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1. INTRODUCTION AND MTA EMENT OF RESULTS

Let M be a aeéﬁ finite von Neumann algebra and let J()
~be the norm closed two sided ideal generated by the finite
projections of M. Let NCH be a subalgebra of B, A derivae
tion of N into J(M) is a linear application SsN—>J (M)
satisfying 8(xyzxg(x§y#x§(y)g for x,y€N. For instance if
KeJg (M) then the derivation S(K)aiaéﬂ)éx}xxxmxx is of this
type. Such derivations implemented by elements in J{M) are
called jinner. There are many exanples of derivations of
xmsabalgebras NCH into the ideal J(M) which are not inner
 A typical such example is as follows:z take ’“2(1 (F M)
where [ is the L@b@ague measure on the thorus T, let
N=C(T} act on LQ(TQVE by left multiplication and define
8(X}$(%d qu)(xb whér@~PH2 is the projection oito the Hardy

o ' ‘
subspace H®(T,u). Then it is easy to see that &(xlekd| =
st /A

=T (R(H)) for zeC(T) and that § is not implemented by a com~
pact mperat@@
We will however show in this paper thet iZ N is self-

adjoint end weclosed in M then, except for certain situstioen:

i

all derivations of N inte J(M) ere inner. Moreover fopr the

most €typical except&ﬂ'eaﬁ@ we®ll construct a'c@unﬁer@33mp1@,
This u@?letiOH\p?ﬁb3ém wgs linitiated in the Case

EJ‘%@(}(} and J (2*:2)’-‘337({}{} Ly Johnson and Parrott in a paper of the

early T0's ({?}}g In that paper Johnson and Parrectt wanted



to characterise the commytant modulo the ideal of com-

pact operators K(}{} c G{J]) for a von Neumann algebra NcR(().
They noted that in order to identify it with the compact
p@rturbaiianﬁ of the commtent of N im R(}) it suffices te
show that any derivation 5zﬁ¢wﬁkﬁﬁé is inner. They proved
that this is indeed the case if N has no certain type Iiﬁ
factors as direct summands. To é@ this they first é@iveﬁ‘
the case when N is sbelian the other cases being rather
easy consequences of it., The general ty§@ II§ case was pro-
ved recently in [ 7] by different techniques and using more

of the ergodic theory of the type IE, factors.

In [%] it isstudied this aerivatien problem in %hé
mére general setting when @ﬁ%} is replaced by = semifinite
von Neumsnn &lg@b?gg %ﬁﬂ? by the ideal J{ﬁ}.aﬁ@ ﬁh@-c@nter
of N is assu@ed to contain the center of M. Under thisg hy-
pothesis it is proved that if ﬂjiﬁ either an abelien or a
properly infinite won Kemmana‘algebra then any derivation
of N into J{i) is iﬁmarg H

To étate in pmeciae terns aar{resulta.let us first
recall that any von Neumann algébra N can be decomposed into
a direct sum Ngﬁﬁ@ﬁngith N@ a finite type I von Neumenn ale
gebra and ﬂi a von Neumann algebra that has ne finite type I
summands. We willthan say that N,s as a subalgebra in N, is
locally compatible with the center of M, F(M), if there exist

a partition of the unity @%ﬁgey in the center of N_, (N},

80 that for each i we have either ,}E«’{Na}pig %{Eﬁ;ﬁp’% or

- M P Z ’Z'f jo ;
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Then our fir £59 ﬁh@@r@m,gtstﬁaw

1¢1¢ Theorem, Let m.be a semifinite von Neumann
algebra and J(M) its compact idesl space. Let NCH be g
wealkly closed *.gubalgebra of M and suppose the finite
type I summand of N is locally c@m@atibz@ with the centep
of Mﬁ{in the sense desecribed above),. Eh@n any derivation of

N into J(M) is imner In particular the commitant module

J(H) of ¥ in j.@qualﬁ E@[} o+ J(L;a
| Ihuss thogrem JL scdves in the affirmative the

derivation problem if N s of type iil or properly infiﬁim
te. It also gives an affirmative answer to the remaining
case when N is finite of type I (e.g. when N ig the tensor
product of a matrix algebra with an abelian algebra) under
an additional assumption of locsl compatibility between the
ceniers of ¥ and M. The typleal situation when this condi-
tion is not fu&fiil@@ ie when K is abelien and diffuse
(i.e, without atoms), (M)} is also diffuse and ﬁ'an&é}f%}
are independent van~ﬁeu$&ﬁn algebras, namely N end Z0) gae=
nerate the von Neumann algebra B @Z(M) with N, (M) sittin
inside it as N®@ 41 and 1 ® Z(). |

The second theorem that we will prove in this paper
deals with the most simple such case, left open bé thecren
1.1, namely when M=(%( [0, s R @){' i (T, ) and W=1 @ L™ (7,
In this case we will construct a counterexample, showing the
existence of a derivation of N into J(M) not implemented by

an eleent in J(M). This is somehow unexpected and is P Ges
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bably the first nonvanishing ’iweﬁhamalagieai m&:ﬁuiﬁ in
von Neumann algebras. It practically shows that the ons
parameter version of Johnson and Parrott original result
may i‘ail to be true, In order to have an alternative, more
intuitive interpretation of the next theerem, the reader
should notice that we mey identify M=1°Y [0,1] st @&’E’l (Tyftd )
with 1°¢[0,1] , B 2 (mu)), san with 120, 1] K2 (T,u3))
and N= 1 ® &méﬁg{m} with the set of constant }({LQW’@/\AH va-

Iued functions on the interval [G#'};] o

1.2 Theorem, let zw&w{ [@911 ?W @5@2%@25
N=t ® I@m{'ﬁ’g‘/&tic B. There exists an operator T el which com-
mites modulo J é;’;i} with all the elements in N but which is
noet a eempacﬁ: (1.e. J()} perturbation of an element.com=

muting with M. In particular, there existe a Gerivation

S (= ad T} from M into J(M} whish ie not inner, i.e. not

implemented by an element in J(M).

The paper is organised are follews: in sectionsg
2=T we prove theorem 1,1 and in section 8 we prove theorem
le2. We will mow present scme of the ideas behind the proof
of tﬂe@?@ﬁ 1.1,

A key idea of our proof is to work with & new norm
on the algebra M, denoted . Il , which in our problem turns
out to be the right correspondent of the uniform norm on
QHKE@ This norm has two main features: it helps dealing

with the center of M, when diffuse, and with the continuocus

dimension of projections, when M is of tiype II . The defi-



nition and main properties.of the norm [l || are discussed

in Sec.%.

We then prove theorem 1.1 in the case N is stomic
and abelian. In the proof we define the operator implemens—
ing S ag S it oo : : it
ting o as (e;leq , where e; are the atoms of N and the

ongly convergent, and we use an adaption of

]t@ show that 4456@ ;@ EJ(M).

£
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o
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By the astomic ab@li&n case and by the same argument
as in 4.1 [7 ](1ar B @%ﬁ)) we prove a continuity result na-
mely that if K’iﬁzglnzﬁ@,amﬁ countably decomposable then S

~is contimaocus from the unit ball of W with the strong ope-
retor topology into J(M) with the norm ll || . Using this

o

T esult we prove that in o gt situationsif an element T is
in I i'gﬁﬁ {5(&2 |2 unitary element in ﬁ}CZﬁ”anﬁ implezents

8 on N then iz,ia in J(M). Prom this we easily get the
prcgf'efAthe theorem for finite type I (under the leocal cen~

patibility condition and properly infinite alpgebras and

also reduce the remzining type IIE case to the situation

when N is separable and M is eountably decomposable. Horeo=

ver, by using the Ryll-Nardzewski fixzed point theorem in the

game way it ie used to prove the Kadison-Sakai theorem on

derivations of von Neumann algebras we make the reduction

to the case when R@f\a~¢@nm&im3 no finite projections of M,
Finally we prove the type 331"& case under the above
assumptions: To construct a candidate for the operator Ked (i)

implementing § on N we show that N has a maximal abelian

0 eren

b«
“sub&lgebr& ACH &u&h that A' M econtains no finite projee



tions of m@_ﬁhg proof of this fact is inspired from [le
Sih@e A is sbelien by the type I case there exists KeJ ()
implementing S ot & and the rest of the proof shows that
in fact this K implemanta 8 on all N, To this end we proe
cead by contradiction following the-liﬁ@s of the procf in
[?]w The assumpﬁi@n,éﬁwgma& KA0 shows that g@(v)#@:f@m & Qe
me unitary element veN. Then with the help of 4 and v and
ﬁainé & om t@uhﬁl@&l devices gymilar to 2.1 in [?] e
construct a sequenee of abelian subalgebras A in ¥ on
which g bshaves as bad as possible. More precisely ws
construct the algebras A, together with some finite projeec-
tions @55@]30 that if we consider M as acting on L~ (1,F)
then the compressions of é%’Am.%o the spaces gﬁgnClLf%ggf)
are 3patia11§ ieomorphic to a sequence of derivations
Snsﬂf(ﬁyy}F~ﬁB£Lgfﬂ;y)}e We do this in such & way that the
derivations Sﬁ(behéva é@fé énd more like ad P&g and NOT&OVer

: . i
so that by the continuity result the limit ad sz follows
so=-normi¢ continuous. This is easily seen to be a contradiee
tion. We mention that the consStruction of the finit@lp?@m

Jections ®n» Which doesn’t appear 1m.(7]%gi@ easential here

and carry most of the t@@hniaal difficulties of passing from

the case L&ﬁyg@ to the gensral case. In fact the resder
will not that, although the proof of theorem 1.1 ie inspie
red in @erﬁain places from [3] and [?} , our &ppra&ah is
rather new even when particularised to the caﬂﬁ_M%ﬁﬁﬂﬁa

It is our feeling that the new techniques we intre~
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duced here to deal with the case M is eof typs II_, may
8lso be used to prove V¢ sienlesew or Andersen wtabﬁiitw
type thegrems obtained when r@pidelmgfggﬁ) hy a type II
factor M and ﬁﬁy\ by J( Yo

& first version of this paper has been cireulated
as INCREST preprint Ho.75/198% and has been submitted teo
thié Journal in that ferm. Unfortunately, as ﬁh@’ref@r@@
pointed éuﬁ to us, the paper contained an error in one of
Ath@ preliminary considerations, a fact that actually made
that proof of theorem 4.1 correct only in the case the ge~
mifinite algebra M had atomie cemter. We deeply @hank the
refferae for pointing this out to us. However, in order
to make the proof of 1.1 werk in the generality presented
in this paper we  only had to modify the defimtion of the
norm (| |l and to adopt smecoprdingly some of the statements
and proofs in the prelimirnary section 9, a matter that only
affected their form, not their spirit. In turn, the fact
that in certain situations the p?@bi@m_h&s & negative ang=
wer seems to us of even more interest, and clearly deserves
further inveatigations. Baspecially, ouw theorem 1.2 shows
that one parameter versions Gf classical derivation problems
(or higher @@hsmalégieﬁi problemg) may have negative

ENSWeTIrS e
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2. OOME PRELIMINARIES

2ele Lot M be a senifinite von Neumann algebra,.

