention the following
(E is an Archimedean Riesz space): | ‘ v
£) The center Z(E) of E, It is the set of zll linear operatérs U on B
- for which there is a¢ @* such that --a'i‘ LB¢ gﬂ o |
£1) The algebra 2 (E) generated by all PE-_J}(F}
IR Adis an f - al gz:ur‘v,,‘Z(A) mll be the subalgebr= im A generwted by
C, o For instance, we have Zp(E} =3 (Z2(E)) o .
Let A be an £ ~ algebra, By a Riesz & — module we shall mean an Archi-
medeén Riesz space B w‘éich is .an algebraic module over A such that A F‘ C}‘ :
It is well known that in every Riesz A ~ module the equality J]axl = |ailx] holds

R I e m L L L e T R r'[]‘~ Laorrrr At 34 FLaT1lmawe 4 et d Ay oo e
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3

thot the maps ye-p» sy and b j--pbx are Riesz homomorphisms for any ag A‘& and
XEE, .
¥

gt o ) . y
For any Riesz A « module E, any "X €E and MCA, Mx will denote the set

if X, 7 are preozﬁdér@d sets, a map X -3 ¥ willobe called. :i.nc;z?evasi%tagh
(respectively decmasiﬁ.g) if £f(x) g £(y) (respectively f(x)> ﬁ'(y))-wh&never.xgg; 7.

iz.;ef-a; the reader to [43 for the theory of eardinal and 6rdinsl nuwm.
hﬁfﬁ; ‘ |

For every ordinals ¢ , @ we shall denote by to(,@) the set eof .all OFXee
dinals P verifying o< K‘([?; « In §? we shall "aSSume, for technical reasons,
- that % (not 0) .:'cs the least ordinals; hence, symbels as L~#,( )} will make sease,

The symbol card M will be used to dencte the cardinal numbgr of a seﬁ;
M. If ol O is any ordinal, we shall write cardo{ instead of card E0,0{ 3.

Recall that en ordinal of is called <initial if card 3 £ card® whene--
'ver {5 G EO,ofl ). Foxr every ordinal ol 0 we; let Q)o( be 1;‘:1@.: K = th initial ordi-
nal and }3/ =, ,?rciu.) . It is well known that the nmap o }-»)COo( is stwictly
_'1ﬂcreas oy and eontinuous , We shall assume the axiom of choice to hc]c} so that
sy cardinal number is -an Ho(‘

\«Ie shall now define a list of symbolfa to be used througnout :m.l the
text. Let 4E be any Riesz space and let M be a subset of E, If gf’l is any cardinal
humber, define S%M. (respac{:ively DQ&LM) to be the set of those xgR for which °

there is N CHM with card N £ON, and x = sup ¥ (respectively x = inf N), Put-

SH = - Lo ]

M= Searan™ M =Dopgute

Also, let L, M be the set of “th.asa XE",E for whieh thewe is a net (% ). €Mewith
; I - . Bfea’

cd*rd&&f}ﬂ. and 15 mw; x, If in the definition above we impose no restriction

on eardi d\ , we obtaim the set LM

With the -aid of tramsfinite induction, define the sets C, M and L‘?

" o M
as follows:
C.M =Dy, Sy M, e P IR PR
0 N & L e
Q.. WA S R TR A L 1,2
e Mgﬁ H gy L Hoet  Hysq &

2 rich
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\mw) Gg‘} M,

{‘{,‘LO &)

Rt e R
i 'L‘ (=N } b
cardoh eordd @e[md )

e J"cmm. B “eard

M.

!’*,‘.
& “
L @( I'i = L

"(’P'\’

8 o £5 w linit ordinal,

in ease M is 2 sublattice, then all the sets C e and b o 1 ave xu’*)“i,.m:t:ﬁm
' cess eozﬁé‘:équarzﬁiy, the @qua‘u ties x = sup N and % w inf N inm the deiinl“tim of the
- symbols S*-@‘sL and ‘)QL used mroughcaﬁ: the construction of the Gd‘s can be changed
into N "i‘y“ nd Bz (these symbols mean that N fs upwards (respectively downwrds I

directed and x = sup ¥ (respec’mv‘,lf x = inf'N}), It follows in particulay that

Cu MCL "M for any sublqt‘cica M and any ordinal & ',

-1 CYé w systems

.’“hfou;fhouf all the section, E and F will be two fixed order complete
Rieuy spaces and I:E -3 F will be a fixed order continuous map,
i}m system is a triple (X, @ ‘E) formed by = Dreorder@f; set X and
two maps é X > B, Wsx ....,} F such that the following vhol‘d:
£) © (%) is order bounded,
#1) U £s decreasing. _ . |
d1%) T(\/ck(‘“ )4-?(5, } wheneves Xq,“,,,x ex and Téx2‘< °”£xr; #
Foxv _any preoruered set X and any imfini‘te ordinal o we let X be the
set of all inmcreasing maps £ :|~t,o( ) ~-3 X. The set X<J< is preordeﬂed in the fom
A llowmg vay: f£ g if for every DE [ ~1,%) there #s Q‘C E»T °<.) sueh that i((ﬂf
<alP). | e | |
. LEMMA 2.%, Let (X-,é,?)’be i‘é:}"* system and let & be an infinite or-

dinal, Define (Z)%( 3Xb< -3 B and @Q{ :X« ey F Dy

i B N, T
$in pel~1,%) FElp,« >@ e

Y o) - /\ W(ﬁ(@))
: n 6& W*xg(x '
Then (Xd,é{* \f Y is a @ -~ system,

PROOF. Properties i) and 4i) in the aefmjtjon of = é - System. n
easily verified, In order to verify iii), let us make the following notation:

if-M,N sre two subsets.of a preordered set, we write MLN if every element im M



© is less: or equal to any element im N,
: Tet & ' JF & }@( Ve & ‘*‘n e R &f Me shall preve that
L .‘a!},&,oo .\qﬁ & gUg hé: %":: 2).351~ n;) 8 SBARLL }gi/@ LA
for every k @,‘i()““,m% ; EVery {"Bné; Em?‘,d) and every fiﬂi‘te subsets ?’11,“”?"{1:(:

€ Latigt ) sueh that sﬁ ggm?g oo €M and £,(M,)€ .., S8, () ve bave

P b MM
() e L \: sup B (£, NV \/ @ (2 )€Y ¢ (£5hPo)}
Gaeded '

We argue by induction on n - k, Indeedg for m« X =0, (1') follows

frow the definition ef = C}é__ - g inlgt’f . Wow suppose that (4} &s trus for k and

-

‘Tet we prove it for k - 1, As £ é-.fk » there is 6 (:.Ed ,% Y} sueh that M

Jet ked™
£ i@k} and f )45}_4 ({3 '}3 If A@ denotes the set of a‘ll finite sulbw
sets ef f@ 0(), then (sup &I;) (£ (h))MCAQ is ® ne% iﬁcmasing to
\\/ & (£, (‘6‘)) As we have by the induction hypothesis 3
. Fe[@’g() e Bl )
(2) 1\ sun B (2,01 Veun B (£,000v \/ B (£,)€W,( B0

i=1 Smlct §
for any @e[(}wd) and sny M(.—lzﬁ?; and T as well’ a8 the lattice eperatfisns

are order eontinuous, it follows from (2) that

: . " ke \\J/" : n, X ‘ M4

Vo swedlgm v NV gfg{,f (eNV \/ e N, (B
: $21 =l

for any F”éiﬁ’k?g}’ Now the net ( \/ Q:J (£, (‘5‘))} 48 deerce
. geing to 63 (f Ve coaseqnemlj, it follows from (3} that (‘?) is true for 'k -~ - e

