INSTITUTUL DE MATEMATICA

INSTITUTUL NATIONAL
PENTRU CREATIE
STIINTIFICA SI TEHNICA

ISSN 0250 3638

A TIME DEPENDENT SCATTERING THEORY FOR STRONGLY PROPAGATIVE SYSTEMS WITH PERTURBATIONS OF SHORT-RANGE

CLASS

by

Gruia ARSU

PREPRINT SERIES IN MATHEMATICS
No. 10/1988

sti pedrusii

BUCURESTI

A TIME DEPENDENT SCATTERING THEORY
FOR STRONGLY PROPAGATIVE SYSTEMS
WITH PERTURBATIONS OF SHORT-RANGE

CLASS

by

Gruia ARSU

February 1988

<sup>\*)</sup> Department of Mathematics, The National Institute for Scientific and Technical Creation, Bd. Pacii 220, 79622 Bucharest, Romania.

# A TIME DEPENDENT SCATTERING THEORY FOR STRONGLY PROPAGATIVE SYSTEMS WITH PERTURBATIONS OF SHORT-RANGE CLASS

by

#### ARSU GRUIA

### 1. INTRODUCTION

In this paper we prove the asymptotic completeness for strongly propagative systems with perturbations of short-range class by means of time dependent methods. Using a suitable modification of the thechniques, developed by E. Mourre in [3], we introduce a similar decomposition of the identity  $1 = P^+ + P^-$ , and we prove a basic estimate which enable us to prove the asymptotic completeness and the discreteness of point spectrum in  $\mathbb{R}\setminus\{0\}$ .

We shall formulate the problem to be discussed here with several assumptions. The operators to be considered are given in the following form:

(1.1) 
$$\Lambda = E(x)^{-1} \sum_{j=1}^{n} A_{j} D_{j} ,$$

$$\Lambda_{O} = \sum_{j=1}^{n} A_{j} D_{j} ,$$

where  $D_j = -i\partial/\partial x_j$ , E(x) and  $A_j$ ,  $j = 1, \ldots, n$  are m x m Hermitian matrices satisfying the following assumptions:

- (A.1) E(x) and the derivatives  $D_1E(x)$ ,..., $D_jE(x)$  are continuous and bounded on  $\mathbb{R}^n$ . Moreover, there exist positive constants c and c' such that
- (1.3)  $cI \leq E(x) \leq c'I$  for all  $x \in \mathbb{R}^n$ ;
  - (A.2) There exists  $\varepsilon>0$  such that  $|E(x)-I|=0(|x|^{-1-\varepsilon})$  as  $|x|\to\infty$ ;
  - (A.3) The symbol  $\Lambda(x,\xi)=E(x)^{-1}\sum_{j=1}^{n}A_{j}\xi_{j}$  satisfies
- (1.4) rank  $\Lambda(x,\xi)=m-k$  for all  $x \in \mathbb{R}^n$  and  $\xi \in \mathbb{R}^n \setminus \{0\}$

Let  $\mathcal H$  denote the Hilbert space of all measurable  $\mathbb C^k$  valued functions u, defined on  $\mathbb R^n$ , such that

$$||u||_{\mathcal{H}}^2 = \int_{\mathbb{R}^n} \mathbb{E}(x)u(x) \cdot u(x) dx < \infty$$

and  $\mathcal{H}_{O}$  the Hilbert space  $L^{2}(\mathbb{R}^{n})^{k}$  with the usual norm. Then we can easily show that the operators  $\Lambda$  and resp.  $\Lambda_{O}$  defined by (1.1) and resp. (1.2) have some natural self-adjoint realizations (denoted by the same symbols  $\Lambda$  and resp.  $\Lambda_{O}$ ) in  $\mathcal{H}$  and resp.  $\mathcal{H}_{O}$  with the domains given by  $\mathfrak{D}(\Lambda) = \mathfrak{D}(\Lambda_{O}) = \{u \in \mathcal{H}_{O}; \Lambda_{O} u \in \mathcal{H}_{O}\}$  (see [8]).

