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Introduction

i

Our aim is to characterize those Banach space operators which occur as res-
trictions of operators ﬁLth rich invariant subspace lattices.The starting
point for our interest was the observation that each restriction of a de-

composable operator onto.one of its closed invariant subspaces satisfles

Bishop's <onultion ). _
'In the 1irot part of the paper we show that conversely each cperator with
Bishop's property (p) admits extensions with sufficiently rich'spectral de=.

compositions.In the second part we prove thnb a ural strengthening of

Bishop's property (p) can be used to ckar@ctcrlhe thos e opprators ocurring

as restrictions of beneralz"ed scalar operators.
Property (P) was introduced by #.Bishop [1]) nearly thirty years ago in

3

~connection wijh a general duality theory for spect tral decompositions.In

our te)mlﬁo]crj a continuous linear operator T on a Banach space X is said -~ .

4o posséss Bishop's property \3) if the operauor

=3

z' ,'. O(U,X) e O(TI’“ : ; f et TZf:<Z—T)f

wcnomorphism for each open set U in €.Here D (U,X)

/ {2 ! . ~ . .
Qenoue° the Fréchet space ot 211 X-valued analytic functiocns on U,
‘The probably most interesting result cencerning Bishop's property i)

known so fer is the observation {4] that a continuous linear ocperator on

- pe v oo ' . . 2 i : A g o | 1 T .« g =
& complex RDanach space X is decomposable In the sense of C.rolasg,if and
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roperty (19) isg werited on re:ur‘PTlon. to closed
subspaces.fo each subdecomposable operator,i.e. an operator which is up to

striction of a decomposable operator onto a closed inva-

A property (ﬁ ). de nré zoing Vo shew that conversely,
; bggch overator with pro;erﬁQ-(ﬁ ) can modulo similarity be extended to a de-
. ;compdsablo cperator on a strict (ILF)-space. . : '
X In analosy ~ continuous linear operater T on & Banach space X is.said to
. : possess property (r )%),if for each open set U in € the operator

ST B i n .
T @(',“}»—~>-’g(3.ﬂ), fr—> {2~-T)f
2

q
: 3 2- 3 T T XY ~ 2. 3% PR /, ds % o =
: is a topological moncomorphism.tere 42, (G,%) denotes the Frechet 'space of all
: Yorralad AR s 3 e 1y hl ™ A 34 {'n N
: I-valued ¢ -funciicns on very close to condition (P js
i was used in {141 to show that each hyponormal operaztor on a Hilbert spacc iss
b] - ¥ 3
Hoi ‘subscalar,.i.e, is up to simllarLiy ihé restriction of a generalized scalar
: 5 operatcr onto & closed invariant subspace. :
i i £ he second main result of this paper is the observatioen that a continuous
i ~
i
4
}

-“Of%bwu'\' erator on a strict (LF)-Space.Section, 3 contains several equlv alent
: ' UQSCTlptions of property (% instance allow to shew that K-hypo-

normal operators satisfy this consition.The announced characterization for

- o~ 3 - ~ vy A E & 5 . A ST L & % < 4
subscalar operators is given in secticn 4.0ection £ ia devoted to a
. .
2 o s o - A NS A ~ s n o~ ~ oA 3 it S o
plications ceoncerning divasion for.distributions.

r-\ﬂ

icolae Popa for his valuable advice concerning topological
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‘i ; .2 ¥, Direet consequences of property. ()

As explained in the introduction a bounded lincatr .operator T on & complex
; . 'Banach space X is sald to possess Ilishop's property (ﬁ),if the map ;i
| T3 BW,X)~—» OW,X) , £+>T £ = (2-7)F
! 2 i : : i
; - it ;
| . | ) : _
e is a topological wonomorphism between Prechet spaces for all open sets U in

.C.It is quite obvious that property (p) for T implies property (p). for each

restriction onto a closed invariant.subSpace.On the other hand,it is well-

known that ceaoch operator which has a sufficiently rich spectral decompesi-
; , e : i
tdion. . fulfills \5),~03 Ln(} and the proof of Theorem 1.1 bel

o
following complete characterizaticn of property (B) denote for aeach ocpen

: set U in € By AT (8,X):4 Banach space of-all square integrable analytic
A functions on U with values in ¥,equipped with its canonical nerm II I e
e d 5 = s 4 b
| . N # . . e . s

f . ; _

9_- o i -

1y Theorem 1.1 For a continuous linear onerator T on a Ranach space X,the-

) £ : ; i =
o : ek : . ‘

4 followinz are enuivalent:
< ; (1) T bas property (p).

3

=3
2t}
3

{(ii) For each open cover 6(T)C U}L/..;\IU the eancnical m

n

C
>~
®
.

: n
.._._.-2 ‘ N
Ul,x)_/TZA (.Ui,-/()', gp——,@ [x]

i=1 i=1
s is. a tonoloisical moncmornhism,
; ; : : A :
iR (i) Forresch gwedcicoyor C:I1L1Uq there.is an extension T of T onic 2
£ ~
; : ~ . : - S :
Cm : suitable Banach space X,which admits s deccmpoesition of the form
7 A ~ .
XX, & Xy DRCX gz, ycu,, 11,2,
Proof. {(iii)=2(i)..Let U be an open set in ¢ and let‘(fq} be a sequence ia
S 2 -
s & /o~ .
U)ot I 0 T = 0.
9( ") Neweoo 2 }’1)
@ @ : . e . ~ A
> - R T8 - .y K 2 . I . M \ ~ 7
“Let ,D be open discs in € with v,C DCU =and choose an extension T € L(X)
\J o i - . §
e ?at:T} as deacribed in. (iii) with respect to ihe covering
i
L o
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¢ =000, , U=D, Uyt

2 .

3ince

A /\" A
6’(’1‘,}{/}{2 = o‘(-'r,x}/y:(\x

e

and since

N X M
/ /9
RS AN

} =0.in ©(U,X/X.).Due to.the exaciness of

where the first map is the inclusion and the second is induced by the
. . : . ) ’ ~ . .
tient map,we mey conclude that (fﬁ—gq) tends to zero. in &(U,X) for

suitably chosen seauence {5 ) in B(U,X
and because of 6 )
shown that (f.) tends to zero inD{D %),
(1)=2(ii). Since for each soen set U in € the Danach space top
iy B ; . L ) o Lik i vy o MEH .
AS(U,%) is stronger ihas the tonoloygy induced ITom O{u,%),it suf

show that for each open cover F(Tjeu, v ...\Juq~the_corresygnding ma

2
>
P s
O
=
|
~
~
+3
@
o
s
N
"
-
N

i=1 1=1
If'\a
- A T 5 { b -~ T
is a topslogical monomeronlsd. et (X, be a sequence in X such that (<
: ; X
+ends to cero.In other words,Ior eacn i=1,...,0 there 1is a geguence (£

(g am (L. . JyE—> 0 1n B{U,X).

