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Tntroduction

Tn the fundamental paper [‘26]5 J W .Morgan and PQB;Shalen:'
give, among other nice things, an original procedure of compacmi
tification of an arbitrary affine variety defined over the field
C aof complex numbers or the field R of real numbers. Reading
by chance their paper, the author of the present work realized
that their construction can be equivalently described in terms
of Reobinson's non—standard analysis, by replacing the sequénw
ces of poinéaran.the vari ety by non-gtandard points on an en-
largement of the given variety. The non=standard point of view
heg the advantaege to put in evidence an elementary extension
of the base Tield, a sort of universal domain, equipped with
a canonic n&nwarchimedean;valuationw playing the role of a
“generic point" for the Riemenn spaces of valuations on the
fields of rational functions on the jrreducible compenents of

the variety. The author also realized that the main Theorems
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!
T.3.7, I4e4 given in Seetion I of [26]can be alternatively*prOQ
ved by using basic model theoretic methods. It seemed natural

to try to extend the afore mentioned resulis to the case when
the base field is a local field, leCuy 8 Cauchy'comple;é di5créw.
te valued field with finite residue field.

The task to give . an unitary model +heoretic appreach of
the Morgen-~Shalen compactification over arbitrary locally com—
pact fields of characteristic zero is one of the main goals of |
the present papel. The another one, intimately related to the

first one, but having a moTeé general character; is to treat in

an unitary model theoretic way some significant classes of* spec=

tral spaces induced by first order theories of fields.

The paper is organized in seven sectionsg as follows. Sec=
tion L introduces the reader to some basie model theoretic re-
sults‘conéerning‘the algebraically closed, the real closed and
the p-adically closed fields. As an original contribution we men-

tion the explicit description of the substructures, calied:§wdaw
mains, of the p-adically closed p-valued field extensionsg of &
p-adically closed p-valued base fieiﬁtg (see Definition 1¢11;
Lemma 1.12, Theorem lel4d, iile Sections 2 and % are devoted to
the spectral spaces induced by theories of fieldse. Based on
Stonets representation theorem for distributive lattices, the
Lindeﬁhaum Boolean algebra of a first order theory end G8del's

completeness theoram, a general theory of spectral spaces asig-

ned to commutative rings is developed, containing as particulear
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ases the Zariski'spectrumg the Coste-~Roy real spectrum and
the p-adic spectrum of a ring. Some bas e algabraiawg@dmeﬁri@-
facte concerning the affine varieties defined over arbitrary
rields are dlDCUSJud in thig general frame. Let us méniié

ipxi ‘cent results the p-adic analogug$ of the Arilrwlbr”

homomerphism theorem and of the finiteness theorenm for open &e-
mialgebraic sets (see Theorems 3.15 and 3.16}. The genéfai sche-
me developed in Sectiong 2 an& % is applied in Section 4 in or-
der to extend the bashc concept of Riemann.sﬁabe of a field
'aaequaté Riemenn spaces of commutative rln By 1nclud1ng real ané
p—-adic versionse ROblﬂuOﬂ s theorem on allmlnation of quantlw
fiers for non~trivial walued algebraically closed fields cﬁd
its real and p-adic analogeas Theorems 4.% and 4.6 play here an |
important role, The section endé.with a density theorem‘om Hiéw.
mann.spacesffﬁheoreﬁ.é.?}, ﬁhiéh,is a basic teool for ihé last
part of_the paper. Some natural continuous maps-oﬁ the Riemanmn
space of a field and a density theorem (Proposition 5.2} are con
gidered in Section 5. Section 6 is devoted to the non—sﬁandaﬁd
descripiion of the Morgan=-Shalen procedure of comnaciiflc&iznm
over arbitrary locally compact figldso Finaliy9 the main results
concerning the compactification of affine varieties over arbi-
trary locally compact fields of charactheristic zero meke the

o o o

ocbject of Section T.
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1. Some model theory for fields

In this section, having a preliminary character, some
basic model theoretic results concerning the algebraically clo=
gsed, real closed and p-adically closed fields are stated, The-
se results will play a key role in the rest of the paper.

The basic notions from model theory used in this paper
can be found in books like [9],.@2] or [3319

7Denet@'by;% the customary first order lahguage of rings
whose vocabulery contains besides the logical symbols and the
variables {Xi}i<aJ 5 EWE bihary function symbols + and*standing
for addition and multiplication, a unary function symbol - gtan
ding for the map xk» -x, and two consténﬁs for the neutrai elee=:
ments O, I « :

Let D, respectively ACF, be the universal értheory of
integral domains, respectively the inductive L-theory of alge-

braically closed fields. The main theorem concerning the L-theo~

ry ACF, due to Tarski, Chevalley and Robinson reads as follows:

Theorel 1.1l. ACF admits elimination of quantifiers.,

——)

Equivalently, in geometric terms, the projection map

K nfﬁ?ﬁfk (K algebraically closed)} maps a canstructible subget
onto a constructible one. Equivalently, in model theoretic terms
LCF iﬂ the model completion of D

An analogous result due to Tarski, Seidenberg and Robin-
o ¢ i

son holds for real closed fieidam

pefinition l.2. An ordered domain ie a pair A=(A, P)

where A is an integral domain and P is a subset of A, called



erder, subject to the conditions:z i} P+PCP; ii)P.PCP;

iii) PU-P=A and iv) Pf\—PﬁiO}n The ordered domain 4 ie en

ordered field if A is a field.

Definition le.%. The field K is real closed if

E=(K, Kol o snienibucil flelduandieash polynomial f€ K[X | of
add degree has a moot in Ke L

‘Let L, be the language L augmented with a one-place re-
lation symbol P, standing for order. Degote by 22 the universal
Lo~theory of ordered domains. Let RCF be the inductive L,~theo-
ry obtained from the éwtheory of real closed fields by adding
the axiom - definition P(xy)<> (dx5) (x1=x§)a Now the-anélogu@

of Theorem_l,l.reads as follcows:

Theorem le.4. RCF admits elimination of quantifiers,

Equivalently, the projection map K‘nil>Kp (K real closed) maps
a semialgebraic subset onto & semialgebraic one. Equivalently,
RCF is the model completion of OD.

A quite similar result, due to MacIntyre [24] and Preste’

Roquette [?8], holds for the p-adically closed fields. More ge-
neral results concerning the relative elimination of quantifier:
forVHenselian valued fields of characteristic zero are proved
by Weispfenning [39] by primitive recursive techniques and by

the author [5] by algebraic and basic model theoretic methods.