Let  $U(t)=e^{-i\Lambda t}$  resp.  $U_{o}(t)=e^{-i\Lambda_{o}t}$  be the one-parameter unitary groups in  $\mathcal{H}$  resp.  $\mathcal{H}_{o}$  generated by  $\Lambda$  resp.  $\Lambda_{o}$ . The wave operators  $W_{+}$ ,  $W_{-}$  associated with the groups  $U_{o}(t)$  and U(t) are defined by

(1.5) 
$$W_{\pm} = s - \lim_{t \to \pm \infty} U(-t)JU_{o}(t)P^{o}$$

where  $P^{O}=I-P_{O}$  is the projection of  $\mathcal{H}_{O}$  onto (ker  $\Lambda_{O}$ ) and J is

the identification operator of  $\mathcal{H}_{o}$  onto  $\mathcal{H}:$  Ju=u. It has been shown in [1] that  $(\ker \Lambda_{o})^{1} = \mathcal{H}_{ac}^{o}$ , the subspace of absolute continuity of  $\Lambda_{o}$  in  $\mathcal{H}_{o}$ .

The main result is the following,

THEOREM 1.1. Assume that the hypotheses (A.1)-(A.3) are satisfied. Then

- (i) The wave operators  $\mathbf{W}_{+}$  exist,
- (ii) Range  $W_+ = \mathcal{H}_{\mathbf{C}}(\Lambda)$ , the continuous subspace of  $\Lambda$  in  $\mathcal{H}$ ,
- (iii) In R\{0} the eigenvalues of  $\Lambda$  are discrete and of finite multiplicity with possible accumulating points 0 and  $\pm\infty$  .

 $\underline{\text{Proof.}}$  (i) The existence of  $\mathbf{W}_{\underline{+}}$  was proved in [2] under more general hypotheses.

The other parts of Theorem 1.1 will be proved below by means of time-dependent methods.

# 2. DECOMPOSITION OF THE IDENTITY AND THE BASIC ESTIMATE

Let A be the well known dilatation group generator on  $\mathcal{H}_{0}$ . Denote by P<sup>+</sup> and P<sup>-</sup> the spectral projectors of A on the positive and negative parts of its spectrum.

Let  $\Lambda_{\rm o}$  be a self-adjoint operator on  $\mathcal{H}_{\rm o}$  such that (2.1)  ${\rm e}^{+{\rm i}{\rm A}t}\Lambda_{\rm o}{\rm e}^{-{\rm i}{\rm A}t}={\rm e}^{-\alpha\,t}\Lambda_{\rm o}$  for some  $\alpha>0$ .

Denote by  $\chi^{\pm}=\chi_{\mathbb{R}^{\pm}}\setminus\{0\}$ .

THEOREM 2.1. Let  $g \in C_O^\infty(\mathbb{R}^+ \setminus \{0\})$  and  $0 \le \mu' < \mu$ . Then there is a constant c (depending on g,  $\mu, \mu'$ ) such that

(2.2) 
$$||\chi^{\pm}(t)||_{A} + i|^{-\mu} e^{-i\Lambda} o^{t} g(\Lambda_{o}) P^{\pm}|| \le c|t|^{-\mu}$$

## Proof

1°. Let 0 < r < R such that  $supp(g) \subset (0,r)$ . By Cauchy's integral representation, we obtain

$$e^{-i\Lambda_{O}t}g(\Lambda_{O}) = (2\pi i)^{-1}\int_{C} e^{-izt}(z-\Lambda_{O})^{-1}g(\Lambda_{O})dz =$$

$$= (-1)^{m'}m'!(it)^{-m'}(2\pi i)^{-1}\int_{C} e^{-izt}(z-\Lambda_{O})^{-m'-1}g(\Lambda_{O})dz$$

where the path C of integration is composed of the segments

$$[-R-i\delta, R-i\delta], [R-i\delta, R+i\epsilon],$$

[R+i
$$\epsilon$$
, -R+i $\epsilon$ ], [-R+i $\epsilon$ , -R-i $\delta$ ] .