For k = 0, (1) gives

T(\/ é§‘<f NeWie, {{sn B el )
a6 @ is arbl‘nmm"y, we obtalm that the left side is lesa them 'EQ"(f } and tb.a
proof is.complete, ' ' ‘
We say that (Xo( ,3&«) is an inductive system 'of-preordw"@d sets:
(&,{3 are running over an upv:;nrds directed set) if i‘Z: dis an indugtive sys‘t&m m the
set - thecretie sense zs.ndi im addition, each j‘,ﬁ( is i‘;'fmr-@gsing We shall consSie

der the set — theoretic inductive limit X = Iim Xc‘ as preordered in the {0110

A

ving ways y if there are an index of =nd xd\ ¥ %‘: & X‘c»'x such that x , £ ¥

é »o( 9
)

X s jo( (x% and y = j (zg Y, where jvi :Xv( —~3 X denotes the eanonical mapy
glearly, each j@( is im-masinﬁ for the precrder relation so defined,

hﬁ say that (XM 4 \i) gjﬁ ,') is an inductive system of i ~ systenms

if the following hold :



-5 2
g i

j i :
:?) RfaCkl (3’( ) (:ge'«)ﬁ( @ r g( ) s "{1.‘ CE) Ll %y’?‘i?@mo
143 ()id ) is an inductive system of preordered setw

. .‘? i
1i1) Whenever 944.;(3 we have 50, :ai‘-,n (, *’w\ &_rw: ’q):d\ sz w(:ﬁ{%&t 3

fv) L_‘_,} @ (X,) i3 order bounded, B 2
il o,
The proof of the following lemmz is stra ghtfarm i ar& will be ommics
ted,
A 2,2, Tet (&c“ B, ﬁf ,jN% be an inductive system of <B - sys-
temns :md let X = lim X, ‘D = 1im @9{ and W = Lim w . Then (X, gg,ﬂ‘} 18
—> — ——
(<4 ok oL

o CE - system, called the inductive limit of the above inductlve system,
Let ) O be any ordinal number, Ve sa:y that a preordersd set X .has

" the of - majoratiom property if every MCX with card M < HJ\. is bounded from
above, Let us agree that the (~1) . majoration property means that X is up17*»r~a§ .
directed,

| In the m.st of: f;he section we shall Tix an uﬁmds directed preordered *°
éet X and we shall eonstruct the sets Xa{ jand the maps j&,’{ :Xo( e }((3 P
Pia :xﬁﬁ"xﬁ_@,@ 2 -1, & ) by transfinite inductionm, Put X_, =X and

define X , for o2 0 as follows:

Gl
L N
Case =) Xe{H’* 'Xo(' ’ .'
3 D - s
ol +1, K +4 9, o +9 X&M
Jot +4,00 (”)(W Sl
PO( 0“+1(f) == f(~1)’
joiﬁ.ﬁ» g TP R | 2 .

Ty . e
. Po, et TPEK Pt &gy i -
Case B): & is a limit ordinal,

w Kl dis the set of thosa £ Cu-.‘é ) a— L_) K(b il the following
@el}f « ) i
1) f(plexg for pel-1,«),

$1) j ( (p )< -3(3\) and () =p_, (£{)) whenever

(1
e 1 elat, ) ana (5«3"
The precrder relation om Xo< is defined by: £« g if for every @étm?gdh)

there isizre-[m%,od ) with B and j (f((5)) ().

As concerns the maps § and D, For AL , define them as follows:

©



and fo*r* (5-::1‘5‘ ¢
p(sd.(f) £ f( (5 } ¢
3._1,\{5 ()(P) = ;_i@w(% {y:) if {{‘.?,f’;. i
= Py '(, x) 4 B,

The next lemma presents the properties of the sets and maps so construe

cted; it ensures in particular that the definition of ;]0{.3 in case b} is correct
{3 .
&)

{

(:ﬁ'i:s; values are indeed contained in Xy X
LEMMA 2.%.
| iY Bach 5(50( is increasiné;, | | |
ii) pd\& o pg{(s Py ¢ 55.‘0( = 33\(“ j@d\ whenever o{:{;(.’;.iiﬁ‘ 5
p;(,(s j{;:vi o 1& : 3@0( pcl(s (x)& = whenever olgfh and x(—;»X(g .
iv) Xo( has the ol - majoration property for any o) =1,

. A-'T
S

v} For any oty -1 and any XEXy thg set B ot A0 ($x3}) is cofinal
PROCF. The proof is done by transfinitve induc%ion: we assunﬁe thcjc ali
't‘h‘e statements are true for ﬁ<'o< and ulg prove \‘:ﬁ@?ﬂ for o .
i) to iii) are straightforward c:o'mputatiém»s, and we shall ommit them,
We shall verify only iv) and v), |
As X is upwards directed, iv) is true for & = -1, We shall brove it
for an ax:'b-i_trary o by distinguishing .'bwo cases, ammfdi_ng to the fact wﬁéle't&'xér
"ok iIs a ‘;imi't ordinal or not, ; , e .
Cage =a): The proof 'for: o +1. |

Tet MCX“.._F s eard M étS}« P Then the elements of M may be written

5

y o Ds-z_fine T :E-»‘iﬁgw o M) ey X ” by transfinite induce

28 o het (fa - .
..9 a ( B)KEL“13Q‘)0"+1,

- tiom:
£(~1) is an’'arbitrary element. of X, o ‘

£f( () is an upper bound for the set
LRI ~rép<py U%f? ()] ~ts g*g@%‘ :
Observe that an upper bound for the above set QXiStS as, by th.e induce
tion hypothesis, Xa{ "has the o(, ~ majoration property. |

Cleariy £€ X“,. ;4 2nd is an upper bou.mi- for M,

i 4



Case h)iof i8 a limit ordinal,

Let MCX , , *“'»H » Then the elemer\t% of M may be writtem as a

of.
De iuw a map f{» aDﬁ) - LJ

met (£, ) W e
ye C-1,a) belnk) |
4tions §) and 1i) f#n the definition of }“o{ hold, Let £{~1) be an mbu:mwy element

so that condie

fiv X and then define f( 3} by transfinite. 'nduc ion by distinguishing two casess

Case a): £( §3~M‘) is ehoasen inm X(BM so that it is an upper bound for

>

9p41,p @IV T8 (Ben | 1€ peag,y ]

: and verifies the relgtion

Py, gt (E(EHN) = 2(0)

The existence of such an element follows from the (@+’f) w méjoration property
of X Bt and from v) in the statement of fhe lemmay,

Case B): let (36:‘[»?‘,0() be @ limit ordinal and suppose that f was alresw
" dy defined orxv[’»ﬁﬁ,(l, ). But then f‘,_ a8 a map on mi‘\,‘}, }, produces an element of
Xp» which will be taken as £((). : g »

The map £ g0 con ‘ strueted is an-el erﬂ@ﬁt of X, ., To see that is. an upper

and let § € [~1,«), B

bound for M, let f¢€ o gkﬁ& 1 ks oa‘"\w}ca is a continuous map, there is

t}&[;?,ﬁ) such that (’5},5 and b{\é‘-’v@a We have

jﬁ“ 5(1‘“ (é‘))‘-ﬁf ((3+1)~’»ﬁ((3+1),

as § was arbitrary, ﬁ"g.é f.
- Finnaly we prove v). Let x:eXo( and fC}‘x o Deime g3 L—»‘i eL*H) m«;;»X
by transfinite inductions '
g(~1) = xg
a( {3) is an upper bound for the set {i((& )}U g(tm?,(} I
The existence of such an upper bound follows from the of - majoration
property of Xv{ .