Definition 1.5. Given a prime number p and the positive

integers e and f, a p-valued field of type (e, f) is a valued

field‘E = (K, v) satisfying i) K is of characterigtic Zero,
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while the residue field K, is of characteristic p;
ii) the maximal ideal m_ of the valuation ring O, is principal,

aay:§v=530 puting VGE}:ﬁy the ordered group of integers Z is

Ak

identified with a convex subgroup of the value group vK;

1ii)} the p-remification index v(p) is e and the residue derree

is £, i.e., K2 F_with g=pl.

q

Definition 1.6, A p-valued field K=(K, v) of type (e, f)

- is called p-adically closed if K does not admit any proper al-
gebraic p-valued field extension of the same type.
By Zorn's lemma, if K is p-valued of type (e, f) there

2 e ~/
exisls a maximal p-valued algbraic extension K of the same ty-

—~
pe. Any such valued field K is called a p-adic closure of K,
The p-adic closure of a p-valued field_g is not necessarily uni-

que. The most prominent examplesof p-adically closed fields are
those which are locally compact with respect to the given valua
tion. They can be characterized as the completions of finite

- algebraic number fields with respect to a nonarchimedean valua=-

tion.

The next lemma is very useful in the following.

Lemma l.7. Let (K, v) be a Henselian valued field such

[ SN it

that the value group vK has a smallest positive element 1, say
1=v () for somefl€K. Let ny2 be a natural number which is pri-

me to the residue characteristic and G be a multiplicative sub-

group of KX such that KXnC:G andﬁf@# G. Then the valuation ring

7

Ox admite the deseriptions Ov.:{aeK:1+5faneG}e
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Proof. For izl, let us put:cgm{aéizl ﬁﬁla%eﬁ}a By

AR ; . “ian Xn i 2
HeﬁM61 s lemma we get l+ﬁ,qwc0v ¢ G, and hence Ov(;Oi for iyl.
In particulsr, Ovﬁfcgo Conversely, let ae C& and assume that
v(a)<0. AarﬁtwlafléChﬁfOﬁml, we get (1+%a™)P 1+ L(r~2am Ty
e LT, G e =
=" ~a " (l+fa) €G, and hence 4 € G, a contradiction. Consequent-

Xy, OV;C&E as required, @

-;@m@g 1.8. Given a p-valued field K=(K, v) of type
(e, £) and a field extension F of K, the next statements are
equivalents

i} There exists a valuation w of F such that
F=(F, w) is a p-adically closed p-valued field extension afgg
of type (e, ).

ii) There existse a unique valuation w of F satisfying

the condition above,

ii1) Let LEK be such that ve0=1 and let U=facr:
:1‘+ﬁézeF23‘if p#2, respeétively'ﬂ)={ae“:1 +ﬂé3§F?} if p=2,
Then 0 is a Henselian valuation ring of F lying over OV’ﬁ
. T i ; 0 # O 5 Yo 5 o -
the canonic morphism v/pC%T? /pO:Ls an isomorphism (equiva
lenbly, F0 is the maximal ideal of U and the residue field

04%0 is isomorphic to Kﬁﬁigqﬁ q=pf) and the value group

is & Z=group, i.e. Fxf . is divigible.
i 5 s stk

Prooef; Létﬁgm(Fi w} be a p-valued field extension of XK

of type (e, £}« According to [?8] Theorem 3.1, the necessary

and sufficient condition fior F, to be p-adically closed is

that ¥ is Henselian and its value group WE is & Z-group, 1.€e,



wF/,, is divisible. Thus, the Jemma is immediate, thanks to

e

lemma Lfele B

-

Remark. AGOOPdLné to LES] Theor@m.6 15, we may take

a.
)"Fuiyrd}uaéf} 9 wher7'5(X)“5§ B st is the Kochen-
(x9-x) -1

Roquette operator.

The previous lemma shoﬁs'that ﬁﬁe clags of p-adically.
closed p-valued fields of type (e, £) extending the given p-va-
lued fielﬁ;gé(K, v) of type (e, f) is axiomatizable in terms of

the language ék of rings augmented by constants gtanding for
; ; )

the elements of K.

Definition 1.9. ( L?é]g 4,2}, A valued domain is a pair

éF(A, R); where A is an integral domain and R is a binary rela-
tion satisfying i) R is transitivé; ii)aRb or bRa; iii) aRb
and aRe =raR(bte); iv) cAO=»(aRb&p acRbe); v) not OR1.

Given an infegral domain A there is a canonical bijec-
tion between the structures of valued- domains on A and the valu
tion rings of the quotient field-KzQ(A) of &, given by
Ilk>ch 3{% : a,bEh, bAO, bRa} whose inverse is given by

Ov EriRis j(a,b) € AxA: v(a)év(b)} o

Definition 1.10. A p-valued domain of type (e, T} is =

valued domain:ézfA,‘R) satisfying i)‘EﬁQ(A), VR) is a p-valued

field of type (e, f) and ii) the cenonic map Qh"é”ovﬂf 0
R

is dnta, where Ckx*{aGA:l,Rajx CL{FlAw
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Definition 1.11. Given a p-adically closed p-valuec

field E;CKr v). of type (e, £, & E}Qﬁgﬁiﬁ is a structure
:ﬁz(A, Pt m»2}, where A is an integral domain extending K and
P,CA for ny2 such that the next conditions are satisfied:

£Y AT C P fom my2;

ii) PiﬁPH\{O} is a monoid with respect to multiplication and

D, K : . ; X Nt
GhL}JER&QH ﬁmwQE,lws,Q%A,bﬁﬁgcﬂﬁamimwm—?

aEPn;

iii) KnPnzﬁﬁfor ny2;
iv) A='&7 ciPnﬁ where clg,;,,q éﬁKX is a sgystem of representa=

i=1 En

=

tives of KK/KXR <
v) min <P CP;

: , & ;
vi) let R={fa, b}éﬁXAraz+ﬁB & ?23 if p#A2, respectively R=
mi(a?b)éAxA:a3+5fb3éP3}'if p=2, where LEK satisfies v(F)=1;
then (A, R} is a p-valued domain of type (e, f) extending K;

vii) if a€A, bGP}l_{l and (fn°b)R a then atbeP, for ny2.

The next lemma is immediate.

Lemma l.12. Let K=(K, v) be a p-adically closed p-va-
lued field of type (e, f), F be a field extension of K and

(P_) be a family of subsets of F. The necessary and suffi-
D ngza

cient condition for F=(F, P_:nz2) to be a K-domain (then we say

IL

that F is a K~field) is that

i) FH(ZPH for ny2;
R X |
ii) P, is a subgroup of F  for mp2;
iii) the canonic morphism K /Kxn'~% FX/IX is an isomorphism
n
for= nyd;
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iv) m,]‘n ::?PH C'Pm;
v) let 02{861"‘.‘:1'#‘5[826 H%)"‘B T D.‘r’f?g- respectively' O = z‘ afFlt:
o l-g.. fs_ :;5 Y = b O > L : & % LIS 3
rirda‘ep, ] if p=2: then 18 a valuation ring of F with corre

3 :
ponding valuation w and (F, w} is a p~valued field extension
of (K, v) of the same type as &, v);

A
vi) lf@;y(n}+1c;P for mp2,

I.
Iemma 1.1%, Let K=(K, v) be a p-adically closed p-va-

lued field of type (e, f£) and A be an integral domain extending
N - ol SO Beg e 1 8 i Jee=
Ke The map (Eﬁ}ngzif>((Pn) Re= g prack bc?ii)n;2 is a bijec
tion from the set of K-domains with underlying domain A onto
the set of K-fields with underlying field F=Q(A), whose inverse