Hence, by letting  $R \rightarrow \infty$  , we obtain

$$e^{-\Lambda_0 t} g(\Lambda_0) = (-1)^m m!! (it)^{-m} e^{-\delta t} (2\pi i)^{-1} \int_{-\infty}^{\infty} e^{-iEt} (E-i\delta - \Lambda_0)^{-m!-1}.$$

$$g(\Lambda_{O})dE + (-1)^{m'+1}m'!(it)^{-m'}e^{Et}(2\pi i)^{-1}\int_{-\infty}^{\infty}e^{-iEt}(E+i\epsilon-\Lambda_{O})^{-m'-1}g(\Lambda_{O})dE$$
.

(2.3) 
$$e^{-i\Lambda_o t} g(\Lambda_o) = +m'! (it)^{-m'} e^{+\epsilon t} (2\pi i)^{-1} \int_{-\infty}^{\infty} e^{-iEt} (\Lambda_o - E_i i\epsilon)^{-m'-1} g(\Lambda_o) dE, t < 0$$

 $2^{\circ}$ . If t>0, from (2.3) it follows

(2.4) 
$$|A+i|^{-m} e^{-i\Lambda_O t} g(\Lambda_O) P^+ = m'! (it)^{-m'} e^{\varepsilon t} (2\pi i)^{-1}$$
.

$$\cdot \int_{-\infty}^{\infty} e^{-iEt} |A+i|^{-m} (\Lambda_{o} - E - i\epsilon)^{-m'-1} g(\Lambda_{o}) P^{\dagger} dE$$

For 0 < a < b such that  $supp(g) \subset (a,b)$  we have

(2.5) 
$$\left| \int_{\mathbb{R} \setminus [a,b]} e^{-iEt} |A+i|^{-m} (\Lambda_o - E - i\epsilon)^{-m'-1} g(\Lambda_o) P^{\dagger} dE \right| \le$$

$$\leq c_0 = c_0(A,g,m,m')$$
,  $0 < \epsilon \leq 1$ .

3°. We shall estimate the norm of the operator

$$|A+i|^{-m} (\Lambda_{o}^{-E-i\epsilon})^{-m'-1} g(\Lambda_{o}) P^{+}$$

uniformly for  $E \in [a,b]$  and  $E \in (0,1]$ .

The problem can be reduced to the study of

$$\{|A+i|^{-m}(\Lambda_{O}^{-E-i\epsilon})^{-m'-1}P^{+}\}_{E\in[a,b]}$$

because  $|A+i|^{-m}g(\Lambda_o)A^m$  is clearly a bounded operator for  $m \in N$ :

$$i[g(\Lambda_o),A] = \alpha \Lambda_o g'(\Lambda_o)$$
 by (2.1)

Using complex interpolation, this property can be extended to real values of m.

4°. If m $\in$ R, n $\in$ N, m>n, a $\leq$ e $\leq$ b, 0<e $\leq$ 1, 0 $\leq$ 0 $\leq$  $\pi/2\alpha$ , we define

$$F(\varepsilon, E, \theta) = |A+i|^{-m} (\Lambda_o e^{-i\alpha\theta} - E - i\varepsilon)^{-n} e^{-A\theta} P^+$$

with

$$F(\varepsilon,E,0) = |A+i|^{-m} (\Lambda_O - E - i\varepsilon)^{-n} P^+$$

s- lim 
$$F(\varepsilon,E,\theta) = F(\varepsilon,E,0)$$
.  
 $\theta \rightarrow 0+$ 

 $F\left(\epsilon,E,\theta\right)$  is the restriction to the positive pure imaginary axis of the analytic function of  $z\!=\!\theta_{_{\rm O}}\!+\!i\,\theta$ 

$$\begin{split} F\left(\varepsilon,E,\theta_{O}+i\theta\right) &= \left|A+i\right|^{-m} \left(\Lambda_{O} e^{-\alpha \left(\theta_{O}+i\theta\right)} - E-i\varepsilon\right)^{-n} e^{iA\left(\theta_{O}+i\theta\right)} P^{+} \\ &= e^{iA\theta_{O}} \left|A+i\right|^{-m} \left(\Lambda_{O} e^{-i\alpha\theta} - E-i\varepsilon\right)^{-n} e^{-A\theta} P^{+} \quad \text{by (2.1)}. \end{split}$$

