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RATIONAL HOMOTOPY EQUMLENCES OF LIE TYPE

Stefan PAPADIIII4

1. INTRODUCTION AND STATEI\TENT OF RESULTS.

Consider I(CG, a proper pair of equal rank eompaet eonneeted Lie groups- It is

known (see [6]o proof of Theorem 1.1) that.the group of self.homotopy equivalenees of

the rationalization of G/K is (anti) isomorphie, in a natural way, with the group of

graded algebra automorphisms of H*(G/K; Q). on one side of ' the matter there is the

faet that Aut H* G/K; e) almost gives the 
. integral 

picture of the self-homotopy

equivalenees of G/K, that is up to a f inite ambiguity and up to grading automorphisms

(, t  i i  (€e)-see a lsoof  Hl (G/K;  Q)  ( i .e .  those act ing on Ho'as A ' . id '  for  some nonzero '

[O]. On the other side there is the classieal deseript ion by Borel tzl of H*(C/t<; Q) in

terms of invariants of tr{eyl grotrps, whieh gives hope for a satisfaetorv understandirq

of Aut u*(c/x; Q).

Denoting by F a f ield of eharaeterist ic zero, by T a common maximal.torus' by

V its Lie algebra and Uy l 'C.V the exponential latt iee, one has a graded aigebra

i .somorphism H*(C/X;  F)- IKI IK. I ;  ,  where IO stands for  the invar iants  of  the

natural aetion of the Weyl group WC on the polynomials on I @lF , and similarly for

In. Denote by N" the normalizer of tr{" in GL( ["@tr), and similarly for Nra' Set

N(S') = NCflNn and notiee that this group natural ly aets on U*(C/X; m') '  Finally

denote.by L ieaut  H*(c /K;  tF)  the subgroup of  Aut  H*(G/K;  F)  eoming f rom N(F) .  Thfs

paper investigates the strueture of Lieaut, some propert ies of Lie-type eohomology

automorphisms and some geometrie eonsequenees. Besides the faet that restr iet ing

oners attention to Lieaut is a most natural ehoiee (whiel i  eovers the examples eoming

from geometrie symmetry), i t 'often happens that 'al l  eohomology automorphisms are
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of Lie type, e.g. when K = T [13]; the ease of eomplex flag manifolds was intensively

studied and there seems to be enough.evidenee to believe that the same result holds

in that ease too, as eonjeetured (in a different formulation - see Exarnple O.g) in [?]o

hZl. Though the existenee of examples as simple as SO(?)/U(3) (see Example 6.9)
' l

prevents one from being too optimistie about the above eoineidenees, it seems

neeessary to have a good understanding of automorphisms of Lie type in order to have
'a'good 

general guess. It is the aim of this paper to prove that the Lie type part of the

eohomologieal symmetry may be vely explicitely described, produeing useful

geom etr ie inf  orm at ion.

: obviously the elements of wn induee the identity of H*(c/K). our first main

result makes precise this observation in the ease G/K is in normal form (whieh

represents no loss of generality, as far as the topology of G/K is eoneerned, r"" $ Z

for the preeise definit ion; it tr ies to avoid embarrassing redundaneies sueh as

G x  G.  /X  x  
-C. . )

I ' , -  
- - - I - ' ,

THEOREM 1.1" suppose G/K is in normal form. For tr = e or {R, one has

Lieaut H*(G/K; F) -  N(F)/ !Vo.
n

The strueture of N is diseussed in detai l  in Seetion 6.

The elements of tttr-. aet on the refleeting hvperplanes of iV.- and eonsequentlyL r  '  U -

on Weyl chambers, and similarly for Nn. Our next main result relates the aetion of N

gn the Weyl groups and Weyl ehambers to the computation of Lefschetz numbers of

the induced cohomology automorphisms. If  n qN, [n] wil l  denote i ts elass mod Wn, and

in the statement below eaeh sueh elass wil l  be normalizeg.. i .e. supposed to leave

some f ixed W,, - 'ehamber invar iant .
K

THEOREM 1.2. Fix a lV,,-ehamber and eonsider a f inite order normalized Lie-
11'

type eohomology automorphism [n] € N(R)/WK. Then: the Lefsehetz number L([n]) is

nonzero if  and only i f_ n leaves some Wc*ehamber invariant, and in this e&se

L(tnl) = [Cr^, (n) : C,., (n)].
.  t t c  t t K
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In the last statement C stands for eentralizers; t'his ec,mputation snoutO Ue

. eompared with the one in [11]. It follows from h3l that, for G simple, Nr., modulo
tJ

grading automorphisms is f inite, so the finite order elements of Lieaut do indeed

represent the interesting part of Lieaut.
i

A second kind of results is related to' the existenee of isombfry-invariant

gEodesics on G/K. Given f€IsomfM), where the manifold M earries an arbitrary
I

metrie, it was reeognized [g] that the existenee of f-invariant geodesics is intimately

. related to the existenee of f ixed points of f in 7n(M)and then that this last problem

ean be sudeessfully dealt with, using ratiohal homotopy theory methods [10, gJ. Here

our main result is the following eomputation of rational homotopy groups (to be

compared with [5J, Corollary L.3 and [11], Theorem l.):

THEOREM 1.3. Suppose G is simple and denote by h

Then

the Coxeter number of G.

1fi(c/K)@Q = 0 for i > 2h - l. and dim Zrn_r(c/f()@Q = I

Reeall that a geodesie eurve c is called f-jnvariant if it is noneonstant and

there exists a period t sueh that f(e(x)) = e(x+ t)o any x. Putting together the

information on the aetion of f  on the rational homotopy.of G/K dedueed from the

tnowledgb of g*(f;  Q) with the preceding result,  we wil l  prouei

COROLLARY 1.4. Given f e Isom(G/K), there exists an f- invariant geodesic

whenever

i ther  ( i )  G is  s impte or  ( i i )  G/K is  in  normal  form and H*f

is of Lie type.

This eomplements the main result of [9], whieh asserts that every isometry of

a {-eonneeted elosed manifold M has an invariant geodesie, provided

dim { (M)@Q = 0o or  M is  odd-d imensional .
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The paper is organized as fol lows. Sect. 2 eontains preparatory material:  vre

set up the root system framework and the notations and we reeall  some useful faets

on harmonie polynomia ls  [16]  anO normal izers of  Weyl  groups [131.  In  Seet .3 we

derive the Lefsehetz number formula (Theorern 1.2) using the relationship between

u*(C/x; tR) and harmonie polynomials. This formula is used for the proof of Theorem

L1 (Sect. 4). In Seet. 5 rational homotopy theory methods are used for the proofs of
-Theorem 

1.3 and Corollary 1,4 (aetually we prove a sl ightly stronger statement than

Corollary 1.4, see Proposit ion 5.1). Finally, we analyse in Sect. 6 the strueture of N,

relying on the detai led knowledge of N" [13] and on root systems theory [4], and give

many examples.

2. HARN{OMC POLYNOMIALS

Consider 01.{A 
cV*,  the roots of  the adjoint  aet ion of  the eommon maximal

torus t t l ,  anO use an Ad- invar iant  metr ie in order to ident i fv V with V*.  This.gives

our basip f ramework:  a pair  of  root  svstems, denotect  by 
+= 

( fx.QacV).  A =ln*,"
I r '

root  systet  tC wi l l  be eonsidered as a pair ,  by set t ing 9X 
= P,fnis is (almost)  the

si tuat ion consic jered in I l3 i ;  here we rv i i i  no more insist  on $o being ngrmai izec,  i .e.

satisfying V = R - tp"nlS*] , tf 'at is our root systems are eonsidered in the sense of

[161, Appendix 4.15. WL wi l l  say that G/K is in norma! form i f  G = X G,,  wi th eaeh

G, simple and 4-eonneeted, and K = X *,, 
"*!ffieiosed 

lif".","o proper
ieA

s.ubgroup of maximal rank of G,. Anv equal rank homogenous spaee may be put in

normal  form,  and th is  choiee normi  
{  r

al izes 
f 6; hov;et 'er C) n wil l  not be normalized, in

general. Given a root system ({tU), we may plainly eonsider the inclueed orthogonal

decomposi t ion of  V,  V = VI \ tOV*,  wi th  VtrV = f ixed points  of  the lVeyl  group IV and
'VW = R. - span tEl , And 

' 
thus get an assoeiateo norrurir"o .y.t"r t{cvrul.

start ing with a pair $ = t$n.{or we wiu write 4 . = l f  0i ; ,  ,n"I  \ '  i €A  Ju
deeomposi t ion in to imedueib le eomponents,  we v, ' i l l  eonsider  the natura l  or thogonal

IV^
deeompos i t ion  v  =  v  GO(@ v i ) .  denot .  $ , .n41 by  6 i , .  anc  wr i te  $  =- l l$ i io ' .

u"o'po.iti5f or tn" poir A: *,l",: $ 
'1=?{ 

l. +; r,i'J'Jol,. ",- - - L
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T i  i .

root systems with (9btV')  normal ized and i r redueible,
f

geometric pieture, rve will say that I ir tn ryfrgl-form i

for any i.

r t f o c v
Aeeording to the

) is normalized anri

of  V into s imple

[ , { =  X  W ' i m p l i e s
i€A

T i  T i

Qia it a proper subsystem of 
f b' for any i '

Our notations wil l follow in general those of t131. The guiding rule is that by

t l
sett inE 6,, = O one reeovers the constructions and notations used in [13] for the ease
.  "  .Lr \

-of a single root system. The characterist ic zero f ield eoeff icients for the eohomology

wil l  be in general {F = {R or Q; when there is no speeiat mention of F, i t  should be

understood thatF =fr1.