. i - { )
is given by (Pnr)nggi—-} (PN A)mg.@

rd

The proof is easy,
With X=(X, v) as above, let (Ew)K' be the augmentation o
the language L of rings with constants standing for the elew=

ents of K and one-place relation Symbols P for n22 . Denote

by:QK the universal (Lw)K = theory of K-domains and by PCF-

- .

i

the inductive (QM)K - theory obtained from the Lp-theory of

p~adically closed p-valued fields of type (e, T) extending

=

¥
by adding the axioms =~ definitioms Pn(xl)qﬂ”(9X23K1=X§' for
nz2. The following theorem is an analogue of Theorems 1.1 and

1.4

ITheorem 1.14. Assume K=(K, v) is a p=adically closed
p-valued field of type (e, f).

i} PCF  admits elimination of quantifiers,



ii} The complete (;w}Kntheory pCPp is the model completion of

Tk
Proof. 1) is immediate by [28] Theorem 5.6. In order

to prove ii), a model theoretic reformulation of i} sccording
ta [35] Theorem 13.2, it suffices to show that QK=(ngK)¥£,

the set of all uniwversal (;%)Kfsentences which follow from

¥ . In semantic terms, we have to show that, given an inte-
= K b §

gral domain A extending K and a family (Pﬁ)ngz of subsets of 4,
A=(A; P_:in»2) is a K-domain iff A is an Q&w)kwsubstructure of
some model of pCFy. By Lemma 1.1%, we may assume that A=F is

a field o

Assume FP=(F, P, :ny2) is a substructure of some model

L=(L, LP:ny2) of pCFy, i.¢., F is a subfield of L and P,=
=FNI" for ny2. Then the conditions i), ii), iv}, v} from Lem-
ma l.11 are trivially satisfied. As the extension L/K is elemen-

tary and the groups KX/KXn are finite for n»2 it follows that
the canonic morphism ﬁK/KXn —>» Iﬁflgn. is an isomorphism for
ny2, and hence the condition iii) from Lemma 1.1l is also veri-
fied. In order to verify the condition vi) from the afore men-

y . 5 e
tioned lemma, let S&in(n;+1, nz2, and consider the polynomial

f(x}zxn_luae()w[}:], As w(£(1))?2v(n)=2w(f* (1)) it follows by
Newton's lemma that f£(X) admits a root b in L and hence l+a=

=b¢p N L"=P_. Consequently, F is a K-field.

prosiing

Conversely, assume that F is a K-field. Since the class

.....
—

exists a maximal algebraic K-field extension of P 80 we may
e e ¥ 1,



assume from the beginning that the K-field F is algebraicall;y-'

maximal. It remains to show that F is a model of pQ}j‘é.

—
—

Let Ow be the valuation ring of F given by the condition
v) of Lemma 1.12, First let us show that the valued field
(F, w) is Henselian. Let (F', w®) be the Henselization of
(F, w) and consider the family Cp;l)ﬁ;f? of subsets of F' given
by Pr'lé‘l“neF'n - Let us show that.g“:(F',P;:nZZ) is a E—fielé
extension of F. The conditions i), ii), iv) of Lemma 1,12 are
obviously verified. According to Lemma 1.12, iii), KX/K&I = |

FX/PX for nz2, so we have to show that the canonic morphism
FX/ > P, x 1s an isomorphism for n)2, First let us check
I‘l P !
that PAPI=P_ for ny2. As FAP! =P, ArA P, it suffices to

show that FnF'"c P e Since wP=w'F', we get FAF'"=Pn Fn())‘(;}:

=F, (F,\OK.)_, so we have to show that FnUX?CP . Let xEOX, be
v v n v

subh that x"e¢F. As (F', w') is a p-valued field extension of

(F, W) of type (e, f), it follows that the canonic morphisms

Ov/ 1,-%»0“/ ko and Cw/k—>0 .! are isomorphisms for kzl.

P
Dy Ty
Let yeO'v‘“ be such that w'(x-y)>2v(n). Consequently, xy -1

+“2\‘f(n)+l

€ Ir

, and hence (.x:y“l}né I“m(l+m2V(n}+1) 1‘*1{12vﬁn}+:L Tt

follows % EF " (1+m ju

ne according to Lemma 1.12, i) and

vi) applied to the K»fzeld F. Next let us show that P ‘{.P’X s
n

Since wF=w!F*, we get FFX:FXJ]%J, , 80 it suffices to show that

b
0‘,,-(: FX.PI'SC et xef)ii, and yé()i{r be such that w'(x-y)>2v(n),

As (F'y; w') is Henselian, it follows by Newton's lemma that

Xy 1€0XH » and hence XQOX ﬁ()}‘fznc_ﬁ( Pn , as required. Finally,
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the condition v) from Iemma 1.12 follows by Lemma 1.7, while

‘the condition vi) is immediate by Newton's lemma. Thus F' is

a gnfield extension of F. As F'/F is algebraic and F is assumed
to be algebraically maximal we conclude that_f*ig,.and hence
(P, w) is Henselian.

Now it rgmains to show thatrthFn for ny2. Indeeé, if
so, we get in particular that w ?$+n,wF for ' nz2, i.tey; W is

a Z-group, and hence F is a model of pCF ..
- — -

Assuming the contrary, let my2 be such that Pm#Fm, Since

F¥lp®n £l ang Py q=P NPy if (k, 1)=1, we may assume that m

igs a prime's power. Moreover we may assume that m is a prime.
: i k k+l
Indeed, if §¥=F for some m22, k21, then e C’Pmk+1:

k k k § i

2k
=P A P o= K It e © et e g s ooy P gy

k+1
Let a€Pﬁ\Fm and w be the valuation ﬁxu—ﬂa wF —5wF/Z.
First let us show that ﬁ(a)ﬁ?m,ﬁF. Assuning the contrary, we

B T (1 g > b8 :a
get a=f*be’ with O<i<m, bely, c&bx, so we may assume without

loss of generality thatAazﬂlby with Ogi<m, beOﬁ, As()vfjkgggg’z
X = =
for ky1l, there exists d€0,, such that w(b-a)>2v(m). By Newton's

I

lemma, db 1C“m‘ and hence.ﬂid=aa(db—l)EPmpKsz. Tt follows a€F
contrary to the assumption.

Now let t be an m'th root of a in the algebraic closure
of F, and let us put F'=F(t). As (P, w) is Henselian, w extends
uniquely to a valuation w' of F'. Using the same argument as in

[gBJ Theorem %.l, it follows that EP"”] (w'F':wF)=m and
(F*, w'} is a p-valued field extension of (¥, w) of type (e, £)

Let FZ-{XQF'K:XHQF for some n;lj be the group of radical cle=



e ‘L ,,,’i_ s

ments of F* over F. According to [2'8] Theorem 3.8, w'F'=

=W (\/F) and the canonic morphism ﬁ/x-—a\'w'}?’f g"meZ is an
‘ ¥ wF ~

3 > a — i. 3 >
isomorphism, 80 \/F*UL FX, TeBey tF* is a generator of the
0&<m

_c;yc;li.c group \E“:’ Ex.

