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A TIME DEPENDENT SCATTERING THEORY FOR STRONGLY
PROPAGATIVE SYSTEMS WITH PERTURBATIONS OF
SHORT-RANGE CLASS

by

ARSU GRUIA

1. INTRODUCTION

In this paper we prove the asymptotic completeness for
strongly propagative sysfems with perturbatioﬁs of short-range
class by means of time dependent methods. Using a suitable mo-
dification of the thechniques, developed by E. Mourre in [3],
we introduce a similar decomposition of the identity 1 = pt T
and we prove a basic estimate which enable us to prove the asymp-
totic completeness and the discreteness of point spectrum in
RN{O}.

We shall formulate theoproblem to be discussed here with
several assumptions. The operators to be considered are given in

e

. the following form:

Cl) A = E(x) AjD. s
n

Gl1.2) = a0

where Dj=—i8/axj, E(x) and Aj’ J=14.e-pn are 0 e Hewemitian

matrices satisfying the following assumptions:




(A.1) E(x) and the derivatives D1E(x),...,DjE(x) are conti-
nuous and bounded on R". Morecover, there exist positive

constants ¢ and c¢' such that

(1.3) cI<E (x)<ec'T for all xeRn;r

(A.2) There exists e>0 such that |E(x)—I]=0([x|—1_€) as
Bl

n

(A.B) The symbol A(x,g):E(x)'—1 2 Ajgj satisfies
L

J

(1.4) rank A(x,£)=m-k for all xeR™ and QERn\{O}

Let # denote the Hilbert space of all measurable Ck valued

functions u, defined on Rn, such that

llu!I; = [ E(x)u(x)+u(x)dx<o
RrD
and Jfo the Hilbert space L2(IRn)k with the usual norm. Then we

can easily show that the operators A and resp. AO defined by (1.1)
and resp. (1.2) have some natural self-adjoint realizations (de-
noted by the same symbols A and resp. AO) in ¥ and wesp. 3{0 with
the domains given by @(A)=9(AO)={u6760;Aoue$%} (glee 81) .

=ji-t

= resp. Uo(t)=e © be the one-parameter uni-

Let U(t)=e
tary groups in &£ resp. ?@O generated by A resp. Ao‘ The wave
operators W+, W_ associated with the groups Uo(t) and U{t) are

defined by

(1.5) W, =s~ lim U(~t)JUo(t)PO

- t > +to

L
where PO:I-~~PO is the projection of ?60 onto (ker AO) and J is



the identification opefator ofiﬁo.onto #:Ju=u. Ithhas been shown
: L

in [} that (ker AO) ;%ZC, the subspace of absolute continuity of

o ibe

o o

The main result is the following,

THEOREM 1.1. Assume that the hypotheses (A.1)-(A.3) are sa-
tisfied. Then

(1) The wave operators W+ exist,

(ii) Range W+=Z%(A), the continuous subspace of A in T

(idi) In R~{0} the eigenvalues of A are disecrete and of fimite

-

multiplicity with possible accumulating points 0 and +« .

Proof. (i) The existence of W+ was proved in [2] under more

general hypotheses.

The other parts of Theorem 1.1 will be proved below by means

of time-dependent methods.

2. DECOMPOSITION OF THE IDENTITY AND THE BASIC ESTIMATE

Let 2 be the well known dilatation group generatonr on?@o.
Denote by P+ and P the spectral projectors of A on the posifive
and negative parts of its spectrum.

Let‘AO be a self-adjoint operator onQ?o such that

e+lAtA e_lAt = e_utAo for some a>0.

21 =

+
Denote by X~ = XRi ~{0}°

THEOREM 2.1. Let g ECZ(R+\\{O}) and 0<p'<p. Then there is
a constant e (depending en g, I.u') such that

T e

e Aotg(Ao)P*I]gcltl"”



Proof

1°. Let 0<r<R such that supplg)=(0,r). By Cauchy's integral

representation, we obtain

eniAotg(AO)z(zni)_1fe—iZt(z~AO)—1g(Ao)dz=
C

e e e PR e " el as
C

where the path C of integration is composed of the segments
[=R-16, R=i61, - ER-i&, R+iel ,

[R+i€, —R+i€] 7 [—R+i€' —R_j-6]

Hence, by letting R»« , we obtain

e

+g(h ) dme (-1 LB e (Zni)-1ie—iEt (E+ie-AO)'m"1g(Ao)d.E -
Letting &+ when t>0 and letting e+~ when t<0 we obtain

(2.3) & Hotgn )=m't @™ 2m) T &I () ~Boie) ™ g (h,)aE,

- 00

2° —1f £ 0, Prome(2.3) it follows

~m _iAot + -m' et =
oy | nrli = e glA )P =m'l(it) e (2mi) .