(
Consider a root system (9cV). The f irst statement of the proposit ion below

says that the normalizer of the Weyl group is essential ly determined by the

knowledge of the assoeiated normalized situation and the second is a useful deviee

for redueingva.rious eonsiderations to the ease wnen $ O is irredueible.

{
PR'OPOSITION 2.1. t ,et (QcV) be a root system, not neeessari ly normalized.

Set N = Nor,Ur(lt ').

(i) N = cl,(vW) * NGL(',^,)(W).

(ii) Suppose that { ir 'norrnalized and write + = JI+', V = @ vi for the

decomposition into irreducible eomponents. There ,, 
" *iorottl"*n,r", #, **Xtel

with the proper ty  that ,  for  any n€N and ie  A,  set t ing ] ]o(n) i=  j ,  h  induees b3r

restr iet ion an isomorphism n : Vi;>Vj which maps the Weyl group Wi isomorphieally

onto trVj.

Proof .  ( i )  Star t  wi th  ne GL(V)  and wr i te  i t  in  matr ix  fornt ,  
"  

=  
{ :I D

.aeeord ing to  the deeomposi t ion V = VW@VW. Then neN i f  and only  i f  for  any

there ex is ts  w'€W sueh that  nw = w'n,  whieh s imply  means that  dw = wrdr

contains image(w-id) and image b is eontained in ker (w-id), for any w €W

assert ion fol lows.

( i i )  By [4J,  p .146,  V = Q Vi  represents a deeomposi t ion
i€A

R[\ { ] -submodules.  One has next  to  not iee that  the deeomposi t ion

c \

d  I t
w € w

ker: c

.  Our
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that these are pairwise nonisomorphie lRlW]-modules. For general reasons the Vi,s,

i€A., must then exhaust t lre eollection of simple [ i [W]-submoclules of V, on whieh .N

nattrral ly acts. Use this aetion to defin 
" 

To and cheek the remaining assert ions.

. Finallv note that this construction is eonsistent with that given by (t) in the proof of

Proposi t ion 2.8,  [13] .

Given a pa i r  o f  root  svstems,  {= (Q*.$a.V) ,  we shal l  denote bvH*($;m)

the graded algebra tnlioeal (li), where the invariants of the Weyl groups are

eonsidered relative to the natural r ight. action of GL( [ 6m) on. the polynomials on

f o r  g i v e n  b y  p e t r i l " 6 r ' l = ,  p F , a € G L ( 1 . 6 m ) - + p , g . = : B e .  A s . a  m a t t e r  o f

the natural grading of p obtained

by assigning the degree one to the l inear polynomials, w.henever dealing with pairs of

root systems. As soon as these eome from pairs of equal rank Lie groups I( C G, we

shatl ictentifv I. t*(c/K; F) and n*($;tr) by simpty doubling the degrees.

The proofs  of  Theorems 1.1 and 1.2 are based on approaehing g*(c /K)  v ia

harmonic  pol . : , 'nomia ls .  I {e  are going now to reeal l .  f rom [16] ,  Appendix  4.1S,

espeeial ly pp. 415-416, some useful (elementary) propert ies of harmonie polynomials.
f

Let  (qcV) be a ' root  system. The eanonieal ' ident i f ieat ion of  V*  wi th  V s iven
& .

by the metr ie  extends to  an isomorphism between the polyomia l  and the symmetr ie

algebras on V, denoted by p+3. .Recall ihg that.the.symmetrie algebra natural ly acts

on the polynomial algebra, one obtains an euelidean . strueture on P by sett ing

(p,q)  
.  ?qo(o) , . for  p ,9 €P.  I t  is  easy to  see that  i f  aeGL(V)  is  an isometry  then the

indueed algebra automorphism of P, denoted by u*, is also an isometrv. Denoting by

Ul*f Ql the gracled veetor spage of harmof ie jqlynomials, clef ined b5r
( r l

H*(O) = (P ' I ' ) - ,  whieh is  e lear ly  invar iant  wi th  respeet  to  the aet ion of  the WeylL

group, one has a natural gradeo veetor spaee isomorphis,n nr*tpl?lJ*(+) vrhieh is

compatible with the obvious tr{-aetions.
. (

Given any x€v,  one obta ins a l inear  map h. ' . :  u*1$1-+|R[w] ,  c ie f ined by:^ I

\<-t
h * { p ;  = 1 . ^ o * , * , . * ,  p . t n n ( $ )  ( z . z )

w€!tr '
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One says that x is regular, written x €V', if x doestno.l belone to any of the refleeting

hyperplanes defined by + . Finally, suppose that we are given 
.an 

orthogonal

w-invariant decomposit ion V =@V;, with vo = vtrv '  sett ing-$j =$n vI one obtains a

T  , ,  i
root system deeomposit ion + 

=IL03,.wi*r 
4:tUi normalized exeeptinf 4.o= /.

. P R o P o S I T I o N 2 . 3 . L e t 1 5 . u l b e a r o o t s y s t e m . '- - ' . I . - - - - J - - -

( i )  I f  x€V ' then the  l inear  map def ined by 'Q.2) ,  n*  rm*( f ) .+RtWl  i s  a  l inear

isomorphism., eompatible. with the natural right aetion of W on [I.($) and the right

aetion of W or rRIWI indueed by the left reguiar representation'
T

( i i)  H*(6) is invariant with respeet to the aetion of N on P and the graded
,

I -modu te  map  I@H*(0 ) -+P  de f i ned  by  q@p+q-  p  g i ves  an  i somorph ism wh ieh  i s
' t

eompatible with the obvious N-aetions.

(i i i )  An orthogonal W-invariant cleeomposit ion U =OVj (with Vo = VIV) gives

rise to a root system deeomposition $ 
=llt: (with 4 o 

= @) and to a graded algebra

i somor.phism p 'v  @P, which is  compat ib le  wi th  eonstruet ions I ,H* andlH*
- J

Proof .  ( i )  See [16] '  P.416

(i i i )  Compatibi l i ty with I and H* is elear. Use the alternative definit ion. of [ I*

given in [16], p. 41b, and the tensor produet spl i t t ing of the. W-invariants, in order to

deduee that  @FI* t$ ' )cH.( { ) .  F ina l lv  use a d imension argument  together  wi th  ( i ) .

( i i )  t r ior . r i 'n . r r . r8  t lGl  takes eare of  a lmost  everyth ing,  exeept ing the

statement  on the N- invar ianee of  [ { - (0) .  This  in  turn is  e lear ,  as far  as the par t  o f  N '

eonsist ing of isometries is eoneerned. But we mav alwaSrs reduee to this situation' by

.-suitably 
mult iplying a given element of N by an element of GL(V1t'),  in order to f irst

normal ize the root  system, see Proposi t ion 2.1 ( i ) ,  and then mul t ip ly ing by an e lement

of GL(V*) whieh is diagonal with respeet.to the decomposit ion of V* $iven by the

i r reducib le  eomponents,  see Lem ma 2.2 [13] .  Use ( i i i )  an4 wr i te  E{ . (Q)  = H*(

6 , , -  - , )  in  order  to  get  the c l , (vw)- invar iance of  ur - t { l '  F ina i ly ,  g iven
r  normal lzeo '

o e GL(Vw) which acts as a sealar d, on each irreclueible eomponent v',  u5s ( i i i )  again
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\

and notiee that ds aets on eaeh P' as a grad\'hg. automorphism, thus leaving any
J .

graded subspaee invariant, whieh eoneludes tlre proof.