First let us show that F*=F'T \[—E::F&F'n_tz- for ny2. As
w' Pt =wE+Zw’ (t), we get F*ﬂF.tgﬁ,-O}é. gso it suffices to show
t,hat Oi,z@ﬁcf)}g} . Let xé’()i:i, . Since (F', w') is a p-valued fiel«
extension of (¥, w)} of type (e, f),there is yquX' such that
w' (x=y3>2v(n), and hence x=y¢-(xy”1)€0ii, Oi? by Newton's lemma
applied to the Henselian valued field (F', w'}.

Now we define a family (Pi)’ng2 of subsets of F' in such

all
a way%u-.-(?e* PI'I: nz2) is a K-field extension of F. Let np2. If

te n ey % . =Pt t £ 3
m+n let us put PnT'Pn“F' - As we must have Pr;l - Pr;i nPn for i1

and m*n, it remains to @efine P'; for izl. In order to do this
I

we define inductively- a Sequence (bi)iéo of elements in e such

nd
that a,:=a, “’Tb B P ;47 for i»0. For i=0, set b, =1. Then a =
-—O
= Ssumy . Let 120 and (b e equence of ele-
=a€P_ by assumption. Let i20 and ( 31053251 5 e

¥ &

be a S

ments in * such that ajeP T for 0£jsi « As K& /X5 .
Wt
i+l

, Wwe may choose some b EK:K such that a-+l l’:)1+1 &

PXJ.-%“IL/PX

P ... o Note that the b{s are uniquely determined moculo

+
ot 2

3
K)’r‘m 1. o Where /‘C .:{:;GK:.xm =1}, thanks to the isomorphisn
/I 2 mj” : 2

m 1

B’ Xm 5% KX / _i+1 for iz0, induced by the map s .
K R

Vag:s T e

Now let us put tizt..Trb? ror i20. We get t »-t t = and
5:1



© S _L‘) .
B a .
P : | bl L
E I\ fOI“ 1}00 IBt US ; deflne P i"l iF ti_ fOP 3z1¢
~ : m om

Eome
We have to show that F' is a K-field extension of F.

The conditions i), ii) and iv) of Lemma 1,12 are trivially sa-

tisfied., In order to check iii) and the fact that F' extends T,

we have to show that the canonic morphism FK/X _>F"£/ v is an

pY
Pn n

isomorphism for each npZe

We distinguish two cases:

Case 1: m.}’h. Let us show that F'ZF'.PI'1=F.F'H. As F'=

e

n

=FF°* tz it suffices to show that te&F,F'T, Writing 1=km+ln with

, as required. It remains to show

k,1€Z, we get t=at1le p,pi7
that Fr\Pr'lzpn. Since P;L=1?H.F'n,it suffices to show that PAF=
=pi_det x€F*™ be such that x"%F. Thus xé\@“ and its order modulo

i divides n and m, the order of \/FZ‘X y 80 x€F and ek

3 o7

Case 2: n=m*, ipl. As F'=FP'’t% and tst; mod P we get

tEF.t%CFaPa, and hence F'zF.PI'i@ It remains to show that Fn P;';.:

:Pno
Z .

CPo. Let yeF’X., Jea

It suffices to verify that Fn F‘n't‘{

be such that x=y™tJ €F. Thue yPe Fr.tf=F .t%=VF, and nhence
YEYF, i.€., .Y:Zilic with ZG‘FX, k€Z. Consequently, x=znt§fn+5€-‘ F);
and m[ kntje. As n=mi, i>l, we get m,[j, and hencer x=zna1i{m1"1 g %gl’:
é.ine._e BLER e

e

Finally, the condition v) from Lemma 1.12 is a conseguenc
of Lemma 1.7, while the condition vi) follows by Newton's Temna.

Thus F* is a proper &algebraic }’_—field extension of F, contrary
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to the assumption that F is algebraically maximal, B

L

Given a E-field F, there exists by Zorw's Temms a maxi-
’ o - - r\/ -
mal,algebralc_g#fleld extension P of F, Aecording to the proof

of Theorem 1.14, T is a model of pLly-3 call it a p-adic closure

3

K

arm
o

qu

of the K-field F., The following statement shows that the cone
-] =
cept. above is a suitable analogue of the concepts of algebraic

closure of a field and resl closure of . en ordered field. -

-

Theorem 1.15. Let K be a p-adically closed p-valued

field of type (e, f). Given a K-field F=(F, P_:np2), its p-adic

n

closure is unique up to an F-isonorphien,

o~

Proof. Let F:y i=1,2, be p~adic closures of F, and let

b3

e
Zi={féF[ﬁj: T has a root in Fi}:for i=1,2. According to Theorem
—

1.14, the g-fielda_gl and_fé are elementarily equivalent over

4 ) —~ . o~
F, and hence lezgo As the field extensions ¥,/F and F,/F are

algebraic separable we nay apply-C1] Lemma 5 and conclude that

o~ ~ % A o
Fl and Fo are isomorphic over F as fields. Then, obviously,the

~ ~ 2 5
Ekfields.fi end F. are isomorphic over the_ghfleld_go o

Remerk. The theorem above is an immediate consequénce of
[28]‘Corollary'3.llo A general criterion flor two algebraic Hene
selian valued field extensions of g given valued field of charsc
teristic zero to be igomorphic over the given Valuedrfield ie

proved by the author in [6 ],
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2. Spectral spaces induced by theorieg of fields:

Affine varieties overp arbitrary fields

A key role in the following two sections is played by -
the celebrated Stone's duality theorem, Consider the category
DL whose objects are the distributive lattices 1=(L,V,A,0,1)

with the customary binary operations V,A, a smallest element C

and a greatest element 1 with respect to the pgr?éql ordep @ "¢
asb & a=aAb &b=avh, If :L’ L' are objecté of DL -then” the setﬁ
g}gg, L') of morphisns from L to L' consists of the maps £:Ipl!
satisfying flavb)=f(a) Vv £(n), flaAb)=f(a) Af(b) for a,b ¢L,
and £(0)=0, £(1)=1.

On the other hand let us consider the categony gg whose

objects are usu@lly called spectral spaces by ring theorists,

respectively coherent spaces by category and lattice theorists,

Thus the objects of SS are the topological spaces X satisfying
X is sober, i.e4, every irreducible closed subset of X is the

closure of a unique point of X, and ii) the family L(X) of qua-

si-compact open subsets of X is closed under finjite interssctio:

(in particular, X itself is quasi-compact) and forms a base for
the topology of X. A morphism f:X~*Y in S35, called a coherent
map, is a (econtinuocus) map subject to f”loj)e LX) for each

UEL(Y) .

