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RATIONAL HOMOTOPY EQUIVALENCES OF LIE TYPE

Stefan PAPADIMA

. 1. INTRODUCTION AND STATEMENT OF RESULTS "

Consider KCG, a proper pair of équal rank compact connected Lie groups. It is
known (see [6], proof of Theorem 1.1) that the group of self-homotopy equivalences of
.the rationalization of G/‘K'is (anti)isomorphic, in a natural way, with the group of
graded algebra automorphisms of H*(G/K; Q). On one side of the matter there is the
fact that Aut H*(G/K; 'Q)Aallmost gives the integral picture of the self-homotopy
equivalénces of G/K, that is up to a finite amb’igvuity and up to gre}ding automorphisms
o) ﬁf“(G/K; Q) (i.e. those acting on H2i as Ai.id‘, for some ndhzero /\€Q)—see also
[6].. bn the other side there is the classical description by Borel [2] of H*(G/K; Q) in
termé of invariants of Weyi groups, wﬁich gives hopé for a satisfactory understanding
~ of Aut H*(G/K; @). | ‘
Denoting by F a field oi_" characteristic zero, by T a common maximal ‘tor.us, by

V its Lie algebra and by MV the exponential lattice, one has a graded algebra

isomorphism H*(G/K; &")NIK/IK-IE , where IG stands for the invariants of the -

" natural action of the Weyl group W on the polynomials on [ @F, and similarly for

IK.' Denote by NG the normalizer of Ve in GL(T"®F), and similarly for Ng- Set
N(.F)='NG(\NK and notice that fhis group naturally acts on H*(G/K; [F). Finally
denote by Lieaut H*(G/K; [F) the subgroup of Aut H¥(G/K; F) coming from N(F). This
papér investigates the structure of Lieaut, some properties of Lie-type cohomology
gutomorphisms and some geometric consequences. Besides the fact that restricting

one's attention to Lieaut is a most natural choice (which covers the examples coming

from geometric symrhetry), it often happens that all cohon{ology automorphisms are
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of Lie type, e.g. when K = T [13]; thé case of cbmplex flag manifolds was intensively
studied and ‘there seems to be enough evidence to believe th‘at the same result holds
in that case too, as conjectured (in a different formulation - see Example 6.9) in [7],
_,[12.]. Though the existence of examples as simple as SO(7)/U(3) (see Example 6.9)
. prevents oﬁe from being too optimistic about the above coincidences, it seems
'ngcessary to have a good understanding of automorphisms of Lie type in order to have
“a good general guess. It is the aim of this paper to prove that the Lie type part of the
“c_:ohomologiéal symmetry may be very explicitely deseribed, producing useful
geometric information. ‘ _
Obviously the elements of Wy induce the identity of H*(G/K). Our first main
result makes precise this observation in the case G/K is in normal form (which

represents no loss of generality, as far as the to'pology of G/K is concerned, see % 2

for the precise definition; it tries to avoid embarrassing redundancies such as

G x GI/K_ X Gl')_
THEOREM 1.1. Suppose G/K is in normal form. For [F = @ or R, one has

Lieaut H*(G/K; F) ~ NE)/W

The structure of N is discussed in detail in Section 6. -

'i‘he elements of NG act on the reflecting hyperplanes of WG and consequently
~on Weyl chambers, and similarly for N. Our next main r_‘esult f'eiates the action of N
on the Weyl groups and Weyl chambers to the computation of Lefschetz numbers of
the inaueed cohbmology automorphisms. If n €N, [n] will denote its class mod Wk, and
in ;che statement below eéch such class will be normalized, i.e. supposed to léave

some fixed WK-'chamber invariant.

THEOREM 1.2. Fix a WK—chamber and consider a finite order normalized Lie-
type ¢ohomology automorphism [nle N(IR)/WK. Then: the Lefschetz number L([n]) is

nonzero if and only if n leaves some Wchamber invariant, and in this case

(n) : CW (m)].

L({nD) =[C
G K



=g

In the last statement C stands for éen_’graliiérs. This éomputatio_n svhv.o‘l»Jld‘ be
__c‘ompat;ed with the one in [11]. It follows from ‘fi\B],tha_t, for G simple, NG modulo
grading automorphisms is finite, so the finite order elgments of. L’ieatitv do _ind‘eed
represent the interesting part of Lieaut. e o
. A second kind of results is related to’ theuexi‘s‘té.nce'_ of ‘.is_‘omet“ry—invét'ian_t"
geodesics on G/K. Given fglIsom(M), where the manifold. M carries 'an,Aarbitrary
l;metric, it was recognized [8] that the existence of f—invariant geodesics i.s intirﬁatély
related to the existence of fixed- points of f in UZ(IVT) a_nd then th;at this last problem
can be successfully dealt with, using }atiohal homotopy theory methods [10, 9]. Here

our main result is the following computation of rational homotopy groups (to be

compared with [5], Corollary 1.3 and [11], Theorem 1):

THEOREM 1.3. Suppose G is simple and denote by h the Coxeter number of G.

Then

- jTi(G/K)Q()Q: 0 for i>2h -1 and dim I, ,(G/K)®Q =1
» N
Recall that a geodesic curve c is called f—.invat'iani if it is nonconstant and
there exists a period t such that f(e(x)) = e(x+t), any x. Putting together the
information on the action of f on the rational homotopy of G/K deduced froml ‘the

knowledge of H*(f; @) with the preceding result, we will provei ‘

COROLLARY 1.4. Given f¢Isom(G/K), there exists an f-invariant geodesic

whenever

either (i) G is simple or (ii) G/K is in normal form and H*f

is of Lie type. '

This complements the main result of [9], which asserts that every isometry of
a A-connected closed manifold M has an invariant geodesic, provided

dim T, (M)®Q =0 or M is odd-dimensional.
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- The paper is organized as follows. Sect; 2 contains preparatory material: we
set up the root system framework and the notations and we l'ecall some usel”ul facts
on harmonic polynomials [16] and normalizers of Weyl groups [13]. In Sect. 3 we
derive the Lefschetz number formula (Theorem 1.2) using the relationship between
H*(G/K; R) and harmonic polynomials. This formula is used for the proof of Theorem
' Ll (Sect. 4). In Sect. 5 rational homotopy theory methods are used for the proofs of
V-Theorem 1.3 and Corollary 1.4 (actually we prove a slightly stronger statement'than
' Corollary l.‘4, see Proposition 5.1). Finally, we analyse in Seet. 6 the structure of N,

relying on the detailed knowledge of NG [13] and on root systems theory [4], and give

many examples.