Clearl (g} = % and £<. £,

T Py AR A |
The mqin result in the section is the follownrg theorem:

1 TR . 3 sy L 2 2 .
THEOREM 2, 1. L@t (X,@,‘fﬁ) be g@m system with X upwards directed..

Then for every MCX with card M *;_‘%{ there is 20, (jé(}{) such that T z)&

IR ol Ny



0. -

- PROCF, Congider the sets X asgociated to X m"ui define (D X iy B
E‘!’( Ry ’Iuls

and Q_} Mﬂ»a F ag follows((}{ wéf';}”“‘}’ ) is taken to be equal to (A,’Jé ‘i,‘ﬂ*

C& sie] Eﬁ,‘} i
e g

D il = £ ,\\/ ) *gw
| pel-toy ) Telensd )
‘Y.(ﬁ(’ii(i) =g ‘yf\% %?‘E('?‘”O( (f((j}é)) o

.4 .

ase b): of is 5 oordi . '
- o : SR %‘:@%f/ : - E
gl @@{ (f) =% f\ : @\@(f(ﬁ\))o
@ét«m ) Yelf,«)
Y (1) = T}{ (£(p ).
o € E«- ) .
1% io proved by transfinite fnduetion that {X ‘Q ) is m(},:) - Y S
te:m angd tbm (x @ ,fg,j } is an inductive .)ystm of@m systems when ¥
p =0 e
and b rum over [~%,0{}, In case z), this is a consequence of lemma 2, ., case
HooN :
b), we argue as follows: let (' @ ‘,;}:r‘} be the inductive limit of the induc-
tive c:ystem (Yﬁ 9':(), 7;}(5,5{@} (g (;Ci:m‘i o)) , which eaxmc,s by lemma 2,25 led
1 o
- 8lso Jo(g Q-m,»}xi be the canonieal map, By lemma 2,1, ( 5,)5_5‘(.1 ) is o ‘(’fb o

2
system, Define i!.X -»«-.}X by

x (DB = A (f(@))

e
It is readily seen that J, 1is increasing and that @ 3@ 0w .«!EE:J L
conseaquently, (X, ,CEOL ,,wf;) is also a @ ~ system,
It is easily proved (by tmnsfinité i}flduc‘biorr)'_'that éE ] (X°< e cﬁéz&();).,
How let M C}i; card I&’ié_&&. » By lemma 2;,3; on. ‘has the o —~ majoration

property; therefore, there is an upper bound fé}(oc for jo{ 13(%&)‘, Consequently,
8 = 9"".
(B, () <V .(£) <Y =
UGN LD LY G (2= x)

for any x¢M, As g_)?(( flec 3%-), the theovem is proved,

3. The classes g%

Let « 2 0 be any ordinal. A Riesz space E is said to belong to the

class Cg&( ff it is order complete and m B_ ~*“103 for any subset M of
5 X{,D?' PT .m )

1

sl with dinf M= 0,

. =5
 PROPOSITION 3,1. An order complete Riesz space E belongs to Cée/ iff



for evexy m( E with Im\if there are a net (Pé; :(;’L (E) and a net (Yf‘ig) of sibgets
c.,?'i,d PS
PROOF, Suppose that E ¢ 5’5’ and let MCE with My0. For any =& D, M
"4 5 L B f}%)‘)(’

let P e B C’Yl Ase M is downwards d:u*ec‘t@% D% M also isg eonsequently,

--3 ) 4 (A ‘ Q;
(p ) is a net. By hypothesis, B_ 1. . For any x£D_, - M there is N CHM such that
X v ] & - A .
b

1

v CRAIS F e VAT g /‘
of M such that P. Vsl card = f
i i#] ] S

J-.,

(M 5 )\/O for each § .

gar-d NX % 2%& and x = find Nz s therefore,

ing P (n ) mP (»w, N ) w P (ﬂ v G,

X

L=

The first part of the proof will be complete If we shew that there fs a det.:~>mt:;~wds
directgd set Mx such that I\IXCMXCFI a;n‘d card st I\S’.;A '+ Te this purpose, d'efine
imduetively the su.b:sets I{ﬂ of M as follows, Set R’? = N x ° Smpp»ese E«i is _c%efined

. and let F( ) T finite subscis of N‘* Let £ :?f(iis:i‘} e 1 e

» map with the property that fgﬁ(F) 4 srf F for every Fé?f(ﬁm). (’ahe existenc& P

£ is ensured by the fact that M is downwards directed), et Ir N Uf (‘*f (“‘“‘“
The set Mx s &‘—JO }*23)‘? satisfies all the requiremenis, .-

Conversely, let B -_sa“tisfy the I‘*équiremen‘cg in the statement of the

proposition; I saw hCh with $nf M =0, If we set

r«*SL /\ x| %},‘3, % Lf’lg
. Y=t
|

themn N‘VO'. con@eouenﬁly, there are m on (I:’ )CQ(E) and m net (M.) of uu‘c ets

b
of N such that R 15 o card N <N, ana 2 (g 10, 18 £ollows from the defi-

rdition of N that inf NS €D + Then if ye f“\ BX , we must have P_. {1y} =
: ‘4« x€D,, M . b -
Mo

S E , henes y = 0,

S(im’fll R B@B’I‘?}

- PROPOSITION 3,2, An order complete Riesz space E does not belong to
%70( :Lfi‘ there are B> and a decreasing net (x? relo, CUQ) in B \{0},ouch that

\L’O ,md P vB for every Y ,%€ [O %)3)‘,
o 5 '. : ' :
PROOF, Suppose first that E éatisfi&s the condition im the statement
] . Bt Lo ' " : (/ e
of the proposition, If M is any subset of [G,‘-O(;} with card Mﬁ‘(“sg,\ » then M is

$ @8

bounded from above by some § € EOSCO(%). It follows that inf X§> x

‘ ) 6’6_ M b
m By ’/4%0?} we obtaim that E (%gcé >
: ; «
aelo bl ¥ it |
‘Conversely, suppose tHat B QV,%& and let (5 be the least ordinal for
which thére is MCE with card M =43 6 » nf N =0 and m IR

: € Do M :
also M be choosen according to the property of (Jg e Clearly A (,{4,{3“ We shall prove



»

Indeed, suppose the contrary, De

ﬁhé

(1) /\\ Sh e £30% .
WM )
ecard WL

ote by A\ the set 2}{ | R CM, cara K< ’(‘5(3?5 g
a P

For every NEA | set Py = fg = Eim“" 1‘1 ‘We have inf (Iﬂ;} = 0 and card P (H}<&
<4, 3 eonsequently, by the choice of 15t hov
Sp, ¥ consequ ntly, by the choiece of (3, we must have
: : »
(2) /M\\ Bint B (51) =305, NEA.
. n NG N y