Then the Cauchy-Riemann equations imply

$$(d/d\theta)F(\epsilon,E,\theta) = -A|A+i|^{-m}(\Lambda_0e^{-i\alpha\theta}-E-i\epsilon)^{-n}e^{-A\theta}P^+$$

This implies that

(2.6) 
$$||(d/d\theta)F(\epsilon,E,\theta)|| \le |||A+i|^{-m+1}(\Lambda_0 e^{-i\alpha\theta}-E-i\epsilon)^{-n}e^{-A\theta}P^+||$$

Since  $\left|A+i\right|^{-Z}$  is analytic for Re(z)>0, we can give by interpolation an estimate for (2.6):

$$m-1=0 \cdot (1/m) + m \cdot ((m-1)/m)$$

Re(z)=0

$$|||A+i|^{-z}(\Lambda_{o}e^{-i\alpha\theta}-E-i\epsilon)^{-n}e^{-A\theta}P^{+}||\leq$$

 $\leq c(A) (E \sin \alpha \theta + \epsilon \cos \alpha \theta)^{-n} \leq c(A,g,n) \theta^{-n}$ 

Re(z) = m

$$|||A+i|^{-z}(\Lambda_{O}e^{-i\alpha\theta}-E-i\epsilon)^{-n}e^{-A\theta}P^{+}||=||F(\epsilon,E,\theta)||$$

Then we get

- (2.7)  $||(d/d\theta)F(\varepsilon,E,\theta)|| \le c(A,g,n,m)\theta^{-n/m}||F(\varepsilon,E,\theta)||^{1-1/m}$ 5°. The differential inequality (2.7) implies that
- (2.8)  $\sup\{||F(\varepsilon,E,\theta)||; 0<\varepsilon\leq 1, 0\leq\theta\leq\pi/2\alpha, a\leq E\leq b\}=s<\infty$ .

For  $v \in \mathbb{N}$  sufficiently large we define

$$s_{v} = \sup\{ || F(\varepsilon, E, \theta) ||; v^{-1} \le \varepsilon \le 1, v^{-1} \le \theta \le \pi/2\alpha, a \le E \le b \}$$

Then lim s =s and there exists a sequence  $\{(\epsilon_{\nu}, E_{\nu}, \theta_{\nu})\}$  such that

$$v^{-1} \le \varepsilon_{v}, \ \theta_{v}, \ s_{v} = ||F(\varepsilon_{v}, E_{v}, \theta_{v})||$$

If  $s=\infty$  then  $\lim_{\epsilon_{\sqrt{\nu}}=1} \lim_{\theta_{\nu}=0} (\text{if this is not true then the Uniform Boundeness Theorem implies that the sequence <math>\{s_{\nu}\}$  is bounded). From (2.7) we can deduce for  $0 \le \theta \le \theta' \le \pi/2\alpha$  that

$$\left| \left| F(\varepsilon, E, \theta) - F(\varepsilon, E, \theta') \right| \right| \leq c (A, g, m, n) (\theta'^{1-n/m} - \theta^{1-n/m}) \cdot$$

• 
$$\sup ||F(\epsilon,E,\eta)||^{1-i1/m}$$
  
 $\theta \le \eta \le \theta$ 

By choosing  $\varepsilon = \varepsilon_{\nu}$ ,  $\theta = \theta_{\nu}$ ,  $\theta' = \pi/2\alpha$ ,  $E = E_{\nu}$  it follows that there exist two constants c,  $c_1 > 0$  (not depending on  $\nu$ ) such that

$$s_{v} \le cs_{v}^{1-1/m} + c_{1}$$

From this relation we conclude that the sequence  $\{s_{\nu}\}$  is bounded, contrary to  $\lim s_{\nu}^{-\infty}$ .

In particular it follows from (2.8) that

$$|||A+i|^{-m}(\Lambda_{O}-E-i\epsilon)^{-n}P^{+}||\leq s<\infty$$
  $E \in [a,b]$  ,  $\epsilon \in (0,1]$ .