2. HARMONIC POLYNOMIALS

Consider (}_é EC@E SV*, the roots of the adjoint action of the common maximal
torus [1], and use an Ad-invariant metric in order to identify V with V*, This gives
our basig framel/vork: a pair of root svstems, denotéd by @= (@chéécV) A sinéle
root system ‘%G will be considered as a pau‘, by setting éK ;5 This is (almost) the
situation considered in [13]; here we will no more insist on (fG being normalized, i.e..
-satisfying V=R - span{(?)G} , that is our root systems are considered in the sense of
[16], Aopendix 4.15. We will say that G/K is in normal form if G= X G with each
'_G simple and 1-connected, ‘and K= X Kn’ each K bemg a closed éiﬁnected proper

ieA
subgroup of maximal rank of Gi' Any equal rank homogenous space may be put in

normal form, and this choice normalizes _?PG': however (E\ K will not be normalized, in
general. Given a root system (C@C-V) we may plainly consider the induced orthogonal
decomposmon of. ¥, ¥ = i EBV w With vW = fixed points of the Wevl group W and

'\‘ —(R-span%v@% and  thus get an associated normalxzed system (éCV Y

Starting with a pair %)—(C@KC_C%) we will write C%G ‘M‘@G

i€A
decomposition into lrreducxble components, we will consider the natural orthogonal
w
decomposition V =V GO( @V ). denote N by and write (¥> for
K C‘ K
i€A IGA

- . the irreducible decomposition of the paxr@ where (£ él(C@GCV) is a pair of
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root systefns with @]chi) normalized and irreducible, for any i. According to the

geometric picture, we will say that @ is in normal form if ((EG CV) is normalized and

@’;{ 1s a proper subsystem of C% 23, for any i.

Our notations will follow in general those of [13]. The guiding rule is that'by |
| setting éK = 525 one recovers the constructions and notations used in [13] for the case
pf" a single root system. The characteristic zero field coefficients for the cohomology
will be in general IF =R or Q; when there is no special mention of F, it should be
understood that F = R.

Consider a root system (%CV). The first statement of the proposition below
says that the normalizer of the Weyl group is essentially determined by the

knowledge of the associated normalized situation and the second is a useful device

for reducing various considerations to the case when $ G Is irreducible.

PROPOSYI'ION 2.1. Let (@CV) be a root system, not necessérily normalized.

@N=cLvV)xN \(¥),

GL(V.\7
N “
(ii) Suppose that C'é is normalized and write CE ,U..é V= @ vi for the
i€A
decomposition into irreducible components There is a group morphxsm jT : N—=Z(A
‘with the property that, for any neN and i€A, setting ‘JTO(n)l—), n induces by

restriction an isomorphism n Vl-;> VJ which maps the Weyl group w! isomorphically

onto Wi,

: ; - [a e\
Proof. (i) Start with neGL(V) and write it in matrix form, n:(b d)"

~according to the decomposition V = VW®VW. Then n €N if and only if for any we W
theré exists w' €W such  that nw = w'n, which simply means that dw = w'd, kerc
contains image(w-id) and image b is contained in ker{w-id), for any w &W. Our
assertion follows. ’ :
(ii) By [4], p.146, V = @Avi fepresents a decomposition of V into s;imple
ie

; !R[\ ] submodules One has next to notice that the decomposition W= X W implies
i€A
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that these are pairwise nonisomorphic lR[W]-modules. For generallreasons the Vi's,»
i €A, must then exhaust'the collection of simple R[W]-submodules of V, on which N
natural-ly acts. Use tbis action to define s and check - the remaining assertions.’
Finally note that this conetruction is consistent with that given by (1) in the proof of
- Proposition 2.8, [13]. )
T Given a pair of root svétems, @z (CE_)KC@GCV) .we shall denote by H*(@ F)
r-the graded algebra I,./ideal (IG) where the invariants of the Weyl groups are
'con51dered relatlve to the natural right. action of GL(P@LF on the polynomials on
NeF given by pelF[["'®F]=: PIF’ aeGL(F‘ ®F)—>pa =: pa. As .a matter of
c‘onvention, the grading of H*(CE) will be induced by the hatural grading of P obtained
by assigning the degree one to the linear polynomials, whenever dealing w1th pairs of
root systems. As soon as these come from pairs of equal rank Lie groups KCG, we
shall identify H*(G/K; F) and H ((%- F) by simply doublinO' the degrees. |
" Thie prnof% of Theorems 1.1 and 1.2 are based on approaching H *(G/R) vxa

hmmomc pols *nommlo We are going now to recall from [16], Appendix 415

especially pp 415-416, some useful (elementary) propertles of harmomc polynomlals
Let (@CV) be a root system. The canonical’ ldentlfxcatlon of V¥ with v glven -
by the metmc extends to an lsomorphlsm between the polyomial and the symmetmc
algebras on V, denoted by Pty s Recalhng that .the symmetmc algebr‘a naturally acts
-on the Dolynomlal algebra, one obtains an euchdean strueture on P by settmg
(p.sig) = i Dﬁp(()), for p,q €P. It is easy to see that if a eGL(V) is an isometry then the

induced algebra automorphism of P, denoted by a*, is also an isometry. Denoting by

IH*(@) the graded vector space of harmonic polvnomials, defined " by
lH*(<§) =(P- I+)'L, which is clearly invarient with respect to the actidn of the Weyi
‘group, one has a natural _g;'aded vector space isomorphism Hf*(@.)jli*({)) which is
compatible with the obvious W-actions. _

" Given any x €V, one obtains a linear map hx : IH*({))-% R[W], defined by:

h(p) = Z. p"(x) - w, peiﬂ*@) (2.2)
wew
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One qayq that x is regular, written er" if x does’ not belong to any of the reflectmg
hyperplanes deflned by ¢ Finally, suppose that we are glven an orthogonal'
W-invariant decomposmon V= ®V3 » with Vs Vw Settmg C@J %(\ V., one obtams a
root system decomposmon % =-U-§jj,-w1th @J.CVj normahzgd _exceptm_:géo = ,ZS

- PROPOSITION 2.3. Let @CV) be a root system. 4

(i) If xeV' then the lingar ‘map defined by (2.2), hx :lH*((j]é)—» R[W] is a linear |
isomorphism, compatible with the natural rjght action of W on [H*((@) and the right
action of W or R[W] induced by the left reguiar representation.

(ii) [H*((ﬁ) is invariant ;/\rith respect to the action of N on P and the graded

_I-module map I®IH*(@)—‘7P defined by q®p -»q - p gives an isomorphism which is
compatible with the obvious N-actions. ‘

(iii) An orthogénal W-invariant decomposition V =@Vj (with V= Vw) gives
rise to a root system déeomposition (E :‘U'aﬁj (with @o = @) and to a graded algebra
isomorphism P ~ ®Pj which is compatible with construetions I,H* andH*,

Proof. (i) See [16], p.416. :

(iii) Compatibility with I and H* is clear. Use the alternative definition‘ole*
given in [16], p. 415, and the tensor product splitting of the W—invariant.s, in ordef« to
deduce that H* (}:) JCH (C§) Fmallv use a dimension argument together with (i).