One more noiational eonvention: given a pair of root systems,
T  . t '  f  ^  {
Q= (Qr.c9. :Cv),  we shal l  denote by Hh,(n;  F) the aet ion on l t*(Qr-;  F) indueed by
L l r " \  ! \ r  .  

- r  ' - r  '  '  
, .U '

n€N6(F),  and simi lar ly for  K,  and by H*(n; lF) the act ion of  ne N(F) on H*(6;r) .
L '

3. LEFSCHETZ NUI{TBERS

Consider a pair.of root systems, Q=tt*af"cvl.  lVe shal l  atso need to

eonsider W"-ehambers (resp..Wr,-ehambers), denoted by CC (resp. C*) and pairs of

Weyl chambers, denoted by C = (C"cCL). For the proof of Theorem 1.2 we shall  f ix

a Wn-ehamber CK and reeall  that the eosets [nl €N/Wn are supposed to be

normal ized,  i .e .  n(Cn)  = CK.

To start with, we are going to prove f irst, for the case fn 
= O, a statement

which is stronger than the theorem, next to deduee frbm it Theorem 1.2 (for K = T) in

a straightforward mannen? and f inal ly to sett le the general ease. A l i t t le bit more

notation wil l  be eonvenient: given a (set) mapping ? , W+ W, we shall  denote by

RIY I  the l inear  map Rt{  I  :  R lWl- r  RIWI whieh is  def ined on the group r ing by

PROPOSITIOI{  3 .2.  Let  ($cV) be a root  system. F ix  a lVeylehamber C.  Given

n€N, ord n (  oo,  the eharaeter is t ic  po l5rnomia ls  of  H*n and of  [ t t fn ]  eo inc ide,  where
- t  

, * -1n,  for  v  €t r \ ' ,  and \ \ '€ l \ '  is  c le termined by
Yn 

is def ined by 
Yntul 

= n ' \

' -  n(C)  = w(C).

Rtt/  Xw) = g (w),  any w €!V
t  r .

Here are the statements.

COROLLARY 3.3. Theorem 1.2 holds for I( = T.

PROPOSITION 3.4.

(3 .1 )

is a pair of root systenrs, then theret r { = r { x . { G c v )
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exists a graded isomorphism H*t$)@tU*({r , . ) -? H*($,- , ) ,  whieh is eompat ib le rry i th.  - L . v  L ^ . *  , ( :
K  , - ( 1

the I I . *  @HI and Hf  aet ions of  N.

" Assuming these, we shall  quiekly derive Theorem 1.2: by Proposit ion 3.4 lve

_ . v r :
may write L(H*[n]) .  L(Hln) = L(HYn); rnoreover, Corol lary 3.3 guarantees that

tz
L(Hf;n) =#Cr^, (n). One more applieation of Corol lary 3.3 (this t ime for G/T) helps

to^conclude.

3.5. Proof of Proposit ion 3.2. Remember that the harmonic polynomials are

N-invariant (Proposit ion 2.3 ( i i)),  which means that the-eharaete.r ist ic polynomials of

H*n and of  n* lU- t$ l  eo ineide.  on the other  hand,  i t  is  easy to  eheck that ,  g iven

x€Vr n€N and w€W, one has h*n*  =R[en) f rn*  and h** .=[ t [ r * lh* ,  where the l inear

maps h are defined by Q"D and 
"n 

(resp. .r),  defined by en(v) = n-lun, resp.
' - 1

r*(v) = vw r, for v elt,  g"ive r ise to self-maps of R[lt?] as explained in (3.1). Sinee

w- ln(C)  =.C and ord(w- ln) (Oo,  the (s tandard)  t r iek.  used in  t t re  proof  o f  Lemma 3.2

[13]  g ives the ex is tence of  x€C sueh that  nx = wx.  Not iee.  that  xeVr and apply

Proposit ion 2.3 ( i) in order to f inish the proof.

3.6. Proof

r t (  I  - 1  - 1=+V 6tr '  Inv 
'n '

t h e o r e m f o r K = T .

3.?. Proof of Proposit ion 3.4. This is nothing else but the aigebraie form of the

Leray-I{ irsch theorem for the f ibration K/TiG/T+G/[(. tr\ 'hat we really want to

t the Lerav-Hirseh isomorphism ean be *"Ou N-equivariant in ouremphasize is that. the Lera5r-Hirseh isomorphism eal

casi.  one eonstrurets a graded H*ff l -module nrapf t  *- t f)@II*(+K)-+ H*tf  

" l  
uv

choosing, as usual, a tlegree zero seetion of the natural graded aigebra surjeetion

u*t$^) = PlP -  i l  t  p/p .  l+ = , r*r$, . . ; .  Here we may eonsider the natural' I ( i '  - G  / L t L  ' K - r r  t j - r ,

composi t ion f f f  *(6, . ) - i l *16r- , ) - rH*(Q1q),  whielr  is  a degree zero,  Nn-eQuivar iant ,
L t (  

' . I - t J

isomorphism (bV Proposit ion 2.3 ( i i)) in order to obtain an N-equivariant seetion

s* rd r - - ) -+  H* (&^ ' i -

of Corollary 3.3. know that L(n) = traeelRl(gnJ
' . r  , , (  I  \

v = w i = # i u e l { [ n ( v c ) = u " ! ,  w h i c h  g i v e s  t h e  p r o o f  o f  t ]the
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It follows in a standard way that t is an N-equivariant surjeetion. On the other hand

the W,-,-equivar iant  isomorphism In86I*(+c)JP (Proposi t ion 2.3 ( i i ) )  g iv.es an
L i  

- r - - ' - - -  - :  
:  W , ,  

-  "  l u  -

isom6rphism H*({)- fU*(QC) ^,  and the W"-equivar iant  isomorphism

-  f  
r r  l /

t r - :H*(0.)?nlW,- l  (Proposi t ion 2.3 ( i ) )  g ives Oimtn*(Q^) 
^ = [ t r \ ' . :  lVn).  Using' I U ' -  * - ' "  U '  \ - ' - L -  

T .  
J - \ '  \ :

2.3 ( i) again, a <l imension argument shows T to be an isomorphism. The proof of

Prbposit ion 3.4, and-eonsequently the proof of Theorem 1.2, are eompleted.
. :

4. PROOF OF THEOREM I"1

we are dealing with a pair of root systems, 
Q 

= ([Ot{ 
ctu), whieh is

supposed to be in normal form, and rve have to show that, given ne N(F) (F =R' or Q)

sueh that H*(n; F) = icl, then neeessarily n €W*. It plainly suffiees to see this for

F = R .

We shall '  f irst reduee the discussion to the ease when $ 
" 

tt irredueible. lfr ite,

s  (  r t  T ;

as in b Z, Q = X +t (thn irrec'ucible pair decornposition) and notiee that the natural

i ro*oipni . ;  r : tUp, induces a graded algebra isomorphisrn u*({)-9.  
"-(0i )  

( . "u

i e A  - :  i € A  '

Proposi t ion 2.3 ( i i i ) ) .  I {aving thisgeometr ie deeomposi t ion of  H-(Q) in mind, we shal l

eonsider the subgrorp $ of AutH-(6) of "geometrie't graded algebra automorphisms,
!

defined. by the require.ment of preserving this deeomposit ion (see the definit ion

below). We shall  
"noounr". 

them again in the next seetion (see Proposit ion 5.1).

DEFrNrrroN 4.1.S =laeeut H-t{ l  lV ,.o,J:.e s.t .  a 
". ,9i1 

= u-t$i l j

I t  fo l tows f rom Proposi t ion 2.1 ( i i )  that  i f  ne N then t l *ne!  (and /o(n) j  =  i  -

which malces sense s inee NcNG),  whieh mot ivates the def in i t ion.  I f  F I*n = id  then

,obviously 
lToh)= id, and it  fol lows (invoking 2.i  ( i i )  ugoin) ,nu, *n mav reduce the

mat ler  to  the.oru 
{C 

= i r reducib le ,  which we shal l  f rom now on suppose throughout

th is  seet ion.

LEM[ i tA 4.2. \ f  FI*n = id  then ord n(oo.
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froof: It follows from Proposition 2.5 [13] (when applied to N..) that we may
I  I  *  

' ' '  u

wr i te  n  =  A  n l ,  w i th  A€R'  and nr€N,  o rd  n1  (F ,  henee. the  grad ing  au tomorph ism
r

FI*A must be of  f in i te order.  On the other hand,6 r .  b" ing.a proper subsvstem of 5^,'  , n  '  L u '
one may see, using Proposi t ion 3.4 and Proposi to in 2.3 ( i ) ,  that  neessar i ly  H*(+) l0

L
.  e . r  .  * . f  T  T(o the rv r i se  H- (Q , - ) -H" (Qr ' ) ,  wh ieh  wou ld  imp lv  W^  =  W, , .  henee@^ =  O , ) ,  wh ieh' l L r '  '  

t l 1 ' ' '  
- - - ' r - ' '  '  

L i  K '  
- ' - " - - -  

l - U  L K ' '
t

fOrees A = { 'an'd shows that ord n <eo.