Aasume M has countable decomposable (or countable typel

center ;ZQW} nd let Y be & normal faithful state on
Z(u), rixed from now om. We will associste te Y a normal
ite faithful trace ' om M in the following ways

direct sum as M= Oi‘ (8 "j‘ﬁffﬁ}/i })

sepifin

Let B @@@‘Cﬁﬁ'ﬁpﬁ“@@ into &

where M; are finite von Neumanm algebras and c‘iira;f{' ,:,f:

%@imﬂ . Tor i#j. Let X :fm:i} be the center of M. Then

Z(1) is naturally isomorphic te @ .’2 - On each M, there is
& un:iqu@ normal finite f‘aithfu‘l trace P ; which equels ¥
_%%h@n restricted to Tii {here Z i ie regarded as a subslgebrs
af @? z("’} in the obvious wayl. ’Ehu-sg there exists & umie

que normngl semifinite :ﬁ“&i*ﬁ:hﬂzl trace Yon M which squale

¥; @ Tr on My @1@{;&{’}» » Where Tr is the usual trace on @ui}”»{» Yo

Ve denote 1 w{yé (x )<,w}sm& for xel, |,

¥ f}“"": i n :
=¥(x"x) "<, Let j/{k',; be the Hilbert space completion of My in

= 2 i 2 3 =5 z & &
the norm | ”"F o M will allwey= be regarded in ite standard

r@pmﬁ@mtatmm acting on ‘f/ﬁY by left multipli ""’&ﬁim‘i«, The

usual uniform norm of an operator in M will be denoted [ =

Note that if eeM is a finite prijection then we &c
not necessarily have ecl, (actually this implication holds

true only in the cese the properly infinmite part of M has

atomic center). However we clearly have,

2101 If ecl g a finite projection then there

is an incressing sequence of central projectiong ﬁnéziﬁfi}g 8o
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that p 11 and ep Cm?:ﬁap all me

2.20. We denote by h {ge&Y, L=<, Pl xpie Vip)
for &11.pezim}}w Although we will not use in this paper
any reduction theory argument it may be h@ipful for the
reader*s intultion to note that if M is regarded as a mea=

surable field of (semifinite) von Heumsnn factors then
' 14
roughly speaking a projection is in ﬁV}W if in esch point

it has dimension < i

The next properties of‘ﬁ%Zy will be frequently wvsed:
bl ;

Z

= A
P~ By

«

2&2 ﬁ:’iﬁ If T’Eﬁgg Sm! '1 tﬁ@n TL,
St '
Boy >Ny

2.2.,2. IT e ,e are projections in M with @é<@

4 o
and ecl Py then %-eﬁi, @
@ @ " 1Y
. - we . ¥ ] : s‘é
2e2.%0 1IF xeH then e HE‘_P y and |x|eH -
: 9\V 8 F\V
2e2e4e If £ ic a nonzero projection in M then the
2
re exiets a projection e #0 in ¥ with e <f. If in addi-
G | Ps¥ g

tion e is properly infinite with central support p then e,

may be chosen so that to have central support p and so thst

Pled=¥p) .

Properties 2.2.1 = 2,2.3 are triviael conseqguenceg
I

f the definiticns. To prove 2.,2.4 it is sufficient to con-



o g
Wi }‘?\?3 @

gider the case N=1d ()@ ({{} where K, fa finite with center
%Qm@)ﬁﬁmz% Y is a normal faithful state on ¥ and

¥ =T@ Tr where C is the unique trace on 2%&0 Which equalse

Y when restricted to E(Mo)ﬁf,wt thenveé be a minimal pro-
jection of B (3 ana e = 1® e)o By the cémparision theorem
there exists a central ‘projection peX such that e,r Lfp
and e_(2-p) >£(1=-pl. ‘ | | |
Thus in particular if £ is properly infinite then £(1-p)=0
so that Ofe p<{fp=f and im fact p equals the central support
of T (ibecéusé e  has central support one). Thus we allways

: hajre a nonzero projection e under f'in ?'m, and if in adﬁi-
tion f is properly infinite then e méy be chosen to have

the trace equal to the trace of e Py i.e0 ‘PCe)=“f(eép)=‘V(p).

2.3 Definition. For TeM we put (| T =
- ﬁﬁp’{ﬁi!“;f { xﬁlﬁ?f’\y}. This is clearly é norm on M, It will
?3.3:7_ an impoftant role in the sequel..' Note that [[T || é({’.'?ﬂ '
and that the equality holds if M=$(}|) but fails if M is

nonatomic.

b : :
The next few properties are easy consSequences of

the definitions and of the properties at M"!'f, T
#

23,0, 1T TysT,,Tel then [l T,T2,(< u!?lﬂ UEf iz

ana [ 2] =leXU =4 (2| { .

232, If TeM and {pn , &re disjoint central

=y 2o 2
projections in M then (Hfﬁ%pn (Il ?Fi m%ﬁﬁ e &



o1l -
2.3.3¢ I T,T &M, [T <1 and W2li=lze | “then

lopll = {l] TP m for any central projection peX(M),

2.%.40 If fell is a properly infinite projec-

tion with central pupport peXn) then fl £ =Y(p)'/Z.

2e4e Ve denote by J(H) the norm closed two sided
ideal of M generated by the finite projections of M@ Thuse
an element Tel is in J(M) if and only if all the spectral
projections E[‘%m)i\‘m Yoo T . corre.%pondiz'lg to inter-
vals (t,°) with €>0, aj‘ré finite projections. Alternatively

J (i) tﬁay be characterised as follows,

2e4ele KeT(M) if and only if given any £>0 there

is a K eMy and a projection p €Z(H) such that Y(p,)yi-¢

and ([ Kp,~K (<& o

Indeed, assume KeJ (M) and let QSE[g;ooI:( lE{l) « Then
e 1sa a finite projection of M, so that by 2.1,1 there exists
a projection p €(M) so that Y(p )>1=& and Y(ep ko, Lot
. e : E 1 BAD : v -
K, =Kep . Then Y(K K )<|KI“Hep,)<oo and clearly |[Kp,-K,[l<¢.
The other implication is trivial and, in fact will

not be needed in the sequel,

2.5. Let KeJ(M) and {@n}n a sequence of mutually
orthogonal projections im M. If M=R(f{) then it follows

that ({Kﬁ‘%nllwﬁ and ({@wK [—> 0. This is no lenger true for



- 10 -
general M, but still we have m K@mmw (3 and m@mﬁif lf{k—*ﬁ’é}@
.};nﬁ@eﬂ to prove thi.m since K im a linear c@m‘bimﬁ;im of
four positive elements in a?i*(ixﬁ)' » We may assume K is positive

and Kei. Iet £>0 and pez(M), E{.@éJ(mh auch that Wi&té)/\o@%

kly

| Kp=K [(\ /%y Y(py22l=t/7 a3 in 2.4.1. Since ey ‘{z@nﬁ woakl;

>

to zero we have (KQ%(LI;% U@nK@U? m‘fé@nﬁ,g) >0, But if

xeiﬁi\; y then we have
: e

(ke Xuxgéﬂ}’ @ \f“é {l{b.w? Ye % u\f

+laer e, tp)x [ <l ge, g o=kl +¥(A-p< K ey lp+

go that if n is big enough then | Ke x 11%,<' € independently

on x’el‘&i}f, e Thus (|Ke_ ]}!;*—?O and similary le K+ 0.
2.6+ If Tel, we denote by (T || ___ = ig}f{ﬂ(?«»}{ |

|ker(m) }o Note that if T¢ o) then [[T(l,,.> 0. Indeed, since
T¢I (M) there exists $>0 such that E[t,,oo)“ﬁ) is an infi-
nite projection. Thus there exists a sequence of mutually
orthogonal mutually equivalent infinite projections {fn}n
with CAf ¢ By 20} (IT{)s For each n we toke e <f , @n&}fa;f"fw

n Mutually equivalent, Thus if KeJ(M) we get by 2.5 | w1z il >

??ﬁimnmp{l (?mlimnﬂ&?*limﬁaup H'}}@.n }]?2‘&][@4{]\“ which shows that

“[Tm@afﬁm]@ﬁ, lp70

In fact in certaln simple situations this norm can

be computede.
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2.6.1., If £ is a properly infinite projection

of central support p then Wf'wﬁﬂﬂmﬁkﬁ}i/gzwfmo More gens—
n |
rally if TeM, T20 ia of the from 1% Eﬁ ¢;f; for some ¢g>0

end properiy infinite mutually orthegonal projections ffof

=(max {e; ) Y(pM2,

sgme central support p then WTH@GQ

Indeed we have ¢, f, < T< (may {ﬁik}zJ? for all Ik,

K k"

which shows that the first part implies the second. Now
the first pert follows by taking a sequence of mtua iy
orthogonal, mutually equivalent projections € E%ZW under
f so that each e, has cenéral support p and so that
(e )=Y(p). Then for any KeJ (i) we got [[£-K|l>1in_sup|(s-
@K)@mﬂ?mﬁKp)llzs

| Let - alse note that we have for the norm I l“ea@

similar propertiea as the properties 2.%.%3; 2.3.2 of the

norm | I .

2,602, If T,T eit, |7, (<1 and | Bl .= 7T, ‘“@m

then Wﬁplﬂaga 2ul§TQplﬂess for any central projection peF(l).

26030 If {p o Aare disjoint central projections
o ; ) 2- o o :
in M then [|2 5 p || SThrp WS

.- @33 T Ee aga

2.7, The norms lﬁ w( and || f”es g Will play in this paper the gimilar ro

le as does the uniform and usual essential norms ‘in the proof of the ‘Cas';_e M=
=Rfh iﬁ[?g]&n@[’7] » These normg have for our general problem all

the advantages but one:for two operators of disjoint right
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and left suﬁpﬁrts the norm of their sum dees not equal
the ﬁaximum of their nawmé (as does the uniform and usual
essential norms fop %mﬁKHQ}QIW@vWill instead use the follo-
wing weaker property of the norm I m@asm
lemmae, If QEEﬁ’and flg fg are mitually eorthogonal
projection in M then there are central projections Py 90 €

¢ Z(1) such that p,+p,=1 and mﬁi3 2L 05l goe™ N (2287

wz'rfz)pill e .k.ml,w

Proofe. Let's fi?s; gshow that if T 1§T2€M‘then there
exists a central_prajectianpezxm) sueh that Uqﬁimesg 7
?W”Taﬁmesg for any projection qéi?(m); g<p and
mC{fqu( 2 Ul '}3"2,«:1.11( e for any projection qez(m g G¢l=pe
Indeed, by 2.6.3 it follows that theré‘existﬁ a maxinal

projection p in X (M) so that for any qzp, qe M) we

havelﬂrzgﬂl@$é7MTZqﬁl@$3@ Now if for some q@siwp we have
u® 4, (l ﬁg«7w QU(@ga then there exists some ﬁtéﬁé 80
that fﬁ? any q<p we heve[ﬂ@iq m@aa |z gqiu i oth@rw1g@
by 2.6.3 and a maximality argument we get a contradiction.
Now we have that if Tp=f ?Wfig To=TaTly and p is the
central projection corresponding to Tﬂﬂi as &bove then '
Pa=p, pgmimp will éatwufy the conditicns. To do this note
first that since | £ B D gl%{f‘ I8, ¥ (£, TE,1 4 by 2.3.4,
it follows that it is gufficlent to prove this assertion
in the case T ,T 720 .

g 250
Iet £>0. Let ﬁ L€ M, be elements with finite spec=

§ ba



e

w 15 =

[Zsety ke sz,

“trum 80 that Xizﬁgsmwhz%:ikwwfpﬂzafm§ P
: &

Since mTqu[@QQ Hlfgﬁﬂfﬁgﬁ for all g¢p, we alsc have

mxﬂq, @@ﬁ7MAﬁ; . for all adp. Moreover, by substracting

if necessary a compact operator from each Kﬁ we may assume

&

K§x§§¢§£§,Wh9r@ @§>® end £y sare properly infinite projece
$ 1 , ;
tions for all i,j. Assume in additiom that all fg have the

same é¢entral support. Then by 2.6.1 we have MCXi%XZ}pW@ﬁ&m

mmxip¢ﬁ@3$ and since mfaﬁfipmeaﬁ*if’,- Kipﬂgsg k£i+K@}g&@m

m<fiT? n¢@*f5}pdl ags=/2, tending with & to zero we get

the result (the reverse inequality is trivial) in the case

* Gule

all f have the ssme central support. Now £he general case

reduces imediately to this one by 2.6.%.
QPEG}D@

28, Since the norm | || is & supremum of vecton
normg it is inferior semicontinuous with respect to the
weak operstor topology. Indeed if ﬁi tends in the weak opee

rator topology to T thenm |Ti[<1 im Mup E( gso that

\? \’]SA 1im 4,“‘ sup(sup | {{ (mm-‘%w?{w

Mol = sup f

u‘zgmiauplﬂfiﬂﬁ

7«90 W2 now prove a version of Johnson and Parrott

triek in [ﬁ]w

Lemma. Let NCM be a von Neumenn algebra and el

such that (ad T)(WMCI(M) and T¢I(M}, Suppose the set



“w»mﬁw j@ﬁﬂﬁdiﬂﬂ 1o nanim&l prajoce

tionse. Then thers exists a ¢>0 and a sequence of mutually
A s & 2 ]

orthogonal p@ogacﬁianm-{@n}ﬁ in N such ﬁhatlﬂ&nﬁaﬂﬁ(>@3

for all n.