(ii) Theorem 4.15.28 [16] takes care of almost everythmg, excepting the
statement on the N-invariance oflﬁ*(@). This in turn is clear, as far as the part of N.
consisting of isometries is concerned. But we may always reduce to thi‘s situation, by
suitably multiplying a given élement of N by an element of GI;(VW), in order to first
normalize the root system, see Pro_position 2.1 41); and then multiplying by an element
of GL(V ) which is diagonal with respect to the decomposltxon of Vi given by the -
irreducible components, see Lemma 2.2 [13]. Use (iii) and write H* (?) =™

) in order. to get the GL(V ’)—invar‘iance of H (é). Finally, given

énormahzed

d ¢GL (V ) which acts as a scalar d] on each irreducible component VJ, use (iii) again
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- and hotice that d* acts on each P, as a grad\i"ng\ ailtomorphiém, thus l'eaving“any
graded subspace invariant, which conecludes the proof. =5 |

One more notational convention: given a 'pair- of root syétems,'

%— (CFKC%GCV) we shall denote by Hsx Ctn; 1) the actlon on H (éG, F) mduced by :
n€ N(F), and similarly for K, and hy H,(n; F) the action of ne N(F) on H @ F).

3. LEFSCHI:;.T-Z NUMBERS

Consider a pair of root systems, % - (éKCéGCV)' We shall also need to
consider W5-chambers (resp. WK~chamber.s), denoted by Cé (resp. CK) and pairs of
Weyl chafnberg, denoted by C = (CGC CK). For the proof of Theorem 1.2 we shall fix
a Wy-chamber Cp and recall that the cosets [n] eN/WK are supposed to be
normalized, i.e. n(CK) =Cg-

To start .with, we are going to prove first, for the case %K = @, a statement
which_ is stronger than the theorem, next to deduce from it Theorem 1.2 (for K = T) in
a straightforward manner, and finally to settle the general case. A little bit more
“notation will be coﬁvenient: given a (set) fnapping @: W5 W, we shall denote by

R[] the linear map R[] : R[W]- R[W] which is defined on the group ring by
%
RIY)(w) = (w), any wew : (3.1)

Here are the statements.

PROPOSITION 3.2. Let (({)CV) be a root system. Fix a Weyl chamber C. Given
n€N, ord n< co, the characteristic polynomials of Hyn and of (R[ﬁpn] coincide, where

=1

Qen is defined by Len(v) =‘n_1vw ny. for. veW, .and. weW s determined by

- n(C) = w(C).
COROLLARY 3.3. Theorem 1.2 holds for K =T,

PROPOSITION 34 If (}%: ((%KCC‘?GCV) is a pair of root systems, then there
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st graded isomorphism H*(@)@H*({)K)j H*(C@G),‘wh.ich is compatible with

the H, ®H§ and HS actions of N. . : '
Assuming thesé, we shall quickly deriv‘e.Theorem 1.2: 'by Proposition 3.4 we

- may .write L(H[n)) L(Hﬁfn): L(Hgn); moreover, Corollary 3.3 guarantees that

‘L(H*Kn) :#CW (n). One more application of Corollary 3.3 (this time for G/T) helps
K :

tb’conclude.

3.5. Proof of Proposition 3.2. Remember that the harmonic polynomials are
N-invariant (Propésition 2.3 (ii)), which means that the characteristic polynomials of
H;n and of n*\lﬂ*(é) coincide. On the other hand, ii is easy to check that, given
x€V, neN and w €W, one has hxn* =1R[cn]hnX and hwx.={R[rw]hx, where the linear
maps h are defined by (2.2) and e (resp. rw), defined by cn(v)=n—1vn, resp.
rw(v) = vw_l, for veW, give rise to self-maps of R[W] as explained in (3.1). Since
wlnc)=c and ord(w—ln)<00, the (standard) trick used in the proof of Lemma 3.2

[13] gives the existence of x€C such that nx = wx. Notice that xeV' and apply

Proposition 2.3 (i) in order to finish the proof.

3.6. Proof of Corollary 3.3. We know. that L(n)=waeeﬂl[(€n]=
=4f"{véW\nv__1n—1v=w}=:#‘{v€_Wln(vC)'=vC}, which gives the proof of the

‘theorem for K=T.

3Ts Proof of Proposition 3.4. This is nothing else but the aigebraic form of the
Leray-Hirsch theorem for the fibration K/T-— G/T->G/K. What we really want to
emphasize is th'at. the Leray-Hirseh isomprphism can be n%aéie N-equivariant in our
casé. One constructs a gre}d-ed H*('%)—module map“{’ ; H*((I))@I—I*(CPK)—a H*({) G) by
choosing, as usual, a degree zero section of the natural graded algebra surjection
H*((XEIGI) = P/P - Ig-? R/P:s I;"( = H*((}é}()' Here we may consider the ﬁatural
composition ‘H*(éI<)~>i1*(d}6)~>f1*(@li), which is a degree zero, Ny-equivariant,

isomorphism (by Proposition 2.3 (ii)) in order to obtain an N-equivariant section

i Ry



It follows in a standard wav that ’\Yis an N-equivariant surjection. On the other hand

the VVC—equ1varlant 1somorphlsm IG®EI (C%G)—?P (Proposition 2.3 (ii)) gives an

isomorphism  H’ (<§)~IH ((§G) ,.and -« the WG—equwanant isomorphism
| Wy

-h, :H ((EG):?IR[WG] (Proposition 2.3 (i)) gives dimiH (éG) =[Wg 2 Wil Using
2.3 (i) again, a dimension argument showsi" to be an isomorphism. The proof of

Proposition 3.4, and.consequently the proof of Theorem 1.2, are completed.

4, PROGCF OF THEOREM 1.1

, We are dealing with a pair of root systems, @ = (CE,{C@ GC'V)’ which is
_ suppdsed to be in normal form, and we have to show thét, given neN(F) F =R or Q)
such that Hy(n; F) = id, then necessarily n GWK. It plainly suffices to see this for

F =R. |
We.shall' first reduce the discussion to the case when éG is irreducible. Write,
as in CE i (the irreducible pair decomposition) and notice that the na’tur"al
iéomorplusm Pf%API induces a graded algebra isor.norphlsm H (Cﬁ)r\/ 2}{ (% ) (see
Proposition 2.3 (m)) Having this geometric decomposxtlon of H (@) in 1mmd we shall
consider the subgroup \% of AutH (%) of "Geomctmc" graded algebra automorphlsms, ,

defined by the requwement of preservmg this decomposxtlon (see the definition

below). We shall encounter them again in the next section (see Proposmon 5:l1)s

DEmeoN 4.1.\% =5LaeAut H*@) \V ieA,}jeA st a H*((F) = H*@j)’},

It follows from Proposition 2.1 (ii) that if neN then H*ne% (and Dfo(n)j? i-
which makes sense since NCN ) which motivates the dofmmon If Hen=1id then
obviously '7/(n) = id, and it follows (invoking 2.1 (ii) again) that we may reduce the
.matter to the case ?;CG 1rreduc1b1e, which we shall from now on sunpose tnroughout

this section.

LEMMA 4.2. If H,n = id then ord n< .