'
<
t
"
6]

AN
ERTE A O ) G G 7 X/XD) the maxinum principle limplies

w5
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z : j . i

£, -f — in 0D YT 4
Wy s gl e S ) :

[§

; E _ SR . : :
for 1€ 1,j¢ n.The (ech.resolution with respect to the epen cover i
n ol : Byt X '
Q},;m(U__), of U= W e e AT %
L=l 1 n S 4
d i I S -
IR <Xy RGN =L e A T B 0 T R SN
- s i 2 2 _7 7 ’ i s
is an exact sequence of continuous linear operators between Frechet spaces,
1 _ . p ] 87
Since the seguence A : : :
B e ) e
k) 1=0 i,k sk s i, i nlk=0
of t-cocycles converges to Zero,there is a seguencse
i ((g. ) 5
Gi), = .
( x)A=O ‘gz,k 1€ 1$n"%=0
of O-cochains,which conVerges to zero and satisfies g‘G,:Fk,i,e.
s, . =g =f,  =f 1€41,j€ n,k20. E
él,k iR e B »d i #
Hence there is a sequence (fk),in B2y with .
Lol =L, 5 =g, 1£ i€ n,k% 0. :
k‘ 1 P P :
Since: lim (x =T (£ }) =0 in O(U,%),a standard argument: i
Kve0 " « 7 K 2
(2 iVx, = Rl Dinodie e | Bl Tie =L 2 (2}))ds =20
K £ £ 2 £ £

completes the proof.

is an open coverins by bounded open z:

e
F
el
@
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.
s
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7 A
¢an be regarded as an extension of T via the embedding J:X—¥ K.

For i=1,2 the spectrunm of the multi lication operator

.. i
LTRM o ek (U.,A) _— A (U X), fyrzf
"is. given by ¢ (M ) = U,.Since for ench we UNTU, the resolvent of M) in w

2% i e

13
Thus the procf of Theorem 1.7 1S complete.

With minor modificaticons the same ennivalences hold for a-continuous li-
near ower tor on a Fréchet space wi{h'compact spoctrum (in the sense-ol
ncelbroecm) in €.The number two of open sets in the shatement (1ii1) may
obv1ou31y réélaced by &an a;bitrarg finite nunber.

By the above equivilénces we learn trat normal as weéll as subnormal

R 4 3 : e -.'4\ ” ' ST oo V5 e N
Corollary 1.2 1f T¢€ L{X) B2s property (ﬁ),",}‘;rm f(7) hes property (%, for
each analytic function f€ @NiG\T)).

Proof. Assume that T and considar an angljytie funcilon T

‘defined on a bounded open neizhbourhood U of e (vy:1f €=¥ w ¥V, is an.open

| 2 el i 1 2 .
st T s S T & / R G ETTA S e o " . =
covering,define U =2 & s ST R 41 (1 ,%), i=t,2,and netice Saa%
p : L L Z s
With the notations of TEhspren Vel
el
. b2 r A
s o B Wi ‘e |z
g s A K = .*',_1’:,” ‘\2' L 2 \ X V&2 | X
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B

is a topological monomorphism which Intertwines T and Te L(X).
A FAY g et %

8irice -o(T) € G(T)}C U and SKT;X;)Ci(T(T)F\Ui for i1 it follova thab

f : A A
JE(T). =5 £(T)J, s(f('r})::ci) sog B b e T

for i=1,2.This we have verified condition (iii) of Theorem 1.1 for the

The cenverze of Corcllary 1.2 is almost true.
~ , S ?/'. ) - 3 N ~ A et - {
Corollary 1.3 Let T€ L(X) he_a continruous linear onerdtor and let f € © (1)

e shalvtic In on opdn neigZioarnend U of o(1).

If£(T)-has property (@) and f is not constant on each comnonent of U,

- Proof, Consider an open set G in € and a2 sequence (g in (G,%) such thaex
T 5 i 4 bn ? .

’%iﬂomz(gn) = 0,Since property (%) is:local{wg may of course assume that

GCU.For each point a€ G there is a closed disc D:Dr(a) 3 with radius r,

. 3 { "
such that ¥= 72D has empty intersection with the set z€U; £'(z)=0¢.lience
pty : . A2y

there are open sets U ,...;U. and V_,...,V, such that
£ 1 Hi H 3 1 ¥ b

and such that each restriction f =f}U,:U —>V, is biholem rphiic.,
S5 If FeE B(Ux U) satisfies f(z)-f(w)={z-w)F(z;w), 2,weU,then £(z)=£{T )=

(BB 1T Y e O
el n
in @(wi,‘;:) for each i=1,...,k.This implies that .
+ ey oy .':--“1 & ~
Ll et L im0
e n
5 ST A1 A ) el ool -l i Ty MBI S 5 g £{1) has property (B) we conclude that
lim (g |C.) = 0 in (0. ;%) fer each I=1,444,%,How it suffices to apply the
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-with respect to pe

max i

sup \1(\ Z ‘u = Sup H€§. {2

e T ae X

T

We notice at the end of

UX‘b tic

P

_wnich are small  in norm is

operators without property
trates the unstability with

princple to complote

'(g:).zn )

the proof s

this
o O
na,.lfastabil ity with respect

section that property (B) ‘is highly unstable

I
to perturbations

o

obvious since ench neighbourhood of zero coh 1tains

there 1s an example which demons—

espect Lh

An important class of opera

composable,or more generall]

this section is to prove th
‘sable.However to construct

of Banach spaces.

said to be decompgsable,if

; . AP L
Riemrann sphere €=U uiee} the

that

n
Bem 5 By posiTBCU

et Sy
GRTA oua

which satisfy ondx*lon (P) is that of de-
P

subd econwonﬂb ove*atoro.'he pu
at any operator with property () is s

a decomposable extension we leave the caueb,L

ecomposable coperator’ was in?roducedlby C.Foias

vy

. v sy ; : N -
Y - YV T S D PR F e S o S ANAnT - trho P L
env Y O:)A 2Ss 1 vhduw Lhedlw we Gl J/ :.uC‘J (TR GULS S &

o
for every fifite open cover (U, )’ ¢

re are closed invarisant sal

< 1€ n.

svery Z2e11N(

. T A = Ve Nk o ayies 5% e - L T - .
§ ot < N oy et RSP GaTE S AN SIE AL PEER L B e S 34 Lik <o
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jLet_CL be a bounded open .set in.¢.As examples of decomposable operators

We

the

whe

Sin

mention the mnltiplication operator Ay with the coordinate on each of

s

spaces

' ; s N s L
£(Q),E(), T(Q), 2 () 1 (), H (Q), s,
s - : ,
re H“Cfl,, ”’SL) are the ordinary filbertian Sobolev spaces of order 's.

ce all these spaces are in a natural way £ C)»moduleo,the decomposability

of MZ follows easily.