6°. Let

$$L(t) = |A+i|^{-m}e^{-i\Lambda_o t}g(\Lambda_o)P^+$$

with  $m \in \mathbb{R}$ ,  $m' \in \mathbb{N}$ , m > m' + 1. Then the steps 2° and 5° of the proof imply that

$$||L(t)|| \le m'!t^{-m'}e^{\epsilon t}[c_o(A,g,m,m')+$$

$$+c(A,g,m)s(A,g,m,m')(b-a)$$
,  $\forall \epsilon \in (0,1]$ .

This implies that for every  $(m,m') \in \mathbb{R} \times \mathbb{N}$ , m > m' + 1 there exists c = c (g,m,m') such that

$$| | | A+i|^m e^{-i\Lambda} o^t g(\Lambda_O) P^+ | | \leq ct^{-m'}$$

Furthermore, we have

$$||e^{-i\Lambda_{O}t}g(\Lambda_{O})P^{+}|| \leq ||g(\Lambda_{O})||$$

Now the theorem follows by interpolation with respect to Re(m) (If  $0<\mu'<\mu$  one takes  $m'=1+[\max\{\mu',\mu'/(\mu-\mu')\}]$ ,  $m=(\mu/\mu')m'$ ,  $p=m'/\mu'$ , 1/q=1-1/p. Then one applies Hadamard's three lines theorem in the strip  $\{z;\ 0<\text{Re}(z)< m\}$  to the analytic function  $h(z)=|A+i|^{-z}e^{-i\Lambda_0t}$ . •  $g(\Lambda_0)P^+$ ).

Q.E.D.

COROLLARY 2.2. Let  $g \in C_0^\infty(\mathbb{R}^- \setminus \{0\})$  and  $0 \le \mu' < \mu$ . Then there is a constant c (depending on g,  $\mu$ ,  $\mu'$ ) such that

(2.2)' 
$$|\chi^{+}(t)| A+i |^{-\mu} e^{-i\Lambda} o^{t} g(\Lambda_{o}) P^{+}| | \leq c |t|^{-\mu}$$

# Proof

We apply Theorem 2.1 to the operator  $-\Lambda_O$  and to the function  $\check{g} \in C_O^\infty(\mathbb{R}^+ \setminus \{0\})$ ,  $\check{g}(x) = g(-x)$ .

Q.E.D.

# 3. ASYMPTOTIC COMPLETENESS

As a preliminary, we note the following result.

LEMMA 3.1. For  $0 \le \beta \le 2$ 

$$|A+i|^{\beta} (\Lambda_{O}^{+i})^{-1} (1+|x|^{2})^{-\beta/2}$$

is a bounded operator.

# Proof

We need only to prove the case  $\beta=2$ , and then use complex

interpolation. Thus we need to prove that

$$A^{2} (\Lambda_{o}^{+i})^{-3} (1+|x|^{2})^{-1}$$

is bounded. Since  $\Lambda_{_{\hbox{\scriptsize O}}}$  satisfies (2.1) with  $\alpha \text{=}1$  we find for suitable g that

$$Ag(\Lambda_O) = i\Lambda_Og'(\Lambda_O) + g(\Lambda_O)A$$

By iterating this formula we get

$$A^{2}g(\Lambda_{o}) = -\Lambda_{o}g'(\Lambda_{o}) - \Lambda_{o}^{2}g''(\Lambda_{o}) + i\Lambda_{o}g'(\Lambda_{o}) A + g(\Lambda_{o}) A^{2}$$

By taking  $g(\lambda)=(\lambda+i)^{-1}$  we obtain the conclusion of Lemma 3.1 by using the explicit formula for A i.e. A=1/2(D·x+x·D).

Q.E.D.

LEMMA 3.2. Suppose that the assumptions (A.1)-(A.3) are fulfiled. Then for every  $g \in C_O^\infty(\mathbb{R}^+ \setminus \{0\})$ 

$$(W_{+}-1)g(\Lambda_{O})P^{+}$$

are compact operators on  $\mathcal{H}_{0}$ .