ITheorem 2,1 (Stone's representation theorem for distribu-

oy

tive lattices). The category DL is dual to the category SS. Thi

£

o

duality induces a duality between the category BA of Boolean al-

gebras and the category BS of Doolean spaces (i.ear compact to-
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tally disconnected 8paces) o

Proofe. The duality éends a distributive lattice L to
the prime spectrum S(L} of proper prime f‘iil'.:i:er-s of ‘_L;. its open
sets may be identified with arbitrary ideals of L, a point
FES(L) being in an open set I€ Ia(L) iff FPAT is non~empty ,
Conversely, the duality sends a spectral space X to the distpi-

butive lattice L(X}' of all quasi=-compact open subsets of X.

For details, see [19‘]_ CheITe B

In particular, if X and Y are spectral spaces, and ‘
f:X>Y is a coherent epi, L(Y) is identified with the sublatti-
ce ff‘“l(U‘) :UQL(Y)j of LX)}, end Y is canonically isomorphic over
X with the quotient space Y'r:XA s where x-vy'é;‘/}UGL(Y) :f‘(jx-}(:?;.l}}=
-'-‘{U‘é—L(Y):tf(y)C-Uj, whose base is the family of Setsgx mod ~
:£(x)EU ) for all UEL(Y). Thus, Y is completely determined up to
a canonic isomorphism over X by & sublattice of L(X). Let us
apply this general scheme to the following more concrete situa-—
tion: Consider .a first order language __._é,, an _E_.«the-cry T and let
B=RB(T} be the Lindenbaum Boolean algebra of __lz‘-sentence-s up to
equivalence module T; two L~sentences ?ﬁ\/)are identified ire
TH(ee>Y), i.e., the I~sentence @<> Y 'follgwa from T. let X=
=3(B) be the Baolean space assigned by Stone's duality to the
Baolean algebra B. The underlying set of X is the Set of all

complete IL~theories extending T, which is identified to the

class Mod(T) of the models of T up to the elementary equivalence

iy

e Ay, A, ere models of T (write AjF T, i=1,2) then AE4,

iff for each L-sentence ¢ , & }:?@Aﬁ? « The family of seta
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-—é’j}“‘lf’ is a complete I-theory such that TCT‘ and T* |- }

with € B is & base for the topology of X, Iet L be & subiat~
tice of B. Then the spectral space Y=S(L) assigned by Stone's
duality to L is identified with the quotient space XYWL g Whe-
re the equivalence relatlonn~r is given by: lE?ITE%a{?GIw
*ﬁlkﬁ} {%ﬁJﬁ”’b%ffGr T{eX, i=1,2, or in semantie terms,

&% (i, & qeLun k) = { CeLihy k) for &, € Mod(m), i=1,2.

In other words, Y is identified with the set of LwtbeOPlea'w s
Tpa= =L FUjTe: ?EL\F} for all prime filters F of L, with the base
given by the family DLnio:={TF:‘P6F}={TF:TEHF} for @ GL..

Now let us apply the previous scheme to a still more cons

crete situation: Assume that L is an augmentation of the custo=

mary first order language of rings and T is an Lwﬁheorv of

fields. Let_gup(T) be: the Boolean algebra of all L-formu]ah up

to equivalence modulo T.

Defintion 2.2. A gubset M of F is closed under polyromial

substitution (abbreviated cps) if for‘each‘szormula‘((xl,,...

n.,,xm}y such that ¢ modulo T belongs to 1, and for arbitrary
polynomials fBSZ[kl,...,xn;alyﬁoﬁﬁak:], where n,qu, 1sigm, andg

the parameters 81seeep8, are constants of I, the class modulo

T of the gffbfmula-*(xlr.kﬁ,xn):=?Cf1,.,..,fﬁ} belongs to M too,

- Obviously,given a family (Mj);cp of cps subsets of F,

the intersection () My is cps too, so we may speak on the ¢ps

iel
subset of F generated by some subset of F, Similarly, we may
== — ¥
speak on the cps sublattice of I generated by some subset of F, |

oy
oy

PRI, T A Sy

Fix a cps sublattice L of F Given an L~,tructure A Whlcl

&1
:‘_»
[
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is also a commtative ring, call it an L-ring, let Ly be the
augmentation of the language L with constants which are namnesg

Tor the elements of A, D(A},_ be the positive dispram of A,

i.ee, the aet of all atomic L, ~ sentences which are true on

A, and D(A) be the diagr

am of A, i.e., the union of D(A), with
the set of all negated atomic }A»sentences which are true on A4,

Denote by T, the L, - theory TUD(A), , whose models sre iden-

tified with the Lemorphisms A-»F, with F [ T; and-ietBEA} g;u

the Boolean algebra of all.gg.- sentences up to equivalence

modulo T,, and L(A) be the sublattice of B(A) induced by L,

consisting of the clasées nodula TA of thergﬁ - seﬁtences

€ (£y5ee0sF ), where €(eysecesx ) is an I~formula, such that
¢modulo T€L and f.,....,f EX. Denote by SpecTsL(A)=S(L(A)) thel

spectral space assigned by Stone duality to the distributive

lattice L(A}. One gets in this way a contravariant functor
SpeCT?L from the category of:gmrings into the category gf of
spectral spaces, assigned to the pair (T, L).

A particularly important (for algebraic - geometric ap-
plications) cps latticé will be the object of the mest of this
section, while other relevant cps lattices will be investigated
in Seetion 3.

Given an L-theory T of fields, let us denote by

- ZL~ZL(T)} the cps sublattice of the Boolean algebrasgig(T}, ge=

nerated by the class modulo T of the I-formula XI#O, and call

it the Zarigki latticer assigned to T, If A is an L-ring we

abbreviate SpécT’ZL(ﬂ} by Specqp(4).
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In\parficular, i L is the language of rings and T isg
the theory FJof fields or the theory ACF of algebraically eclo- |
sed fields, the spectral space Specn (A} is identified with the
Zeriski prime Spectrum Spec(A) of the commutative ring A. In ge-
heral, if T is arbitrary, then.SpecTC&) is identified with the
gubspaca of Spec(4) consisting of the prime ideals p of A for
which the field k(p)"Q(A/p) ls.embeddabJe in some model of T,

In particular, we get SpecTCAlzopecT,CA], where $‘i§§W%%w For
instance, if T the theory*ggg of Teal closed fields, in which
case T* ig the theory‘of formally real fields, then the under<
lying set of Specn (A) consists of thosa_PeSpec(A) for which
kQE}-is formally resl.