In fact,the above'examples belopg'fo a3 subclass of decomposable operators,

which will be discussed in the next SOCthﬂ The decomp osublb onﬂratoro may

beh

ave much vorse than our examples, see fo instance [17],

rY

As an application ol the equivalence (1)¢>(iii) in Theorem 1.1 we state

 for the convenience of the reader the following well-xnown result.
1 ) - -3 / . - F ey
Pronoqwtlon 25 1 nach decomnosable onerator T on & Frechcs space with fo i T ol
satisfies nvower g B :
i

pre

In (4] we have proved that a Bana ch space operator T is decomposable if

. and only if both ™ and its adjoint'T' possess property (p .The Tesult was

viously known in the casg of reflexive Ranach spaces 7].
. J ks

Before we state the main result of this section we recall the notion of

a sheaf model for an operator with property ﬁ .Let X be a Ranach space and

let

o

=

T ¢ L(X) be an operator with property (3).For every open set there is an

. . sl » .
exact sequence of Frechet spaces g . b P R

Here

%y ©(U,X) —> F(U) — 0,

t map is the quotient map.
14 is routine %to check that the presheai Ur—7 3 ({U) i3 in:fact an angly-

4 L . 3 - i
frechet shea £ with the topolo:

N P
~ . a
= o B e s By My ; 00 e A B Wiy
we denove oYy Q’ il QL snalytac l".un 9 ..(‘:\: IN w2040 W)y oA ds
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-.the “n@df of X-valued .analytic functidfs. - Al SE IR

In [12] it was shown that %F({)=X canon ,callyf]ﬁ parti.l?%r the opor¢vrr .
T on X corresponds fo the multiplication operator wiﬁh‘z via this identiQ
-ficafibn.A universal property insures the ﬁniqumness of . the .sheaf ¥ asso-
ciated to T,which was called the sheaf model of Tysee [1: 21 [4) [3] ua
finally remark that supp(J )="5(1).
Theorem 2.2 1f a continugus Ylinear gnerator T on‘a Panach space X satis-
fies ocondition (? Y ,then it extends to & denomnosable oneratar on a strict
(LF)-space.
Proof., Let T be & Bnnach\Spéée operator which satisfies condition (p)*and
let ¥ denote its sheaf model. : 5

Inductively one can define 2 sequence of finite open coverings Ql;p

% 1,0f the compact set ¢ (T) such that for each integer nz1:

(1 172 aidn(m) < 1728, dtem(uA V)< 1/2°2 for Ve, .

(ii) each element of QLn+1 is contained in an element ofﬂg‘(whibh is
: A 1 o b

uniquely determined by (i)),
.(1ii) each element of Q&q is a unicn of elements of (26n+T;-“
Write QLO for the covering CQanSuin’ of the single set

.

'rl:U(U;Ue%1) R : .
and define

Eh=~$~ ¢ (uy- ,ne N, . . i A
' UeQﬁa :

Notice that for each n there is a natural map induced by restriction

which is a topologi “"1 monomorpnism by a reasoning similar-to that usec %o

- § i o 1) farny £ - \ Lt amAYAriAanT Taamarahi
prove. the implication {(1)=»{iij 01 laecrei Lol e 2@ COPOIBH LSO .‘_-,OHLCI_EJ..‘_“STZ‘«.

~s S/ > A | .
X S Tl wwe=lx)les L12))
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allows to identify X and E_.Multiplication with the coordinate functions

. g . . O /\ . . - 7.’» o .
induces a continuous linear operator Tn on eachﬂﬂn‘The family (T )  deter-

S

n'n

T ’
mines an operator T on the strict (LE)-space

E = ind (?_Bn T

LS)
n o 2
The canonical mappings En——? E are topological monomorphlisms,in particular

X can be regarded as a subspace of E.Relative to this ildentification 7T is
i >
the restriction of T onto X. : :
_ - Ly . . . . .
It is our aim to prove that T is.a decomposable operator,First,notice

thaf

B

oim) € il S(@ e By, :

ne .

Let N =§w1,...,wk§ be an open covering of C.37ith no loss of generality

we may-supposc that;ij:w for j=1,...,k.For a suffieiently small €70 there

is a covering V gf @ (T) such mat"‘fj@’.fj"',‘.- £ sk, and

1’.'."”1(
min [dist(v,,c‘\w.)]‘> €. e 5 : &
1 J c) 4 g : 2 3 A = -
1 s g § n o, ... : 5 Coorisn 2
Choose & positive integer n with 1/2 £t .For each U é‘%ip with % (U)#£0
we choose an integer jné{j,...,kk'such theat U(XVJ £ B.IT we define- for
& } n . %

each p=1,...,X

T S e
. = 4 o L1 )4 an = % 9
- Q%n,p {U'Qun, %¢tu)£0 and j _=p §
RS el

then we obtain a spectral cecomposition for T .relative to

4

Bo= @ 3, &9 7 iz Ly LS GCy . 14 p<k.
i 4 Al y 4 A
=1 : % er i
e _xn'n
R e o 2 xS * $araY ¢ an s o{:‘n"r +
Por m>2n we Geline A wnduetively aceercing to
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{V €Qf ; VCU for some Ue¥U g_
m n-1,p

%
m,p
Then for B = ?‘ U) we obtain as above
Bl ogieny
m,p
.b
e ."'k A _
E = ®&B 7 e cW , myn,< ps K.
) o (&%) m,p 6(m m’p) p s P & ‘
p=1 - .
"Each Em 5 has a natural direct complerment F " in Em such that the decompo-
- 1IN 0, ; ¥
sition B =R = &F reduces the 1nduﬂ ive spectrum (B ,J ) ,1l.e.
R m Mm,p m,p s 'm‘mzn
. ."n B \ -
10 CE F YCF .
Jm('m,p) “ma+t,p ! Jm( i s m+i,p
Therefors the canonical map Xj: igﬁ B D._*» E is a2 topological monomorphism,.
: i mzl My ¥

coXg weddentilfy Xp end its image,we obta

k.