" This f irst step of the proof of Theorem 1.1. opens the way for the use of
:

Theorem 1.2. We shail  therefore f ix an arbitrary pair of lVeyl chambers g = (CO'cCn)

and set WC ={uew"lutcolccn}.  The next lemman whieh is an appl icat ion of

&.4)

Theorem 1.2,  represents the key s tep in  the proof  o f  Theorem 1.1.

LEMI!{A 4.3. The following statement irnplies Theorem 1.1.

I f  H*n = id and n(CG) = CC, then W"gCn,_ (n) *Cw (n) = iVn
" G  

t t c  \ r

Proof .  Given n €N sueh that  H*n = id ,  we may wel l 'normal ize [n ]  as in

Theorem I.2, supposing that n(Cr,) = CK (as far as the proof of Theorem 1.1 is

eoneerned). Using 4.2 and 1.2, i t  fol lows at onee that we may even suppose that

n(C")  = CG, eventual ly  for  some other  ehoiee of  lV"-ehamber Ca ( i .e .  o f  a  pai r .C of

Weyl ehambers). Moreover, 1|2, 3.4 and 2.3 ( i) together implv that

lC, (n) : C* (n)l = L(id) = [W" : I{nJ. This equali ty is immediately s"een to be
t r c  t t K  u

equivalent (by sir ipiy looking at the natural embedding of f inite eoset spaees

WplCy,  (n) -* ,W./C*^(n))  wi th  the faet  that  WG.wr.  C,"  (n) .  I t  is  a  rout inet\ rtK \r rrc \r rr t lC

exereise to see that this inelusion is equivalent with the incluslon W"cCru (n), i f
t t G

n €N and n(C") = CG. Bv (a.a) u'e know that the whole l{eyl group trVC eentral izes n,

henee leaves the f ixed points  of  n  in  V invar iant .  By the argument  in  Lemma 3.2 [13]

this. f ixed point subspace of V is nontrivial,  hence it  rnust eoineide with V (remember

a
that Q 

" 

is irredueible !),  whieh eoneludes the proof of Theorem 1.1.

. We are nour moving towards the proof of (4.4). The ehoice of C determines a



- 1 2 -

ehoiee of  pos i t ive roots ,  c ienotec l  by 
$; ,  

respeet ive ly  by 
Qn*={*n41,  

ano or

simple roots, denoted by 56, respeetively SN. We reeall  (t131, Proposit ion 2.5) that

t . ' l +
any.  n€NG rnay  be 'un ique ly  wr i t ten  in  the  fo rm n  =  An '6 (9) ,  where  Ae&l ' ,  w€WG

and g€Graphaut (CG),  the automorphism group of  the Coxeter graph havingSa as set.

of  vert iees,  and that o(gXCG) = C6, for  any g6Graphaut (CG).  I f  neN is as in (4.4)

tiren it follows from Lem ma 4.2 and the above diseussion that n = 6(9), for some

g'eGraphaut (C6).

LEMMA 4.5.  I f  g€Graphaut  (C6)  and W"CCW^(6(g)) . ,  then g must  have r i
. U

f ixed point on S".

LEMFTA 4.6. I f  { 
" 

nu. one root length then W" is generated by W".
'  

Adsuming these two lemmasr,w€.are going to  prove (+.+) .  An easy inspect ion of

the eqnneeteC Coxeter graphs and of their automorphism groups reveals the faet

that ,  i f  g  €Graphaut  (C")  has a f ixed point  on S" ,  then e i ther  g = id  (henee 6^(9)  = id)

or Q C has one root length. Lemmas 4.5, 4.6 and the discussion preeeding them

clearly g' ive the proof of (a.a).

I{e ought to point out that in (+.4), whieh is essential ly a statement about the
T

size of W", the two eases eoming frorn the elassif ieation ($ 

" 

has one, respectively

two root lengths) must somehow be eonsidered separatelv, as the example of the long

r.oots of B, = At * A{c 82 shows, where the group generated by WC eoineides with

W" and is a proper subgroup of W". l

We turn now to the proofs  gf  Lemmas 4.5 and 4.6.  They both depend on the

fol lowing induciive test ( in what fol lows. so. wil l  denote the orthogonal reflection

eorresponding to the root oi ).

. t T + .
LEMn' lA  4 .? . I f  u  €W^ and oCeS^ then us  ^  €W^ i f  and on lv  i f  u ( "C)dO

r .  u  d -  t -  ' fYK '

Proof  of  Lemma 4.?.  Given w€WO, i t  fo l lows d i reet lv  f rom the def in i t iono f



W" that w e W" i f  and onlv i f  w

e.g. [16]) ttrat if oc € sG then

together, our statement follows.

R
rD-d

hand it is weli-known (see

Putting these two faets

p"

- 1 3

- 1  f  +  r +' ($ 
n)cSqj 'On the other
r +  r  1 .  T  +  . ' 1

s , ( Q n \ ) d i )  = t c . L " { 1 .
o ( . J z \ ,  L  )  )

4.8. Proof of Lemma 4.5. It is t ime to reeall that our root system pair S is
t

s'upposed to Ue in normal form, in part ieutar 
$ r, is properly ineluded in 

f 
".  

f  t

fo l lows that  there must  be some xesc sueh that  * f { i  (use the faet  that  W" is

generated by the reflections eorresponding to the simple roots). Put'u = id in Lemma

4.? and deduee that so. €W C , h.ence 6.(9) eentral izes .x . By the construetion of

o(g), see (1) in the prqof of Proposit ion 2.5 [13], c'(g)soo{g)-t = S"r,.,  for any-  c (  g (oc l ' ,  '

o{ €SCl This implies g(o<) ="c , as desired.

4.9. Proof of Lemma 4.6. As in the previous proof, i t  foi lows that there exists

{
someoc €SG\Qn.  Sueh s imple roots  wi l l  cause no d i f f icu l t ies,  by Lemma 4.?,  and our

claim wil l  fol lorv as soon as we prove that s^ l ies in the group generated by W", forv' r

any p e Sr:AQr.. Civen sueh $ , eonneet it to o( by a straight edge-path of the" t -  u - r ^ ,  I
Coxeter graph of 

I  C 
(whieh is conneeted and eontains no mult iple bonds) in order to

T

arrive at the following situation (eventually after choosing some other o(€SG\9K)

w h e r e  p ; n t " n { n ,  i = 1 t , . . . , r ,  a n d  P r = F .  t ,  w i l l  b e  e n o u g h  t o  s h o w  t h a t

tO tpo .  .  .  spi €I{C, for any 4 5 iS r,  sinee we alreadv know that so € WC. We wil i

use  ind t i c t i on  on  i .  Fo r  i=4 ,  i f  o (€sc \ tK ,  
P . t "0Q, ,  

, uo ,y . , f  ) l  o ,  t hen  (use

Lemma 4 .?  w i th  u= t f )  
\ t p€ I ' vc  

i f  and  on ly  i f  . o (P r { f ; r .  suppose  on  the

contrany that  s* (P)€fx .er t  (as i t  is  eas i ly  seen)  r " . (P,  = .p("cX= o*P) ,  for  an5r

distinet non-perpenclieular simple roots of a system with one root length, which

eont rad ie ts  the  fac t  tna t  p  uLn and x f ,Qn.suppos ing  r " . rp r . . .  rp ,_ r€w" ,  use

Lemnra 4.7 again and dedu?e

s -sR . . . sR,  . (p , r=  o .  p ; .  . i " , fg ; . t t  , " , t ' * t t :p ; :  . . : p -u= ; ]
o (  P l  P i - t l '  r i
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o  C  \ /  a  f  , . / t (
Pi  =  ) ,  and suppose on  the  eont ra ry  tha t  i l  +beQs,  wh i leX&b, ,  (bv  induet ion)  and
[ ' i ! L } \ ' - - - \ J r L K "

5r[n.  s inee (Y'5)= (Fi- l ,p i ) (0,  the faet  that  $a nu,  one root  lengur impl ies
( ^  /  - ,

again that  {  * ,  :Sw (  )  )  =  s-  (d  ) ,  a  eontradic t ion.  This  e loses the induct ion and theu {

proof.