- ILet us fix for the rest of this section a base field K,
Let §k be the languagalé of rings augménted with constants which
are names for the elements of X and T:Th(K;<fﬁ>aeK) be the com-
plete EKL; theory of K. The models of T are the elementary ex-~
tensions of the base field K. If A is a K-algebra, we write .
Specy-(A) instead of Specr(&l,SpecK{A} is the subspace of Spec(4)
consisting of those pé&Spec(A) for which K is existentially com-
plete in K(EF. Thus;‘Spec‘(ﬁ) is Spec(A) if K is algebraically
closed (by Thearem 1.1), { pESpec (4) ¢ A[EeK} if K is finite,
{péSpec(A)*k(éﬁﬁgﬁggéﬁgjiloo&d (by Theorem 1. 4), andngSpec(A)*
uk(p) is formally pe-adie over K i.e., there is a valuation w

of k(p) such that (k(p),w) is a p—valued field extension of Y
of type (e, f{} if K K, %) is & p-adlcally closed p~valued flel

of type (e, £) (by Theorem 1,14),

Given an ideal I of A, let Vi (I) be the closed subset

W Poma §

{PGSDQCK( }.I(p;}cf Spec (A), and let rad (r)* //“\ P be the
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80 called K-radical of I. If I is the null ideal of 4, let us

put Rad,-(A):=rad,(EF}. I is called & K-radical ideal if I=

=rad, (I}, In sone concrete'aituations:radK(I) admits more expli
eit descriptions. For instance; radK(I} is the milradical of I,
if K is algebraically cloced; raa”{I} SféA'~¢ gfﬁ +T for some
nyl}, if K is real closed (see [31]) ,5 (K, v} is a p-adical:
1y closed p~valued field of type (e, £}, A:K&{J §=‘(X1,,“,Xn) :

and I= ffla,..,f‘), then.ra&K(I)*{gGA gl ;ZTR fi with 121,

A= 1 A % ErE], ez[‘{p*]} , where €K, v(fl}=1,

- 1 x%x 2 .
Ix(x),,ﬁ’-»é*a’”(g) :geF} and T(K)—j,. . q=p® (see [18]]

. Theorem l.1l).

Obviously, VK(E}:VK(PMK_(I” and the map I} V() indu~
cea a galoisian correspondence between the Keradical ideals of
A and the closed subsets of Specp(A). As Specp(A) is sober,
Vi(T) is irreducible iff‘raﬁK(I)E Specy (A} In particular,
S-peCK(A) is irreducible iff RadK(A}E Specy (A}« Since Specy(A)
is a spectral space, the basic open sets.DK(f)xfp@SpecK(A):
:ifégf}, féA, are quasi-compact and hence the sé; of Keradical

ideals of A is inductive with respect to the partial order gi-

ven by inclusion, i.e., the union of a chain of K-radical ideale

is a K-radical ideal. Consequently, we get by standard arguments

(see [22 Cha6y §L):

Lemma 2.%. Given a K-algebra A, the next statements are
equivalente
i} For every Ke-radical ideal I there exists a finitely generated

- ideal J such that I=rad¥(J);
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ii) Every ascendihg chain 11Ci12Cfasa of K-radical ideals is

R : =
stationarye. i
iii) Every non-empty set of K-radical ideals has a maximal ele-

ment.,

Definition 2.4. 4 K-algebra A satisfying the equivalent

conditions above is called K-nocetheriane.

Obviously, A is K-noetherian iff the space SpecK(ﬁ}.is

noetherian. The next lemma is immediate by standard arguments

(see [34] Ch.1, §3, Theorem 1.2).

Lemma 2,%e If the K-algebra 4 ié K-noetherian then
SpacK(A} has a unique decomposition in finitely many irreducible
componentse

Now let MaxKCA)xigGSpecK(A}:VK(E}S{Pj}be the set of clo-
sed points of Specy(A). The closed subsets of Maxp(A)} with res-
pect to the topology induced from SpecK(A) have the formﬁgt(l)z
=V (L) Maxy (A) , where T renges over the ideals of A, If I is al

jdeal of A, let Jra&K(I} be the ideal //\l p; call it the_dJacol
peVy (117

=w

son K-radical of I. Obviously, radK(I)(:JradK(I).

Theorem 2.6, (Mzllstellensatz). Assume that the K-algebr:

A is finitely generated. Then
i) MaxK(AlzfpeSpecﬁA):A/p::K} and Max,(A) is dense in SpechA);
ii) the map VK(I)P$.YK(I) is an isomorphism of inf-complete lati

ces from the lattice of closed subgets of SpecK{A) onto the lat-

tice of closed subsets of MaXK(A);
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iii) JradK(I)=radF(I} for every ideal I of A.

Proof. We may assume without loés of generality that A
ig a polynomial al?ebra K{“ 4 x:cxlﬁano,xn)w

In order to prove the theorem, it suffices to show that
for every prime ideal.?GSpecK(A} and every fGA\E’ there exists
‘qGSpec(A) such that A/Q&K,:Ecg and fﬁg&
g Let_E and f be ;s abové; and glyu.,,gm be generators of
B Consider the existentialngnsentence‘f:=(q§)({§igi€§)3031ﬂ

(£(x)#0} which is obviously true on k[g)=Q(A(E)& As K is exig-

tentially complete in k(g)r ¢ is true on K too, and hence there
is.geKm such that gi(§)=8 for 1<i<m and ffa)#oa Thus the substi-
tutlon Xk9 a induces a K-morphism u: é/p-avK The prime 1deal

q«Yer(u) satisfies the required conditions, =

—

The theorem above identifies MaxK(A). where Aszxj,
p:S (Xl,,..,x ) nLN9 with the afflne gpace Kn, and the closed

subsets ¥ (I) of Max (A) with the suboets faéK :£(2)=0 for each

fCI} of KLg call the latter ones affine K-varieties (abbreviated

= Gk
K-varieties). Call Zariski K-tgpology on X the topology whose

closed sets are exactly the K-varieties in K . If Y= V (I) is &

Kevariety in K", let Jy.(Y) be the ideal J fehz £(a)=0 for eacl
aeﬁ} Acccrdlng to Theorem 2.6, J (Y}“raqK(I}, and the map
Y=g Jpe (¥} is a galolslan ¢orrespondence between the K-varieties
in K® and the K-radical ideals of A.

For YﬁgKGZ}, denote by K[Y] the goordinate K-algebra

AXJ'(Y)xA/faGK(I) of the Kevariety Y. Y is irreducible with rege-

pect to the Zariski K-topology it JK(Y}GSpecK(A}, For an irre-



ducible K-variety Y, let us denote by K(Y)zQ(K[YJ) the field

of rational functions on Y.

Definition 2.7. ILet YCK®, Zc k™ ve K-varieties. A&

map £:1¥>Z is called regular if there exist fl,,,ﬁ,fmggK[g]
such that f@g):(fltg)r,,,,fm(%}F for every ac¥.
The correspondence Ytﬁ%K[Y] extends to an equivalence

from the category of K-varieties, with regular maps as morphism

onto the category of finitely generated K-algebras A, which
are K-reduced, i.e., Radp(A)=0. This equivalence induces an -

equilvalence between the category of irreducible K-varieties

and the category of finitely generated K—-algebras A for which
the null ideal belongs to SpecK(A)o A finitely generated field

extension F of K is isomorphic over K to K(Y) for some irredu=-

cible K-variety Y iff K is existentially complete in F.