# Proof

$$(W_{+}-1)g(\Lambda_{O})P^{+}=i\int_{O}^{\infty}e^{i\Lambda S}(\Lambda J-J\Lambda_{O})e^{-i\Lambda_{O}S}g(\Lambda_{O})P^{+}dS$$
$$=i\int_{O}^{\infty}e^{i\Lambda S}(E^{-1}-I)e^{-i\Lambda_{O}S}g(\Lambda_{O})P^{+}dS$$

The operator  $(E^{-1}-I)e^{-i\Lambda_0 s}$   $g(\Lambda_0)P^+$  is a compact operator for any s>0, as follows from the diagram

$$\mathcal{H} \xrightarrow{P^{+}} \mathcal{H}_{o} \xrightarrow{e^{-i\Lambda_{o}s}} \mathcal{D}(\Lambda_{o}) \xrightarrow{P^{o}} \mathcal{H}^{1}(\mathbb{R}^{n}) \xrightarrow{E^{-1}-I} \mathcal{H}^{1}_{1+\epsilon}(\mathbb{R}^{n}) \subset \mathcal{H}_{o}$$

In the papers [5], [6] it was proved that the third arrow is a bounded operator. The last arrow is a compact operator by Rellich's Theorem. Furthermore the integral

$$\int\limits_{0}^{\infty}||(E^{-1}-I)e^{-i\Lambda_{0}s}g(\Lambda_{0})P^{+}||ds is well defined since$$

$$\begin{aligned} & | | (E^{-1}-I)e^{-i\Lambda_{O}s} g(\Lambda_{O})P^{+} | | \leq \\ & \leq | | (E^{-1}-I)(\Lambda_{O}+i)^{-\beta}e^{-i\Lambda_{O}s} g(\Lambda_{O})(\Lambda_{O}+i)^{\beta}P^{+} | | \leq \\ & \leq | | (E^{-1}-I)(\Lambda_{O}+i)^{-\beta}|A+i|^{1+\epsilon}| | | | |A+i|^{-1-\epsilon}e^{-i\Lambda_{O}s} \\ & \leq | | (E^{-1}-I)(\Lambda_{O}+i)^{\beta}P^{+} | | \end{aligned}$$

$$\cdot g(\Lambda_{O})(\Lambda_{O}+i)^{\beta}P^{+} | |$$

From Theorem 2.1 it is sufficient to verify that  $\beta > 0$  can be chosen such that  $(E^{-1}-I)(\Lambda_0+i)^{-\beta}|A+i|^{1+\epsilon}$  is bounded on  $\mathcal{H}_0$ . By Lemma 3.1 this is true for  $\beta=1$  because we may suppose  $\epsilon \le 1$  in (A.2).

COROLLARY 3.3. Suppose that the assumptions (A.1)-(A.3) are fulfiled. Then for every  $g \in C_0^\infty(\mathbb{R}^- \setminus \{0\})$ 

$$(W_--i)g(\Lambda_0)P^{\frac{1}{+}}$$

are compact operators on  $\mathcal{H}_{o}$ .

## Proof

We apply the above results to the operators  $-\Lambda_O$ ,  $-\Lambda$  and to the function  $\check{g} \in C_O^\infty(\mathbb{R}^+ \setminus \{0\})$ ,  $\check{g}(t) = g(-t)$ . Hence Lemma 3.2 implies that

$$(W_{+}(-\Lambda, -\Lambda_{0})-1)g(-\Lambda_{0})P^{+}$$

are compact operators  $(-\Lambda_{_{\mbox{\scriptsize O}}}$  still satisfies (2.1)), which means that

$$(W_{-1}) g (\Lambda_{O}) P^{+}$$

are compact operators on  $\mathcal{H}_{\mathcal{O}}$ .

Q.E.D.

For the proof of Theorem 1.1 we need one more elementary result whose proof can be found in [9], [7].

LEMMA 3.4. Let 
$$g \in C_0^{\infty}(\mathbb{R} \setminus \{0\})$$
. Then 
$$g(\Lambda) - g(\Lambda_0)$$

is a compact operator in  $\mathcal{H}_{o}$ .