: gcard N? 6.1\'
For every NE/\ and every NtC N with card N% ¢ fg bsk Qﬁmﬁ = 1 - LPN (imf 2 g')j g

¥We have

(inf ¥) ~ Py [anf N¥)(ins N1} = O,

lN ha (inf N7) =P
Consequently, if yé m B_ , then Qg IY(\‘*@'U *&IWQ e {4¥y}) =0 . By (2),
. Xﬁ_DH M i
R hence, P, (iy\) =0, AS we have supposed that (1) is

e W .
card Nt {-.fﬁvi

false, it follows that \\/ P \‘, » hence, y = O ’lhus, we have obtained that
Reh A : . ,
f\\- B »303 s a contradietionmy; ’cherefom, (%) holds,

s Let (= 5’ re Lo, O, ) - any emmasara*tionw of M and define the net

(}X re Lo, f—dfg) by y{ - 0{?;?(\ ?5 . Clearly 3’ *L’O As ='x*€chw~§~ M and
card T <X, for every ¥ elo, w!}), it follows from (’f) hat B /d“\\ B

=20% . If we let P be the order proiec txon oL B then the net (x_ ) s, Sl g
iy Bl 5 'sel0scy)
defined by ‘XS = P(ys ) has all the :nequu'ed proper i@;a.;,_.

The next proposition gives some _s*tam;lity propert_ies cf the classe&(ff‘x

PROPOSITION 3,3,

i) Let E be an order complete Riesz space with the property that for

- every }'zej—l{i*_ \‘1071 thw“e is F e 6‘; and a positive order continuous linear map

T B w::,, F such that T(x) # 0, Then B € j e

ii) Aoy (finite or not) produci. of Riesy spaéeu of ¢lass @d is @
Riesz space of elass %30( % | »
115) ILFEYG, , then L (B,F)€ ¢ uu( for & any Riesz space E.
‘PROOF, To prove i), let MCE with inf M =0, Replacing M by

bt . .
2/\ X |3t x.€ Mj we may assume that M is & lower sublattice, Suppose that
=1 ; ,
Y&

m B and y % 0 ., Then there is F é,%:l and a positive order sontinucus



2

Tl oy ¥ ‘such that ““’7 #0 , As ‘,{(?‘1)“2{0 tbw“e are, by prono%itwr? Sty niviet

Y in 93{1?) and a net {m } of subsets of M sueh that PgTﬁiF and inf Pg’jf(ﬁs}mf)

for each § ; we may assume that the Eggﬁzar& also lower sublattices, Then

P P(int M_ ) = inf }é,m(m Y =0
§ § Gt :

vhich f{mplies that PST'(j ﬂ) = 0, As P g'f?\?}?, we obtaim T(lyl) =0, a contradic-
tion, Hence y = 0 and .the conelusionm follews,
- if) is an fmuediate con wsequence of i) (use the projections ors sach
faétOf) o well.as ii1) (use. the maps U p~§nU(x) for xe§E¢7,
The‘class @20 is of particular interest as the conclusion of theorem
0.1 #s still true when F belongs to @O (see the next seetion), In view of this
factl, we shall indieate some subelasses of ‘?O & }?;irst, recall some definitioms,
A Riesz space E ic ealled order separable if DM == D/g M for any MCE,
A Riesz space B is ealled weakly (g so} - distributive (see [,9.,1) if
jit. £s order complete and for every sequence (Mﬁ) of upwards divected subsets of

E such t‘nat. u N is order bounded, we-have

B=0 -
inf sup M_ == sup :me‘( ) Cl‘
mO " i 130 2 i =0 - %

PROPOE aITIO 3.4, Any order complete order separable Riesz space belongs

to(g

Any weskly (¢ ,99) — distributive Riesz space belengs to %)O. i

PROOF, The first assertion is obvious, To proeve the secomnd, let E be

O s

a weakly (¢ ,90) ~ d.istrib:utive Riesz space and let MCE be such that b0, ve
may assume that M 1& bounded from above by x & E There is a stonedn space -
X and an order isomorphism T of F onto C(X)}, As M \1/0 the set ¥ -«c% ‘L‘é’:}i
inf T(y) ()7 O} is meagrey as B is wenkly (¢’ ,00) ~ dicbri‘mtlve? it i‘o”rm“
vl s
that Y is nevhere dense (see the proof of lemnma L in L&J‘},, Let A\ be the set of
all closed - opem subsets of X w‘niﬁ‘-l do not intersect 'th@ elosure of Y, For every
: ' g '
xe s Set PK = Ay E{l [T (%R) s Whewe % denotes the characteristic
function of K. Clearly P 1 1. as K€A. f Dt thearen; tha
netion: of X, Clearly ] { iy 2 s K Om the cther side, by Dini®s theorem;the
set of funetions T(M) converges uniformly to O on every KE€A j therefere, there
is, for every K N » 4 subset I*'E};,C?-i such that eard Yv’iyé H 0 and P}({E;?.K')\L 0. By
- -8 4 AN

proposition

=)
W
[N
e
w
bdo
Py
h
Q
ot
(8]
=2
)
(=5
=
e}
pus
td
m



; @
o [AE ew

By proposition 3.3, any m'ﬂm* c:cn;*ﬂ ete Ricwz space with a separating

order continuwous dual belongs tr 5{;,/ (‘Evm fact, such a space is weakdy (¢',%0) -

n‘ ‘

distributive) . We shall see by three emmpl 3 that the elass of ovdey eomplete

7]

Riesy spaces wiih sepavating order continuous dual is strictly contained in % . .
3 ] A 0
The first exawple is provided by the Dedekind extension E of G([0,11).

. = I(:p d ,
As E is order separable, it belongs to CZ& however, it is wel]lknown tha'-t

o ¥

The second example is providcd by C(X) where X is Dixmier®s stoneasn
space from CBJ . The spaee X has the property that every meagre subset of it is
nowhere densej hence, C(X) is weakly (@ ,90) ~ distributive and, consequently,

. g0 - 5
it belongs to %O However, it -is nroved im [51 that every Radon measure on X
has a nowhere dense supports the*Mfores c(2 wiﬁ} : .. 1

The third example is cbtained by "uak.mg an unecountable product of ¢o—

pies of the first e'xampleﬂ one obtairsa Riesz space of elass Cg which 1s neither -

order separsble, nor weakly (¢ ;%0) ~ distributive,

c e

We @lose this section by showing that for every ordinal o there is an

order complete Riesz space which does net belong to Céz( s s

To this purpoce, let X be the set of all decrea 111{5 functions

"l o+ 9

t [O e i} omesd [O 1“1 3: X 1s a elosed suh'%pqc‘e of [0 il A hence&- a étompact

spaee, For every @C:L—O,CO“.M,) , let xﬁ(ﬁ C(X.) be given by x‘b(’c) =4() ., It is
easy to see that (x is a decreasing net such that x b0 in 4 &0
and B_. = C(X) for every @efjo,wd +’f7- (as the set om which x-@ vanishes is -

g

novhere dense in X} . Therefore, if we let B.be the Dedekind extension of C(XJ,
i Y 1 T {id § & g i, ! 3 £ & & ."' “J‘
it follows that I is order eor plete and (3‘? (56’.3 EO W,“,%" is @ deereasing net