S dn
Proof: It follows from Proposition 2.5 [13] (when applied to-NG) that we may

202

write n = /\nl, with AG[R+ and nléN, ord ny <00, hence’ the grading automorphism

H*A must be of finite order. On the othér hand, (E K being. a proper subsystem of%G,
one may see, using Proposition 3.4 and Propositoin 2.3 (i), that ncessarily H (%) £ 0
‘(otherwxse H (CEG ~H ((PK), Whlch would imply W = Wy, hence %G (%K) which
forces A =41"and shows that ord n<<0,

~ This first step of the pfoof of Theorem 1.1 opens the way for the usé of
Theorem 1.2. We shall therefore fix an arbitrary pair of Weyl chambers C = (CG'CCK)
and set WC :{ue.wGlu(CG)c:CK}. The next lemma, which is an application of

Theorem 1.2, represents the key sfép in the proof of Theorem 1.1.

LEMMA 4.3. The following statement impﬁes Theorem 1.1.

If Hyn = id and n(C4) = C, then WCCCWG(n) %CWG(n) =Wq (4.4)

_P_r;g_oj Given neN sﬁch that H*n:id., we may well “normalize [n] ;35 in
Theérem 1.2, supposing that n(CK)= Ck (as far as the pfoof of Theorem, 1.1 is
cbncernéd). Using 4.2 and 1.2, it follo:ws at O;]CG that we méy even sﬁppose th'at
n(CG) = CG, e§rentually for some other choice of W-G—chamber CG '(i.e_'. of a pair.C of
Weyl chambers). Moreover, 1.2, 3.4 and 2.3 (i) together imply that

[C w (o Cw ()] = L(id) = [Wy : W This equality is immediately seen to be

1.
G K
equivalent (by simply looking at the natural embedding of fxmte coset spaces

W, /C WK(n) >W_./C

G CWp-Cy (n). It is a routine .

K
G
exercise to see that this inclusion is equivalent with the inclusion WeECy (n), if
G
Cg- By (4.4) we know that the whole Weyl group W centralizes n,

Wg(n)) with the fact that Wq

J
n €N and n(CG)
hence leaves the fixed points of n in V invariant. By the argument in Lemma 3.2 [1{5]
this fixed point subspace of V is nontrivial, hence it must coincide with V (remember

that é G is irreducible !), which coneludes the proof of Theorem 1.1.

We are now moving towards the proof of (4.4). The choice of C determines a

o
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choice of positive roots, denoted by(%é, réspectively by{)%=§Kﬂég, and of
simple roots, denoted by S respectively Sy. We recall ([13], Proposition 2:5) that
any. néNG may be uhiquely written in the for"m n=Aw G‘(g); where A€1R+, weWg
and g ¢ Graphaut (CG), the automorphism group of the Coxeter graph having S as set
. of vertices, and that ¢ (g)l(C) = C, for any g eGraphaut (Cg). If neN is as in (4.4)
'then it follows frc?m Lemma 4.2 and the above discussion that n = G'(Ig), for some
V-g_eGraphaut (CG). ' i
LEMMA 4.5. If g ¢Graphaut (CG) and WCCCWG(G(g))_, then g must have a

fixed point on Sqr

LEMMA 4.6. If@G has one root length then Wq is generated by Wee
 Assuming these two lemmas, we are going to prove (4.4). An easy inspection of
the eonnget.ed Coxeter graphs and of their automorphism groups reveals the fact
'fhat; if geGrapiiaut (CG) has a fixed point on S, t-hen ¢ither ¢ = id (hence &(g) = id) |
or aéG has one root iength. Lemmas 4.5, 4.6 and the diséussion preceding them
clearly give the proof of (4.4). .

We ought to point out that in (4.4), which is essentially a statement about the
size of'WC, the two ca'sés' coming from the classification (CEG has 6ne, respectively
~two root léngths) must _soméhow be considered' separately, as fhé example of the long
roots Qf By = A, x AQCB '

9 shows, where the group generated by WC ‘coincides with
WC and is a prober subgroup of WG' , |

We turn now to the proofs of Lemmas 4.5 and 4.6. They both depend oﬁ the
following inductive test (in what follows S AL denote‘tflle orthogonal reflection
“eorresponding to t.he root o ). .
€W, if and only if u(oc)%é';(.

 LEMMA 4.7. If u €W, and « €S, then us

C o

- Proof of Lemma 4.7. Given Wé. Wg, it follows directly from the definition of
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WC that we W if and only if w_1(§;)CC§zbOn the other hand it is well-known (see
e.g. [16]) that if «C €S, then s C}EG\({“} %C\io(} Putting these two facts

together, our statement follows.

4.8. Proof of Lemma 4.5. It is time to recall that our root system pbair- (}5 is
supposed to “be in normal form, in particular %K is properly included in %G' It
follows that there must be some o &S such that d#é g (use the fact that WG is
generated by the reflections corresponding to the simple roots). Put u = id in Lemma
4.7 and deduce that s, €W, , hence &(g) centralizes s+ By the construction.of
o(g), see (1) in the proof of Propositidn 2.5 (18], _G(g.)so(_s‘(g)—? = Sg(oz)’ for any

¢ €S. This implies g(<) =<, as desired.

4.9. Proof of Ldrdma 4.6. As in the previous proof, it follows that there Jexists
some « e'SG\%K' Such simpie roots.will cause no difficulties, by Lemma 4.7, and our I
IoL for
anyF €S (\@K Gwen such@ » connect it to 0( by a straxght edge-path of the

claim will follow as soon as we prove that s? lies in the group gener‘ated by w

Coxeter graph of é G (which is connected and contains no multiple bonds) in order to

arrive at the following situation (eventually after choosing some other & eSG\q)K

S 2 - Bo-a Br
where ?'.GS -O@K,_i=1,... ,fy and F) =F . It will be enough to show that.
0( ‘5 sﬁ QWC, for any 1<i<r, since we already know that S QWC We will
1 i
use induction on i. For i=1, if Q(CQG\(EK, [36 (\{)K and (Q,i*) # 0, then (use

“F

contrary that s, f))b%}( But (as it is easily seen) s (F) = )(—oc+i3), for any

Lemma 4.7 with u=s_ €EWs if and only if s (F)#%K Suppose on the

distinet non—perpendlcular‘ simple roots of a system with one root length, which
contradicts the fact that F %K and M%@)K Supposing £ S‘Fi oS eWC, use

i-1
Lemma 4.7 again and deduce that 5.4 s F _eWC if and only if
i

S“SFi.'.SFi—i(Fi):d+P1+ F %@K lSet o +F’1+“'+Fi-)1:X’
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S and suppose on the contrary that f+ ge éK’ while b/é ?(,)K (by induction) and

SGOEK Since (X 5) (%l ‘1,‘% <0, the fact that ,JPG has one root length implies
~ again that K 49 = 3(8) = sS (¥), a contradiction. This closes the induction and the

proof.