/\ .
Ao ¥ ¥ o e, Yy - oz
E = ;%(Pf (nh> CHE i, B VER i

ko]
n -
=

alie

and the proof is complete
Fotice that we even obiained a direct sum Cdecomposition of I rel?t¢"°
- to the given open covering of 6( Y.Let us rémark,that the above proof works.
equallj well for -continuous linear owerd ors on 1“rec:k.w spaces with property

‘(P) and Yaelbroeck spectrum'contained in T,

3.  Eroperty (P)e

. Qur aim 1s to show that property (%)ﬁ plays: the same role for “€ﬂ€r31“7‘

.. scalar ogerators as 3Bishop's ro)erbj /5 does for decomposable operators.

i ol - N . o e . s 5 » S totr Y 2
To this end we first collect some equivalent descriptions of property (ple .
{ Vi

(6]

open set U in € the map




B D s b vl el

g

e o et ere St

is a topological monomorphism.Since there are sufficiently many C —~functions

with compact support,this condition is equivalent to the fact }ﬂi 

(@,,.) — {;’L.x)

v
1s a fopo]Of'Pﬂl MONomKoOYry isw,

P

i n . . n ) e T
For an open set f2 in € and an integer n% 0 let W (f2,X) be the Sobolev

type space RPN : RIS

‘ 2 . '
V(LX) :{ ¢ L8100 ?']f eL” (Q x) for 3:0.,..;,:95 g
where- - the derivatives with respect to 7 ere formed in tho sense of distri-
a

‘butions, It {s'a Banach space with respect to the norm

: A n : . 77
gl g = 65 WA o ).
2

Q,%) is a Hilbvert Space in a na ural w2y,

i
In the same wny 28 the usual Sobolev embedding theorem is proved one can
. fe ]
n

; 3 { - . “F o~ . . i -y . v /

show that (Sl, }Dxf:},.!(51,@).gonsaquentl"- (9.,X) 18 a Freehet space
- " . - : )

together with the seminorms ' ; . ;

uian2rI SnEL, ”C‘fl . - LF %

‘The closed graph theorem implies that the topology induced by these semi-

norms .coincides with the usual topolcgy of €(£2,%).The sase argument shows

‘that - % (£,%) has the natural representation




ip o Jon

a hounded onpen set,The

(L) 7 satisfies condition €5

(11) Por_ every open dizse D.in € '\nd gvery 270 there are ¢ 70 and n€l

such_that
oF : n’ ok ;
lel, p ey e, 3%, , v 2 e,

(1ii) There are C>» 0 and n€l such that

e < p] ; ; .
”f,nz’n C HTZL !wn’n £ (Q,X).
Proof.  (i)=>(ii). Fix €» 0 and let D be an open-disc in C.Since
T?: ﬁ(Dﬁ,X) —_— f(Dg,X) is a topological .monomorphism,',\re can find a con ‘-

‘'stant C >0 and an open disc Dg'with D5@:D£ such that

({fu2 D\CTHT’afH B .

k=0 é'
holds for &ll f¢€ ’i(DE,X).

(ii) = (iii). Simply fix an open disc D which contains L1 ,ahd cho se.

Cy0,ne M forg=1 as describéd i (11)

| (1is) = (i) Dok ,(fn) be a_sequegcg in B0, 1) with lim T f = 0.1 U
is an open set with'U €c£) ,choose & in D (L) with 4= 1 on U.From
el f112 U el for fe 12(f) ,%) end the estimate descrapEad 1n (441] e
P .. ?

J
ing £ By 9 £ we obtain,that

conclude that £ W}, .. tends to.zero.Replac Y
. n'2,n : n. e
(”'3_ (l tends to zero for all ke [N,U ¢cS2 open.Therefore

2,0 n'
holds in £(0,%) .3

tends to vero-in % (€,X). ; J

s

Condition {(iii) turns out to be useful thanks to the-following lemnma
i . b}

trom [13]..

o oy 1 Pt wen P R A
domain Wwitn Snoovrn JoUnGarTy

stant CQ such trat {or everv overator T€ L{X) and every iuncuvion .




£ €8.(,X) the following estimate holds:

T3 SRR S TR e T 1 7 o E g )

The ideea of the proof is the follo:s :Jng.']‘be Cauchy-Pompeiu formula

yAS:‘i;l ds

e B =1
(21,73 £ (2) =(2ni) }n£<5

"5/\ d; ’anc

0

Then a familiar estimate for the convolution product gives the desired
inequality.

By combining Lemma 3.2 with proposition.3.1 we can siate the following.

Prépo \i'..*on s Let T,5€L(X).If there is a constant C»0O:isuch that for

every x €X g_z_m_r_l_ z€C

: lf (’Z»S)xllls.c H(z-1)x Il

holds,then T has property (% ),ev . S : cw s

An immedia+- application of Proposition 3.3 is offered by the class of

normal opera.,oz .Indéed,if N is a normal operator on a lHilbert space H,

™ ' %,
then Yil_h
: 2

applies to M-hyponornal operators ToonH, be\,auue by d')f ition |I7T

M .*) T, h i

I
rrt
(25

\ —.—'Hifzhl\ for overy hé and z€. €."ore generally,tie pror ition
| 1

3

n this case,

pe

3 m o T LN we % Atk - Yy .';‘ mi. e Ny A oAy M B 3
Let € LA} WilthjA2 nach space.The operator T 13 s8ald

scalar,if there exists a continuous algebra homomorphisn
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with d)(ﬁ):l and d) 2)=T,The map & ,while not necessarily uniquely deior"-
mined by T,is called a spectral "dis tribution for 0 Due to the fact that there
are smooth partltlonu of hﬂlhv ,every generalized scalar operator is decom—‘
posable in particular uatlelnﬁ condition (B).For a thourough discussionvof
the properties of generalized scalar operators see ol .

Due to the continuity'df ¢’there are n€ N,C 7 0 and a bounded open set

 '52 5 6(T) in € such that

«

,f € B(C,1).

'_lld_><f_>u $clitln o

. n ; g ;
Since each function in ¥ (Q) which vanishes outside a compact subset of J

is the limit in W (1) of a sequence of functions belonging te' i) (et

Lemma 31.1 in [16]) and since the support of ® is precisely the set &(T),

e \‘ .
the spectral distribution Q> induces canonically a continuous linear operator

die WU s TR

again denoted'byC§.The unique continuous linear operator

¥ w8, Xk —> X

with W(£ex) = P(f)x satisfies the relation

v . . ' " &
W(zf) = TW(F) for all f€u ()&, X.