Y . By proposition j~2, hc%;(;{z( 5

im B with 3ﬁ{b~1/0 a_nd B, ‘=& for every (sc.l) W, -

4. The main results

Throughout the section we shall be concerned with a Riesz A ~ module
E and aw order complste Riesz space F,
Consider the multiplication on A@’/. (F) (the.algebraic tensor product)

defined by

B il (a@T )@t @ W) =aat @MW  , a,ateh, F,7°'¢C 2 (E)



i ‘%5 i

1 . . X : M
and the order rel .tian ds Ined by the sonvex eone generated by‘§w@§a \mfzﬁ& .

i {,a ( (n In ¥his way, Aﬁ@Zp{F3 becomes an f ~ algebras; to verify this, note
that every'ﬂézﬁéﬁzn(y sy be writtem asdyy

m

5 f%ﬁﬁPﬁ

i=5 7

where @, A and the Pi?m are muiually disjoint order projections, It £s then
ot 5

readilly seem that the modulus of ¢ is given by
N
— AP 3
lel = 2 |a\@P, .
G B &

The wnit of A@2Z (r) is eﬁ@iP , Wwhere e denotes the unit of A,

We define m structure of Riesz ﬁ@@z (F) - module on I (A,F} by
(@ TY) (x) = T U(ax)

for a€A, Te zp(y), u&tﬁ(g,f‘) and x€F

The proof of the mmin theorems will rely en the group of lemmas below.
Ve begin.with that one'which, b 41 gssaeiatiom.ﬁith theorenm 2.9, provide the basie
ool for the proof of the mentioned theoremso o

Befoﬁé'Statinﬁ the lemma we des cribe a con&tvuctlomo Denote hy DA the
set ef all systems (qﬁgn,e,a Y (n is running over N} of nleuen%s in A such
n
that > _ a, =e, 4 preorder'relatlon is defined on D, by : (aT,Qeopa_)é
in‘:}::” 2 i i .

&(aly.ee0n!) £f there is a partition (Mi)_%ié& of {1,...,n} such that &

e

= 2 a% for 144 &m. The Riesz decomposition property ensures that DA isS up~
CjeM, ¢ . ' _ . .
o

wards directed,
Naw fix U,UﬂeLr(E.,F)% and x€E,_ . To every O = (aa.ﬂ,”,.aaﬁ)e D,

attach the system By mf(Pﬁgu..meg‘oﬁ'arder projections;én F given by
£y m[‘_rn (agx) - U (a,x)) L1

Them define the element [XG§3§> ,@f‘Aﬁpr(F} by

bos
Rt

A@ PA ““Z &_T®P
i=y -

Consider the maps §§:DA — Lr(E,P <ﬂﬁﬁf°D »ﬂm§ " given by

i o

@?(Z&) w~?éhﬁén WU + Uty U,

WA = "Z: U(a,x)AU(a x)
iy.z:‘f i i
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VLN EHIP. £ ol
0..“:&6;’»’}-11&,.; (SR, 11},
Jt followe that é@(DA) is combained in the order btounded sublattice

[O (’rt-!:i Vs Ui‘) b

LﬁNmA & 4 (“ﬁ,,mg\i} is o (P~ system 3 the map T im the definition

of até§ -~ system is given here by’@(V} w~§V§(x}a

e s AN ; Al ; 2 8§ sty e
PROOY, Conditions £} and ii) in the definition ef @,ﬁg - Sygten are

The verification of econditiom 1ii) w41l be divided inte

-

vOuVJOHCly satisfied,
three steps,
STEP 1).
(@t ~AB2 NN € 7'H(DY , A€, .

PROOF, Let O mf(af,o.,,a ) and Péx ﬂ:(Pf"°“’Pm)° We have

e @1, -~ &ODP )b)( t) = E: ~ PV U(a.x) =
R = L%

& |
(tp = PO 0T (egx)) ) + Z (4 = B U(Rx) AU (o)) €

e

$=4 . i1
2 1
< 3 Ul AV () = 27A)

[y
'Q
i

STEP 2), Let /f.xﬁ.,owgzlx €D, e such that & & Azé 5“&&‘ . Then

<(\/z>> EN mmm g 1A% o8
R & )

PROOF, Vie nmay chang the order of elements in e% 2h Zk and complete,

if necessary, with zerosy hence we may assume that

-
e @3?) 1434m °

o
T :I;. 1€3 403 6m
AN a, .-
ﬂ r ( Ji}aa‘o,}m)?éj‘!}e#o;jném g

the relation éxié;25i+? being expressed by

mm-"‘
;....m-n-m £

& i
_j Tena:j,p j OGOJ
Py 3i~w =t Sytccdieg

[ €2]
A

Py =(P, )
Ai dﬁ“*'ﬂ.i ?{‘j?#f’*“?‘?i\';ﬁ
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pf
ap i f e

aupnd
g : £ S :
SR .{:; v 2’34 bt:ud-'ir(‘Njy\“'3 V j jv"""vlj ow@é;’)v
5.?9@509:}.%’::? w‘?“ u}ﬂ T 2 T ‘,3
We first prove the relation g
~ }i
(‘t?) (‘Jx}h)( ) z_« Pj (b\m '")/Q“ﬂ ”J X)}
m ' i .
:?;'._m (P \/f j ”?j )(U(%ﬂ.j }:),\Ut(:@j i i
d«”.j = 2 49 e g0
3 D sl ()' 2 ‘ﬂ@, & to\!}}#- 5‘. v Pj \} o 30% Lj j )(J(%j '_ 4‘{} ’\U ( j > 5
j 9°'“;j =4l J‘p ‘}@&G'O 'f’ & F T ?at° 'f‘vﬂss.JIG\
i n ‘
This is done by induction on n, For n =0 ‘there is nothing to prove. AR

"(9) true for m -~ 1, le't us prove it for n, We have

(2) (2, V ..s\/pj jmr'(a, ' s ) =
"1‘ e vn "‘Y'“ no

= (P, V ...VP

bl

31: j?'mﬁcjm)((lfg(g)31:aoojﬁx} MU(%jﬁ;oesj x))+) <+
PP -0 e Y(Uu(= x) AU = x))
1 j?,usj Jyoerdy R
But gt 3
1.‘¢°¢j ((U (@':c'vﬁﬁx) m‘U(mj?oebj x}7+) 0.,

hence the .first term in the right side of (2) is equal o

CEVIREY IRICHEN £} - Ulm, %)) ) =
‘?1 ji]ngwaz’ﬁm‘fz chajra § QOajp
m“(}? N e T )(H’(FF x) - U(s xIANT (o, ))
T‘ j,ﬁocojﬂﬂ? ouoj jgab&.‘m . J‘T!Qou..z
Therefore ’ ‘
3). : eUt)(x) = il P,V ..,\/P ot (e x}) =
(3 e = X Mjujmj )
P j peaag‘i i 11
bl s
e ‘ (Pj\/ ,,M\/}?j p Y(us (e, 3 x}) +
jmﬁmhﬁﬂj.,\w‘t T 3 “;ﬂ?avm“q‘l ‘J-T"gosg b
et e ‘ _
om . : i . .
« % (}:»,V see VP B M VP - Y(u(a x) AU o
Y AT 4 2 K3 9t i o s o J
Sgrevesdat 41 Sgpavdy . Ay Ipesrln.g | dgrasdy Bgeeedy

Toking into account the faet that

L

> u(a x) = U ('ﬂv }
jnﬂ"i j?,aoaj ji,annj

©

and the induction hypcs’azwv%, it follows from ('jr’) that (1) holds for

Next observe that the right side of (1) is less than

[ SR SR A A

g



(4) ’5‘“‘

§~§{ By A}/“U”(pwg b9} I
a.-? t-w:;q ’

NE. e LNE N Y u(s AU e, . x))s
jTuaoJ}}‘? 11’ = jinno;ﬁ ? j,’onnj ? 10{:‘:.}%«”1 ;

““W $yeeed 1 jc"*j mj;"”‘m(m* e %)) ..