2 je‘iEt\A+i|“m(AO—E—-ie)"m'"1g(AO)P+dE

=== 00.)

For O<a<b such that supp(g)c(a,b) we have

"Aotg(Ao)=(»1)m'm'1(it)'m'e"‘gt(2ni)'1 fe B (gerop )™



@ L[ e e e b g yeienls
R~[a,b]
éco=co(A,g,m,m'), 0<esl.

3°. We shall estimate the norm of the operator

~m|—

aei | e meiel ™ lgip Rt

uniformly for Eela,bl and e (053

The problem can be reduced to theistudy of

. {—m . =m'=1 4
{|a+i] ffli e e P }E€£a’bj

ee (0593
because lA+il—mg(AO)Am is clearly a bounded operator for meN:
i[g(AO),A]=aAOq'(AO) by (2.1)

Using complex interpolation, this property can be extended to

real values of m.

4°. If mecR, neN, m>n, asesb, 0<esl, 0£6sn/20, we define

F(e,E,e):;A+il’m(Aoe"me~E~ie)”ne_MP+

with

F(e,E,O)=]A+i["m(AO~E—ie)'np+

s—=lam Ll , B 0 =P(e;E,;0).
0->0+

F(e,E,0) is the restriction to the positive pure imaginary axis

of the -analytic Ffunctieon of z=eo+ie

~u(eo+i6) —nelA(q;ﬂﬁ)P+

F(E,E,eo+ie)=[A+ii”m(Aoe ~E-ig)

P00 nei | e Ppie) e T by (2.1).



Then the Cauchy-Riemann equations. imply

=i ub : )—n —-AB

(dﬁi@F(e,E,e)=—AlA+i[—m(Aoe o
This implies that
(2.6) 11(d/de)F(g,E,e)llgl|1A+i|"m+1(Aoe”i“e—E—ie)"ne"A6P+||

<

Since lA+i[_z is analytic for Re(z)>0, we can give by inter-
polation an estimate for (2.6):

m=1=0° (1/m)+m- ( (m=1) /m)
Re (z)=0
—i0f

<

-n_-AQ_+
= =

Flaeif 2 (o e ~E-ie) e

<c(A) (Esin aft+ecos ae)—néc(A,g,n)e—n
Re (z) =m

||lA+i[”Z(Aoe—iae-E~ie)*ne_AeP+l|=l[F(£,E,6)[|
" Then we get
(2-7) |[(d/de)F(e,E,e){[5c(A,g,n,m)e"n/m]\F(e,E,e)l[1—1/m

5°.  The differential inequality (2.7) implies Ethat
(2.8) supl||Ele,E,08)][; 0<esT, 0565m/2q, asEsbl=s<e .

For veN sufficiently large we define

svzsup{llF(g,E,e)ll; v_1§e§1, v~1§6§w/2u, asE<b}
Then 1lim s ,=8 and there exists a ‘sequence {(EV'EV'GV)} such that

v~1§€v, 0y Sv:“F(Ev'Ev’ev)ll



Tf s=o» ‘then 1im gvzlim evzo (if this is not true then the Uniform
Boundeness Theorem implies that the sequence {Sv} is bounded) .

From (2.7) we can deduce for 0£9<9'sn/2qa that

1 1= =
||F (e, B, 0)~F(e,E,6') | |sc(A,g,m,n) (g' 2/ M_g!™0/m),
. sup!lF(e,E,n)|l1~ﬂ/m
BENn<H
By choosing E5€ s 6=6v, ‘=qn/2a, E=Ev it follows that there exist
two constants c, c1>0 (not depending on y) such that
s gcs1_1/m+c1

Y A%

From this relation we conclude that the sequence {Sv} is bounded,

contrary to -lim S

T particular it follows from (2.8} that
|| 1a*i| ™4 -E-ie) "P" | |s85<e Ecla,b) . ec@,1] .