END OF THE PROOF OF THEOREM 1.1. (ii) We give the proof for the positive sign, i.e. Range  $(W_+)=\mathcal{H}_C$ . Assume on the contrary that Range  $(W_+)\neq\mathcal{H}_C$ . Then the subspace  $\mathcal{H}_C$   $\Theta$  Range  $(W_+)$  reduces the operator  $\Lambda$  and hence there exists an element us  $\mathcal{H}_C$   $\Theta$  Range  $(W_+)$ , u\( = 0 \), such that  $E(I_O)$  u=u for some compact interval which is disjoint from zero. Let  $I_C$  Int I, where I is another compact interval disjoint from zero, and  $g\in C_O^\infty(I)$  such that  $g(\lambda)=1$  for  $\lambda\in I_O$ . Then  $g(\Lambda)$  u=u. Since I is an interval disjoint from zero we have either  $I\subset \mathbb{R}^+\setminus\{0\}$  or  $I\subset \mathbb{R}^+\setminus\{0\}$ . Let us consider for the definitiness that  $I\subset \mathbb{R}^-\setminus\{0\}$ . Then using compactness properties of operators in Corollary 3.3 and Lemma 3.4, we can find a sequence  $t_{n} \to +\infty$  (Lemma 2 in [9]) such that

$$\begin{aligned} & ||(g(\Lambda) - g(\Lambda_{o}))e^{-i\Lambda t_{n}}u|| \rightarrow 0; \\ & (3.1)_{-}||(W_{-}-1)g(\Lambda_{o})P^{+}e^{-i\Lambda t_{n}}u|| \rightarrow 0; \\ & ||(W_{+}-1)g(\Lambda_{o})P^{-}e^{-i\Lambda t_{n}}u|| \rightarrow 0. \end{aligned}$$

Finally we get

(3.2) 
$$0 \neq ||u||^{2} = \lim_{n \to \infty} ||g(\Lambda)e^{-i\Lambda t_{n}}u||^{2} = \lim_{n \to \infty} (g(\Lambda)e^{-i\Lambda t_{n}}u, W_{g}(\Lambda_{o})P^{+}e^{-i\Lambda t_{n}}u) + \lim_{n \to \infty} (g(\Lambda)e^{-i\Lambda t_{n}}u, W_{g}(\Lambda_{o})P^{-}e^{-i\Lambda t_{n}}u) + \lim_{n \to \infty} (g(\Lambda)e^{-i\Lambda t_{n}}u, W_{g}(\Lambda_{o})P^{-}e^{-i\Lambda t_{n}}u)$$

The second right side term is equal to zero by hypothesis. The first one is the limit of the following term:

$$(W * g(\Lambda)u, e^{i\Lambda_0 t_n} g(\Lambda_0)P^+e^{-\Lambda t_n}u)$$

which tends to zero when  $t_n \to +\infty$ , because  $W_g(\Lambda)$ u can be approached in norm sense by vectors belonging to the range of  $|A+i|^{-\mu}$  (Corollary 2.2), so we get a contradiction.

(iii) The proof of this assertion is quite similar to that of (ii). Suppose to the contrary. Then we can find an orthonormal family  $\{u_n\}$  with  $\Lambda u_n = \lambda_n u_n$  and  $\lambda_n \to \lambda \in \mathbb{R} \setminus \{0\}$ . By throwing out finitely many  $u_n$ 's we can suppose that each  $\lambda_n$  belongs to a compact interval  $I_0$  disjoint from zero. Thus  $E(I_0)u_n = u_n$ . Then there is  $g \in C_0^\infty(\mathbb{R}^+ \setminus \{0\})$  (if  $I_0 \subset \mathbb{R}^+ \setminus \{0\}$ ) such that  $g(\lambda)u_n = u_n$ . Since  $u_n \to 0$ , we find

$$(g(\Lambda) - g(\Lambda_{o})) u_{n} \xrightarrow{S} 0;$$

$$(3.1)'_{+} (W_{+} - 1) g(\Lambda_{o}) P^{+} u_{n} \xrightarrow{S} 0;$$

$$(W_{-} - 1) g(\Lambda_{o}) P^{-} u_{n} \xrightarrow{S} 0;$$

$$(W_{-} - 1) g(\Lambda_{o}) P^{-} u_{n} \xrightarrow{S} 0;$$

$$Similary to (3.2) we obtain$$

$$1 = ||u_{n}||^{2} = \lim_{n \to \infty} (u_{n}, W_{+} g(\Lambda_{o}) P^{+} u_{n}) + \lim_{n \to \infty} (u_{n}, W_{-} g(\Lambda_{o}) P^{-} u_{n})$$