T ? hia)}
The above element is in turn less. than };ﬂm[}(zﬁej x) /\U*(:@j x}om 8 W &‘1)* We
jim-“ b ] !
' »
see this by ivdudtion on n gs follows ¢ we have
T m (%‘ijV‘(‘e j j }Qv(aj .j "}/\g{ﬂj .I ) o
jh“.,:} s | f““ ‘i°°° “"“
I’j} .
LB i ) Loom
= 2 (1p - PV .. VR VI (B XIAU (a RAES
j j =24 E’ 31 'j‘ibo“jf»-wf j‘_;:‘ j?owe? j navj
F 000 ] ) . % n
m o . ) g !
AL (1., =P, V... P g )(L(& ‘{)/\I”(r% e > S
- I 3? j,iansj 310::-&3 dﬁ‘”odlhm‘ii :

by ey g
The wightmost term of the above inequality adds with the last but one term iﬁ
(4) up to

i

2 (& -Pj:/...\ij s )(k(aj7,@aj X)AU* (ay ;qunq %)) .

j‘i"’“""jr’ % af ﬂw?‘

h’ow this remark and the induction hypo uhesz.q t‘ne conclu ion is obtained.
Finelly get the ammounced jnequuli‘ty by ob%ewinb that \/ Aﬁ.@ *A Lo,
= A
STEP 3)., The proof of eondi't;ion (% b S ' ‘
. L.@'t: Aﬁq,..,,&ﬂé DA be such that Aﬁ‘é et é;[."},n“, ¥«!§ have by stews
- 1) and 2)

T(\/@(A s =\ (\/A @pﬁ U + Ut -l ¢

pES > o S |
< ((e@ 1y \/A @2y )u)m + ((\/A @, Y (x)E
; =1 i_ [
& ((e@1; - A @3 M0 R <<\/A P YU (=) €
: % |

£ 2"1"@;3(/-‘\1) ot (A % wg(a Jie
LEMMA 4,2, Let G F be c»*der eompl ew@ Riesz snamm. M bve 'm order
"ﬁrounciw subset of G, 3593( 3) and T C;YJ?(G,F)_% be an upwards directed set of
61"@.01’* continuous maps such that the following hold: | - '

i) (‘}G « P)(x) + P(3)€ M whenever P(:'f and X,y EM,



41) For every 1¢&Y ‘lfw are nets {Pé;}(;’,ifi and (2 YC M sueh that
v P
P 1 and (P (1xg1)) = 0 for each § . |
N e ,':
g4} [V g0 mioJ 4 ’
fhem O¢ SDY
PROCF, Consider a fixed TE€Y and a fixed %if’ and assume that the set

G x| mém, 2(RUN)) = 032
is non voxb then let y = dnf W, As T and P are order eon&:iﬁuous, ifz. follows uh.ra«r”g
(Pl gl)) =0 3 a5 yEDDM = DM, it is the least element of N. We shall prom that

L ¥4 0. By conditiom ﬁ;i’i;), it suffices to show that Tﬂ(y-e-) =0 for sny ‘%&’-S’_ . Se
¢ _let T?égu be gi‘a’ex’r; There is § (E J such that i‘,?,{é 5 0 By condi ion £31) there

are nets (}?S}Cj/ and (7 YoM fm,h +‘mt Lg'ﬁ* and ‘I‘,,(D S 1)) =0, Consider e
the element FS = (1 Mo = I’S)(.‘?) + Pg(Xg) . By condition 1), y’gé DM, We also have

(P )) = ®(P(1, - P + (Pp_(Ixi)) <

Blyg) = 2301 = BI31) + Kepgixh)

<®2OyD) + 1*2(175.(13:5!).} =0 ,

Consequently, ygé:N and hence y¢ yﬁ . It follows that

P (L P (x

..5(3 £ B ( S)
which implies

> o s R P s Yo e <P :
: ,(3+) . P.(af)q{,éi..(fm) Ps.(($$)+)~?gilysl)
(E (y#)) AP (y+))< (Pg(lxsl)) =0,
» As PS’T‘T@' . w8 obtain Ti(&») =0y ' |
Ihe above ressoning together with condition ii). show that the set

: D?-fiﬂ(..,{}{_} is non void $i let z be the supremum of this set, _Clearly Z&SDM ¢ the
proed will e coneluded if we :@»hoz«ﬁ that z = 0, This will be done By pz%‘ovim;: that
'ifj'(z) mé,c: for any T‘éff‘? 8o Tat €5 ve given, By condition #i} and the first

- part of the proof, we ean find the nets (“P )Cff? and (x )C_DM"](»& suech that

£z4 0 1t follows that ’*’}?g(z‘) =0 , A8 IP.T"}

$

1 TIC and J(}g(,‘h )/ m: O, AS x c

Fr
L5
we have T(z)f and the proof is comple‘ue.
" In f_'?] ve have defined a principal module as & Riesz A -~ module B

endowed with a lecally solid topology such that for any € E, Ax is dense in the



a0
wodm pt dane

principall oxder ideal B_ , We shall mow need the conecept of a principal module

Y

im a non topological situation, For our present purpeses, the following definie

2

“tuea will be eonvenienty the Riesz A - module B is ¢alled prinecipal if whenever

: . 2]
e g s ey X g W Sig R L T R ke - Tr st vt dr
XEE and :;?(:".?}3? there is a sequence {a JC A sush that & x ~3¥s Lvery principsil
3] A ‘
module fm the sense lwh ch is medtrizsble and complete is principal. fer the .

above definition (for instance, any B‘ana,c;h lattice with & quasi interier eleoment

18 g principal module over its cente )5 alsoy every Riesz space I with the PEE N

¢ipal projection property is a prineipal modulie over Zp(l‘:}) (this follows from

Freudenthal's .speatral theorem y see L‘}j) '

LEMMA 4.3, Let E oe 2 pr*mc::.pal A ~ module, F be an order complets

Riesz space and U,U’éL (E,F) be such that UAU® =0, Then

Z.‘Iw XIAU(a, y)" (aé,,,.,w )é J) }\Le
F=ed

for any }:€:E+ "
FROOF. It is based on the faet (which is established in the sam e way

ot B
as lemma 2, # me 33 that whenever x?g“.,x €L‘ ver:},fy ) X, =X there is &

/ i
sequence (s* ,.,.,a ‘%‘)C D, such that a, x Zm}xi &5 Meespoe for 14 44 n,

m .
We are now in position to prove the first main result im the paper,
THEOREM 4,1, Let E be a prin Yednal AL« module and let F be al

Riesz space of elass gb( s -The%‘a
for any VE:L (2,F)