6°. Let

lAOtg(A )P+

Lit)=|ati| e -

with meR, m'eN, m>m'+1. Then the steps 2° and 5° of the proof

imply that

m

z(e) | [smiie™ e (c_ (A, g,m,m")+

+C (Algrm)S(Argrmlm') (b"a)]‘r ¥ ce (011] .

This implies that for every (m,m')eRxN, m>m'+1 there exists

c=clg,m,m ) such:-that

lllA+irme“letg(Ao)P+||§ctﬂm

I T Y AT PO P e e




Furthermore, we have
=i\t +
e Hotg g 2| [5] g tag) ||

Now the theorem follows by interpolation with respect to Re(m)
(If O<p'<p one takes m'=1+[max{p',n'/ (p=p") 3}, m=(u/p"in’, pem!
1 /g=1=1/p. Then one applies Hadamard's three lines theorem in the
strip {z; O<Re(z)<m} to the analytic function h(z)=\A+i]-Ze—leto

+
gl VB

N.E.D.

COROLLARY 2.2. Let gecz(m‘\{o}) and 0<p'<p. Then there is

a constant ¢ (depending on g, K, p') such that

(2.2)" 1|X+(t)|A+i|’“e“iAotg(Ao)pillgc\tl"”'

groof

We apply Theorem 2.1 to the operator —AO and to the func-

v

tion GeC, (RT~{0}), Jix)=g(-x).

3. ASYMPTOTIC COMPLETENESS

As a preliminary, we note the following result.:

LEMMA 3.1. For 0<Bs2
1A+ilB(Ao+i)“1(1+\xi2)—8/2
is a bounded operator.

Proof

We need only to prove the case B=2, and:then use complex




interpolation. Thus we need to prove that

e e

is bounded. Sinee Ao satisfies (2.1) with o=1 we find for.suitable
g=that
Ag(AO)siAOg'(AO)+g(AO)A
By iterating this formula we get
a2 (A J==h g' (A )=d2g" (A )+ih g’ (A )Bsg (A T
o o o o) o o o o

By taking g(>\)=(>\+i)-—'1 we obtain the conclusion of Lemma 3 .1 by
using the explicit formula for A i.e. A=1/2(D-x+x°D) .

0.E.D.

LEMMA 3.2. Suppose that the assumptions (A. 1) =(A.3) are

fulfiled. Then for every geCZ(P%\{O})

4
(i =GRl Ve

are compact operators onﬁgy

Proof

e iAg —iAOs .
(W+~1)g(AO)P :iée '(AJ-JAO)e g(AO)P ds

-ip S

o 1AS 5 3
~T )& g(AO)P ds

=ife (E
(@]

1

= - S
The operator (E -I)e = g(AO)P+ is a compact operator for

any s>0, as follows from the diagram

=1/ 5

o =1

+ e g (A _} =0 B =1

# 0 = o@(/\o)—*‘;w?@‘ @l it (®

o




Tn the papers (5], [6] it was proved that the third arrow
is a bounded operator. The last arrow is a compact operator by

Rellich's Theorem. Furthermore the integral

© ' ==
e e g(AO)P+l\ds is well defined since
o

= =il
e amie 2 g(AO)P+ll§

= = =il
e e g(n) (h+i) Pe7| |8

o em any n r P paei | V0L a7 2.

‘g (n ) (A i) PRT]|

From Theorem 2.1 it is sufficient to veriify that g >0 wecan
be chosen such that (E“1—I)(Ao+i)~6IA+i|1+€ is bounded onZ%O.
By Lemma 3.1 this is true for R=1 because we may suppose e<]

n B2 . Q.E.D.