As examples of generalized scalar operators we mention the mul 1“’1n=

2l
tion operators M_ with the coordinate function on the function spaces

14

W ({L),Cp(fi),L“(Sl) or . any Banach function space wrich is in a natural way

.an ’%(@)—module.

- - U PR 3 t .
An operator similar to the Tresiric

(D
r_.
U
o
®
Yot
[
0]
[}
U]
o
W)
bt
o
3
v

Fu % iy E iy %
tice that every sub-

to a'closed invariant SuOboac

2
e

r,)

Y ws - 1y 4 A
scalar operator 1as propersy (P).
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! : Theorem 4.1 A continuous linear.operator on 2 Ranach space is subscalar if

and only if it satisfies condition (f )

J.

B

] Proof.- The sufficiency.
i . A :
i 2 ] - ~ . . N 1 .
e A Tet T€L(%) be an opervator with (?7)@ .First we prove that the canoni-
i ' : 2 .
,; .cal map
- - 7 .. : J : X S —%(C ,X)/TZ ﬁ(‘g iX') iXH[X) ) e
is a topological isomorphism.To this end let (xn) Jbe & .sequence in X such
that lim (x_ + T = (€% for sequer 3 in ¢(C,4X).It fol~
: tha lim (xn + ;an) 0 in -£(¢,%X) for a sequence (in) in £(0,%).1%t fol
lows that 1im(? 2 f ) = O and hence by assumption that lin ?f = 0.Conve-’
3 n-=»o 7 5 Ne»oea n
i quently,there exists a sequence (gn) in ©(¢,%) with the property
; lim (f -g ) = O,which implies 1im (x_+ T g ) =0 in O(€,X).Let
4 nN-> eo n n J N> n 470 .

"‘be the unique' continucus linear map with Y (fe®x) = £(T)x for £ € O(C) and

x € X.Since ¢ (7,€) =0 for all g € 0(¢,%),1t follows that

1im x = 7im b o - .
it *n ﬁ»x\g—( n’ szn) g

On the other hand,if J is-a topological monomorphism,then we can find

2 bounded open set L2D6(T) and ne I,C7 0 with

SISO O CRRE SSE T SERIUTI I JRE PSR R 0 T e 0 (7 DR

&

‘.(;1) 'H‘*}:HéC.inf{Hx +~T'wan'Q.;'f€ %kC,X)} - : o :

] Z

i _ for all xe€ X.Then the canonical map.

! “ % n N i .

i J 2 XX = W OLX)T W (5,X) X ealx]

? _

; 5 i B N B L Bl ¥ 80 ‘9"9 oy i3 O n sar

i is a topolcgical monomorphism.To sSee Tnis Tux e AL witn 9 =0 near

=9 ¢ (T) and. 1=~ 8¢ (f1).Regard H=I-T_& R(z,T) as a functlien in DL, Lx))
and .nctice that lim (x -~ T f )} =0, L € L LX) Fordd]l n,lmplies that

i n n Zn n K

H

in ¥ (£ ,X).But Hi‘n vanishes outside a compact subset of fL and thereforeé
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¥ 5§ s - \

‘.bélongs to the closure of ED(Sl,X),in wn(ﬁiix)‘ﬂenCe‘(T)'implies that

2

% . M
%im,xn = 0.9ince J intertwines T and the generalirzed scalar operator T
-7 O ’ . i 2

7~ - . - E B s
induccd on X by the multiplication with the coordinate,we have thus shown:

T to.-be subscalar,

The necessity. ; ok

. It suffices to Tpove that a generalized scalar operator TeL(X) satis—
-fies condition i% )% .Sinﬁe_the adjoint ?'6—L(K;) is also generalired scalar,
~the arguments from the béginning of this section applied to T' yield a
boundea open set §L .in € with &(T)c.f2 and an inﬁeger nz O such that there
is & continuous linear operator " ' )

Y W98 K — X' L , ‘

satisfying

T ) X

$(zg) = T W (1) - for all fe W (Q)®, X',

Let us consider a smaller open set & with .the provperties {2} Crofe LU

1t suffices to_show that the map
T4 Bw, X} Blw )

is a topologlcal ménomorvhism,or equivalently that its dual
~ ’ , ~
gt v Blw)'e X! —> Alw)'e X’
. : ) ~
is onto (for the identification £lw,X)' ¥ €' (w)® X' see Th.12 in Ch.2,
§3.,n 2 of [5)).
In order %o preove ithat T' s onto we shall lookx .at the fellowing com-

mutative diagram:

: ,\' ' n, A 5 ’ (\ W=7 ,’ ® 1 = gt \:\. ','n/ \ 2 V|
2 (w YO \Tl)&%rx' — > 4 kuJ,‘ i )9, X
19V i . . ' _ g W
i/ 5 T’ ) . V.
~ W A
£ (w)e X' , > £'{w)e '
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2 § . . \‘-\‘

The map ¥ has X' —> W (Cl)@)”"[ X' T@ x'

,as & right inverse,hence

le\V is onto.1f we manage to prove that (w-2z)® 1 is onto,then the proof

will be finished.}irst we isolate hc fol?odan

Lemma 4,2 Let wc € be open,H a Hilbert space

Obausﬂtan.

f h' is surjective,then thke same 1s true for

n'®I: 4 (wW)BHE X — £ (w)BHE X',

where X is an arbitrary DNanach space.

Proof. The surjectivity of h' is equivalent to the

logical monomorphism,and therefore implies that

‘/\ A A
el ; £(w)®E'8 X —> Z({w)8H'8, X

(S

kY " .

is a topological monomorphism r6],§44.4;(6).bht
spacé H'@ X_is isometrically isomerphic to H @%
the surjectivity of h' implies that of h'®@ I on

Thus we have reduced the proo; of Theorem 4.1

and he L(£(wW)®H').

e

fact that h is & topo-

the” dual of tha Banach

x+ {61, §>"

2 (w )®H®3YX:'_.

55 Lherefore

to the proof of %

surjectivity of-the map (w-2z): —ﬁ'(u})@ﬂffjl).—~v l%’{&))élf(SZ)_for

any non-negative integer m.To solve this preblem

representation of £'(w).