. 5. EX1STENCE OF INVARIANT GEODESICS

I{e are going first to derive Corollary 1.4 from Theorem 1.3. The underlying

idea is quite simple. If f € Isom(tvl), U a t-eonnected elosed Riemannian manifold, and

there exists no f-invariant geodesie, then id-tk(f) must be an isomorphism, for any k,

[8] .  I f ,  by chanee, i t  happens that dim-JlU-( l l t )@e = i t , . for  some k,  i t . is  obvious that i t

is impossible for JTk$)@Q ana id-ZTk$)@Q to be simuttaneousty unimodutar whieh

simply proves Corollary 1.4 (i). I- lowever, if M = I!10 x I\4{,7I;(M)61e is either zero or

at  least  t ivo-di tnensional .  In our ease, th is di f f ieul ty may be eireumvented as fo l lows.

lVrite G/R = X Gi/Ki, where eaeh G, is simple. Reeall that 7T*ff)8R is entlrety
i € A r r

determined by t l * ( f ;  [ t ) ,  whieh is to be c]enoted in thc sequel  by g.  t i  ga9 (see

Definit ion 4.1), that is it respeets the geometrie deeomposition

Ht(c/ t<) = 6) H*(Gi/ l { i ) ,  i t  is  not  surpr is ing that 7d*(f )6)m wiu respeet the s imi lar
i € A r ,

homotopy deeomposit ion, whieh brings us back essential ly to the ease when G is

simple.

Due to the'  remark

irnplies Coiollary 1.4 (i i).

PROPOSITION 5.1. Suppose G/K is in normal for

If lr*(f; {R) = : e'et (see Definit ion 4.1 for the meaninr,

invar iant  gcodesie.

Prggl. The proof uses Theorem 1.1

fol lowing Definit ion 4.1, the next proposit ion elearly

eonsider  f  € Isom(G/K) .

then there exists an f-

m and

or9 I

task is to elarify the relationship between

aetion at lfJt)@R on €l lI*(ir/K;)@R.
i € A  :  '

and rational homotopy

the aetion of g on .$.
i€A

theory [151. Our f i rst

H*(c, /Ki ;  [ i )  and the
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/
.  Given G/ l { ,  wi th  G and K eompaet  and conneeted and of  the same rank,  the

t-' isomorphism H*(G/K; [ t ) / I ,U/IX -  I l  deSeribes H*(C/N; R) as the quot ient  of  a graded

polynomial algebra by the ideal generated by a regular sequence ([4], p.107 and

p.13?), which shows G/l( to be intrinsieally formal; see [].510 ! X, In partieular the

minimal model of Ht(G/K; E-t), eonsidered as a diffenential graoei algebra with trivial

differential, wil l coineide with the minimal model of G/l{ (from now on, the grouncl

field wil l be tr = R).

Piek a minimal model \ i t&i-rr l* (c i /Ki) ,  for  any ieA. Then t t re tensor
'  l t  .  .

produet q =@Yi td=@4 ? @FI*(c; /K,)  = 'H*(G/K) wi l l  g ive the minimal model of
)  ) '  ,

G/K. Also notiee that, i f  Q is the root system pair eorresponding to G/K, then in the

irredueible deeomposit ion { 
= 

.qQ 
i, 

$ 
i  r i t t  eorrespond to G;/ l(1, for any i.

0. 
+ i.€A--

Given g€ 'J ,  denote by ge:(A)  the natura l ly  indueed permutat ion,  def ined by

gl {* (Gi lK i )  =  H*(Gj i  I ( j )  i f  and only  i f  g( i )  =  j .  For  any i€A,  construet  a  min imai

modet map E, 'JL7JL 
Ury 

with the property that 
9 ,6F, 

= u 9i. setting

?=O4 r , jL* rAL,  one e lear ly  has gt=gJ,  which impl ies,  i f  g= H*f ,  that  f

represents the minimal model of f. Writing A = lJ A, for the deeomposition into
J

fi-orbits, one f irst immediate eonseguenee is the faet that the rational homotopy type

of G,/Ki is eonstant along eaeh orbit A.,.  Seeond iunO uqral ly easy) i t  foltows that
J

7Io(r)@m sends TGGi/Ki)@R isomorphieaily onto fi(Gg-l(.)/Kg-n(i))6tn, for any

i€A, in part ieular leaving the subspaees-Jf* l  =t .9 - tT*, I i / l<)@St invar iant .
i € A .' 

Going baek to the proof of Proposition 5.1Jand supposing that there is no f-

invariant geodesie, it follows from t8l that both TUf) and id-{(f) are isomorphisms,.

forany l<. It is a straightforrvard exereise to infer that the restrictions tolTOJ of both

Ifk$)@[t and id-ttk(f)@R, are unimodular, for any k,j.

We shall  now restr iet our attention to a single orbit,  on

cye le ,  . say  ( i ' i r . . .  i . ) .  Deno te  by  h  the  Coxe te r  number  o f  G ,

l lk(f)OR = b. By Theorem 1:3, dirn -ITkrciL/Ki,)Em = a, *ni"trr1,

prcv ious in format ion on b,  g ives that  b  aets  on a basis  X&, . . .  ,X

m a n n e r ,  b v  b ( x , )  =  { , ' x i * t ,  f o r  s o m e  l , a * .  B u t  i t  i s  t h e n

--n
whieh g ^  

aets  as a

a n d  s e t  k = 2 h - [ :

eombined wi th  our
' A

l .of iT, '  in a evelier -

impossible to have



simultaneously det(b) = 1{ and

of Proposi t ion 5.1.
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\ . . i\
det ( id-b)  = +4,  and th is  contradiet ion f in ishes the proof

The proof of Theorem 1.3 uses again rational homotopy theory. As we have

already mentioned, the minimal model of G/l{ is the same as the minimal model of

H*(G/K). On the ofir lr  hand therg is a simple model of H*(c/N), which may be

deseribed as fol lows (ttSl): denote by QC (respeetively QX) the graderJ veetor spaee

of the indeeomposable invariants, QG = I i / f i  .  f l  (anO simiiarly for en); denote by
- - l

L 
-aC 

the desuspension of QG and ehoose a degree one i inear seetion, denoted by

o :Z - tQ" -+ l l c16  ,  o f  t he  na tu ra l  p ro jee t i on  r l -+Q6 .  Use  th i s  t o  ob ta in  a  mode l

3: 
(rn8Ax-[eg, d)-+(l- l*(c/x;tr) ,0),  where the dif ferential  d is the extension of

the previously chosen seetion defined bv d(I*) = 0, and 
fhe 

map 
3 

is defined on I* so

as to cojneide with the natural  projeet ion IK-r IK/ IK.I i ,  and is def ined on the

exter ior  part  byq(I , -nQC) = 0.  The onlSr t rouble eomes from the.faet that  in general
,

th is  model  is  not  min imal .  However ,  the genera l  theorv ( t1Sl ) , !  S anO !n)  ,no*s that

one can st i l l  pbta in f rom i t  homotopy in format ion.on G/K,  namely .one has

isomorphism between I Iom(/ ] (c / t { )e tF,  F)  and H*(qr ,e t -40c,  ed) ,  where the

di f ferent ia l  Qd is  noth ing e lse but  the l inear  par t .  o f  d ,  and in  our  ease is  ent i re ly

determined (modulo a d imension sh i f t )  by the map indueed between indeeomposables

by the ine lus ion IGC IX,  to  be denoted by Q :  QC *  QX.  In  par t ieu lar  one has

din $u-4 
(G/I() @lF = dim ker qk, for any k ( * )

Lemma 2.5 t5 l  impl ies that  the top degrees of  ZJ] tc l r l6 l fF and of

Tf ,OOtClr )@tr  eo ineide.  l th ieh shou,s,  v ia  (* ) ,  that  our  theorem is  in  faet  a  s tatement

about .kerQ.  Given G,  we shal i  denote by kO the top tJeeree of  the grac ied veetor
r

space QO; i f  G is  s imple,  set  l r "  =  Coxeter  number of .QC.

Suppose f rom now on that  G is  s iTple.  t ls ing equal i ty  ( * ) ,  Theorem 1.3 is

c lear ly  impl ied by the fo l lowing lemmas

hr.
LEMMA 5.2.  kG = h"  and d im QO" = 4.
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LEMMA 5"3.  kK (  kC.

. 5.4. Proof of Lemrna 5.2. This is well-known. We incl ieate the proof, for

readerrs  eonvenience.  Denot ing by kn5kZ5. . .Sk,  the degrees of  the basie invar iants

of 11,6, notiee that k6 = k., by clefinit ion, and that our statements are equivalent with

ki-A a k, = h. Ttre . equali ty k. = h fol lows from {41, p. 1L9 and p.1,21, while the

inequal i ty  o i -n  a k ,  fo l lows f rom [4] ,  p .169.