PROOF. Denote by oég the right side of (1), We shall first prove that

i
- each component of .V belongs to i/é « To this purpese, le't, UeC, and let U' =V .. @,

<$

Fix for the moment an "(,}‘4“- argd construé*c the maps i} and \_ﬁ as desecribed before
the statement of lemma 4,1, Then 1emmﬂu 4.3 combined with proposition 3.1 produes .

net (D V_"@’.‘ and a net. (A .VC D, such that PP 1 , card N &N and
$ A ' ¥ & w

y e
PS?SE‘(./AS) = 0 for each imdex § . x;azqy by lemms 4.9, (D, , @, V) 15 a P~ systen

vl de sy O89S - - 4,"-‘ ™ T it od Ynow N o % =
with respeet to the map 7T e P S given by T(8) = Isl(x) ¢ hence

(DM ‘})@ QP{FE) is @ @ ~ system with respeet to the map T 3 here P denotes the

L

-erder projection on Lol ) eevanate S ipi: Thdicagd s we SR e T



SR s

3

&

&3

iy
3
2

for each index § , an | B EC, ([o,e®e. 17 - J') suen that P18 | (x) =10 (8 ) =0,
S ¥ 5 3 8%

; 'f o 5 Sy ¢ T _v 8 ; -t L
How consider the seb :;4 :r-r-%.r‘ {‘ [ J (z *)% and the set 9 of wll maps

ot - i s Bt F AR rds direea
 ciearliy .J L8 upwards direQGe

from Lr( B,F') to F of the to; w8

ted and consists of order eontimuocus pgsitrw ilinear maps. The above reasening
I s - L ; c ] e 50 i T e by o 4
§_u99 @H.,.}' V U), ‘j and J verify conditiom 3i} in the riaim.um-
ef lemnm 4.2; as the other two conditions in that lemma ave easily seen %o ‘hold,

it follows that 0& 5nC ([0, e® 1 v e v) =ikl v, that te, el

&

ka}: an arbitrary UE LO l let A’ be the set of operators in [O,Ki% of

,(,4
@

~ the form \/ ¢.U, with U ;€0 and & Lﬁiﬂ 0<¢.g 1. Asclh is a sublattice cﬂo" ed for
=y 7T

lﬁ%l"hipl:’i.%tio“l by scalars :i,n [0 ‘?] it follows by the first part of 'Lhe proo.;

&
&
LS

i = [0 # A
«/“ By E‘reuden-tml‘s spectrsl tne’\r =, vf'?‘ U 2 hence UC :Sw’f; mv(é
of ( T‘) / i

is complete,

Finally, (2) follows from (f): indeed,

T-v,v] = [0,2v] ~ v = spo_Jo0,e® 1F1?V -V =

. snca(fc)s;e®%12v -V = sncdl;e@ ‘i‘F e @%F]v .

i

He p'm's now to a variant of theo*em 4.1 in which [O V] is replaced by
CV ~ "fo »tbis purpose, let. us ;mtrrsc,uce the notlom of a g),., simple ﬂ,ompcneﬂ .
Consider @ pri eipal A - module B c\m} an order complete Riesz snace
F, Suppose that A = F (A} and let \CP be am ideal in the Bcolc«:anvalgebf’aﬁ Ce (e

P

bei ng the unit of A) wjth the property that for every x B there is p€J~ such

that px =x, Any componem of VéL'-(E,F)ﬁ’ of the form

\/ (p, @)V
- feed | :
where v, &Y and Pﬁéil“(f‘) will be called \(/D.-. simpleg the set of all such com-
ponents is a sublattice of L (B,F) and will be denoted by E’Pv 2

Let us consider two examples. The first is provided by the case when

.

E is a Rieész space with the principal projection property., In this case, take
ko ZP(E) and take J° %o be the set of all principal order projections,
with X,
For the second example, let “'w ¢{X)Va totally disconnected compact
Space, let QD be the set of characteristic functions of closed - open subsets of

X and let A be the subslgebra of E generated by \(/‘3,, The fact that X is totally

disconnected ensures that B is a principal A « module, Observe that in ease when



s

22 e

b

ey

X ds 0ot o~ stoneare, then E has not the principal p:rojwtwd} nropa*:&”by aﬂﬁ

&

s of Aliprantis?® and Burkinshaw's 1mpro~~

C‘

hypothes:

P

henee, it does not satisfy t
vement ef de Pagter®s result. However, &t dees satisfy 1‘;%’19 hypothesis of ocur
next theerem. .

LEMMA 4,4, Let E,F and § b

¢ as gbove and let xEE, , Fix m p ef}ﬁ fow
- v

whiech px == x and let jjx be the set of all systems (p?gw”pn} of mutuslly &g
& | 2

n :
Joint elements in Y ch that’ > Pe =™ P (m 4o running over N | Then for
=l *

every U,0'e¢L_(E,F) such that AT = 0 we have

R

1 0@ AT () | (pﬁ‘w,p e Ha :
e

FROOF, By lemms 4.3 we have

{ZU(m.?}:)/\U’(@%X)l (a.ﬂ,.,.,.,a'@)éDA%\S/O o
:EJ‘.‘i’?:‘ e = -

1% will then suffice to show that for every (%1,,.”,:.»,”}@1)_,& there % (p?,uo,nn)é

n m
€ ng sueh that 5 L(p x)/\U*(n x)< > Ula X)AU (a x)
) ) j:z:‘;’ $ed A .
lﬂdees‘;g ,1:? (&?’“”am)égﬁ there are mutually disjoint Cpracese & C

,\{O} such thau 2 e, = e and each &y has the form

n
@, = C, .0
A il
3= | -
for some :,“C_i}? (Lemll that A = 2 (A}). As Z 3¢ =& we have , S5 @y g w g
‘ et . i '
f'OJf’ 1‘-éjéno
; ~ syt (& ’C, s  eme , romter
| Ccm sider the dysiem ( ;ieg) 4idm, 144¢n It is an element of D, greatex
-—.. thanm (avﬂ,, i ,am) . Consequently,
, e PN
) ‘ Zu(e x) AUt (e x) 2 cijU(ejx)/\U'(ajx) ==
e §od §et ‘
-
= S Z:_U(ev e Y)/\U'(d e. x} E: (a, ﬂ/&‘é (a, x)
"jm—ﬁ e £l )
As EP is an ideal in ¢ we have e.p %@ for Y4 3< n, Therefore, (efpg,,.,..,,e gp}éf-_‘
e | ; | kY

i
25 2_U(e,vx) AU (e, 5px) £ eI ula XIA Ut (2, %)
; u

THEOREM c%,Z‘n, Let E,F and g“) be 2s gbove and suppose that FQC% « Them

£

C,; = 8D v

v Y

for every VEL (B,I‘)+ 8



s
e G e

; PROOY, @@ﬁ Ué{ﬁv s Conzider an'x E@ and défing ﬁ;§§m»syﬁtem=in the
Same way as 1m the discussion praceding lemma 4.1 with thne only exception that
DA {s replaced by the set 51; of lemmn 4.4 (wﬁi is oxde&ed in the sanme wmy’aa‘DA
and is upwards directed), G&ﬂérve that the proef ef lemmas 4.1 8%ill works in ore
der t0-show that we have imdeed obtained g.ég ~ System, Yhen the same argument
a8 im the proof of theorem 4.9 (using lemma 4.4 fns tedd of lemmm 4,3} wields m
i v - U} such that PS'?TF and i$‘m¢§£ )=
nrf:Aﬁa ﬁag arbitrary, the ﬁroof is completed by using lemma 4.2, ‘

It ES‘WOT%hWhile to note that for Riesz spaces of class ‘%?o s the

eonalusiom,of‘theorem 4.2 can be restated to become identical to the conclusion
of theorem 0,1 & ' | -

COROLLARY 4.1, Let E,F and :/7—0 be as above and suppese that Fé_‘(gg

for any VEL (F F + :

PROOF‘ By theerem 4.2,

3w D0 C) = GDI i b !'f‘ - CQ &
(JV T D 0 ‘,,/ V =i _,.L/Dg S/B} " \?V SJ) o )g : \J().V- o
: g >0 0 ;
It shonld be mentioned that in the genersl case tow, the sﬁatemen%.@f
theorems & 1 and 4.2 cowld be improved BY'?EQ& kirg that, as in the proof of

cor011a“v & T, the fivm] D&‘ is “wb orbhed® by Dy we leave to the resder the
p ' ' .