- 5. EXISTENCE OF I.NVARIANT GECDESICS
- We are going first to defive Corollary 1.4 from Thgorem 1.3. The underlying
idea is quite simple. If f¢ Isorﬁ(M), M a1-connected closed Riemannian manifold and
there exists no f-invariant geodesm, then id- 7” (f) must be an isomorphism, for any k,
[8]. If, by chance, it happens that dxij (M)@Q =1, for some K, 1t is obvious that it
is impossible for ','U'k(f ®Q and 1d—77;<(f)®Q to be simultaneously unimodular which
simply»proves Corollary 1.4 (i). However, if M = M, x M, 7T,;(M)®Q is either zero or
at least two-dimensional. In our case, this diff,iculty may be circumvented as follows
Write G/K= X Q. /K, where each G is sxmp]e Recall that JJ.(f) @R is entirely
determmed blyez *(f; R), which is to be denoted in the sequel by g. If ge\g (see
Definition 4.1), that syt respects | the geometfic decémposition
H*(G/K) = @ BH*(G. /K ), it is not surprising that Tf QR will 1espect the similar
homotopy: :ji[c\omposmon, which brmgs us back essentially to the case when G is
simple. |
Due to the remark following Définition 4.1, the next proposiﬁon clearly

implies Corollary 1.4 (ii).

PROPOSITION 5.1. Suppose G/K is in normal form and consider f¢€lIsom(G/K).
R (f R) g&—f% (See Definition 4.1 for the meaning of%) then there exists an f-

invariant geodesic.

Proof. The proof uses Theorem 1.3 and rational homotopy theory [15]. Our first

task is to clarify the relationship between the actlon of g on @ H¥*(G /K R) and the
ieA

action of T @R on @ T, (C /K AR.
i€A
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Given G/K, with G and K compact and'conhecfed and of the same rank, the

“isomorphism H*(G/K; ER)'\/IK/IK - [ describes H*(G/K; R) as the quotient of a graded

polynomial algebra by -the ideal generated by a regular sequence ([4], p.107 and
~ p.137), which shows G/K to be intrinsically formal, see [15%; %K. In particulér the

minimal model of H*(G/K; R), considered as a differential gradea algebra with trivial

]

differential, will coincide with the minimal model of G/K (from now on, the ground .'
field willrbe F =R). .
Pick a minimal model gi:dl(;i—»H*(Gi/Ki), for any i€A. Then the tensor
product ?‘=®3i :«}6=®Jﬁi-‘r®H*(Gi/Ki) =:H*(G/K) will give the minimal model of
G/K. AAlso notice that, if@ is the root system pair corresponding to G/K, then in the

irreducible deéomposition @ = ,LLAD ) 5?1 will correspond to Gi/Ki’ for any i.
' = e
Given ge‘% , denote by g e Z.(A) the naturally induced permutation, defined by

gH*(Gi/Ki): H*(Gj/Kj) if and only if g(i)=j. For any i€ A, construct a minimal

model map '\g/i :\/{éi’ztﬂ»g(i), with the property that .S;(i)rgizggi. Setting

~

g=®§i :d%;jui[;, one clearly has §’§=gsz, which implies, if g=H*f, that

€
. _represents the minimal model of f. Writing A =_L_LAj for the decomposition into
g-orbits, one first immediate consequence is the fact that the rafionallhomobtopy ty?e
.of Gi/Ki is constaﬁt along each orbit Aj' Second kand equally easy) it follow_s that
T (@R sends m(Gi/Ki)®iR isomorphically onto m(Gé-i(i)/KEl(i)l),@R’ for any

i€ A, in particular leaving the subspaces 'D"fj =:'@ '_U;(Gi/Ki)@)g{ invariant.

‘Going back to the proof of Proposition lff.?_jand supposiﬁg' that there is no f-
invariant geodesic, it follows from 18] that both T, (f) and id-ﬂ?{(f) are isomzrphisms,.
for-any k. It is a straightforward exercise to infer that the restrictions to Trkj of both

T);((f)@jiR and id-TJ, (D@R are unimodular, for any k,j.
We shall now restrict our attention to a single orbit, on which E_q acts as a

cycle, say (iqiz ik ir)' Denote by h the Coxeter number of G, and set k =2h -1,
. . 1 ‘
']Tk(f)@)ﬂ{ = b. By Theorem 1:3, dim 'JTk(Gi /K; )®R =4, which, combined with our
‘ A e .
previous information on b, gives that b acts on a basis X/l’ P ’Xr of j}'k] in a eyclie

manner, by b(Xi)= Ai. X for some Aié R. But it is then impossible to have

i+1’
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. simultaneously det(b) = +1 and det(id-b) = +1, ér{d this chtradictibn finishés thé proof
'of Proposition 5.1. “ | .

‘ The proof of Theorem 1.3 uses again rational ho}hotopy_theory. As wé 'héve '
already.mentio-ned, the minimhl model of G/K ié t.h'e sal'ﬁe' as the minimal modél of .
H*(G/K). On the oth;r‘ hand therg is a simple modelgobf H*(G/K), which may bé’
described as follows ([15]): denote by Qg (respectively QK) the graded vector spacge
of the indecomposable invariants, QG = IE/I:3 -'Ig (and si‘milarly” for QK); denote by
Z—iQG the desuspension of Qg and choose a degree one linear section, denoted by
dltz_lQG——é;IECIK , of the natural projéctién IE—? Qg- Use this to obtain a m.odel
g : (IK@'/\Z—"IQG, d)——»(H*kG/K; [F),0), where the differential d is the extension of
the previously chosen section defined by d(IK) = 0, and the map ? is defined on IK SO
as to coincide with the natural projection IK—»IK/IK-IE, and is defined on the
exterior part by g (Z“iQG)': 0. The only trquble comes from the fact that in general
this model js not minimél. However, the general theory ([15]),% S and §> R) shows that
one can still obtain from it homdtopy information-on G/K, namely one hes an

" isomorphism between Hom(7J;(G/K)®F, F) and H*(QK®X-4QG, Qd), where the
differential Qd is nothing else but the linear part of d, and in our case is entirely

determined (modulo a dimension shift) by the map induced between indecomposables

by the inclusion IGC IK’ to be denoted by Q : QG - QK. In particular one -has
dim mk_i(G/K)®LF = dim ker Qk, for any k - (%)

Lemma 2.5 [5] implies that the fop degrees of TJJ.(G/K)®F and of
T&dd(G/K)@?fF coincide, which shows, via (#), that our theorem is in fact a statement
aboutlker Q. Given G, we shall denote by kG the top deg‘rce-of the graded ;vector
“sbac'e QG; if G is simple, set hG- = Coxeter number of_ @G‘

 Suppose from now on that G is simple. Using equality (%), Theorem 1.3 is
clearly implied by the followiﬁg lemmas |

h

NN = b e i QGG i,

&
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"LEMMA 5.3. kK < kG'

5.4. Proof of Lemma 5.2. This is well-known. We indicate the proof, for
reader's convenience. Denoting by k,1 % k2 L v gkr the degrees of the basic invariants
~ of W, notice that kg = Ky by definition, and that our statements are equivalent with
ke, <k,=h. The equality k. =h follows from [4], p. 119 and p.121, while the

A.inequality ko_q <K, follows from [4], p.169.