5.5. Proof of Lemma 5.3. This is our key lemma. Its pro.of uses results of [14]

on Jaeobians, so i t  wil l  be eonvenient to work with F = C.

Wri te  I "  =  C[p t r , . . . ,p rJ  and I *  =  C[Q1, . . . ,Q, .J ,  as  in  [4 ] ,  where  p1 ,g1€0[V]  a re

basie invar iants  of  Weyl  groups sat is fv ing degp{S. . .Sdegpr  (and s imi lar ly  for  K) ,

whenee kO = deg p, and k* = deg gr. Denote by Za the zero set of p{., .  .  .  ,pr_O in
ts

VOA = C. ' ,  and def ine Zn s imi lar ly .  S inee the i r  def in ing equat ions are regular  seq
I \

uences,  the arguments of  I t4J snow them to be one-d imensional ,  more preeise ly  eaeh

one being a f inite union of l ines through the origin.

Suppose  now tha t  kK)kG.  I f  kK )k6 ; ,  i t  f o l l ows  tha t  eaeh  p i  (A< i ( r )  i s  a

polynomia l  in  qO,  .  . .  rQp_4,  henee Z* is  ine luded in  the zero set  o f  p l , .  . .  rp . r  whieh

eonsists of the origin alone, a eontradietion. Suppose then kG = kK and write
r

P r =  l . e i Q i  
*  q ,  w h e r e ' c , € O  a n d  q  e  C I l q n , . . . , 9 r - 1 1 .  B y  L e m m a  5 . 2  d e g P r - ' ,  (  d e g P . ,

t i = l  "

hence pi € C[qn, . .  .  ,g._4], for i  ( r.  The preeeding argument shows that neeessari iy

e ,  I  0 ,  wh ieh  imp l i es  tha t  I n  =  C [g ' , . . . , g . -4 ,p .1 ,  i . e .  we  may  a l so  suppose  tha t

Q.  = P.  f rom now on.  The same d iseussion a lso shows that  Z l i .CZC.

write now pi = 
l" 

r,:o: + q., for any.{ ( i ( r, where iUe clno G, is a polynomial
J=1-' in  

qa, . . . ,gr  wi th  no i inuur  par t .  I t  is  e lear  that  the p1 's  ( respeet ive ly  Qr 's)  rnodulo

deeomposables give a basis of Q6 (respeetively Q6) and that with respeet to these

bases Q is given by Q(pi) = Z f,rC3. We infer that clet (f , ,) = 0. Indeed, otherwise thc

diseussion preceding (*) 'would imply that-ZG(G/t{)6}CI =t '0, n"n"u n+(c/x; CI) = 0 (use

Hurervicz), whieh is absurd (remember that I{ is a proper subgroup of Gl).

i1m 
'L "'q?t'[
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on the other hand, denote by z; ; the eoordinates in V@A = Or,  set

^  I  . n  a  , n  . A
J c = c l e t (  S p /  d r j ) , J I < = < l e t (  a q r ,  d z 3 )  a n d J = d e t (  d p /  l q j ) ,  n o t i e e  t h a t J 6 = J " J J q ,

and reeall the main result of [14] concerning Jaeobians:'JO is not identieally zero,

when restricted to any irredueible eomponent of Zr. We are going to contradiet this

fact ,  using det( f , . , )  = 0,  bV showing J(z) = det( f r ; ) ,  for  anv z€Zu. But th is is elear:  ourl l '  u ' '

a t s u m p t i o n  k n = k O  g a v e  u s  o ; € C [ 0 t r , . . . , Q p - q l ,  f o r  i ( r ,  a n d  P p = Q , r ,  t h e r e f o r e

(?n,/)C;XCz) = f , ,  for  any i , j ( r  and for any z.Zx.  This f inal  eontradiet ion ends' the

proof of Lemma 5.3 and eonsequently of Theorem 1.3.

REMARK 5.6. An alternative proof of Theorem 1.3, using the elassif ieation,
-r 'T

would go as fol lows: by the elassieal result of,[3] one even knows that f nCQ" is a

elosed sub-root systerr ( in the sense of tal) and moreover i t  is again elassical (and easy

to write down) how to elassify maximal proper elosed sub-root systems of a given

irreducible root system (see [3], also [4], p;229). Case-by-ease eheeking gives then

Lemma 5.3 for  the case of  a  maximal  proper  c losed sub-root  systeqr .  Given an

. r f
arbitrary proper'elosed sub-root svstem 0naf6., 

interealate a maximal one and
k^

deduee Q 
t  = 0.  Use then equal i ty  ( * )  and Lemma 5.2 as before in  order  to  der ive

Theorem 1.3.

6. STRUCTLIRE OF N. EXAMPLES

In this section we are going to ct iscuss the strueture of N(F), for F = R., Q.
T r T

Star t  then wi th  a root  system pai r ,  !  
=(9XCg"CV),  supposed. tc  be in  normal  form.
' r

I \ , loreover (see [3]) we ma1l, and we shall  from ltow on suppose, that (po is closed in-  
! r \

f
96 (r..  [4], p.160, for a definit ion). I{e shall  f ix a pair of I ' t 'eyl ehambers, denoted b.y

C =. (C,*CC,, )  anc j  consic jer  the assoeiated posi t ive roots  t$ la$ l )  anC s imple roots' u  K '  '  J . r \  l . u

(s^. s,,) .
t J '  ' '  

T  I  r  f  .

As a f i rst  remark,  denot ing by Q 
=*91 t l ie deeomposi t ion into i r redueible

eomponents, we get from Prdposition 2.1 (i i) the following exaet sequenee:
:  1 T ^  f i

{-> X Ni-+N-39>2(n),  where eaeh Nr eorresponds to @t,  whieh spl i ts the
i€A 't'
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diseussion aecording to the irredueible deeorn'position. Therefore,
T

suppose froln nol on that Q., is irreclueible
I L r

Next,  we recal l  f ronr I t3] ,  Proposi t ions 2,5 anC Z.b,  the existence o an exaet

sequence

/ a ' r \'  \ u q r , f

This restr icts"to the basie exaet

we shall also

+ Y b
{ -+ F'  x \ tO+ NG(tr) :>Graphaut (C6) -+ 4

C
which is split, for lF = IR, by Craphaut (CG)-+ NG.

sequenee

Y
4"-" t r+ *  * ro, t tn) -> I . t (F ' )bGraphautF(c)*  4"  (6 .2)

LEMMA 6.3. Given g€Graphaut (C6), g €Graphauttr(C) i f  and onl5r i f  there

exists u €.WG such that u-4 o(g')€Nn and leaves Cr, invariant.

Proof. Clear, for F = B. Suppose that F = Q and u-l<r(g) €N* leaving Cn,

invar iant ,  for  some u €r, \ ' * .  On the other hand (see the proof of  Proposi t ion 2.8 [13])

there  ex is ts  (n**  sueh tha t  /a fg )€cL( t  ee l .  I t  fo l lows t t ra t  lu - {a (g)eN(Q)  ano
/t\

g € Graphaut" { (C) .

As a eonsequenee, GraphautQ(C) = GraptrautR(C), and in what fol iows .we are

left with the determination of this subgroup of Craphaut (C"), to be denoted simplv

by Graphaut (C), working with F = lR. The groups Graphaut (C,-).are small and easy to
U '

handle,  [13] ,  and the er i ter ion of  Lemma 6.3 may'be impr :oved in  order  to  beeome

effeetive enough. Our next ainr is to produce evidenee to support this statement, by

expl ie i t ly  determin ing Graphaut  (C)  for  the ease when 6, . , t .  a  mnximal  proper  e losed
! i \

sub-root  system of  a  (normal ized)  i r redueib le root  s l rs te*  QC.

pRoPoSITIoN 6.4. l ,et Q 
=(€naQcCv) be a root system oair,  witrr  Q"

normalizer1 and irredueible 
'  

anO 
Q ,, maxirnai proper elosed. Then Graphaut

(C)  = Graphaut  (C6) ,  exeept ing the fo l lowing ef tses:  A3C.D4'  AZ*- l "CDr*  (m) 2) ,



- 2 0 -

AtCBi or A4 x A4CB2, A2CGZ, B4CF4 or A[ x C3c.F4. In the f i rst  ease, Graphaut

(C)  = 72,  in  rest  i t  is  t r iv ia l .