Proofe Let ‘% be a maximal chain in ﬂaan@ let £ =

e e , o : .
=210 Te Smneagﬁ)has no minimal projections, fé%@% Thus

'es-f.(mzsé laerliene

ess ¢ m @as

decreases 1o zero and since

Ul g-z o= )+l 2 W g6 7

@¢ss
M(fki )@(@mf }+f e | -

'ess
% ={| |

(4515

= [|zze) -

tadh

it follows that [le*2ef| _ 7 2c for any £'¢’.

‘ We can now qcnstrugt recuraively the requirsd se-
quence {f'kntﬁ o Assume flgsawyf;‘ara n projécii@na ing?®
with H(fka° §Wf&k {m1)47:a nyk7i. Since " iz a chain
decreasing to zero, by the inferior semicontinmity of the

norm | I 4t follews that there exists a projection

9 3 &0 s I o~
n% Le? Wi %}1 &.né :f’n ull(ﬁ'h thu't

M(f§ w

o ngeseee Ol (ereet || /2.

n*i”

Thus \ufgﬁféubeﬁﬁfgﬁlmﬂ 7lce And consequently

‘&:»‘:,u

3}m2 ¢ go.that £ =F* m¢? will do.

m#

QcEaA &

35 > 0s Then the chatnﬁ%%m{?mf CT}



- 1T -

@ o &

2610+ Let now M be an arbitrary semifinite von
Neumann algebra and Ncll a w&mkly closed ﬁwﬁubalgabp@ of

ite Let © :N=J (M) be a G@Wivatxana By L?](SAS norm ¢on-
tinvous and by [27 it is weakly continuous. It p be the

unit of N and Ke=d(p) @mﬁg(p)éJ( )@ Then &pwpKWS(p}ﬁMQ@SQQ}W*

*Pg(ﬂ) (g(@ﬁ”ug(p)EMQKS(Fz)pm &) j}pgléﬁﬁﬂp)ﬁg€@) so that
({~ad K) (p)=0 and ({-ad ?)(ﬁ) =(J=ad K) (pxp)=p(d=ad K)(x)p
which shows that § —ad ¥ takes values in pMp.

This shows that in order to¢ prove the theorem 71,7
we mnay assﬁme the weskly closed # = subalgebra NCM has
the seame unit as M; ie€o ﬁ>is é von ﬁeumann ﬁubalgébra of M,
fharefore in all the rest of the paper the subalgebra N will

be considered to have the same unit as Me .

2.11. Let {p } jer be @ family of mutually orthogensl
projections in the center of I Withf{}@im 1. Assume that
: | i
~ for each i there exists K.eJ (M) p;=0(M,) suech that S(x)py=ad Ky (x)
A ,

B o xell. Then K= 2K is in J(1) and d=ad K on Ne
jeT

Since in a semifinite von Neumsnn algebra there exist
mutually orthogonal central projections Py Wiﬁh;gpimi cuch
that each X(M)ps; is countable decomposable (or equivalently

has a normal faithfull state) it follows by the above ohser-

vation that to prove thecrem 1.1 for general M it is suffi-

cient to prove it for each Mmi? i.es under the assumpiion

that M is of countable type. Thus we may and will assume from

now: oz in the rest of the paper that M hae countable decom=

posable centexr Z(1), that Y is a normal faithful state one
TR 1 ¢
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o

Z() and that Y is the unique normal faithful trace or M

sssociated toYas in 2.1

2412 o Lot NQC N be a finite dimensional von
Neumann subalgebra of N, b o the unitary compact group of
N, and )\ the normalized Haer measure on U .

6°
G,k " T :
Then K= gd(m)w Al(u)ed (i) satisfies for any xx;%{g
: ‘

Ku k= (Suihon= (u,f@nada)=
= gg(u}} (u?u}\ﬁzﬁlﬁulrw {%S( yura Mu)=
= gg{m@u}uﬁa)\(u)m g S uFaiuy=
35(3%} Eﬁk(u%{m@c(m Cﬂ(u}wg S(um {i’l(u}ﬁgéu ) 2
Thus (gwaéK) (:;0330 for amr\x@e-bl@g In particular
this shows that if W is a finite direct Sumg then to prove

1,1 for Hci it is sufficient to prove it for each summand.

%, THE ATOMIC ABELIAN CASE
tn this section we prove theorem 1.1 in the cese
N is isomorphic to the algebra 1°(L} for a set I of arbi-
trary cardinality.
To do this let {@3} scT D€ the minimal projections of
14eX :
O oS n» &
N=1"(I) and note first that the series o 5(@,}% g eOn-
ieT %
vergent in the strong Op@ratm‘ topology. Indeed, the sequen

ce is bounded because if @, .6, yeces@® € e, t, hen
< 1199 2&6"’90‘56 n { 1.}161 the



¥, 3 :
@) > Stey e =37 [z Zd(e e, dMz)=
k=1 kL gy v

goth ¢ E’j’ | nt
2\3(S e )2 By )c’ﬂ(ﬁ)
Y fem >R L

where P is the normalized Hasr measure on the thorus ”E{m

\" o T'ﬂ
and g= (Zig‘jg?” ek S‘Em} 3}2"’19 a6 that
4 0

aXzyzl s (.

n ; n n _
| 2 Sterde,l < giléé 2 2o (Z Freg)

Now if M is normally represented on some Hilbert

spaceﬁ Eeﬁ&nd £>0 then there @ylgtg 2 finite set I C_I

such that ﬂg (E e, )§“<8 and thus for any finite set
Lg :
JQC I with Jaﬂ Iamiﬁ ~we have

el g(e EL R g(m)e” Z .éizgtlx elal

ie J : ‘}ed’

which shows that 2, @(e:: )@gig is eanvergen’t for any %eﬁ
iel ,

Let T= 2 S(ez }@e o« Since g is a derivation ang
el .

(Z_Jq(@f Ye }a» "’g(@. e; we have

e *o Yo
c
Te, -, T=cle, e, WQZ' @, g{@i?@o =
i€T i
1o La iy 1,5 Lo
_ e
'ﬁg(@i )émi »‘Qgc@i e‘i)aﬁm&g{% -
Oir 03l < Ca o o i€l :
”8(‘&‘ e Q(@, @ & (Q@ z‘*g(ee )
i 784 =ol8y Jey wdles )=l e
G o o 26 >
S .
gn N and the

Since both o) and ad T are weakly continuous
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linear span of {@%}iéxiaiw&akly,&emﬁ@ in ﬁmﬁwfﬁ} it fol=
Towe thet Se=ad T'on § :

We show that T is in J(M). Suppose T¢J€M}@ Denote

by

D . ‘.F:& ()”" L, i [ [
| %wjxﬂ)(l\{fxfmws [zl Gm}@
Then {Pemmi,ns no minimal prpjections. Indeed, because if

ec® is a minimal prejection of @ and e <€ is & minimal
projection of N then e ole =0 (by the definition eof T) so
that e-e G@a,@@mraﬁiction‘p Thus by 2.9 there exist ¢>0
andaegequence of mutually orthagmal projections {f’ lmiN

in N such that

mf' bes Il e, for a1l n.

Moreover, by the inferioer semicontinuity of the

norn | Il we may assume each projection f, is the sum of &
finite set Jmc J of minimal pz\o,jectt;i@ﬁg in N. But by *) we

have

Tfm?;},g @,le amgg(z 1€ (22 B.e, BaF\(Z}g
o Q‘Z’i o > =€@:§° JC} g J

g0 that

S | £, 00 2. zj@;) 7 Ze@ )P lI aXlz) zle.re (| e r o,
gw 145 5% | AR e ol

which implies that for some zx '-*«‘Z B, o .
S B8
i 9 1
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g B
Lozl & ."EL [

s

l,i" g(u RES fm(ﬂ 3G

Let now u= 2, @ o Then, for each n,

nely
L S(L, 3 f‘* e 5(? m: fomf S(f’ i = gﬁﬁmm i
SO‘UMZJE

g, Sayas W=z, Sdu g live o

Since §€m)t§_‘t is in J(M), by 2.5 this is a contradic-

ti@t‘l@

Thus Zf: S(cz Ye; ie in J(M),, and the case N=1"(L) is
A
clved.

4, THE CONTINUITY RESULT

For the next result we assume NcM is a finite von

Neumann algebra with a normsl f‘mthful finite trace &,

t(d)=1. We denote by (l?ﬁ{f{ MC( )1/93 weN,

4.1, PROPOSITIQN"; Let gﬁf@'ﬁ&"(ﬁ) be a derivation.

Then & is continuows from the unit ball of N with the stron

operator topology inte J (m} th the norm Nl I

PROOF. We first prove that if -{'ﬁ:‘m}z gy 18 @ saquence
; Tic L%

projections in N with B(f )—>0 then (P irf"n}“l ~>0, Suppo~
se (ﬂgifﬁ) I doee not converge to 0. By teking a subsequen=

¢e if necessary, we mey assume thet m& (fn)lUZe for scme
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670 and all n and thathefﬁ Koo Let 44 be th BUPrenain

n
of {f oThen Clg i« f}:} z(f, ) tends to zero with n, De=-
X krn s By
it nw d

s s v 0y 5 o oy s Ry o o & 7 : n’( iy :
note by amgm the support of m~m?m“ Then 5%@‘15 and Spym

is majorized bj g, and thuas G being a trace, g(s pw>g 'gmﬁ

v bk P HERSY

k)

. g 5 o %
5> 0 Tor each me Since {Ey nely ia decreasing ,

. a  of® gl o g @5 £ - had ax = .«‘:'Q‘ BETAE frg-? g
{ﬁnsmwmkndy.im dacreaeing s0 that {”nm;ﬂaﬂ ia decressing

il - M lyerm )& E = ot
for each m. Thus { i nr}n@d inereages to f wm 89 that
 §(f = 5} .~ 18 weakly convergent to gﬁf ). By the infe=
(@] W ;..:m._,ﬂ ) E&Q‘fz 8 wWea A 2XET 2 i @ VA 3 1
rior semicontinuity of the morm I Ul (ef, 2.8) it follows
that for a fixed m if n is big enough mgﬁfmfanm)m:>@/@
We may thus get by induction an increasing sequence

such that the pfOJ*G@lOnS h?mp o

of integers I, Nsjeee 5
; &

datnsfylﬂg(h% |7e/2. These projections also satie-

RS
fy G(H},}q(f‘ ) 0.
Mbreover since h ¢ £ and s is the support
’ B e M1+ P
of £ f -, by the definition ef'hk,we gat

B Pty P

B e ¥ o =fy
*x%k ‘%11;}’ h‘ﬂfmpé’nh +Zi,fnk 5 hz'»’;;."}z% v;nkhk O

Thus h, & =0, in particular h £ . for 1xk+l end so
k ﬁw%ﬁ k nl

hkhlﬁ@ which meang that by are all mitually orthogonal pro=
jections. Since we also hav@(”gihkﬁb@/?'W@ obtain a contrge

diction, by the &tamﬁc abelian case (§%) and 2.5,

Now we turn %o the general case.Since I l, induces

the stranp operator topology on the unit ball of M, we have

to show that if‘(xﬂ}n is a bounded sequence inm M with ([x ['5



mg“fpm

e e e <
th@nﬂlcéxmﬁ¥%~%>00 Tt is clear that we only need to prove

thig implication in the case x are selfadjoint elements

éﬂg“";iimu 29 it follox »}...?f

0

and (% [ 41 . Moreover, since hi

) £ ﬁ@ G and H{ﬁm}wﬁgb~@>ﬁg S0

that if [= |, X, 4 s

that it is sufficient to prove that if *, are positive

1&;’@ ntbe and IL@ ” ﬁ!“*-?@ (equival @m,,’}y z;ef}" >0} then

IS ) I\ —>0.