5.5. Proof of Lemma 5.3. This is our key lemma. Its proof uses results of [14]
on Jacobians, so it will be convenient to work with T = C
Write IG, = Clpy, ... ,pr,] and Iyc = €lgy, ... »9,), as in [4], where p;q; €CLV] are
basic invariants of Weyl groups satisfying deg pd‘_<_.. . L degp, (and similarly for K),
whence kG = degp, and k. = deg q,. Denote by Zq the zero set of p,i, oD g in
V&C = (E_ , an d define 7.K similarly. Since their defining equations are regular 'seq
ixences, the m’gumentsof [14] show them to be one;dimensional, more precisely each
one being a finite union of lines through the origin. |
Suppose now that kK_>_kG. If ke > Kes it fol.lows that each P; '()1._<_igr‘) fs a
'polvnomial in PERRTRIS -1 hence ZK is included in the zero set of P e« 9Py which
con31sts of the omgm alone, a contradiction. Suppose then kG kK and write
Zc i9; * q, where ¢ €€ and qeﬂl[ql,...,q 1] By Lemma 5.2 degp,_s <degp ,
hence piGC[ql,... 9, ,1] for i< The preceding argument shows that necessarily
c, # 0, which ihplies that IK =C[q1,...,qr d,p] i.e. -we may also suppose that
G =Dy from now on. The same discusqxon also shows that Z},C o |

J

Write now p; = Z f q * q . fOP any 1<i<r, where f é@ and q is a polynomial

]
‘in S ERERFIA with no i;x’caf' part. It is clear that the P; 's (1espect1vely q; 's) modulo
decomposables give a basis of QG.(respectlvely QK) and that with respect to these
bases.Q is given by Q(D.) :Zf..q.. We infer that det(f..) = 0. Indeed, otherwise the
discussion preceding (*) would imply that 77 (G/K)@CT = 0, hence H (G/K C) =0 (use

Hurewicz), which is absurd (remember that K is a proper subgroup of G!).

o 3\ ! ?\;1

Mad
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On the other hba.nd, denote by =z ;;the coordinates in VRC = QCF, set
Jg = det(gpi/gzj), Ji = det( in/'c)zj) and J = det(d P/ 9%), notice that Jq =dJ « I,
and recall the main result of [14] concerning Jacobians: 'JG is not identically zero,
when restricted to any irreducible component of Zeye We are going to contradict this
fact, using det(fij) =0, by showing J(z) = det(fi]-), for any z€Z . But this is ciear: our
a'ssumptioh 'RK = kg gave us p,€Clqy,...,q. 4], for i<r, and p,=q, therefore '
((épi/ gqj)(qz) = fij for any i,j<r and'for any z EZK. This final contradiction ends the

proof of Lemma 5.3 and consequently of Theorem 1.3.

REMARK 5.6. An alternative pro‘of of Thedrem i.3, using tf!e classification,
would go as follows: by the classical result of [3] one even knows that @‘KC@G is a
closed sub-root system (in.the sense of [4]) and moreover it is again classical (and easy
to -wr'ite down) how to classify maximal proper closed sub-root systems of a given
irreducible root system (see [3], aléo (4], p.229). Case—by—ca,sé checking gives then
Lem?na 5.3 for the case of a maximal proper closed sub-root system. Given an
arbitrary proper 'close'd sub-root system %KC§G} intercalaté a maximal one and
deduce QkG 2.0. Use then equéiity (%) and Lemma 5.2 as before in order to derive

Theorem 1.3.

6. STRUCTURE OF N. EXAMPLES
In this section we are going to discuss the structure of N(F), for F =R, Q.
Start then with a root system pair, Sff Z@BKC@ GCV), supposed. tc be in normal form.

Moreover (see [3]) we may, and we shall from now on suppose, that (EK is closed in

@3 (see [4], p.160, for a definition). We shall fix a pair of Weyl chambers, denoted by
C=(C.&C) and sider th ‘ iated positive roots (O L.c.d 7) and simple root
=(Cx&Cp) an eon§1 er the associated positive roots %K %G and simple roots

(B Sy
As a first remark, denoting by 2{5 iiLi)l the decomposition into irredueible
' T i€A
components, we get from Proposition 2.1 (ii) the following exact sequence:

w0 4 NI-—*rN—u-J-—-?—)Z(A), where each N corresponds to%', which splits the
i€A : ! ,



=10

v

_ discdssi'on according to the irreducible deeor‘ﬁ‘pog?it‘io‘n. 'I‘heréfore, we‘.‘ shall also

‘suppose from now on that (EG is irreduciiblé. ' .
Next, we recall from [13], Propositions 2.5 and 2."8, tvhe existenée of an'_exéct :

sequence

: 1= B x Wo-> No(F)—>Graphaut (Cy) =¥ 1 : A1)
which is split, for IF =R, by Graphaut (CG)~—> NG. This restricts to the basic exact

sequence

158 x Ny (W) —» NE)—> Graphaut F(C)— 1 (6.2)

)
G

LEMMA 6.3. Given g€ Graphaut (Cp,), g ¢<Graphaut™(C) if and only if there

exists u € W, such that ut o(g) €Ny and leaves Cy, invariant.

Proof. Clear, for F =R. Suppose that F =@® and u—'lo”(g)él\lK léaving‘ Cx

invariant, for some u €¢Wq. On the other hand (see the proof of Proposition 2.8 [13])_
there exists /<€(R+ sﬁch that AO‘(g) €GL(T' ® Q). 1t follows that Au—l o (g) EN(Q) and
g€ Graphath(C). .

As a conseguence, Graphath(C)ﬁ Graphaut‘R(C), and in what fQHows ‘we are
left with the determination of this subgroup of Graphaut (CG), to be denoted simply
b& Graphéut (C), working with F = R. The groups Graphaut (CG'),are‘small and easy to
handle, [13], and the criterion of Lemma 6.3 may be improved in order to become
effective enough. Our next aim is.to producé evidence to support this statement, by‘
explicitly determining Graphaut (C) for the ease when E}‘éh’ is a maximal proper closed

sub-root system of a (normalized) irreducible root system @)C'
: a

PROPOSITION 6.4. Let @ = (@KC%GCY) be a root system pair, with @G '
normalized and irreducible and @ K maximal proper closed. Then 'Graphaut

(C) = Graphaut (CG), excepting the following cases: ACDy, Ay 4CDy (m>2),
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AgCBy or Ay x A By, AyC Gy, B,CF, or Ay x C4CF,. In the first case, Graphaut
(C) = Z,, in rest it is trivial. | . .
Some remarks are in order, befor'é starting the proof. The group of root ‘sys_tem
automorphisms of (?)G’ denoted by Aut(@a), acts (in an order-preserving manner) on
the lattice of closed sub-root systems of éG and, as it is easy to see, preserves
everything relatied to N and Graphaut. We are going to use the classification; this
means that, after ‘fixing @G’- we are really dealing with %K ‘modulo Aut(%G). This
greatly simplifies things, since the lists for % g = maximal. (modulo Aut(@G)) are
quite explicit and reasonably small [3] (see also [4], p.229). The notations related to
the classification will follow those of [4]; one notable exception: we shall denote the
highest root by OCO.