$$+ \lim_{n \to \infty} (u_{n}, W_{-} g(\Lambda_{o}) P^{-} u_{n})$$

Since  $\mathbf{u}_{\mathrm{n}}$  , as an eigenfunction, is orthogonal to Range  $\mathbf{W}_{\mathrm{+}}\mathbf{U}$  Range  $\mathbf{W}_{\mathrm{-}}$  we get a contradiction.

Q.E.D.

REMARK 3.5. One can use the abve arguments for proving similar results concerning the asymptotic completeness for the operators  $D_1^2 - D_2^2 + (1+|x|)^{-1-\epsilon}$  and  $D_1^2 D_2^2 + (1+|x|)^{-1-\epsilon}$  on  $L^2(\mathbb{R}^2)$ .

Let  $h_o(\xi) = \xi_1 \xi_2$  or  $h_o(\xi) = \xi_1^2 - \xi_1^2$  for  $\xi = (\xi_1, \xi_2)$  and let  $V: \mathbb{R}^2 \to \mathbb{R}$  be a measurable function such that for some c>0,  $\epsilon$ >0 we have

$$|V(x)| \le C(1+|x|)^{-1-\epsilon} \quad \forall x \in \mathbb{R}^2$$

Let  $H_0=h_0(D)$  and  $H=H_0+V$  be the self-adjoint realization in  $L^2(\mathbb{R}^2)$ . Here we use Lemma 3.1 from [4] which implies that  $V(H_0+i)^{-1}$  is a compact operator. This result is also used in the proof of Lemma 3.2, so one can prove in the same way the following.

THEOREM 1.1'. (i) The wave operators  $W_{+}(H,H_{O})$  exists.

- (ii) Range  $(W_+) = \mathcal{H}_C(H)$ , the continuous subspace of H in  $L^2(\mathbb{R})$ .
- (iii) In  $\mathbb{R}\setminus\{0\}$  the eigenvalues of H are discrete and of finite multiplicity, with possible accumulating points 0 and  $\pm^{\infty}$ .

#### REFERENCES

- G.S.S. Avila: Spectral resolution of differential operators associated with symmetric hyperbolic systems, Appl. Anal.
   1 (1972), 283-299.
- 2. G.S.S. Avila and D.G. Costa: Asymptotic properties of general symmetric hyperbolic systems, J. Funct. Anal. 35 (1980), 49-63.
- 3. E. Mourre: Link between the geometrical and the spectral transformation approaches in scattering theory, Commun. Math. Phys. 68 (1979), 91-94.
- 4. Ph. Muthuramalingam: A note on time dependent scattering theory for  $P_1^2 P_2^2 + (1+Q)^{-1-\epsilon}$  and  $P_1P_2 + (1+Q)^{-1-\epsilon}$  on  $L^2(\mathbb{R}^2)$ , Math. Z. 188 (1985), 339-348.
- 5. L. Sarason: Remarks on an inequality of Schulenberger and Wilcox, Ann. Mat. Pura Appl. 92 (1972), 23-28.
- 6. J.R. Schulenberger and C.H. Wilcox: A coerciveness inequality for a class of nonelliptic operators of constant deficit,
  Ann. Mat. Pura Appl. 92 (1972), 77-84.
- 7. B. Simon: Phase space analysis of simple scattering systems: extensions of some work of Enss, Duke Math. J. 46 (1979), 119-168.
- 8. C.H. Wilcox: Wave operators and asymptotic solutions of wave propagation problems of classical physics, Arch. Rational Mech. Anal. 22 (1966), 37-78.
- 9. D.R. Yafaev: On the proof of Enss of asymptotic completeness in potential scattering theory, preprint, Steklov Institute, Leningrad, 1979.