I

Let xﬂmjzlﬁmm@g be the disdic decomposition of Ep e

It follows that 6(@§}P~ﬁ? 0 for each myl. Let ¢'>0 and
' i
mﬁf}ivsa-thai 2 %2¢/2: Then by th@ first part of the pr@@f

there exists n, such that for mmn, o & (@n)}<t'/2 for any

ﬁémeﬁ Phue, for nma we get

m
\\ls%;mez uwm + 18172, 2

= 5
m= mym,

QsEeDo

The above contimuity result will enable us to reduce
the theorem to more tractable situations and to prove it im
several cases. We will sctually use the following consequen«

ce of @@ie

% S fE}"‘ C o ©
4e20 COROLIARY, Let §5@$ag{d(u}mﬁ{m,mnxt ary &lement
in E} Assume N ig finite and. countably decompossble and

denote by ¢ a normal finite faithful trace onm it, w{i)=i.

g

Given 2 >0 there exists « >0 such that if xeN, Ixl< 1,

2

lzll y$ then



lzxli<? ang flarllep  for all mek .

FROOFs By the preceding proposition there exists

« >0 such that |(ylg i, QF1134£* impliees (ﬁgéy}m<'?/3@

3

s
W
o

. S .
Singe ¢(ulu gy ‘*é‘w%’““ cgﬁtl y) and | *yl ”?H@, it follows that

Il 8 u®y lle Wyl + 5™y ilic 2p/3

for any unitary element u in M. By taking convex combina=

tions of $ulu® and using that the norm || | is weak infe=-

rior semicontinuous we g%t.ﬁfym<iﬁ for all TeK o Similary

Nyl [

Qa-ﬁd‘&De' s

Actually we will mostly use 4.4 and 4.2 through the

next technical results which show that, in meny cases
whenever there exists TeK; (defined as in 4.2} with ad T=¢

then TeT{l}.

- Pirst we consider the case when ¥ is abelian and

locally ccoupatible with (i) { n the sense of 1.1).

430 Pr@nm!iﬁiom; Assume thaﬁ the ven Neumann gube
algebra N of M is abelian and that thnre exist projections
{é } feT in N so that Zj@ =1 and so that for each { wa have
ei?he@iﬂﬁibgg(m>@i or Nﬁicﬁfm}@is Moreover sssume thsat
there exist prejections {p_}acﬁ in N so that Z:J, =1 N 4

el

ef countable type for each j and $ venishes on the set



{p\rﬂ e
~ 0 (
If 7€ :E{:a-m %“‘*{‘c‘{u)%} (ue L{H}} ig 80 thet ad ’“g

then TeJ (Y

Proofes Assume T¢ F(M}, so thaﬁ,m@ﬂl@q&7 0. Let

P {uuUKW)l |eTe|| = | | }® zf(§> contains no minimal

ess eus

roijections then by 2.8 there exists a sequence of matugle
P ]

ly orthogonal projections {@n}n in N so that,iﬂe Te, H,»@

Ul

for some e¢»0 and all n,
By the inferior semicontinuity of the norm Il Wi

for each n we can find a projection 1 in the von Neumsnn

algebra generated by {?gfieﬁ such that N§ io countably
o

decomposable and
(i @h&@npnm ?le e
Let p be the supremum ﬂf,{p'k » Then p belongs to

{? }%CL {uﬂd thua ¢ (p)s O)g N, is counteb le decomposable

and clearly

By construction anp tends strongly to zero im HNp.

1f we consider g‘zﬁﬁhﬁﬁfﬁ } defined by §'(xp)=

-
mg(x)p then obviously Tpé€ Ky . Thus by 4,2 we have
le,Te pll—>0, a contradiction.,

Assume now that (P has minimal projections and



e
§
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denote by e one of them.

Assume first that @&i#@ for acme i with Ne,CZ(M)e;.

Denote fwﬂﬁﬁém Then we also have Nf ( §£ » It follows

o
that for eny unitary element ueUU(N} there is a z eZCUL

such that u@ z £ end we have

‘oo

'y
b P o DY =
5€f‘° M‘m, =(22 1 oz, ﬁ}@ﬁf ;

Al V& frves 2 my Pt ¢
géd"@zd@-@ .;us.:f..g} m@&/}ﬁ@dn@&@ 6}9« %

Thus, since T ¢ &§ {§lalu®|u UM we got £ Pr =0
which implies that a%gm(@mf@}mﬁemf@)eJ(M}e Thusg @~f®E§5,
contradicting the minimal’ty of e in 63 o

Now the only case left is when there is & nonenpty

=
set I CZZ so that e;ce for all 1éI@ and ZLJ e:=e, Fix an i

},“ SETs i
) iel .
. o
in T with €.#0. If Ne,=Z(M)e. then the firat case applies
€ 5 l 4 e

to get a contradiction, so we may assume Ne;ZEM)e; and ir

faet we may assume there exists no efeNe: so that Nefl=
N i % i

at there exists a projection

=TI 0N IR L, PR A o g
=ZM)et. It then follows the

fieNe, so that af.ex(ies for any qe(M), o0,
Then by 2,7 it follows that there exists a projee=-

8 P s A
€M) euch tha

ﬂ!TfiQ{)U%S, = MT&iQEQ{QSJ

I Zles=£:) (Reg¥l = lTe, (1-gf) I

§
1" ess eas



T o Posfs o : L - [ina : ~The
Thus 1£ we denote by e3 fiai + (g4 £, (1 qf) then
~ ,; 5 iR = = N = i m _3’1 il 2
= £ 7 2 s ] i 2 = i 2
hTi okl e “T(ej f ) (4- af )[ oo ”Tc q U‘ess 4
+ llre {iwqi)@figb” mTeliﬁégq

Denete by ef=(c-a, )Fo”e Then e’e&N, e’4e and e'$e.

Let then q.eX(M) be a projection satisfying

“KTeiqim ess Z‘HT@qihzess

m ess

1 T(efei)(i*qi)m SaaT mTe(i“qi)

Then we have

WT@1ﬁiss$1“T(e“@i)<1“qi’m éss+ WTeiqu}éssm'
= T (e~e;) (1-qy) | ZS'S + llrelq, |l iss =

i

UT(eiqi+(e—ei)(1w N[Uess

2

é“[T(ei+e—ei)m ess

= fzer | 2, < ilmell 2

Thus liTe | .. = llrer || o which again contradicts

ess

o s
S8

the minimality of e, This ends the proof of the proposition. ;

QeED.

4.4, Probosition@ Let NEM be a von Neumann subalge-
bra of type II4e Assumme the derivation & :N+—>J (M) vanishes
an a set of ?rojections {Pi3i<: “E(M) with the property that
primi andﬂ%é is countable'decomposable forakl 1, EE

i

TE K. is such that ad T= $ on N then Te J (M),

Proof. Since N is of type II, there exists a decrea~

sing sequence of pr03@ctions {eﬁkn;O in N with eoxi, ety

-e_.q forall ny0. Suppose we have shown that for some n30
4y . ’



S s 1 0o #
we have lle, Te. |l = Mng
: Wi g kWNegs™ W' H egs

for all kzn, Let U be a

\t)'l

: ; % o
unltary element in N such that U_e iuﬁme Since

nn+ n"Cnete

Tu “Ie () weshave ﬁ@n%ﬁ niﬁqlleqow Mun n¢l n+1 nqﬁle"'
\l\ w

for any central projection g€ Z(M). Since

x‘

! o TSH et = T (e —¢ i
n®n+1% TUn®ny 14,”“ &58 m(en en+ T (e en+l)ql”65

+(e_~a_, T (e

n+l” T+l n n+l wﬂul)viess

. e r 24 ).
by 2,7 and 2.3.2 4t follows thntkl@n+iTen+1m ess
i

I

:!ﬂenTe 3 Thus(ﬂenTe = flor-all m,

less

nHesg>a?o for all n;

r
n 'ess nhlesg

Assume T€J (M), so that lle Te
Then the proof continues exactly the same way as:

the first part of the proof of 4,3 to lead te a contradiction

4,5, Lemma, Let AcN be an abelian von Neumann sub-
algebra of N and suppose there exists a f@@creasing sequens=

ce of nonzero projections {enﬁn in A such that enfLo eozl

and e+ 1is equivalent to en+en+1 dno N forall-n>0. Ff

TeKS Ax-égmw{S(uhixi'u unitary element in A } is so that
§

ad T=§ on N then TEJIM).

Broofy TE oy QN are so that VXV

B -
n'n Spn+te VpVnTe

e,+4 then we have v T-Tv_&J(M) and for any ge Z(M)

; St & .

{”en+1 T 0n+1Qfﬂ aggs T W“nen+i T en+1 Vil mess e
i by G- CosEna o Pt i
mvnen+ivn 5 Yn en+1vnqlﬂess M(en en+1)L(en en+1)qu ess®

The rest of the proof is exactly as the proof of 4.4,

We end this section by proving a useful converse to

the preceding results. Note that the proof doesn’t use the



continuity result 4.1,

4.6, LEMMA, Let N be an arbitrary von Neumann sub-
algebra of M and &:N+>J (M) a d@rivatioﬁ¢ If there exists
KeJ (M) such that d =ad X then there exists T &Ky such that

g u=ad T,
PROOF. Assume first that ¥ (K*K)<oo, Let
C:EBw{uKu%}u unitary element in N;h

Then ﬂyu HKH? for all v in C and C is a weakly comﬁacﬁ
convex subset of M, By the inferior semicontinuity of the
norm “? it follows that there exists a unique element

y&eC with Hyoﬁf H? for all ye€, Since uy, deC and

ﬁp

lay u lo= Hyoﬂ? it follows that uyou =y for all unitary

elements ueN. Thus y_€ ¢ A,

O

Let’s show now that aiso for arbitraiy K; there
exists some v€ CAN’ ,
To this end note first that for .each n there exist
(by 2.4) pe@ E(M) and K € MgCJT(M) such that
“K <X, K p =K , | fhn -K ﬂ4 1/n and ?Tp 12 0=0/n. Tet C =
{uK u” [u unitary element in Nﬁ}and Y€ C []N (cf. the
first part of the proof). Then the Hausdorf distance bet-

ween C and PLC satisfies
d(p,C, Cn)élleannﬁé.l/n,

Thus there exists x €Cp, so that ||x -y |30,
Let then y be a weak limit point of {yn}n oIt fol=
lows that yeN’ (because Yy, &N’ for each n) and y€ C (because

y is also a limit ?oint of {ngn)“



S 2 N7 1 4 » yreo T - :‘;é’:'
Now denote by T=K-y. Then K-y&K-C = ca“{KNuKu lu
unitary element in N%m %5 and moreover, since yeN?_ ad T= *

ad K=5 5

0.E.D,

5, THE TYPE I AND PROPERLY INFINITE CASES %

We first prove theorem 1.1 when ¥ is a finite type I
von Neumann algebra locally compatible with Z(M) (in the sen—i
se expldined in section 1 and in 4.3, Since N is finite, thewl
re exists a ?artition of the unity {pi}iéx in ‘the center |
of N such that Np' is countably decomposable'for each 1. By i
§3 there exists ;n element KéEJ(M) such that (émAd'Ko)(pi)= |