- fomulation of the pre¢ise statement,

Ve give now an up « dowm theorem imkthe‘center of Lr(B,F)‘which'extehd&

to arbitrary Riesz spaces the eorrespondin result of Buskes D@dd&' de Pagter
J B¢ 59 v &

: ) .
- and Schep [ 2 :1proved only for Riesz spaces with nepqraflng order continuous dusl,
Before giving the thesrem let us remark that, whenever G is = Riess

" A’ ~module, its eunter A\G‘ can be twrned inte a Riesz A - module by defining

(T x) =T (ax) = aT(x)

c

*s;éﬂ, 7"6 72({CG) and xe &, In particular, whemever B is m Riesz A ~ module and
F is an order eomplete Riesz space, Z(L_(E,F)) will be considered as s Riesz
4
A69ZP(F) ~ module, We shall denote by e the unit ef A,

TUEOREM 4,3, Let E be = prineipal A - module and let ¥ belong to %,



, Then
e Y

r
2% g dr g AT

{—E:} {}9'” :g‘ == BHE L‘i G;,"‘E:::y ljj

o

et = s Y f:f
EWH 933 :‘g s SQ{} ~e@D1, gia® 3;
: ok 2 X

L S
z (1) as in the

o

- e
a i
Sreq

(2)

£5

deduced fro

i @‘V(—?I‘}; H (_’ uikh_‘(Jx ;. B ]'
4

shall prove only (1), a

e PR ' i

S (2(L_(E,F})) be defined by

s

ey .

¥

g

) 1e K

W) - (e
Denote by Y the set { 7P| Pér@(lﬂ‘)g
; | Consider also the set I of all mavs from Z(L (E,F)) into F of the
form T U (U) (x) with U &L, (r F} and x€E,_ ¢ clearly T sn wpwerds divected -
and e*o*“niqtq of positive fwd@r continuous llnear WAPS, . M
New let ¢e[ 0,7 "7’ » Fix for the mom&nt UEL (E,F) and x€E,_ . As
gt E B (L‘)j" : there are, according to the proof of theorem 4.1, a net %} :
Pry and -a net (u Y in C‘O{ [o,e®1 ]u (U} such that gki”fw, and : :
ach § . The map T T (U) s an order continvon
: c,'(”_"aﬁe@t; Ti

¥ eadcr
2(L_(E,F)) inte L (E,F)ﬁ Lenee it take
N o (L») f{w some - 'l LO @@?’F i

in
ls. = @5 = ofo
)

P
5

Riesz homomorphism fro
onto ¢ CO e @1 :1:’( )

(1T ~¢ 0 () mu@@om&” - 1)
Paﬁ

$ eonsequently, O

Ve me;
S gt (W\(x'ﬁ = 0,

shows that the

= “’a A e =P AT (1) =g (W) |(x) =
- E‘r'f.‘t;’“l::i.sfj?f 10 con-

Py ’é/i\i*

&

x})

the preeceding reasonin
b .

P v s . ‘C“ ra
& - AS U and x ware 4,1.%)151*:1?3#3
sets ff J and the order bounézed sublattice ¢ L_O L@? 1
dition 4i) in the statement of lemmsm 4.2; as condi tions ﬂ and 1ii) are obvi
snt:_i.sf;ied; it follows that oésn(cod Lo ecz;we,j] -G ), which implies the conclu-

as in the proof eof theorem 4,2)
’?\.

2

ine eorresponding vaz”iqnt for principal components is proved in an

siozwq
) sl
,Lfl{fﬂi jons s’
in the statement of theorem 4,2, De

o

1th-the same mod

L
. Tet E.F and @ be

analogous

LO LB ‘{ ﬁ'

touslsy
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A

i
§

: .‘) e Y R %% ‘
fine the sst (;N of 97’ ~ 8imple components ef ¥¢& Z{X‘?(}‘jpf)).@ b

21, 2P , 2, P .
% 1 ,

\
G = 35 V(@27 »
S=1 “
Then :
Aras I":':)
Cpp == 5D Vi

N .
for every /€ 7 14«,,(1‘35“))% o

%

The proof is based on the remark that ¢ (UY& o whenaver ¢'¢ © e

and’V E';L?(E,)E‘) .
Theerem 4,3 will be used in order %o obtain a varigmt of theorem 4.1
for non positive operators, We sh.all need a le:ma ‘whese proof is straightfomrard:
LEMMA 4.5, Let E,F be Riesz spaces and let TE ~~3 F be order continu-

-

ous,. Then
P(IM)C LE(M) @'(f,z Wy LZ (M)
- ¢ Yot o

for every MCE and every ordinal e .

THEOREM 4.5, Let E be a pruwipfﬂ A - module and let T belong to %

'v'f.:y
-

Them

ﬁdr every VéLr(EgF)

PROOF, Le% UC]}!VE lVE] There is (}’(,[ L (E ry * ‘?}L (x T‘“)l such -
. 5 Sk e

that U = (V). By theorem 4.3 we have

e
e snc, [-e®1, , e@i{lfb (5,1)

C LI’ [le@tn , e, 'y (5E)

" Applying lemmm 4.5 to the map T b T (V) we obtain
: ‘ -

=0 (e (@1, , e®nlv . |

Yor spaces of class %00 » theorem 4.5 takes the following form :

2
COROLLARY 4,2, Let E be = principal A ~ module and let F belong to %O N

Ther

@

C-v1 v = oo, [m&@ip , 6@ '%};lv
for every Véigr{:a,i?) 2 : :



LR VS

T The last eorollary is a consequence of theovems 4,1, 4,2 and 4.5,
observing that every order complets Riesy space belongs to some class %%Z o Reeall

.
a.

. the topolegy whose closed sets are the

that the order topology em a Riesz space bif
sets M with M = 1M,

COROLLARY 4.3, Let & be a principal é - module amd let 7 "be an ordexr:
campiét@ Riesz space. Consider the order topology on Lr(E??) and iet the bar dew

wote the closuve of a set with respeet to this topolegy. Then we have

[0,v] = [o,equ\v

for every VGEE,,LI,(E@F') , and

. i L] - [e®t, , e®@7 ]V

for every VQLF(E,I“L _ ‘ 3 A : i » A : -

B R

’V

for eveny V&Lr(E,k)+ e : 4 e

s

(#>
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