As a preliminary remark, let us see that the statement of 6.4 is clear,
excepting: the cases @G = BZ’G:Z’FA’ or D2m‘ (m>2). We assert that with these

exceptions, we have Graphaut (C) = Graphaut (CG), for any proper sub-root system

: @KC.&__} G'. This is trivial if @G = Br’cr (r 2.3), E7 or 'ES, since in these cases Graphéut
(CG) ={'17;, and also trivial if @K =)’5 . Finally, if éG =8 (rZZ), B i (m>2), or
Ec, one knows that Graphaut (CG) = 22 (say g is the nontrivial element) and that
-1 %WG. But, since -1 is an element of finite order of NCNG, we must have
-4 =u &(g), for some ué'WG, and consequently g QGrgphaut(C).

On our way on improving Lemma 6.3, let us notice 'that, given neNG,’n
-ngiturally acts on the reflecting hyperplanes of %G' and néNK if and only if this
action leaves the hyperplanes of (} K invariant. More formally, defineM : ¢ G’j(})G
by hsocn_A = Sy where %(w)é{)é? if %Q(i)é, and tixen‘?{(foc) = Zh(c¢). This action
of N on CI)G is felated to the action on V by ’

LEMMA 6.5. Given neN_, there exists pn:@Gu—ﬂR* such that

G
n(ex) = p () - M), for any OC&%G'

25 5 ;
.Proof. By Lemma 2.2 [13], there is some AelR such that An is an isometry.
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—~
~ Since ‘obviously An =W, we may suppose that n is isometrie, which implies that
Sn(oc) = SH(ec)? for any océ'% o whence the lem_ma.

With these preliminaries, we can formulate the improved version of Lemma

6.3. With the aid of (i) below we shall be able to elarify the cases % = B,y,G, or F

G 4

- and (ii) will be used to take care of the case @G =D , thus finishing the proof of

even
Proposition 6.4.

LEMMA 6.6. Given g €Graphaut (CG), g ¢ Graphaut (C) is equivalent to each of
the following
(i) there exists u €W, such that o(g) {PK) =TJ(§K)

os . Y/ ~ =
(ii) there exists u€Wq such. that S(g)(Sy) = u(SK) and U2 G(g) € Graphaut

K
(s

o
Proof of Lemma 6.6. Statement (i) is just a reformulation of Lemma 6.3, given
‘Ehe construction of M. For the same reasons, this is also equivalent to the existence of

u€W, . with the property that ”ﬁ*dg"(\g/)(SK)Cq);. Set n=u"l s(g). If n€N, and

G
n(CK) = CK’ then n permutes the walls of CK’ and consequently T must leave -SK
invarialjt. Using Lemma 2.2 [13] in the same way as in the proof of Lemma 6.5, we
may also suppose that ‘n ié an iso.metry. A simple application of Lemma 6.5 shows
‘then that Ti(o¢) is a pos'itive‘multiple of n(ex), for any ué(I) ;{, };ence the restriction of
T to %;{ preserves angles, which implies that'\rf‘sKé Graphaut (Sy). The proof of (ii)

is complete.

The basie technicalities needed for handling ™ are provided by

LEMMA 6.7. (i) If g €Graphaut (C), then olg)e<) = glet), for any cx eS8 ..
S)E fe At (@G) then’\fj(oc) = + f(oc), for any oc&@G.
h(Aiii) If g Dgraut (CG) then é-?é)(oc) = G(g)(<), for any o(é@G, where Dgraut

(CG)CGraphaut (CG) is the subgroup of the Dynkin diagram automorphisms.
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‘Proof of Lemma 6.7. (i) immediately follows, by simply comparing the
construction of W and the construction of o(g) ([13], p.643). Statement (ii) follows
from Lemma 6.5. If geDgraut (CG) then G(g)éAut(@G) ((13], p.645) and

: . ~ T + + 3
G‘(g)(SG) =8q ([13], p.644). Since obviously G‘(g)((&G) =§ G and G(g)((%c) :;PG’ (iii)
. also follows, using 6.5 again.

3

68 End of proof of Proposition 6.4. For the beginning, let % G= B2,G2 or F .
We know t.hat Graphaut (CG) = Zz and, denoting by g. the nontrivial graph-
automorphism, we also know that g turns the graph end for end. We assert that if
g € Graphaut (C) then the number of long and the number of short roots of CI}K must
coincide. This follows, via Lemma 6.6 (i) and Lemma 6.7 (ii), from the fact that %)
sends long roots of §G to short roots, and converéely. To see this fact, let us choose
a pair of simple roots of (EG (X = short, F = long) such that (oé,F ) # 0. Denoting by g
the maximur.n number of bonds appearing i.nthe Dynkin diagram of 53(}’ it is an easy
exercise to eorﬁpute (following the recipe of []_3],7 D.643) olg)ex) = (1/ \Vq) F énd

0’(g)('§’>)= Nq-c¢. Given any wew write O*(g)(woc)=(>‘(g)wm5(g)—'1(b‘(g)oc)=

o’
=(1/Nq) - G(g)w O‘(g)—ﬁ(-?) =1 6.(g)(ch) ~/O‘(\g{)(woc) and deduce that “Tlg)we<) is
long. Since all roots of the same length are conjugate under WG, this proves our
claim (t-he computation showing %)(WF ) = short being similar).

Now we separately check the various cases. As a word ‘of caution, the recipe
given in [4], p.229, for listing (mod Wé) the maximal proper closed sub-root systems
@K of a given normalized irreducible rank r root system &) G equipped with a choice
of simple roots SG’ provides a eh_giee of simple roots, say S'K, for CEK, which
‘coincides with the canonical choice (denoted by SK and detérmined by CGCCK, in
“terms of associa;ced Wevl chambers) if rank @K-——r—&, but will be different
otherwise. ~Nevertheless, given n €N, .néN if and only if ’Y)(S‘K)CCEK, where

%KC.(%G is an arbitrary sub-root system with an arbitrary choice of simple roots S‘K;

e : s -1 _ @ iy
thls.lS immediate, recalling that nsDC.n =Sty for any o<é€ G’ and that “K is



Sigms
generated by s , i% € Sl .