=0 for all i. Thus we may assume that § vanishes on {pj}iéze |

Moreover, by refining if necessary {pi}i we may assume N is

Py

homogeneous for each.i,

The unitary qroup of N has amenable subgrouﬁs%gqxo
such thatﬂILN, %ﬂ;=2%w), Let T = gg(u)uxdpo(u) where vais
the invariant mean onQLO and the integral has the usual sige
nifiance (see e.g.[2]). Then T_ is in the Kg set correspon-
ding. to Z(N) and by the same computations as in 2,12 we

Since both § and ad T, ~are weakly continuous and
3(N) ‘is the closed liﬁ;ar sﬁan of‘l%p it follows +hat S=ad To
on Z(N).and thus 4.3 applies to get that TOGJ(M). Thus, by
taking if necessary § ~ad T, instead of d , We may assume

vanishes on (M),
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Since N, 18 homogeneous we have Ny =M, ., @ 2
£ Py :

for spme n(i) x n(i) matrix algebra Mﬁ(.‘?.)' and an abelian

n(i

~NO 8 ~ s -~
algebra ,'E;_.Le Let Q,{i ‘be the unitary group of Mn(i) & 41 and
O, = @cuii Then U is amenable with an invariant mean . Denote
T= S/\é(u) uidl,((u) is in the Ky set corresponding to N and
= €\ b g' o : =
the integral pg qfi(u_)u df’{(u)Pi Ps ‘c\é(u)g dH(u)pi is norm con-
convergent (since Gui is cempact, Thus piTpiEJ(M) (as a norm

limit of elements é(u)uE which are in J(M)). Moreover ad T

equals § on 9 and also on E(N). But A and X2(N) generate N,
so that ad T=0en N. Now if Tgé J (M) and {fj ={ee () \lleTe m‘essv
=l | ess} then it follows that {P has no minimal érbjec—
tions (if e would be such a minimal érojection then eﬁ:i#o
for some i and e-ejpi contra:iicts the nminimality of e . To get'
from this a contradiction we continue exaétly as in the proofs:L
of 4,3 or 4,5, Thus T lies in J(M) and the éro_of of theorem |
1.1 in the case N is finite tyi_ae Edis combleted;
Assume now that N is ;Sroﬁaerly infinite., Then N and |
M are i.somorphic to Nlié@(lz(m) and M1®(323(12 (D)) respective-—i
1y,- where N-’_LCM/l are von Neumann algebras; in such a way that.
the inclusion NC M becomes N1® {Qy(lz (7)) CM1®@(12 (7) ). Note
first that if the derivation §:N+—>J(M) vanishes on
I ® 5‘3(12 (Z))c N=N1®f§3(12(2)) then given a unitary ueN, &cl

we have for any x & CiM ®8(12('Z)),
o
§ (w) x=§ (ux) =& (xu) =x ¢ () -

so that §(we s N eteBi?em) N 8R1%m@)=smnN
) é = C; =
From this it follows that to prove the properly infi-
nite case it is sufficient to prove the case when
§=R (1%) )—>3 (),

Let D be the diagonal von Neumann subalgebra of



g

fg(lch)) and L the von Neumann algebra generéted»by the bila-!
teral shift u., Let 6(x)=uxuk for x€éD be the automorphism of ;
D implemented by the shift u. By %;3 we may assume & vanighes

on D. Then for any x€éD we have

% du ™= §xu) v =S (WP ¢ P () Yu =

=5uM o 2 (x)u =S (™ T T (x) ) =S (u™) u T,

which shows that §(un)u"ne pEA M. for all neZ.

But if we take T to be a (weak) mean (after n) of
é(un)u"n then Teb’N M and, as in the preceding proof of Ehe

type I case, we have

SIL = ad T I
Thus ad T equals g on both D and L. Since 5 and
ad T are weakly continuous derivatioﬁs if follows that
5=ad T on the von Neumann algebra generated by D and L,
which‘is easily seen to béf@(lz(z))=N . Since T belongs to
the K¢ set corrésponding ko, 4.5 a??lies to get that

TeT (M) .

6. SOME TECHNICAL RESULTS

To prove the remaining type II, case of the theorem
we need some technical devices that we prove bellow. As be-
fore, we continue to assume that M is countable decomposable

and use the notations of Sec.l.

6.1, LEMMA. Let N be a von Neumann algebra without
2%

atoms, Y a normal faithful state on N and {wn%n a Seauenqe

of unitary elements in N such that '»‘;f(w}r{l) = 0 for all Ifl



e

Then there exist unitary elements {Yn}n in N such that

TTV&):O, k#0, and ﬁwnnvnnmm9 0.

PROOF, The proof is the same as the proof of 1.3
in (71 but we give it here any way for the sake of comple-
teness.,

Since N has no atoms each w_  is contained in some
diffuse abelian von Neumann subalgebra ACN with separable
predual and (A, Yg ) can be identified by some measure pre-
serving 1somorphlsm %’ with L (T}P) where M is the normali-
zed Lebesgue measure on the thorus T. Moreover‘\"n can be

2nity_ 2wih (£) ¢

chosen so that fn(wn)=fn, where fn(e for some

nondecreasing function hn:[0,11wa{0,i]. By Helly’s selection
principle there exists a subsecquence {hk‘kntending everywhere
to some nondecreasing function h:‘b,i]«am,ij. Thus, 1f

f(ezWit)=82Wih(t) then {fk‘%n tends everywhere to f so that
o : :
by Lebesque’s theorem g%p dﬁ@—éﬁépdp for all §, which by

the hypoth831s 1mplles gfpdp~0 for p#O Thus S&(f)dxf(éd“_

for Laurent: polynomials g so Lhatqufdpf(édp, for any

~0 27 i 1f Oss=t
gel (T,u) o In partlcular if we define gz(e =Sy {0 if thl

24t

where z=e ;- then we get .g dA(s)= ng°fdﬁzggzdﬁmt?

h(s)et
A being the‘Lebesgue measure on [Q,{]e This implies h(t)=t
and hence f£(z)=z is the identity function on T. Now, since
hk are monotone and converge everywhere to a continuous

n

function it follows that hy converge uniformly to h, so
n
that ka —f]k~60. Since any limit point of fk was shown to
n n

be equal to the identity £, it follows that annfh-~?0,
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v . o=l e
We can now take vn~Vn=(f). Since Sf du=0,

%%vﬁ)xo for all p#0. Moreover Hwn—vnn=nf;(wn)mf%(vn)”=“f«§4h@§

QeEeDe

6.2, LEMMA, 10. Let NCM be a von Neumann sitbalgebra

such that N’(\M contains no finite projectionswof M, Let

E>0-and e, F two finite projections_of M with fle)< <o .

Then there exists a unitary element ueN such that [[fu el,<2,

Moreover if N is abelian then given any nj»l there exists a

unitary element ueN such that Kfukeu?<1£ for k#0, |k|zn.

2°, If N is of tyée II1 and countable decombosable,
M is countable decomposable and N’{\ M contains no finite

projections of M then there exist an aproximately finite

dimensional type IIi von Neumann algebra R¢ N which contains

‘a diffuse abelian von Neumann subalgebra A CR such that A M

contains no finite projections of M,

PROOF, 1%, ret ¥, be the semifinite faithful trace
Zn ' = = '
on M“" given by fﬁ((xk)(kkn,k#o) =%f(x; ) . Denote by

2n

Ny e =le } :
=Co {(u eu )lkk;n,k#o lu unitary element of NJ¢M™, Then

Ke

e N — 7 . : -;',.- n : =
ﬁ%(x)éZn\(e) and quqh~2n lelly for any XeK_ . By the in
ferior semicontinuity of the norm ﬂ kt%, there exists a
unigque element §C§K2 with ﬁiou fﬁé“?“ ¥n for all xng.

But if N is abelian then for any unitary element ueN, if

2

e ~ NnE n | e 1 =
u=(u )(k\én,k#O then uK U"C K  and lo% o ek e S0

. - Vo f‘fc— e =
that, by the uniqueness of X, ux U"=X_ . Thus if 2=

k e
;(Xk){kh;n,k#o#o then xk¢0 for some k and u ¥ =x,u for any

unitary element ucN, Since in a von Neumann algebra N any unis

tary element veN can be written as uk for some ueN, it fol=-

lows that VX, =x, v for unitary elements veN and by taking 1li-

!
{




=35 =

near combinations, yx,=x,¥ for all yeN But O’kam?/neﬂ
and XKGN'ﬂ M, a contradiction. If N is arbitrary we take

M instead of MZn and the proof is the same.

20. The argument we use 1s similar to the one in
[6]» We first prove that if peN then Né(}Mp contains no
finite projections of Mp, To show this let f#0 be a projec-
tion in Né{]Mp and z a projection in the center of N. Then

zfeNé(}Mp and-i€ £7ig finite-in Mp then 2zf is finite in

sz.'Take - to be so that £2z#0 and pz divides z, say n times.

It follows that the inclusion NZCZMZ is the same as NZDCE

p C = 2
@Mn M ®M Sen and that f’=zf @Iné(NZp @Mn}m)’ﬂ (M,

& M, e ) .. Hence £'eN! M, =z (') M)z< N1 M and if £ is finite
then f' is flnlte, contradicting the hypothe51s.

Since M is countable decomposable, there exists an

increasing sequence of finite projections {f&}n in M.With fn?ﬂ_o Moreover
by cutting if necessary each fn with a central projection we may assume
£ ) <00y NEN.
We now construct recursively an increasing sequen-
ce of finite dimensional von Neumann subalgebras Ry in N

. & kp
with matrix units {eij} 1<« 1,3<n(k,p)

1¢pgm

satisfying the pro=

perties;

k-i;r . - kp
1) Bach et is the sum of some eij =

2) If By is the diagonal algebra of Ry generated
k?} =2 k
3) n(k,p) k for each p T e e ) o

Assume we have constructed these objects up to

kp

some k. By 1° it follows that for each gxeii there exists

" a unitary element ueN_such that if e is the support of

g



e -

e —————

E:eﬁffn+iék§ then for each nonzero X, e??’n+le5? we have i
% 2 2 . : :
Pleveu™) =leu Rf<i/zﬂ |y . Approximating u in the uniform

norm we may assume it has finite spectrum so that uziﬁges
" . Cy = : .Y, %= x
with$'e_=g and.rkslzia Then, Slncekajuxiu )¢ (eueu™) , we :

- 2 w2 D D : 5
=2 “xiu?n&xiﬂ%gﬁxi§?+huggkq?mZ\ﬂxiuxiu J= !

T ) = - : o i o 4 E
= uxiuuxiﬂf | ffs (A =1) a;txiestlfz,é-i o le e \*?24 I 1@’“‘

-2 Hi 2
r‘er i r\%523/4 “xi“?. Now we can apply the

same trick to e x,e_ instead of Xy and get a refinement

2} : ; : 4 o 2 e
. £ S & 3 = —
{es so~ the projections e =e . SO that | ZS *i8glly /

¢

: _@/4) bﬁ %y 'ru 4(3/4) | x. H% ; More generally we aﬁply

the trlck K+l - tlmes, to get prOJectlonq g9 *ef+1 so that

uz_gf Xy gid?4<(3/4)k+L qx ]? and 5§q1 e”i'

Now since N is type II, each gy can be divided into

k+1 mutually orthogonal equivalent projections. This we may
T .
consider matrix units {gab fca,bek+l w1th()g I‘ Then easy

computation show that if we denote by {@kzi r%s £, an apro-
: &

= 5 3 }\.p ]') p’z o 5 = ‘°
piate relabeling Qf {elg I b 150 a,b,2s1s3,P then this

matrix unit and the von Neumann algebra R, ., generated by
it together with diagonal A;+1 will satisfy conditions
L)g-2)-3).