Definition 2.8. The K-variety YCK® is defined (rational’

over a subfield k of K if its defining ideal JK(Y) is generated
by polynomials in 1:[55],, G

If YCK' is a K~variety and k s a subfield of K, let
us denote by Y(k}=¥N k™ the set of k-points of Y. If F is »
field extension of K, 1et.EW$kTF_be the Fﬁvariety'gb(JK(Y)Fagj)a

The following lemmas are immediate.

Lemma 2,9, Let YCK™ pe g K~variety, k be a subfield of K
and F be a field extension of XK.

i) J”F(}f @I{F}:JK(Y} F[E-EJ and F[Y@K F’] zK['Y]@KF; in particular
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the F‘-—-{:fari'e'{:y Y é@ﬁ' is defined over K.

ii)’f By I is the émallest Fevariety Zc P> satisfying Y(Z(K),
iii) IT Y is defined over k‘, then Y (k)Ck™ is a k~variety,

I (X (1)) =rad,. (7, (Vnk @:]} and Y(k)@K CY, with equality if k is

existentially complete i K,

Iemma 2,10 Let F/K be a field extensione.

o I}_ b el - s B AL = 3
i) The map YCF i K[::Y:]/J.F (LINE[x]? ? =y yeee3X,) ;- extends toan

i

equivalence from the category of F-varieties defined over K,
with regular maps defined over K as morphisms, onto the category
of finitely generated K-algebras A for which A & F ig F-reduced
“ii) The functor YHY(K) from the category of F-varieties defined
over K into the category of K-varieties is the left adjoint of

the functor ZR7% ®K. F.

In the following, let us fix the base field K and let

o)
F=K be the algebraic closure of K, or an arbitrary algebraically

closed field extension of K. The K-varieties are identified with
o~
the K-varieties Y defined over K sati sfying y=Y(X) @Kf,
Lemma 2.11. The necessary and sufficient condition for
: i 5
the K-variety Y to be irreducible is that the Kevariety ¥ @KK

is irreducibile,

- £ o~ o’
proof. Let A=K[Y], B=rF[Y & K= & K. By Lemma 2.9 , the
N - -
canonic K-morphism u:A->B is injective, Thus if Y & K Kisip-
reducible,i.e., B is an integral domain, then A is an integral

domain too. On the other hand, A is K-reduced, i.e., the null

Lol SN P ¢
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m
exist pl,o,,,pmeESpecK(A},suah that (“E P;=00 hs 0éSpec(A), it
= = i=1 = :

follows immediately that moreover OGSpecK(A), iIeBe, L' ip irre=
ducible.

Conversely, if Y is irreducible, then K is existentially
complete in the field F=K(Y}=Q(A), and hence the fieié extension
F/K is regular. Consequently, B=A @& K is an integral domain,
LTe0e, T @ ¥ is irreducible. =

If ¥ is &an irreducible'ﬁlvariety5 let us denote by
Ireg the Zariski open set of regular (simple, smooth)} points of

: ~
Y. If Z is an irreducible K-variety, let Zreg:23{1(2<§k Kjreg'

Iemma 2,12, If Z is an irreducible K~variety then Zreg
is dense in Z with respect to the Zariski K-topologye. In parti-

cular Zreg is naon~emptye.

Proof. Let ZCK™ and geK[X[NI(Z). We have to show that
{aézreg:g(g)#Oj is non—empiy. let fl,o.o,fmﬁKifl be genersators
o~ ;
of J..(Z) and hence of J,(Y), where 'XT:Z@I K. Given a field exten
K K ? &
sion F of ’IE, the necessary and sufficient condition for a point

b of Y @ F=Z &, I to be regular is that there exists a minor

héK[ii of order n-dim Y of the Jacobian matrix _ﬁ?)lsiSm, T¢ §¢n

such that h(b)#0, where dim I:trdeg(ﬁ(Y)/K)=trdeg(K(Z)/K). Let
—~ ~ ¢

y=X mod JK(Z}"—?{. mod JK(Y} and take F=K(Y)=K(2Z) & XKe Since ¥y is

generic, there exists a minor he¢K[X ] as above such that h(y)#0.

As K is existentia.lly complete in K(Z), there exists _gGKn such

that 'Li(g}zo for 1gi<m and h(a)g(a)#0. Thus gezmg and g(a)#0,
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ag required. B : %
The next stratification lemma follows from Lemmas 2.5

and 2,12 by stendard arguments (see [27] Eh.l, 518} .

Temma 2.1%. If ¥ is a K-variety then there exists Tinite-
Iy many irreducible Kevarieties Iic'z, 1¢igm, such that

O v
Y= ¥

%, Spectral spaces induced by theories of fields:

Repularity and finiteness properties.

- X being a fixed base fieidr let_QK be the language L
of rings augmented with constants standing for the elements of K,

T be the L theory*Th(K,<a>a@K) end ¥ be the Boolean alg@&ra of
the EY - formulas up t0 equivalence modulo T.
—
Given an ly = formula ?(xl,,.v,xm), let @(Xq50eesXpys
: m
Xmﬁl}:=(xm+1#0)/\[}Ezl)m..(ﬂzm)%(zl,,,.,zm)ﬂ\{gixizxm+lozi] -

—~
call & the homogenization of ¥ .

Definition 3.1l. A subset M of F ig called homogeneous
if whenever ¢ (xj_,;...,xm) is an Iyp~formula such that @ mod T &M,
o~
then @ mod T belongs to M too.
One checks easily that the Zariski lattice ZL=ZL(T) is

homogeneous.

Given a cps sublattice L of F and a K-algebra A, let

D(A), » D(A), Ty, B(A) and Specy p(A): sSpece p LA} DE S O



= 29 -
in Section 2. In the following we assume always that the cg:—},

sublattice L contains ZL, B0 we get a coherent epi SpecK I(A)

—% SpecK.-Q;h Thus, the points of the spectral space Specp I(A}
4§ )
are identified with palrs {(py, £}, where pc;S'pecK('A) and f ig 8
K-embedding of the integral domain A/’ into some model F of T,
up to the equwalence relation given b_}f (Dl'fl,ﬁf —%FQ"*‘(YM

£, A/” ):P } ,?1;2 and Fl“‘LCﬁfp }1 »e One checks easily that

the underl;ying set of Specy L(A) is the d‘lsaolnt union
>

Specy L(k(pl‘-)} if L is supposed to be homogenedus.
PGSPECK(A) E =

Now let Y be a K-variety and A"KLYTJ be its coordi nate
K-algebra. As the set Y is fdentified with Homy (4, K} and
Specy L(K} {s a singleton, we get a cenonic embedding of ¥ intoe

% ,

Spec.. _(A), inducing on ¥ a topology, called L-~topology, with

K,L
the famllyﬁh "'Z(D *"’DL /\'i}qoe. L(A) @8 base of open sets. Sincey

by asuumptlon, 2L CL, it follows that the L-topology on Y is fi~

ger as the Zariski K-topology on Y. Obviously, YY I is a sublat~
¥
tice of the power set P(Y) with respect to finite unions and in=-

teprsections.