If § =B, then (4], p.252) §> g =4y or @K = Ay x Ay = long roots of{}}@ In
both cases, the numbers of short and long roots of % % are different and it follows
that Graphaut (C) = g}?i

If Ci:)G = G2 then ([4], p.274) ¢K = A2 (in which case Graphaut (C) :{425) or
JBK = Ay x Ay, having as ‘simple roots Sy = %\Ocd(short), OCO =5ed,h 204'2‘ (long)‘k’. In

St AT % £ T~ -
the second case, the restriction of T(g) to SK is: given by G(g)(ocl)_zocz,
/\) : 3
G (g)ec,) = 20¢, +oL, (use §(g)ec,) = (1/\3) - oC,, Glg)ec,) = {3+0¢, and Lemma
6.5). Denoting by u €W the direct JJ/3 rotation, an application of Lemma 6.7 (ii)
immediately leads to 'G(g)(Sy) = u(Sy), by simply inspeecting the picture of G, (see
[4], p.276). As previously noticed, this implies that i s(g) eN, hence ge Graphaut
(C) and Graphaut (C) = Graphaut (CG), in this case.

If %G = B = then ([4], p.272)gEK = B4,A,1 ¥ C3, in whieh cases the numbers of |
short and long roots are different, and consequently Graphaut (C) = {1%, or
@K': Ay x A, and Sy Z{—O(O,Qf,l (long), K gy Ky (short)}. 'By construction,
Slgioc,) = N2-0c ), sleoe,)=N2 0y,  Gledocy) =/ Y2 -o¢,  and
G(g)(oc4) =iy ﬁ)-OC,l, which gives, as explained before, .Qt\(g?)lS' , namely
e . ' = el ~y &g
C(g)(-o{o) = -0y - 200, - 3Ky - 20¢,,  G(gher,) =x,, Tl X 4) =<, and

6’@)(064) =oC(,. Denoting by %64’ 62, 63, £425 the canonical basis of V, consider
u€EW, defined by u( 6,1) = 84, u( €4) = 51, U(Ez) = —53 and u(&3) = —gz and cheek -

(using Lemma 6.7 (ii)) that ’\G(—oco) = ol "é(oc,l) =80
Woey) =0¢, + 20, + 30cy + 20¢, and Tilec,) =,. Since plainiy-“ﬁ"l%Tg/)(s'K)c:de, it
follows that W &(g) €N, hence g¢ Graphaut (C) and Graphaut (C) = Graphaut (CG) in
this case too. » :

Next, let AEG = (r>4) and denote by g <Graphaut (CG) = Dgraut (CG) the
permutation of SG defined by g(oci) =K for 44i<e=2, g(OCI_ﬁ,l) = OCP and
g(oér,) = O_ft,_,i (ef. [4], p.256). Since O‘(g)éAut(%G) and-d(g)(cc) = CG(MS])we have

G(g)(oco):o(o. Using Lemma 6.7 (iii) and (i), we deduce that 6@(—0{0)= -,

g(})(o&i) =oC;, 1<igr - 2, S (e)ec

A
IC ,1) =X, and S(g)(o(r) =od, _ 4. We have two
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possibilities for @K ({41, p. 256) either G(g)(S = Stk (which implies ge¢ Graphaut
(C), as before) or S =8 = {0‘1"”’0% 9 r 4‘3 or%o(,], » L9 Ocpg'(whieh
are conjugate by S (g) GAut(@?G

Suppose then that (i)K = A, S = {064, s ,oCr_z, o .4 We claim that if
~r=2m (m>2) then g#Graphaut (C). Supposing the contrary, we know from Lemma
6.6 (ii) that there exists u€W ={permutations on r letters followed by an even
.-number of changes of sign.)g such that 0’( r)(S )»hﬁ(SK) . "(1‘4%)6 Graphaut
(SK) =Zy. A straightforward computation, which uses Lemma 6.7 (ii) for handhng
(and whose details will be omitted), shows that this contradicts the assumption
r"= 2m.

Since Graphaut (CG)zzz, if CIDGzDzm, m>2, the preceding discussion
completely clarifies this case. If %E' = D4, then there are three rank 3 possibilities
for (PK’ all ee'ing conjugate under Aut(déG) to @K = Ag, S = {OC oC 0C3§ and one
more case, namely @I’ = A 5 A'l X A X A SK %’(O’ c>(3, 064}. In the last case
: i
we have cf(g)(f)éi) =20 i=0 or 2, for any geGraphaut (CG) 223 (4], p.256-257),
hence @(SI<)=SI<, any gé&Graphaut (CG) and Graphaut (C) = Graphaut (CG).
Finally, if %K = Ag, then we already know that g = (34)7£Graphaut (C), but g=(1 3)
éGraphaut (C), since in this last case we clearly have G(g)(S )=S.,. These show
that Graphaut (C)—Z’z, bemcr generated by (1. - 3), lfé— (A3C D4). The proof of

‘Proposition 6.4 is thus eompleted.

EXAMPLE 6.9. It would be tempting to conjecture that Aut I{*(G/I{;
F) = Lieaut H*(G/K; F), for any proper pair of equal rank compact connected Lie
groups and any‘characteristic zero coefficient field F, as suggested by the caseé
'K = T([13)) and G/K = U(n)/U(n&) AP U(nk), Ny +,.0%n =M ([7], [12]). In the firsf
case the guess turns out to be true (for F = Q, R, see Theorem 1.1. [13)). In the second
case it was conjectured (after checking a number of particular situations, e.g.

Grassmann manifolds, see [12] for more details) that Aut H*(G/K; @) is generated by



=5y

@ (grading automorphisms) and automorphisms coming - from _NG(K)/K {z) “or
equivalently from NWG(WK) [12]. The exact ééﬁllence (6.2) shows, as indicated in the
proof of Proposition 6.4 for %G = An_l,'that F* and NWC‘(WK)- gene_rate N(F) in this
case (for both F =@ and R), thus the above mentioned]conjecture may be simply
restated as Aut = Lieaﬁt. %
' Unfortunately things are more complicated in general,We shall next present a
simple example, namely U(3)CSO(7), where not all IF-cohomology automorphisms are
of Lie type, F =R or @ (actually it may be shown that the same thing happens e;lso

for F = €, but we shall not touch this hére).
In our case §= (A,C 83CIR3) and the embeddings are standard (see [1], [4]).

Moreover N(F) = F* (WK), for both F =R and @, as follows from (6.2). It is also

- N
“G

straight forward to see that N .. (W )/W = %, and is generated by -1 (recall that
WG K K 2 J
-1 EWL and -1 %WK). We infer that N(‘LF)/X\’K is generated by F*, hence Aut = Lieaut

is equivalent to the fact that Aut H*_((Y?; F) C(;nsists of grading atlltomorphisms alene.
The we}l—knoWn relations between Poﬁtrja‘gin and Chern classes imply, on the
other hand, that H*(i%; l}ﬁ‘)-‘—'lI*‘[c,l',cB]/(c:il - 0'1'03’0?,) as a gradéd algebra (where
leil.= i). Consider then the graded ‘algebra automorphism of E[Acfl’%] defined by
h(cll) = ¢, and h(c3) misea 202._ It is easy to. chepk that it induces an autoAmorp-hism

of H"‘(%;‘[F) which is not a grading automorphism.
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