Let R:URW

W, Then condition 3) implies that R is
k \

of ty?e T,

Let A=E7A§a Su?ése ecAf\M, e#0, is a finite ﬁrojec~
tion of M. Then by cutting if necessary e with a ﬁrojection
in ZZ(M) we may assume,?(eﬁzmz « Since fnTi; there exists
n such that Kfnefnmeﬂg<1/2 HGU¢ . By the construction of
A CA there exists a ﬁartition of the unity eg;e.e«rCp with

projections in A such that



\\329 12 @f e, uféﬂgzéifn v /q/zﬂ ﬁ{

ue\;&?mﬂzci \\F |\K..|G‘ (J" ef """C)C ﬂ‘fj-l-
b
+m%elf ef e, “?<ﬁeﬂf r
which is a contradiction.

Q. E.D.

In the rest of this section NcM will be a type IIl
von Neumann subalgebra with a fixed normal finite faithful
trace T , G(1)=L, The norm on N given by T is denoted

142

HXHZ =Z(xxx) , %€M, If BCN is a von Neumann subalgebra
then EB denotes the unique normal T- éreservinq conditional

expectation onto B (cf. {11]).

6.3, LEMMA, Assume ACN is an abelian von Neumann
sualgebra of N such that A'(\M contains no finite ?rojectionﬁ
of M, Let €>0; nyl, e and £ finite ﬁrojections in Mo and
v a unitary element in N. Then there exists a unitary ele-
ment ueA such that ﬂf(uv)keﬁ%mée for any k#0, lklén.

PROGF, since P(e), F(£iL oo it follows that P(eNE)L o0
since l(eVE) (uv) (em& 7| £ (av) el , it is sufficient to
o

we only need to prove the estimates for k> 0. We’ll actually

prove the statement when e=f, Since [ e (uv) e“xmle(uv) ~Kel

]

prove the following more genera.l result:



=

*y 1f £>0, nyl, FC N is a finite selfadjoint
set of norm one elements containing the idéntity and e,
f are finite projections in My then there exists a unitary

element ug¢A such that

for any 1<¢k¢n and xo,xi,..,,xkeﬂfe
We first prove (*) in the case P(xe)¢ez(x), FTlExl
¢cG(x), xeN_, for some constant c>0. Let W=lw partial iso-

metry in A \“ 5((wx )eEOQSGWfWH for any Adsks<n,

\
= 5 Y
xo,xl,..,,xkt % }and congilder on the usual order: W _&W,

1f W is a restriction of W 1o VW "wlwﬁw . The set

is clearly inductively ordered. Let u be a maximal element
of it and suppose u %4#1. Denote by A =(1wu u)A(lnu u),

NO=(1«uiu) N(lL =-u 9 ) and‘S {(1~u u)x, (TT (uxy ))(1~

% e . 2 :
- u)\iéksn, xoixi,oﬁ,,xneqih By 1.2 1in [6] given any §>0
there exists a partition of the unity €j,e¢¢sCp tn B such

= 2_p< Do £

thatﬁz\& ey =B, (Y)eiuz”ﬂz%eiyei’EA(YH{253°(1“u u)=

=5§fdei) for all yé%%. 1t follows that fof some e =e; we
i

have

(X%) “eoyeO“EA (ve “?éou(e ¥ ye%é.

; : o2 R
Let npr,;s30, xey 4 yi,,o,.pyse%g; XER T Ygeooor

r %
..e;Y'“?ﬂ and weh e, uwﬂé 1 and denote<*=(?(eX'TT(y£w )
i=1

/

y’fy'T'(wv yxe) t, with the convention that a product over
5=1 ~
a void set equals 1.

If s=1 then by the Cauchy=Schwartz 1neoudl1ty we

have:



= 10w

where e is the su@remum of the left suﬁports of all the
elements of the form 2y %y with xe, y1€?6 and zé@i:

k 3 5
=§ﬁT EA(yi)eo O<kgn, yi,,c,,yke?gj, and £ is the supremum

of the elements fy with yé??o

If s32 then we have

(] S 1‘ j=-1 =
{I;Z&(wyi)xe“f ;Z%& 1= wyi)W(hA(yj)eo O]j o)
-1
= Tr E, (v,))y xeﬂ\(; | £yw® :TTE (v ygxe|
t"]-i-l 5 ?

é‘Z:{&EA(YO)eoweoyoéo)wjzyxeﬂfﬁigjés, XeRS yo,yeﬁg,
66'}“;1.-‘(-{- [ %wsé“n\(: i

where &, £ are as before. Thus if E denotes the sum in

the right hand side of the above inequalities then by

1/2 1/2
1

are the number of elements Ln.;pqyo and respectively %7;.

& ) we getpg sNN_ 29 e 112, where N, N, and N

Thus, by the Cauchy-Schwartz inequality we obtains

o £ || ex! Nr(y W) y! fye Wf(?+ ﬂ%wsé”f)é
i=1
“fyeo“‘f’ (p+ ll%w’?é'l}?)-:cl/zu olla (‘%+l\ woe | ) &
s, £ 52 [l ey J-ci/ *leg ]l Ew®elly

Thus if & is so that nNW?N1&&1/2<82"



=0 -
using 6.2 we choose w to be a unitary element in Aoeo=

1/2_ﬂ Fuoa ;‘;\F<€2w2n-11

=he ce_Me_ such: that & fw ﬁeoﬂzg then we

getoufzmanE(eo)e

We now show that if w is chosen like this then
uomu+w contradicts the maximality of u. Indeed we have for
- el - - > m’lﬁ
any l<kg¢n and RyeXqeese X &0t

k
12 <
{ fxo(i‘g‘j‘l(u+w)xi)elg,€4{{fxo_l[ (uxi)en% + 7,

where the ol ’s appearing in the sum are of the form estima-
ted above and there are 22k~i terms in that sum. It follows
that$ e« gE‘C(eO) so that

. |
ez LT (u+w)xi>eﬂ%_i ¢ (3 () + 30w W) ) = £ 50 (utw) * (uh) )

i=1

This ends the proof of (x) in-the jcase FPlxelcecrix),
T(£x)s cB(x),. for xeN_ .

To prove the generai case, iaeQ for arbitrary e,
£ tn M? note that giVen any £>0 there exist finitebprojecM
tions e’,f'eMyp with ﬂeme’ﬂ$<iV3 ; Hf—ffﬂf<9/3 and such that
Pixe’)ccolx), Y(f'x)<cr(x) for some constant ¢>0. Indeed,
sinee fle), Flf,) are in Ny » there exist‘X,,'x.’é‘L,l(‘N,‘(‘;)_Ew such
that P(xe)=t(xX), Y(fx)=71(xY¥), for xeN. Thus if E ,F are
the spectral ?rojections of X and respectively Y correspon-
ding to the intervals (0,n] then En?i; F &l angd
?(xEneEn)x%%Eanne)zixEannX)xz(xEnXLQnC(x) and similary
P(FEF x)ng(x). It fo;lows that ”En?En”e“f’ﬂw*O’
ﬂEann~fU;“‘?0 SO th&é if eﬁ, fﬁ are the spectral projectiong
of E eE, and res@ectively anFn corresponding to the interval

[i/Z;”) then an easy computation shows that Hegmehf~¢05
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L \ v e P ] 4 4 - 7 . N ZiE)): osr 2
e ﬁL{#~%O and P(x F)420(xE eF )<2nz(x); P£]x)$2AF fF %)<

<2ng(x) (see e.g. 1.4 in [B]). Now by the first part of the
proof given €70 and n»l there exists a unitary element uéA
such that ﬁffxojii(uxi)e’ﬁfég/3 for any 1ék£n; X eXqpeee
..onyxkéﬁfg But then

k

pc28/3+ 805 T1 (ux )erfloc 26/3+8/3=¢,
i=1 |

k
I\fxojji(uxi)eﬁf

Al

Q.E.D.

6.45 COROLLARY., Let £30, nyl, e,f two finite projec-

tions in Mf and veN a unitary element, There exist a finite
projection e €M and a unitary element weN such that:

k

s ?(enw en)=0 for any k#0;

o]
2 e enée[ \f)(e"'en)<€l

k

af- ﬂfw'en“<8, forvk¢0,ﬁk(én;

4°, |w-uv i< & for some unitary element ueA.

_PROOF, First we ﬁrove that given any ¢/>0 there
exlist unitary elements ueA and wféN and a finite'projection

eneM such that:

ali e ge, flewe Jcs!;
*) b) ﬂfw'kenﬂ<g’ , —for k#0,  |klzng
c) fwf-uvl| «&’;

d) %%ew’ke)ﬂé‘for all k#0.,

Then it follows by a) and d) that ffTw'ken)kQS' for any

k#0 and thus if &’ is small enough and &£f¢2¢/2 by 6.1 there



exists a unitary element weN such that [w-w’(< ¢£/2n and

ke !H n fw-wfll<& |

‘”(w e, ) 0 for any k#0. But then \'\fwkenl!-' I €w?
for k#0, |kl¢n and (w-uvl< (w=wfli+ |wi-uvie &/2n+8/2 ot
Now to prove (%) we let &"»0, n’>l., By the ﬁrecedinq

lemma there exists a unitary element uéA such that

l(eve) (uv)ke(Lp< g™ for k#0, lklzn’, It follows that (~{"’(e(uv)k ;g

4

|

< lel, |l e (uv) Fe e < g e ell, , for all k#0, |kl¢n’, and 5

Ple(uv) “Ke (uv) e)"“ﬁr’* (uv) eﬂ\f&s““ . BE e]i is the spectral pro-r

jection of e(uv)"kf (uv) ‘e corresponding to the interval ‘
“K¢ (uv) ej’é:;"z and e-«c&aj’igg“"ﬂ”@(uv)mk ‘

£(uv)¥e so that Y(e-ef)se" “lonZocn, et e ﬁﬁ{eﬁik¢0;

o -

(0,e"] then ejge, %}’( (uv)

|kle nﬂx . Then e ce, ‘fle ) f(e)-2ng" and | £ (uv) & el £ ) ®

e

*

Lemma 6.1 shows that if n! ts large enough and g¢" is small
encugh- with g "¢g’/(ntl) then there exists a unitary element

w!eN such that P(w' Key=0 for all k#0 and [w’~uv|< of /ntl.
TN

But then | Fut ¥ HCZZQ‘E (uv) P (v -uv) (w) P e”-é- IF (uv) er_g(é
p=0 .
ke’ /(n+i)+e’/(n+fl )=(k+1) t\'/(n-l-i)/g which proves ey

Q.E.D.

7. END OF THE PROOF OF THEOREM 1.1: the type II,

case

In this section we @rove 1,1 in the case N is of
type II,. By 2.11 and §5 this will end the proof of the
theorem. We begin the section by reducing the problem in se-
veral steps to the case when the tyfbe I, von Neumann alge-
bra N is separable, M is countably decomposable and N\ M
containins no finite projections of M. Note from the begi-

& ;
ning that by Sec.3 we may assume ¢ vanishes on a set of pro-



jections {piEiin the center of M having the properties

-sziml and N?ijs of countable type for each i.

7.%, Birst reduoction: If is suffiecient to prove the
theorem for separable N (i.e. N with separable predual).