Assume that T is a nuclear locally convex spa

the limit of a reduced countable projective syst

of Hilbert spaces.For each Hilbert space K there

e
isomorphisms [67].541.6.(3) and §44.5.(5)

A ~ A ) A
R@ K ~Z» proj (M, ®_K) (resp. proj (H, ®_ X
1@ X proj (1, ®;K) (resp. proj (K& i)
K Kk
acting as (X, )® y > (x. & y) on clementary tenso
*’ .4 D

sition of tne following natural maps

we maxe

I

se of a standard

ce which is represented as

em

are unique. tovological

rsiIn particular,the comgco=
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vhere @, denotes the lilbertian tensor proc fuct,is a'topological isomor-

phism. lence the last last map is surjective.since. the
product is faithful,it is also injective.

1t follows that the canonical ma D

»

~ i A :
E®K —» proj (H}_®5, K)
K ML o i

Hilb

ertian tensor

is a topbdblogical isomorphism.Since the projective system on the right is

reduced and defines a réflexive space,by  standarc duality results

V [1 ]TLLIIJ ‘504 .
In our case X' will be the Hilbert space A (KZ)

hOldSItOpOZOg

foaal

square integr

functions:on an open set f2 in C.Then the above iden@ification becomes

A52 - 2 2 : T
E'@AT(Q) = ind AT(Q ,H}),
% '1’\ \2 \ 2( 11t 4 2 Ty y
because H'! @_A"(Y) = A \Sl,u?) in a canonical way.:

IL 3 ™

We need the following Banach space varigdnt of a resultl in‘[12]:

able

Lenmu 4,3 Let Te L(X) be 2 Ban

a
open neighbourhcod of - ¢(T) in €.Then

3¢ x —> a%(u,x)/1 A7

is a tor olo;:cal isomnarphism,which is the inverse of

~ : :
b: 420, x)/2 A%, x) —> X, [els (o).
Proof. Since the ccﬁposifion

X

Lror 5% U BB, i A
> a_(u,‘a)/az;-, (U,%) —=——s O(U,X T, \.,,x),

wrwrc lf :]for £€AT(U,X),1is & topological ilsomorphism

v

[12],tke
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Prosf. The assertion is proved by induction on m.ior m=0 the statement

91

operator J is at least a topological monomorphism{ﬂccause of O(T)C U the

map 1 1is inj s

i i3 L~
jective,which in turn -implies the surjectivity of J.But-@ i

obvipusly & left inverse for J and hence also a right inverse.

Now as before,consider bounded open sets w ,S2 in € with wcecg2,

We make use of the representation:

4(w) = proj wK(U). e . _ -
' keld ' ‘
N CUccw

As explained above-this leads to

Jg(cu)@)az(n) = fnd ey W

ke [N
Ucecw

wyty. 3 :

1

For each k and U the spectrum of the multiplication operator

e
4

T=T, " ¢ W) —> WE(U)s £ > wf

is contained in £ .Therefore all the sequences {cf. Lemma 4.%)

v

. ] T 1 g y : S
0 —» %0 ") ) 22 fa, vt )y —— W U)'—> 0

are exact.Porming the inductive limit we obitain the exact sequence
o 0y s

0 > £'(w)8A%(Q) P £ (0)EAT(Q) —=p lw)— O

. o 4

Lemma 4.4 For each vairs of bounded open sets cwce) and every inteser -

vzt 2(w)B Q) —> 2'(0)S VD)

L=

&



| : Ay ol .
| follows from the observation that normal operators have property (ﬁ )@
) ' using duality,sec Proposition 3.3.
For the proof of the induction shtep we consider the following commuta-
, tive diagram with exact rows and columns: , . . ;
; ' :
S | ; :
, s 0 , 5
] o 5 : /I =, T
' g : o me Wz . ~ o om-d
. 0 s £ (@) BT ) s g (@)8 T () —— 0 '
P \.
: ‘ % !
g ' - A Cw-z L, A om .
O————Ké———"—»%(w)c@c{ (SL) ————= 2" (0w )®d (52) C; 0
A - A

e ()8 a%(n) 2, 5 (w)@a% () > 0 O
A . /

N L4
Here C,-stands for 2'(w).
By the well-known serpent's lemma there 1is a2 natural exact sequence

Ll 4 : o pEl T :

Qur aim is to prove that the coboundary ooerator d is surjective,This suf-
. . .fices .to finish the proof.of the irnduction step,since then CZ:OQ

We make use of the ndtural topological identification

; e | = - . A M- - . ﬂa1:'
; L 2 (@)™ Q) = L (Bl W ()],
) ' y-1‘, . : )
sece [16]p.525.§0r given elements ae \fl),kéfﬁ,?tég\&)) the operator
- : ,m“1 . ‘. .A """k/' .
oL Flw)y—> W (), @+ 2 {ne )

belongs module the above identification to the space X,:
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e of (w-z)p

."such that 72 _p=o, .
: z

oy

gl D

e
If - peg(w)ey

r
A

ot

’

) is a solution qf?‘;) =« ,then de&X 1is the image

in C1 LIt is standard to check that

(Bloniz) = an™ | 2
‘ ' : ' -5
C

is well defincd for almos

kil

or a2lmost all 4 & L1 we obtain

it

(2ari)”

(¢ ) (5 )aly)

-2

a5 A 4%

-al) z € 2 and defines an element Bef'(w)® 7™ (22)

[(Gu=2) B ) (e )] (8)

I
=
-

g (3 ~t) §k(»c:f)(3 )al’ )d}' A dg?

5 -t

where the last equality is just the definition of the distribution

NE " ; - S
Y 2%a € ' (w).Using tensor product notation this means

B

k+1 =1, 5k_. B M
. (w—Z)f) = (~1) (M2 2)® 4 ¢ ¢ (W) (52},
The definitions preceding Lemma 4.3 therefore show that
- Dkt =1, <k
d0(~=(~—|) 7 ’\3‘(,’?1 r".).
But each distribution u € €'(w) is of the form u=w? a Jor sultable
k and a as above,hence the coboundary operator d is oanto and the prool of
Theorem 4.1 is complete.
ve summarize below for the convenicnce of the reader some of the equi-
We i -4
valences proved in the last two sections.
proposition 4.5 Iet Te€L(X).The followin™ are eruliolent:
a) T is subzralar, ’