Some remarl<s are in order, before start ing the proof. The g"roup of root system

automorphisms of $^, Onnoted by gut(6^), aets ( in an order-preserving manner) on
l L r ' ,  

'  I t t
-1-

the lattiee of elosed sub-root systems of 
I 

" 

and, as it is easy to see, preserves

eyerything related_to N and Graphaut. We are going to use the elassifieation; this

tneans that,  af ter  f ix ing $",  *"  are real ly deal ing wi t f r  In 'modulo eut($") .  r f r is

great ly s impt i f ies th ings, s inee the l is ts for  p ^ 
= maximal.  (modulo Aut(Q6)) are

quite explicit and reasonably small [3] (see also [4], p.229). The. notations relaterj to

the elassification wil l follow those of [4]; one notable exeeption: we shall denote the

highest root by cco.

As a prel iminarv remark,  let  us see that the statement of  6.4 is elear,

exeept ing  the .eases  $"  
=  82 ,G2,F , ,  o ,  D2*  (m>2) .  we asser t  tha t  w i th  these

exeeptions, ive have Graphaut (C) = Graphaut (C"), for gny proper sub-root system
T T T

Q I<cQ 
".  

This is t r iv ia l  i f  9c 
= B.,C. (r  )  3) ,  E,  or  E'  s inee in these eases Graphaut

. ' ) T r ((C" )  = l l t ,  and  a lso  t r i v ia l  i f  I  K=F.  F ina l i y ,  i f  9C 
=  A*  ( r )2 ) ,  D26+4 ( *>  2) ,  o r

EU, one knows that Graphaut (C")  =8, (sa1 g is the nontr iv ia l  e lemeni)  and that
I-L 

?W C. But, sinee -tL is an element of f inite order of NCNO, we must have

-l[ = u d(g), for some u€I,V"r and eonsequently g €Graphaut(C).

On our way on i rnproving Lemma 6.3,  let  us not iee that,  g iven n€N":  n

naturally acts on the refleeting hvperplanes of F 
", 

and n € NK if and only if this

act ion leaves the hyperplanes of  Qn invar iant .  l ' icre fc,r lnal ly,  def inef i rQ"?Q"

by nso.n-4 -  r i i (oc),  wherefr(x)n,} ; ,  i f  c(e+:,  and thenYi(-x)= iX(x).  This aet ion
T

of  N"  on 
9 C is  re la ted to  the aet ion on V by

LEMP"lA S.5.  Given

t\) ,

n(o<) ='pn(cd) . ' i (x), for any p6

there  ex is ts  pn ,6G--?R*  sueh tha t

Proof. Bv

n €  N 6 r

I€9  c '

Lemma 2 .2  113J ,  t he re is  some /e ,n*  such that  (n  iu  an isomety.
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Since obviously ,(n =i, we may suppose that n is isometrie, whieh implies that

r^-  anv .ce 6, . ,  whenee the lemma.t n ( o c )  -  
" f f ( X ) r  

r u t  c u r L '  * .  
]  G r  

v v r r u r

With these prel iminar ies,  we ean formulate t l re improved version of  Lemma

6.3. With the aid of (i) below we shall be able to elarify the eases 0" 
= BZ,GZor Fn

T
and (i i)  wil l  be used to take eare of the ease Q G 

= Deven, thus f inishing the proof of

Proposit ion 6.4.

LEMMA 6.6.  Given g€Graphaut  (C6) ,  g€Graphaut  (C)  is  equiva ient  to  eaeh of

the fol lowing

(i) there exists u €WG sueh that

(i i) there exists u €WO sueh.

QdxS*r =itf nr
*rat Gig)(s,,) =t(s,,) andt-{G6 €Graphaut

(sK).

proof  o f  Lernma 6.6.  Statement  ( i )  is  just  a  reformulat ion of  Lemma 6.3, 'g iven

t l re  construct ion of f f .  For  the same reasons.  th is  is  a lso equiva lent  to  the ex is tence of

u€w" with the property thatt-4G)(SK)c$;. Set n= u-{cr(g).  I f  n€Nn and

n(Cn) = CK, then n per'mutes the walls of C6, and eonsequently f i  must leave S*

invar iant .  Using Lemma 2.2 t13 l  in  the same way as in  the proof  o f  Lemma 6.5,  lve

may also suppose that n is an isometrv. A simple applieation. of Lemma 6.5 shows

then that i tx) is  a  pos i t ive mul t ip le  of  n(x) ,  for  onv oc(+ f .  r , "n" .  the rest r ie t ion of

4 f +
f i  toQi p..ru.ues angles, which impl ies thatfr l r-_€Graphaut (S*).  The proof of ( i i )

l " r (
i s  eomplete.

The basie teehnicali t ies needed for handling' i i  are provicled bv

LEI\4MA 6.?. ( i) I f  g €Graphou1 (Ca), t fren G"gXoc) = g(ac), for any oc€SG.

( i i )  I f  f€Aut (Q") trren?oc) = + f(oc), for any ".eQc.
(ii i) If gE Dgraut (CO) then fifXo"l = 6.(9)(oc), for any o€Q", where Dgraut

(Ca)CCraphaut (CO) is the subgroup of the Dynlcin diagram automorphistns.



o o-  L Z  -

Proof of Lemma 6.?. ( i) immediately fol lows, by simply eornparing the

eonstruetion offr and the eonstruetion of o-(g) (t131, p.643). Statement ( i i)  fol lows

from Lemma 6.5.  I f  g€ Dgraut  (CG) then d(g)  Eeut( f " )  (131,  p .64b)  anc l

a(gXsc) = sc (rsl, p.644). since obviously G(sX{it ={; ano 6(gx$ll =Ff, t i i i t

also fol lows, using 6.5 again.

6.8. End of proof of Proposit ion 6.4. For the beginrring, fet 
$ 

" 

= 82,G2 or Fn.

We know that Graphaut (C6) = 7,, B.nd, denoting by g. the nontrivial graph-

automorphism, we also know that g turns the graph end for e4d. tr{/e assert that i f

g€Graphaut  (C)  then the number of  long and the number of  shor t  roots  of  $  n 
must

co ineide.  This  fo l tows,  v ia  Lemma 6.6 ( i )  and Lemma 6.? ( i i ) ,  f rom the faet  t f ra t  &)

sends long roots of {C to short roots, and eonversely. To see this faet, let us ehoose

a pair of .simpl.e roots of 6c (o( = short,  
P 

= long) sueh that (cz,Pr 
1o. 

Denoting by q

the fnaximum number of  bonds appear ing in the Dynl<in diagram of QC, i t  is  an easy

exereise to eompute ( fo l lou, ing the reeipe of  [13] ,  p.643) s lgxo()  = (4/  W-) '  
P 

and

6(fX p) = tiq'- oc. Given any w €IVo, writb cr(gXwv) = s(g)w o-(e)-[(g(B)oc) =

= (,r/V6) .6(g')rv r(s)-4( P ) 
= u o.(s)(*o) "'6d)t*0.) and cleduee that 6(gXwo.) is

long. Sinee all roots of the same length are eonjugate under I\ '" '  this proves our

elaim ( the eomputat ion showing6IgX*p )  = short  being simi lar) .

Now we separately cheek tf," uurious eases. As a word of caution, the reeipe

given in [4] ,  p.229, for  l is t ing (rnod W") the nraximal proper c losed sub-root systems

t I
QX of  a  g iven normal izec l  i r redueib le rank r  root  svstem $a,  equiOped wi th  a ehoiee

r
of  s imple roots  S" ,  prov ides a ehoice of  s imple roots ,  say Si1,  for  $  t1 ,  whieh

coinc ides wi th  the.  eanonica l  ehoiee (deno. ted b] ' :K and determined bV COCCn, in

' ter rns 
of  assoeiated l te lz i  chambers)  i f  rank Q K 

= |  -  4 '  but  wi l l  be d i f ferent

otherwise.  Never theless,  g iven n €N6r n€N i f  and onty  i f  i (S ' l ( )aQn,  where

6*a0r-  is  an arb i t rary  sub-root  system wi th an arb i t rary  choice of  s imple roots  S '* ;
! I \  I  L r

th is  is  immediate,  reeal i ing that  nsOn-4 = r f r (0") ,  for  any On[C,  and that  Wn is
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generated Uy sB, 
P 

a r '* .  ' . ' :

I f  9C 
= B,  then ( i41,  p"252) f  N = At  or  9N = Ao x  A4 = lons roots  o fQ".  tn

both eases, the numbers of short and long roots of 
{ X are different and it  fol lows

that Graphaut (C) = 
lnl

r I'  I f  9c = G, then (4, p.274 9* = A, ( in whieh ease Graphaut (C) =lal l  o.
l F ( . 1

9X = Aox A4, having as'simple roots S,.  =i$t(short),  do= 3oCn + 2*r Oong)J. tn

the seeond ease, the restrietion of 6G') to Sx is, given uv 66lto. t).=42,

Gkxocol = zdl+cr, (use o(gxacr) = (l/ rlT) . V z, 6(SXarz) = {T-o(o and Lemma

6.5) .  Denot ing by u€IV"  the d i rectJT/3 rotat ion,  an appl icat ion of  Lemma 6.? ( i i )

immediately leads to 6[)tSn) =t(Sn,), by simply inspeeting the picture of G, (see

t4 l ,  p .276) .  As prev ious ly  not ieed,  th is  impl ies that  u- {c(g)6N,  henee geGraphaut

(C)  and Graphaut  (C)  =.Graphaut  (C") ,  in  th is  ease.