COROLLARY 3.3. Suppose that the assumptions (BA.1)=(A.3)

are fulfiled. Then for every gGCz(Rm\{O})

(W -1)g (A _)PT
g

are compact operators onzfo. -

Proof

We apply the above results to the operators —AO, -A and
to the function éecz(R+\{0}),§(t)=g(~t). Hence Lemma 3.2 implies

that

+
(wi(wA, —AO)—1)g(—AO)Pm



are compact operators (—AO still satisfies (2.71)), which means
that

(W_=1)g(A_)P™
= o

are compact operators onl%o.
QE«Di.
For the proof of Theorem 1.1 we need one more elementary

result whose proof can be found in (9] , Bl

LEMMA 3.4. Let gecé(m\{O}). Then

g(A)—g(AO)

is a compact operator inE%o.

END OF THE PROOF OF THEOREM 1.1, (ii) We give £he proof
for the positive sign, i.e. Range (W+)=%%. Assume on the contrary
that Range (W+)#Z%. Then the subspacei%c © Range XW+) reduces
the operator A and hence there‘éXists an element ue%% & Range(W_),
w0, such that E(Io)u=u for some compact interval which is dis-
joint from zZero. Let Ié:Int I, where I is another compact interval
disjoint from zero, and geCZ(I) such that g())=1 for XeIO. Then
g (A)u=u. Since -l dis an interval disjoint from zero we have eithexr
eR {0}=or IcR'\{0}. Let us consider for the definitiness that
<R ~{0}. Then using compactness properties of operators in Corvls=
lary 3.3 and Lemma 3.4, we can find a sequence tn > 4o (Lemme 2

in [9]) such that

(&)

[ (g (8) =g (a ) )e 0

gl O
(3-1)_ll(W_"1)g(AO)P+e_iAtﬁu\l 0

l\(w+w1)g(Ao)P"e"iAt“u[1 + 0



Finally we get

o = 2
0#| lu] | 2=1im| |g(aye M Ea] | 7=
Ii—>co
(3.2) = =

e Aty .
n-ro : 2

+1am g (A)e LAtq : W+g(AO)P_e-iAt”u)
n->oo

The second right side term is equal to zero by hypothesis.
The first one is the limit of the following term:

Wrg(Mu, e ° g(Ao)p+e'Ath)

which tends to zero when tn++w, pecause W*g (A)lcan be approached in
norm sense by vectors belonging to the range of lA*rilmu (Corollary

D ) so-ye gektsa contradiction.

(iii) The proof of this assertion is quite similar to that
of (ii). Suppose to the contrary. Then we can find an orthonormal

family {un} wi bl =k U Bude. A= seR- L0}, By thuowing eut fiais

tely many un's we can suppose that each kn belongs to a compact
intérval IO disjoint from zero. Thus E(Io)un:un° Then there is

oo t: E + o : \Y )
geCO(R sS{0) - (F ISZR ~f{0}) such bhat g(A)un—un. Since u, ~ 0, we
find

Sl
(g(A)"g(AO))un~—+ 0;

(3.1 (W,-Dglh )P = 0;

W_=1)gla )R u_ e

similary ‘to (3.2) we obtain

1=|‘un\{2=lim(un,W+g(Ao)P+un)+
2 e .
e +lim(un,wﬂg(AO)P un)

Nn->©



Siince u, s as dp elgenfunction, is orthegenal to Range W+U Range W
we get a contradiction.
Q.E.D.
. REMARK 3.5. One can use the abve arguments for proving si—
milar results concerning the asymptotic completeness for the opera-

{=¢e T )

e on L {RE)=

tors Df—D§+U}lxD ' and D1D2+(1+lx{)—
Let ho(g):g1g2 or ho(£)=g?—£? fio% g=(g1,g2) and let

V:R2+Rbezameasurable function such that for some c>0, £>0 we have

1-¢

|v(x)|sc(1+]x])" ¥ xeR’

Let HO=hO(D) and H=HO+V be the self-adjoint realization in Lz(mz),
Here we use Lemma 3.1 from [4) which implies that V(Ho+i)_1 is a
compact operator. This result is also used in the proof of Lemma

3.2, SO @nec can provecin the same way the following. : =

THEOREM 1.1'. (i) The wave operators w+(H'Ho) exists.

2
(ii) Range (W+):%%(H), the continuous subspace of H in Lz(R).

(iii) In R\{0} the eigenvalues of H are diserete and of fimite
mulEiipld cibye with possible accumulating points 0 and

+o,
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