To show this let RCN be a copy of the hyperfinite
type II, factor with the same unit as N (cf [5]). There
exists an increasing net of separable von Neumann subalge-

'bras_{Nili of N with Rchi and ?ﬁ?zN. Indeed, if {pj}jéJ
is a partitibn of the unity in the center of N such that
ij is countably decomposable for each j, then any counta-
bly generated von Neumann subalgebra of ij is seﬁarablep
so that if N, are such that N;p, is countably generated

and contains Rpj for a finite number J, of JjeJ and 1f

N, Z: -RZ_J p then N

i j will do. Since REN
: jéJ j¢

each Ni

4 1t

is of tyﬁe II, and if K{EJ(M) is such thatEJN =ad K, then
al
by 4.6 there EXlst? T ch {(in faect In 56w{g(u)uXSu unitary
element of N, ECKS) ‘such: that ad T. "ad b —5& Let T be @&
1 :
weak limit point offf;%i . Then ad T =¢ on []Ni, so that by
the weak continuity of ad T and 5., ad T=£?on Nz(7§Y» Since

N is of type 1I,, by 4.4 we have T&J (M),

7:2. Second reduction: It is sufficient to ?rove
the theorem when N is separable and M is countably decomno~
sable.,

Indeed; by the @receding reduction we may assume N
is separable. Letcu be a countable subset in the unitary
group U ot N; dense in U in the ‘uqtrong opc1ator Lopologj.
Let {é'kjEJ be an increasing net of countably decomposablc
prOJect:Lomw~ of M with p 71 By the density of QK inSll it

‘follows that for each 1;\/@p u* ;uuﬂﬂ”\/xup u* ud%i} so that



o

if we denote this projection by sS4 then it is countably
decomposable (being a supremum of a countable set of counta-
bly decomposable projections) and moreover siGN’(\M, s Bl

c , ; U =i ;
Define di:NSiPM%SiJkM)SiNJ(MS ¥ by © (xs.)msig(x)sic Since

1
siGN’f\M, éi are well defined derivation., If for each 1 the- ?
re exists an element KieJ(MS )} such that £j=ad K, then by

oba i % =3 -

49 Shalc X."’“ - K¢ = J..l” : . -‘\: '-’r“ ' “:u"“
6 there exists Tichb such that slTlsl£F5£:slkési satis

fies O:=ad(s,T,s

3 ;Ty85) e Let T be a weak limit point in M of the

i
net {Tiki (c M), Since {sg}i converges strongly to the
identity, TEKK and ad T= ¢ on N. Then 4.4 applies to get

TeJ (M),

T3 Third reduétion: it is sufficient to prove the
theorem when N is separable, M is countable_decom@osable
.and N M contains no finite érojections of M.

Let §O=NQ§’QN’f\Mle’ finite projection of M}, Note
that in fact pozy%%’éﬂff\M{e’ ﬁrojection with %%ef)400},
Indeed; this follows immediately by 2;1, because given any
ee N’/ \M and ?EQﬂM) we have e?eM'(\M, Assume now that
S(x)mg(x)po, xeN, Then % ﬂKéﬁo. For each unitary element
ueN define on K, the weakly continudus affine transformation

0

ke s E [
Tu(x)=uxuk+5(u)u“, Then T T =T . and since Tu(é(v)vi) =

uv
=u§(v)vﬁux+g(u)uﬁzg(uv)vﬁuﬁ, it follows that Tu(Ké)C Ké'
Consider on M the seminorms f; {f(xﬁxe’)1/2 for xeMle’ finite
?rojection in N’[\M with f(e’%ﬁw}e Then the semigroué of
transformations T, on KS is nonéontractivei because if
x,veKg , xfy, then inf # (u (=) ¥ Ge-y)u¥er ) =P (=) * (x=y)e)
and if f((x~y)k(x"y)e’)fz0 then wa=(x«y)§oﬂ(x—y)(¥/e’):0
(by the faithfulness of Y ). Thus by the RylleNardjewski
fixed ﬁcint theorem (see A.3 ih [10]) there exists an ele-

ment XEKg with Tu(ijx for all unitary elements ueN. But




then uXu£+§(u)n%:X and thus &(u)=Xu-uX and by linearity,
§ (x)=%Xx~-xX for all xeN. Since N is of type II; by 4.4
we get XeJ(M). Similary, if 5(x)xp05(x} for any xeN we

obtain that § is implemented by an element in JIM) .. Tk fol=

lows that there exists KéJ (M) such that ({-ad K)(x)ﬂ(impc)(éw

ad X) (x) (1-p_). Thus, if we define § :N, _+—>M b
o] o° ‘1=p 1 v

o —Po

6O(x(1»po))=(£~a& K) (%) (1-p,) then 50 is a well defined de-

rivation taking values into ('IL-=»;;_30)L'I(M)(ZI.'=-};>O)==J‘(MlmIO ) o
26

0] , P . . - 2 =~ < (] P '

Slnge Niwp(nﬂiwpo contains no finite projections of Mlmpo

(see the proof of 6.2, 2°) thig shows that in order to prove

the theorem for N separable of type II, and M countable de-

composable, we may in additlon assume that N’(VM contains

no finite projections of M,

7.4, In the rest of this section we may therefore
assume N is separable, M is Qf countable typé and N'(\M
contains no finite projections of M,

By 6.2 there exists an approximately finite dimen-
sional type IIi von Neumann subalgebra RCN with an abelian
von Neumann subalgebra A CR such that Af(M contains no £i~
nite projections of M. Since R is apﬁroximately finite di-
mensional, there exists an amenable subgroup of unitary
elements U in R such thatd "=R, Let K= V §(u)uﬁd[m(u) where
M is an invariant mean<n1qi° Then, like din 2,12, 1t ds
easy to see that ad K equals § on U and thus on R. By
4,4 it follows that K €J(M). Thus, by taking if necessary
§ - ad K instead of gr’We nay suppose‘g vanishes en R and
thus on ACR. _

We show that fyem the fact that EE = 0 it fellows

that & =0 ¢n all N and this will end the ﬁroef of the theo-

rem 10
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Assume & #0. Then there exists a unitary element
veM such that &(v)#0. Moreover there exists a finite projecﬁ
tion eaM{ such that f{ev‘ (v}@;&,Inﬁced because otherwis
f%vﬁgév)x)mo for any linear combination of projections
e €M ,and thus, by taking norm limits, for any_x&MNf, which

8
implies

Q@-

E(V)ZO; a contradiction.

Fix eeM to be a finite projection with Ple)=1 and
‘Revﬁg(v)@)#o. By replacing if necessary ¢ with a-scalar
multi?le of it we may then assume f(evﬁg(v%é):lo Moreover,
by slightly modifying e we may assume Plae) is a Ffatthful
state on N,

We now frove that-for any n there exist a finite

projection enGM and a unitary element thN such that:

' -n
1) ece, flese )c2 °,

2) Je ke <2, for k#0, [k|<n.

F
3) f(enwnen) =0, for k#0,

4) \f(enwrpS(wD)e y-1|< 2 "B §f nyp»0 and

Fﬂenwgsé(wg)en)PQZ“n if p#s or pgl or s<0,

To do this let feM be a finite préjection such that

5t el € = 7L, Yd-my Sl T R,

ﬂg(vml)v(iwfﬂfd.(4n)m12 n-1 ana f>e. Then by the preceding

corollary there exist unitary elements w €N and u, EA and a

projection e EM such that

a) e e, T(eJenkQZ“nq
e n\1é<4n\\511)“12'”7:1.- for; [k|en, k0.

=L y=n-1 , k o
c) Lwnwunvﬁé(énﬂ§U) 2 and fle w e )=0 for k#0.

lfw



(i) UC(“’?)C‘Zn W (S&W je ﬁ 4= N‘ g;wiﬁg(wn)vﬁus’mien i} ¥
= é_;%) F!g(wn)wims l&nzi\i‘:ggz l dtu v)w}’ s«»'len }’;\ka
{(}:n—l)llgu ne hfzgwn“’u v Ej(u(v) bagsl nu‘? +
1) o lhagele 5 190 8=e, Ly +
1 5,=n=1 ,~-n-1

+(k=1) | 06v) (A=£) +47*, 27" ¢ 2 :

"

17."
i
V)

| . -k Zz 5
(ii) “‘S(wn )enﬂ\{; 5;__6“ (w ) CS(w:0 ) (wn ) £ “%eé

k=t .
= et ~1 =Ly kms=1,

& 3256 (S ) w) Ga v W UW
+ k{81 Lan“Wn”é
k'—‘i i~ e Uﬂv £ oo € 1 L, . ’

& ;:;)l Lo(v J')*\/'(wnl)]‘ "en“‘{ﬁf 2% [ u vy i<
k=1 :

Zo ig(v =t (w l)]rw en".fv-l- -k (4n) =l,-n-1,
s=0 :
2% amy =L s 5 e Ly RS |
+ 2% (4n) <|8] sz: AR N
+(3/4) g~n-1 < (n 8] (4n 118 l})"i-k?;/@) g=n-1_n-n-1,

Thus fornyp >0 we have by (i), (¢) and the equality

W 5
7)== 4 °
o (unx ) u,o () ¢

‘ f(enwgpg(ng eﬁ)wlt.{ lﬁerﬁ’*’;lg(wn)en)«l[ i

w1yl

UAN

£ \”F(envmlugl kg(um:v) en) .;1} +2 [[5 u zwn—nnvﬂ +2

2 Me v i (e ) -1|+27P=27R,



S

I¢ nyp>0 and s#p then by (1), (¢} and (b} we have:

\f(eﬂwgsgkwﬁ)en)%(fwbn n rae g(wn)en)i+ zmnmlé;
> ‘ (.(@ s—é—o =, u_ vV 15‘ e )1 “’Lzmnwﬂ‘._{_zmnui —
. rf(enw;S+pvml§(v)en)[+2,4w12“n“1+2"n“1 &
é[f(enwzg+pfvmlg{v)en)l+3.4“1°2*n"1+2mn”1 —
2 ha b T,

Finally if p«0 then by (ii) and the Cauchy-Schwartz

.inequality we have for any s:
~S 0P G D =T
]f(enwn &(wh)enﬂéJM(Wh)ennféz

This shows that e, and W, oas defined before fulfill
conditions (1)-(4).

We now define A c M to be the von Neumann algebra
generated by w,, P, e(§L (,¥)) be the orthogonal pr07ectlonv
onto Anen the isometries un:L (E}H)wwaL (M) . (where M is

the normalized Lebesque measure on the thorus 7 be defined

by u, (zF) = file ) “1/2@;

e, and the measure preserving isomor-
phism‘{;:LNYﬁ;H)%~ﬁ(A Ple )mlfﬂve ) by\fh(zk)=w§, Moreo-
ver we dafine‘aﬁ:Lm?m}H,v~?@ﬂL (T,p)) by 5n(f)ﬂuﬁg(§;(f))un
for £eL*(m s}t) o Since Pn_unun”Aﬂf an easy computation shows
that all én are derivations and clearly “éﬁﬁé Héﬁa

Let «¢) be a free ultrafilter on W and denote -

P s )F~WCKL‘(ﬂ1 )) by A(f)=w=1im §. (2). Then A is also
& s h

a derivation and Al 4181, we show that if P denctes the
orthogonal prOJeﬂtlon onfo the Hardy snacc H (T5, o) =

,pan{ﬂ k)O}C:L (ﬂ‘ﬁ) then A =ad P and /\ is a continuous



function from the unit Dall of L(O

('Ii"‘,_afu) with the norm

( ﬂ‘}z lmfo/QQLQ W) ) with the uniform neem, To prove the
first assertion note that by (é){;gn(zp)’i,z$>==‘?(anw;'g£(wg7ﬁn)
tend to 1 for p=s>»0 and to 0 otherwise so that xf.f_\.(zp)ﬁgZS}F
is equal to 1 if p=s%0 and to 0 otherwise, Since ad P also
satisfies these equalities and A, ad P are derivations it
follows that {A(zP) k@zs}‘a <a~zd P(zp)zk,zs> for all k,p,seZ
and thus, by linearity and weak continuity of A and ad P,
A= ad P,

To prove the second assertion (i.e. the continuity

result on 4 ) note first that:?

(ﬁf) Given B30 there exists n }i and ~ >0 such that
for any nyn_ and aeA , with flall<1l and fle a'kae J<eX , we
nave ([d(a)lj<p

Indeed, since Nax+—>f(xe) is faithfull on N by

4,1 there exists x50 such that if ae N,, el 3, ‘f(eaxae)@{’

then Il §(a)li<p . Let n, be such that if nyn then f(e-e ) <x’/2.