=
La
s N 3 1y oo 163 = 3 ks el ST P LT TNl AavAl a4
) Hor =zach xt€e X > <L S SR L 1€ 0,5
d o ot i e e e A, e .
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| b A .
e ~ D e
| | d) T savisfies (), . , , _
PRl . ) Yor every bounded neishbourhood (2 of (7)) there are €3> 0 and ne [I

such that

T g psclinghe oo 2ed R0,

352

} : - s 5. -
§ X : “Proof. The implications q):;ﬁ) and b)= a) are contained in the proof of
; ‘ Theorem 4;1. '
? ‘We have to explain the notation in part c).The édjoint of the embedding
3 of X into € (¢,X) is simply the map 1®1 : £ C)é>x!——)v6:§X"§ Xt For
é u € %‘(C)@](' we write u{l) dinstead of 1® I{u).Thus part c¢) is just the
é dualized version of part b). _ ) s
: Rermarks. 1) The proof of the sufficiency part of Theorem 4.1 shows that =
; subscalar operator .on a Hilbert space can be extended to @ generalized scalar
2 operator'én a2 Hilbert space. ’ v | .
é - 2) If T is a subscalar operétor'qh.a Ranach spaoé.f and %f&i(i)'is a
i generalizeﬁuscalnr extension constructed as in the proof_éf the sufficiency
é péft-of Theorem 4.1,then s - ek o
H B , . . »
| < - ’ ' s e
: oy i , .
2s(T) € GLT) C 65(T) Co(T) C §(7). :
.
lﬂére‘ 6&(3)'denoteé the aépfoximate point gpectrum of an operator S.\‘
L 3] He have.already.noticéd that a Banach space operator T is'decomposable,>
i "if and only if T and T' both possess property ( &);It xcuid be interesting.
% g 4fto‘know.ﬁhethcrAthe corresponding result for property ( $ Lﬁ is true,i.e.
j 2 e whothér T is'genoralized‘scalnr,if and only if.T and ?' hoth poséeés proé

: . perty ([ )g -

yae T 3% ¥ Tip ~ YA N < oy ~ | " Y rt N
ality cetween tne oraer oi 4 ,yCuGl’“EllZDL‘- glalar eXitan-

B
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5. Applications

1). The following thecrem of Malgrange [11] is well-known:

Tet F be an anslytic coherent sheaf on a complex manifold.Then ?@Q'ﬁ

i / 2 A
is a sheaf of Irechet spaces. .

OQur aim is to prove that this statement is no longer true for non-cohe-
rent sheaves,even they are "enerallved coherent in a nafural +onoloc'lcal

‘sense.lore precisely,we prove the following. ' e >

Lemma 5.1 There is an 2analytic function f€ ©(f,L(H)) with H a Hilbert

i

space,such that for every open set VC € the induced multiplication opsrator
h

F: B(V,H)—> O(V,H) is one to one with

0
sets U in € such that F: €(U,B) — £{U,4) has no lonrer ~losed ran:

B Hoo]

3 /“

X i
If we consider the cokernel F of the map F at the level of sheaves,

S

then one vets the exact sequence ey i :
: A ® N . g _' & . ; g 4
0—~B@H—> OBH—> F—> 0. . e

Thus ¥ is a Banach coherent analytic Fréchet sheaf in the %ermiddlbgy'of
Leiterer 8] or quasicoherent in the uerano10Ly of the Prench school
.Lemma 5.1 states thet a natural topological tensor product §7€>-ﬁ WLiCh

oo axtends the Q1 crebraic tensor procuct when 5: 1is coherent,is not a sheaf OL'

Frecnet Spaces.

. R e

Proof of Lemma 5.1. Let T be a quasinilpotent oper PtOT on the Hllbe”t _Space

The statement is equivalent %o the assertion that

3 ”buf not property % Je - =3 2.

~ Singe {vg eondition: ( 5 is trivially satisfied.If T would. pcssess
property (? )% ,then it would have a quasinilpctent generali-ed scalar ex-
. m

tension.As every quasinilpotent generalized scalar operator is nipotent,T

would be nilpotent,too.
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" Theorem 4.1 the application

2 . :

N

0f course the Volterra operator defined on LQ[O,T] by ' -

= X .
Sine) ks g 4 )d%
: 0

~ can be choosen for T in the above proof,

‘e
'

“1I1) Theorem 4.% provides in its dual version a very.general result con-
cerning the division of Qector valued distributions by certéin linear func-
jtioné.lt is our aim to present in'the sequel 2 coubie of particular cases
of this abstract division theorem.Thus we find again hy this way the divi-
sion theorem of distridbutions in a domain of ¢ by complex analytic func-
tions.The reader will easily imagine other similar applications of Theoren

4,1 which may be of an independent interest.

. d .
" Proposition.5.2 Let {Q be a domain of R ,n% 1,2nd let H () denote the

. 1

‘Sobolev space of order de Z.For any function fe Cio () ,the map
: ¢ o : A a° s
z-f(w) : D) () — (L) (52)

is onto. »

. Proof., The multiplication operator Mf is generalized scalar operator cn

45 ‘obviously the dual operator of the generalized scalar

2

i .
operator.m%-acting.on the (pre)dual of the Rilbert space H (§L).By

d
H (1 ).Moreover,t

°

-

d
Hd

2tw) ¢ 2 (@) et () —> £ 1) entin)

is onto. ) . : i

An argument based on the smooth partition of unity ends the proof.

Let us point out that the space '(C) cannot be replaced in the abcve
proposition by a smaller space.lior instance the appiicaticn




:
e 0T .
1
W7 » (w)@> ‘(51) e (C5§>}f%51) :
: : 1 loc a :
i is not onto whencver ss»r > (Q,Indeed,in that case the range of the map
“w-7 lies into the kernel of the natural restriction and muliiplication
application -
Ao : = ) A N L
: Zoa H” (C)Y®_HH{L)—> 1 (), uefr—> flulp),
. = Jdoc T : :
1 -which is not trivial,
‘ n . i : ,
: Proposition 5.3 Iet XKCI be a compact set,1< p €00 and_let P be & monic
1 3 o 4 o0 ¢ '
i polvnomizal with coefficients in L (K):
i‘ .
- M -1 ’ ’ ) 20, ., z
P(z,w) =2 + 31(w)z' +oeee +a (w), 8j€.L'(A),1$ i< m
: Then the multinlication men
1 2 :
j ' N p(v— P va"p(
i 2UC) LK) ——> 3" (C)® LY (K)
3‘ -
|- :
! is onto.
‘; . ) . - ¥ - .
! Proof. First . assume that the polynomial P has order one,namely P(z,w)=
? ' , : s, . M b
i z-f(w) where fe ey i").-h operator Mf is generalized scalar on L7 (K) and it
3 a .
e is- the dual of a generalized scalar operator acting Qn the predual of the
= " Banach space LP(K);Theﬁ we conclude as before that the map
’ (o oy ,\“‘;p,( S TP
4 z-f(w) 1 QL)@ L{Y) — D' (C)OL7(X)

is onto.