I f  6^  = Fn then ( la) ,  p .272f  0*  
=Bn,Aux C3,  in  whieh cases the numbers of

J - u  +

short  and long roots are di f ferent,  and consequent iy Gnaphaut (C)={t} ,  or

T ' r )
9 N 

= A, x A2 and Sk = 
f 

-do,dt (Iong), d B, o4 (short)!. By e'onstruction,

6(sXocn) = t[T'ccn, s-(gXorr) = '[7. o(3, .6(g)bcr)  =  ( t /  \ -7) . {z  and

o(sXocn) = (,1/ rIT) - ({., which gives, as explained before, Gdlls;, namely

664 -oo )= -o (4  -Znz -3os -2x4 ,  6 i eXno l  =d4 ,  ' 5YgX  dg )=Nz  and

6(vXxnl=d4. Denot ing ov \ t t ,L* t r ,€n\  the eanonical  basis of  v,  eonsidbr

uewc def ined by u(  Lu)= tn,  u(  Ln)= t1,  r r {Lr)= - f  
3 ano , ( t r )  -  - { .2 ancl  cheek

(using Lemma 6.7 ( i i ) ) that 'Y{-"co) = -d2, 'il("zo) = *4,

Xturl =NL* 2;.r+.3x, + 2ocn and 1t@4) =*4. Since plainiyryu-ot6f--uXt;l-Q*, it

fo l lows that u-4S(g) eN, henee g€Graphaut (C) and Gi 'apiraut (C) = Graphaut (CO) in

f

I  c 
= D, (r  )  4)  and denote by g eGraphaut (c")  = Dgraut (co) the

S C  d e f i n e d  b y  g ( c ( , ) = d i ,  f o r  { 5 i S t - 2 ,  f ( x . - r ) =  \  a n d

S(oC.) = 
1r-a.  (ef .  [4] ,  p.256).  Since 5(g)eAut(F")  and d(gXc") = CG(131)we have'  

t \ r

6(SXoro) =6o. Using Lemma 6l? (i i i) and (i), we deduee ttrat Gf)(-oco)= -vo,

,/'-Y /-v' 6 ( f )b< , )  =6  
i ,  4  5 iS  t  -  2 , 'o (gx" 'c r  -  l )  

=o( .  and 's (gxo . r )  = { .  -  4 .  We have two

this case too.

Next,

permutat ion

let

O I



possibi l i t ies for

(C), .  as before)

are.conjugate by

g € Graphaut

. {  
. } .  

(whieh

I n, t lnt, p.256) :

or S!, = Sx = 
lda,

6(g) e Aut(bc)).
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/^\J

ei ther  S(SXS'*)  = S 'N (which impl ies

. . ,  d r -Z ,d r - l J  o r f  v4 , . . . , ( r - 2 ,

that  i f

L e m m a

an even

Suppose  then  tha t  0 r<=Ar -4 . ,  S r=Fa , . . . , d r_z ,  * r_A ] .  We e ta im
,

r= 2m (m|2) then gfGraphaut (C).  Supposing the contrary,  we know from

6.6 (i i) that there- exists u €WO =fnermutations on r letters followed by
- ) a ' \ / N

number of 
.ehanges 

of signt sueh that kaf)(sn) =i(sn) and -u-a66)€Graphaut

(S4) = ZZ. A straightforward eomputation, whieh uses Lemma 6.? (i i) for handiing'i i

(and whose details wil l be omitted), shows that this eontra.diets the assumption

r = 2 m .

S inee Graphaut  (CO)  =7 ,2 ,  O 
b  

"=  

D2r ,  m) .2 ,  the  preced ing  d iseuss ion

completely elarif ies this ease. tf 0 C 
= D4, then there are three rank 3 possibil i t ies

_  T  . (
fo r  

Q6,  a l l  be ' ing  eon jugate  under  Aut ( f6 )  to f  N  
=  A3,sx  = io l , {z ,dgJ ,  and one

more  ease,  namely  
9 r r=  

Ao x  Ao x  Ao x  A4,sK =8o,d .^ ,d , ,c rn ] .  ln  the  las t  ease

u,e l rave 
'oQlWrl  =oi ,  i  = 0 or 2,  for  any geGraphaut (co) =23 ( [4] ,  p.256-257),

'z-J

henee 
'c(gXS*) = SK, any g€Graphaut (Cc) and Graphaut (C) = Graphaut (Cc).

F i n a l l y ,  i f  
{ x =  

A 3 , t h e n  w e  a l r e a d y  k n o w  t h a t  g  = $ 4 ) f G r a p h a u t  ( C ) ,  b u t  g = ( 1  3 )

€Graphaut (C), sinee in this last ease we elearly have 6EltSnl = SK. These show

that Graphaut (C) =Zz, being generated by ( t  3) ,  f f  q=(A3CDn).  The proof of

Proposi t ion 6.4 is thus eompleted.

EXAMPLE 6.9.  I t  wouid be tempt ing to  eonjeeture that  Aut  I I * (G/K;

F)  = L ieaut  H*(G/ l ( ;  F) ,  for  any proper  pai r  o f  equal  rnnk 
,eompnet  

eonnected L ie

groups and any eharacterist ie zero coeff ieient f ield tF, as suggested b5r the eases

K  =  T ( [13 ] )  and  C / t (  =  U(n ) /U (nU)  x . . .  x  U (nO) ,  n4  * . . .  *  nk  =  n ,  ( [ ? ] ,  t 12 l ) .  I n  t he  f i r s t

ease ttre guess turns out to be true (for F = Q,lR, see Theorem 1.1. t l3l).  In the se.cond

ease it  r""o eonjectured (after cheeking a number of part ieular situations, e.g.

Grassmann manifolds. see It2] for more detai ls) that Aut g*(c/x; Q) is generated b1r
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q*  (grading automorpl r isms)  and automorphisms coming '  f rom NC( l {yK [?]  or

equiva lent ly  f rom NIry^(Wr()  [12] .  The exaet  rdquun""  (6 .2)  snows,  as ind ieateb in  the
" G  

r  -  - *
p roo f  o f  p ropos i t i on  6 .4  fo r  $G 

=  An- { , t ha t lF *  and  Nw" lwN)  genera te  N(F )  i n  t h i s

ease (for both F = Q and R), thus the above mentioned eonjeeture may be simply

restated as Aut = Lieaut.

- 
Unfgrtunatelv things are more eomplicated in general.tr{e shall  next present a

simple example, namely Uie)cSO(Z), where not al l  lF-cohomology automorphisms are

of Lie tvpe, tF = [R or Q (actually i t  may be shown that the same thing happens also

for F = Cr but we shaii  not toueh this here).

In our ouru S = (A,.,cBoCIR3) and the embeddings are standard (see [1], [4]).
L l J o

Moreover  N(F)  =F* -  N,^ ,  (Wr) ,  for  bothF =R and Q,  as fo l lows f rom (6.2) .  I t  is  a lso
t ' G

straight forward to see that N!V^(WK)/WK=ZZ and is generated by -4 (reeall that

|  " G
-^eWGand - td* 'n ) .We in fe r  t f ra t " l l (n ) / lVn  is  genera ted  by t r * ,  henee Aut=  L ieaut

is equivalent to the fact . that  eut H*($; lF) eonsists of  grading automorphisms alsne.
I '

The wel l -known relat ions between Pontr jagin and Chern elasses imply,  on the

other hand, that 
"-(f 

i IF) =tFfen,erJ/("f - 
"n"r,"! l 

as a graded algebra (where

I  e,  I  = i ) .  Consider then the graded algebra automorphism of tF[cO,cr]  def ined by
' t

h(en) = en and h(er) = -.8 n Zcf;. n is easy to eheck that it induces an automorphism
t L  ' I  J  o  ' L '

or u*( f . ; ' t r )  *hiol l  is  not  a grading automorphism.
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