If we take ®=o’/2 and if \f?(enaiaen)g'& then we get f(eaﬁae){:‘
é‘f(e“en) f a*a | +oteet’ /24! /2=’ , sO that m S(a)l§l< B.
Now the required: - coﬁtimﬁzty assertionqsan A states
that given any pr0 there exists «>0 such that if feL™ ('IT‘ r;a) .
lEfl < 1 and fuz\a{ then || A(f) ? for any géL ('E‘,,{J&)g
|, 4. In fact it is sufficlent to check this for §

Laurent bolyncmials, T Z_, zk (with ZKN k\ 2_-4_’.1 )
[klem

Let £ be the one given by (¥). Then if a m'g’?(f) we have

i[A(f)\gﬂélim sup“g (f)g\] =1im sup 1}0 S(a B ( Td wn)en“\f’é
5 - n = (Klem

{7

£ 1im sup [ (a ) ( Zﬁbwﬁ)en “%} :

n : [klem ™
| S = (/ / ]"'i é
But d(, \ ﬁ._d: kwn) e )( ' \lf\jenwn = ﬂ



h

g

e S = 5 : 5
A% %~‘ T‘LJF&j\%ijugnwi *enﬁ and since éld%%i!%%jExQ%%, )<

e , , — i
i#] z . igl
Ko B 249 A £ 3 3 i o k. ) i =11
41(2m+11/§4 \ 22m+l by (2) we get uvﬁka & Z 1%(?m+ 2
sy L) i . kS
. " Al 3 7y i - o
Thus, since for n%no we have MS(a )§<f, it follows that if
L% H e
NEh. “Sla Pl w )w ” <A+ (2mtl)2 e | Hence
etV kkw i |
k= m
3 [l B § R b’ .;ﬁ( s A }\’ 3 % ol + i {1 ‘:: 7 2
lim Mupdjfdn)(w\kwn)an, . P and thus HAJE)DQQF\,

n

We have thus proved that ad P is Continuous from the
unit ball of L™(T,u) with the two-’-n‘om into (fg(LZ(T,[m)) with
the uniform norm. But ad P takes values into the finite rank
operators for all the polynomials in LZ(T}ﬁ) so that by
the above continuity it follows that ad P takes values into
'%(L (T}F)) on all L” (T‘{).vﬁut then by fS (the abelian
case of the theorem) ad P is equal to ad K ﬁx:s@naxhKGJ(ﬁyﬁ)
It follows that P=K€ L’ (Wﬁﬁ) and thus P=K is a multiplica-

tion operator M,0of for some function fEE”(ﬂ;M) (since L“Xmgﬁ)y

1
is maximal abelian iﬁCB(Lz(T}ﬁ)), But iﬁlim<<(B=K)zn,zn7b
: . I->00
:gz“nfzndﬁi =( fdulz)= lJLr*L/(P-wK)zn,zn>=ﬂ0,s which is a contra=
j e 00
diectien,

The initial assumption 8%0 is therefore false and

so theorem 1.1 is completely proved.
8., The counterexample:proof of thecrem 1.2

The mgst simple yét typical situation when the
condition of local compatibility between N and (M) is
not fulfilled, for abelian (or more qenerally finite type I)I
is when M is the algebra L (\p i(\) Q&L (T 1)) and
N=1@§L (ﬂ%w), where IS is the Lebesque measure the on therus

T and A is the Lebesgue measure on the unit interval [Opl},



=)=

It is well known that ﬁx%[ﬁiijplj @éé?(LZ(T}ﬂ))
can be identified wiﬁh Tt @gllpgﬂLz(W}M)) with L°° having
here the obvious significance (i.e. weak A -measurable
fur tlonc of [O 1} 1uto[\(L“{; FJ), uniformly bounded, con=
sidered modulo a.p.t. vanishing such functions). Under this
jdentification the ideal J(M) may be identified with the
functions in ﬂm(ypﬁi7ri>‘h (ﬁ"ﬁ)) which take values .a.p.t.
1n%<({ We denote this set by L (LO 1] gﬁqp),

The subalgebra N= 1 i\L‘(%}V) in turn becomes the
algebra of all constant, LW%B}F) valued functions on i@,i}e

Moreover the center of M may be identified with
‘the scalar valued functions on Ep,llg 1.eg OO = L(Kp i}
@FV)

/L _

. : Note also that the von Neumann algebra generated
by N and Z(M) is N=L'( lo,1], zf""(fﬂ',fx))c M= ([0, 1] pr(T42('IW,,fA))>

Now :.:: a general observation concerning problems on -
derivations into J(M) is as follows: by theorem 2Ll tf Ehe
von Neumann subalgebra N contains the center of M then any
derivation § of N into J(M) 1is im@lﬁemented by an element
ind @) thus, iFf N does not contain JE(M), it is natural
to try to show that the unique extentimqoﬁ 5 to the wvon
Neumann algebra generated by RN and JE(M) still take values
into J (M), 1t turns out that this is'not allways the case.
More precisely we will construct an element TéMxL“Y[Opljé
QB(LZ(E}E))) so that Ef&N]CJ(M) but so that [T? §T¢J(M),
Thiens £f KeTJ (M) would be so-that TmK&N?f\M; it would follow
that ad T=ad K on N so that ET5§M:J(M), a contradiction,

The key n01jt of the construction of an element

‘T as above is the next.

8.1. Lemma, There exists ToeﬁﬁLz(T}P)) such that:



= 57

1°, Given any measurable set ECT with 1€ T a
point of Lebesgue density 0 or 1 for E, the projection
e=/X, Ll {'rpi satisfies [TO,, ]fii{(L (rﬂ‘fJ))

2°, There exists a projection eo{;Lm("lT’;'M) such that

[Tore ]O;“f{ ()«

Before proving this lemma let us show how one can

construct from the operator TO the desired element T in M.

8.2, Proposition. Let U be the unitary element in
w
=1 ([o i @(L (Ty}4))) defined by U=(Ug)g ¢y with
27 (x+
U, L (’.H”H)h%L (T, () (¥ F) =t (e Bl xelbnl.
Let 'I.‘O be the element TO of lemma 8.1 regarded as a constant
: : > o~ = ol 3’{ . :

functieon in M (i.e. L= 1 ®To) « Then T=UT U gsatisfies

[T, NjCJ (M) but there exists no KeJ (M) so that ad T=ad K on -

N.

Proof of 8.2, To fvrove that EI',N]C:J(M) it is suf-
ficient to show that EI‘,,ES]G J (M) for any ?rcjeﬁction ecN=
1® LOOC’IFFIA) . Thus we have to show that given any projec-
tion éeL“('IT‘FEx) we have (,Ut T, U::: i e]é‘z}f\(L?‘('ﬁ}M)) for A-al=-
most all te [O' ﬁ]

Now .LJ_ e"")-ﬁ for same measurable Subaet BC T then

2 .
by Lebesg‘uefs theorem for almost all 'Lc: O ’_LJ e has
density Qiex 1, But if £ i85 80 that ezw'Lte'If‘ is a point of

density 0O orjin E then the set E, corresponding to the

o 2 : b T
- : : . X p— - a e c O 1
projection Ui e U, (i.e. %Et Ui eU,) has density 0 or
in the point 1eT. Thiis by 8.1, 1°, [T vfeu JeX (L‘('I”,H))

s
which shows that {Ut Ty U‘;::, c:]t ?f\(L () )e



eabas 0

This shows that (—U_,C Ty L"é ’ é]az{{ e a.e. in
- P s - 5
5[051] -and proves that TmuTOUm satisfies {ﬁymﬂtﬁide(TﬂrU)a
Now if K& J(M)=1"( [0,1], eff(?'. (T,0))) is such that

ad T=ad K on N then, since the elements in 7¢(M) commutes

P 5
d T=ad K on N=vN(N,2XM)

o

vith both T and K, it follows that
Ly e

<5700k o (ﬂ“;)) But U N U"=N and more precisely

e= (U, € U ) is in ﬁw({bpi], e (T}FJ) so that [Tgéjﬁ

Oetgld

=t Nle T s ST N i = = X o
| [§F~e]cJ(M) which means that Lope&I [Ut TO Ut - Ut R Ut &
e%(CLZ(’,F)) for A —almost all te[p,i}@ But this contradicts

gt w9,
QOEODB

Preof of €., Let A B be subséts of T defined

2n= 1 Zﬁi

as follows: A ~exp( 906 (1/22nf 1/2 = "exp(2Til?/?
i/22§J), for each njl.
For an element féLz(ﬁ’H) we denote by rfU? its norm.

We define 5—4f o 3’"1% i (Typ) and ’Tz R ” ""X C LZ('ﬂ'pN)e
Jpleen) n

Note that{E k ﬁj{n } is is an orthonormal family
njn n/n
of vectors in Lz(ﬁﬁbk)e
If g;YL&LZ(ﬁUM) we denote by pg.q‘ the one dimen-
¥

sional vector ini@KLz(ﬂ}ﬁ)) defined by

pm@m(g;@g

We define To“Ln -~ (the infinite sum is so-conver-
n £4n

gent because g ¢ Im are all mutually orthogonal vectors).

: 2
Note that in fact To is a partial isometry with TOnO.

Let EC T be a measurable set of density zero in 1.
We show that e=T{Esatisfies eT ToeéﬁlL (T ) o

. Indeed, we have eT =7p . Since the wvectoks
/Xﬂ%ﬂl
L b



{ktpé,xm are mutually orthogonal in L (T;H)g +0 show that

=)

e, is compact it is sufficlent to show that ., ., , 4

e k— i 4 { !2 fﬂv{g 4/.‘1 F‘X“l) L(J;{)G’"}{Y}(Z'aj L '7[/?"' o= /1 /? = ] |
\j\ ’(, DN Lfé e O.v But n)\lir' EI"‘ h 5 = i :[. . ) : ‘ < t
Y Gl a f/(- (An) = f”l“ {Z—x _

E{uﬂ@}m(? i [ i/”gn"ﬂ o /,/.,‘:nwl]‘)

iJ (uap(z i [-J /7‘““ Li L/Z‘Zn 'LZ))

and this last term tends to zero, because 1 is point of
density zero for E,
Pk e = e e S
Skl sEy, e have T o=/ b v = ER(L (T, 1) )
o %%, i |

ioreover if e corresponds to a set of density one
in 1 then by the ab@ve{Toplm%k%KL (i NJ) so that ET e]
is also cempacte,

Now to show that T, also satisfies condition 8.1,
7°, let E'C<T’be a measurable set so thath(E =
-FKA Y /2 and H{E [\B )iz u(n )/? (e.g. take F to be the union

of the halfs of each interval An ohe Bn)°

g 0 =) - e = oo - =X % n =
It is easy to see Lhap 1f ey 5 then [Tog coj

n (1 XEO)En;XEoln n ﬁxEognF (1 “Ec)%n s
Moreover the vectors-{XEégn, (fl...'r‘gE )gn“%F,TLn‘

(1= X. )q {n>1} are all mutual]y orthogonal.
Thus, to prove that fﬁ ,g&}%i}L (Ty@)) it is suffi-

cient to show that {?Cﬂé’n” % I(im%E )qn }Hdoes not tend.
2 o] 2

to zZero, {j
KESNAY)  UBL(1F)
But X Z el ) 2 = e r-n 0
= l\ \ K XE Tnl 2 ) iR

il

1/4.
Thus K?Op.eé}ﬁﬁiLz(T}ﬂj) which ends the proof of

Bl



8.3, Final Remarks. . Theorem 1.2 suggests that
in all the cases left open by theorem 1.1 the derivation

problem into the compacts has a negative answer. In fact

with some extra effort one may easily extend the methods
of this section to get counterexamples inua large class of
cases. However let us point heye one case left open which

.deserves attention.

. : y

8.3.1, Problem, Let M be a type Ilﬁ factcruj{
an infinite dimensional Hilbert space and Mzﬁ”(ip,i], R)ég
@}MO é}gyﬁpe Let Ad:MO be a (maximal) abelian kmsubalgebra
of M_ and Ai(fgfp an'atemic (maximal) abelian ﬁwsubalgebra

of @(ﬂ) «iLekt _Nozl & A, @’.}, and N=(1& A, @Al“ Is there

true that any derivation of N or N into J(M) is inner?
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