o
oo
ot
Q
by
m
1
prs
O
4
5]

Since the .polynomizl P-can be dec mposed

s Aok 3 i s S e N b, A LA i
i v

i Plz,w) = az—11\¢;}...(u—:m(ﬁ;),

i

i

1 1 £ ‘,DO‘.'\ ‘i( i< m_The aleTand ik A ~aqg *a Theg Aaove
g witl -1,€_),v VRS 8 , i€ proci Oi TRAGE o S L b3 A s
i !

i case.

i . &

3
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The decomposition of P into linear factors runs as follows.Consider the

application - : e . =
G m ,
Gl —> €, 6(-7‘):( 61(7‘)7'-'! 6E<Z))7 T : 3
1 . 5

where Q%N denote the fundamental symmetric polynomials in z1,...,zm.The
“local structure of the finite algebraic coverings,as 0 above (see for
instance [19]),shows that the application ¢ has a measurable right-inverse.

. This inverse map gives the parametrized roots fi(w),1$ j<€m.

: J
Thus the proof of Proposition 5.2 is complete. *

e

Our next aim is to derive from the last prdposition a proof of the fol-
lowing well-known division theorem,see [9] and [10) for further.information
and the original proofs even in the real analytic-case.

5 : I, ' i
_Corcllary 5,4 Let §2 be a domain of € ,nz 1,and let. f<€ O(£2) be_an analytic

~function,not identically eaual to zero.Then the multiplication mav

9 (Q) — 2'(n)

is onto. ' T P S

Proof. The problem is obviously local.Fix a point a4 ¢ L .By Yeierstrass
Preparation Lemma f19] ch.1 §5,there exists a linear change of cocrdinates
and an open neighbourhcod U of a in L ,such that in.the new coordinates

. f(z,w) = g(z,w)P(z,w) , (zm)eUﬂﬁxcn -

where g ¢ © () is nowhere vanishing on U and P is a monic polynomial in z:

m-1 ,
+ eea +‘am(w), : .

‘m
P(z,u) =2z + a,(w)z

Since our problem is_invariant to linecar changes of cocrdinates,it

\

remains to be proved that the multiplication with P is ontc on the . space

g ().

=



After shrinking U to a domain like W=VxX W,such that the coefficients
2, belonsz to L°(W) for every 1< jem,we t4ke a distribution u ¢Q'(U).By

the local =zolvability and the regularity of the ?-aperator,we may express

u as a linear combination of distributions of-the form

-
[=]
: L ;
ary T il o # " s 3 4 . p - + + gl 8 S i fo A o) Fedeit
Q' (¥)® L°(¥),vhers.¥ is.an arbitrary compact suset of ¥.Thus Proposition

—

multiplication with P commutes with the cperators .;1< j< h,by putting
: - : J
- , . . . A b . .
together the distributions 31... ?;‘-f we get a solution v €Q'(VxK) of
&

the equation Pv=u.This completes the proof of the corollary.

‘ P s . 2 . : ¢ 4
.Let us remark that,since only the space L (X) has been invelved in ik

.proof of the. cecrollary,only Lemma 3.2 is needed in this proof.

e



| :
% 1,.B1k1nr,ﬁ.: A duality theorem for an arhltra”y op@rator Pacific J. Math.,
: :
9,%79-%94(1959) |
%- 2. Cblojoari,l., Eoias,C.:LFcory of generalized spectral operators. Hex
é ’ York: Gordcn and PBreach 1968
Léi 2 i f%. Bsc }meLcr,b.. Analytisché~0ualit§t und tensorprodukte in der mehrdimen—
é $ionalen Spektraltheorie.M tnster 1986 ‘ ' s s
| oy ‘A4,»Eschmeier,J., Putinar}ﬁ.: upc t al theory and.sheaf theory 111.J.reine
| . . c . 7 -angew.Math,354,150-163(1984)
ot T ' 5. Grothendieck,A.: Produits tensoriels topolo«f‘queo vt espdces nucléaires.
% Memoirs A.M.S.,Nr.16,1955 ’ ’ 7
6. ¥othe,G.: Topological vector spaces 11.Berlin,Heidelberg,New. York:
i Springer 1579 ; | '
7. Lange,R.: A purely criferion for a décompo sable operator, ulasgow Yath.d.
| 21,69-70(1961) | |
? 8. Leiterér,J.: Ranach coherent analytic Frechet sheaves,ﬁath.ﬂach%.BE,
e 91-109(1978)
% - 9, lojasiewicz,S.: Division d'une Ol%urlbutloﬂ par une fonction analy 'quo
i' de variables réeles.C.R,Acad. sci. Parls 246, 683 6&6(1 358)
i 10, Malgrange,B.: Ex;s;ence et upproximatioh ‘des uolati.hs‘dcsAéquaﬁiéns
% aux dérivées partielles et des 6quations de convolution.ﬁnnilnsf.Foufier
| 6,271-355(1955-56) . | '
% (15 Haigrange,ﬁ.:. deals of d fferentﬂable functions. Ok¢ord-Unlver31bv
é e .- Pressl1§66 ) . ;
| 42, Pubdnar,M. s Speétral theory and sheaf thobry'l.opéfatcr Theory:‘Advances
4? ) and Applications,vol.11.Snsel,?ostcn;Stuttgart Rirkhauser qq3,np 8%-297
: >
; 1%. Putinar,M.: Hyponormal operators are subscalar. O tor Theory j2,
385-335(1994) | J
% 14, Scheefer,H.: Topolcglical vector spaces.ldew York:dacmillan 1966
é 15. Snader,J.C.; Bishop's condition (B y.Glasgow Math.J. 26,35-46(1985)
; 16.- Treves,F.: Topclogical vector spaces,distribuvicns in; vernels.lNew
2 York:Acadernic ?reés 1967
i



“B51 -

DR i A A

i
g 17. Vasilescu,F.-H.s Analytic functional calculus and spectral decompositions.
1 Dordrecht:D,Reidel Co. 1982

~ . 43

18. Waelbroeck,l..: Le calcul symbolique dans les algebres commutatives.d.Math,

ekt

pures appl.’3,147-186(1954)

‘19] Whitney,H.: Complex Analytic Varieties.Reading Mass.:Addison Wesley .1972

e L)
A Y

i
3
i
i

R

BSOS Y
;

B PO SV

S
t
.

A ki

o e B i 7 i AN M A e
.
.