Lemma 3.2. The map ¢L:L(A)‘_>Y§T 1 ¢ ?I—{QP is an isomore
Lemma - =

phism of latticese

Proof . Let ‘lul,‘f’z_é—}_l([a.)ﬁ We have to show that ﬁ_Dg; < DWZ

N
;“?’9.‘!" qj‘f"?_ v 285 in (th“ixm)i i=1,2, be __E_JK“'fOI‘mlas, and
_fiEAm, i=1,2, be such that \/’ \,Vi (fi)mc’d T for i=1,2. We have to

P
ahow that TA'-:TUD(A),'. k\f/l(gl)"? k}’2(£2)e V{I‘i‘te A:K[gr]sz, E’z(}rlppaoe
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“wsyﬂ}., and assume that JK(’K}tKer(K@]-?&:Xk—:@} is generated
L
by glse.w.,.gla Denote by "xc ¥* the Iy=formula /\l?'v (§)=“0,

x= (x 15seesXy )e Then Ty =L u{ "’yeﬁf'“} Since, by assumption,

Bt

Kk oxerr ;(% (z (x})e@}” (£5(x))) ana K}: T, we get T, by ( )
—-MV (f'2 » 28 required. B
S A
Let WI,L bethe spectral space assigned by Stone duality

P
to.the distributive lattice B o« The points of ¥, - gre the
Ty L T %

-\
prime filters of 'EPY 1, and the setstj=){F€B}fL: Défj—;ﬁ-ﬁﬁDﬂ@
$ - = ¥ e -

)
D’VY,L is a base of b".f 1,* The isomorphism (PL above induces a homec
P

D N

morphi sm 1 D’CY .77 Speey _L(A)-:
Fro WL L) 1Py 00 FIufTe eena) Py (01 FF

In particular, ¥ is dense in SpecK L(A),

Now let L be the cps sublattice of F generated by
LU‘{(XI‘-‘O)mod Tje Thus the members of L are the classes modulo T
of the Lg - formilas having the forjem 1\%[‘?1 (x) A /\ (f‘ .(x) O)_]
or equivalently, having the form /\[CP (}c) \/L-(}J O)J where
s fiGK[?::],, x=(Xy5e0e,%,), 208 P; mod TEL for 15igl. Call the

members of the distributive lattice ‘fr T (i.ee, the basic L-open
! t

subsets of Y) the L-constructible subsets of Y. The embedding

L(AYCL(A) induces the coherent eple )‘-L:SpecK ji(A)-;}SpecK L(A),
? $
PN N 7 / :
‘ ~ o - ke ] o v &
‘ALQBX’L'}X{Y’L such that )'L ¢L ?Lq&]:‘w

Since ZLCL, it follows:

Lemma %.%. The ma A Spec.,- =(A) — Snec A) is bijective
e T By 88pace T (M)=>Cpse 7 (el J

Thus, the underlying sets of Specy (&) and Specl, (A) can be



identified, and so, the topology on Specy E;(A) is a rafination
9

of the topology on SpecK T (AT
g

lemma %.4. Let U, VCY be I~constructible sets such that

UCV. The necessary and sufficient condition for*ﬁil (U} to be

open inﬁi’il(‘v) with respect to the topology of Spec  (A) is that

K,L
Jo

ey . YT €

_. Vn_}? for uome£ DY,L .

-

Proof. The if part is trivial. Conversely, assuming that
gbf;l (U) is L~open in Sbfl(V)' there exists a family (¥:)... of
I il - i’iex

elements of L(A) such that$ il(U)‘ﬂf)%I (VIn UDL’
feg =

open quasi~compact in Specy E(M, there exists a finite subset
$

o]
(Fi.n Asqi*i () is

J of I such that¢§I(U):¢£1CV}m o/ Dy g o Consequently, U=vnD ,
- iy Uri =

whereD=U D, € . @
= g

Corollary 3.5. let U,¥CY be L-constructible sets such

o ‘ 1 i )
that f#’ 7, (U} is L—open in ¢ T (V). Then U is L~open in V.

Definition 3.6. We say that the lattice L has finiteness

property if the converse of Corollary F.5. holdg, 1.6+, fOr eve=~
ry Kevariety ¥ and arbitrary U*VGX} T s if U is lL—open in V then
[
u=vnD for someDé\ﬁf I,°
i — $

Now let us assume that ¥ is an irreducible K-variety, and
let A:K[Yl F=K(Y¥). Assuming L homogeneous, the canonic morphism
of lattices ‘IK’L:LUL}—;» L(F) is onto and so we get an embedding
A v

‘J{'I:SpecK L(F}:SpecK *:i:(F)L}» Spec:},_. L(A’}. Note that Elq homogeneous
4 ¥ ? 9 -

£00. Thus we have the following commutative diagram



Lr s
p e
i

o

L3

o

/\. d

YY,? e SpecK?i(A) ‘:*;:_

/ \ L

A qu L \llza

B”E.}L —> Specy g, (4) g-—> Specy 1(F)

The following result is a generalization of Brumfiel's

ultrafilter theorem for orders [11] D32, [8] Le7e

Lemm’a ’5..?. With the notations and hypothesis above,

i) 1m(¢ ‘1[ ) -{FG ¥ Lop cF for every O#fe A } ----9169. 2‘%”:
‘f(a)#()} '
i) Im(jb"o‘}’ )= {FE}‘ :U ig dense in ¥ with respect to the

Zariski Ku—topology on Y for every ULF}

Proof i) is trivial.
/\,.,.1 e
ii)} Let [€ Im(‘?‘ﬂ ?,‘{’g)‘ Then there exists a field extension N of
F such that the extension N/K is elementary and F g_[%

®e L(A)‘g N[’#’_} Let OAfEA. ihenD ¢ Fana nence U/)D {8 non-emnty

for each Uel .
Conversely, letFE?f' = be such that U is Zariskj_-—c‘{en:ae in
Y for every Ue f—@ Iet N be a madel of TA TUDEA}+ such that
A
g'i(fli),:f: « We have to show that N is a field extension of F. Assu-~
ming the contrary, let OAFEA be such that N[ (£=0). Then Ur:rfmaéﬁf:
of (g)zO}EF,, and hence Unpf is non-empty since U is Zariski den=

se in Y, a contradictione @

Lemma 308#- Assume that L is homogeneous and Y is an irre-

ducible K-variety. Let us denote by Y‘Peg the closure of Yr-ag witl

=



o
e 73Ty e

- . O A i 0 i D)

‘ A
respect to the Ietopology on Y, and by Im\{’ L} the closure of

A =
Im(\// Yiin SpecK L('A)‘f & AﬁI{LYJW 'Identﬁ;ying Y with a subset of

Specy L(A), we have Y\ Im(YL)C Toeg®

Proofe let agin Im(\fL) and PEL(L) be such that a-G_D‘f,, Ve
have to show that gr:eg r\:‘;%is, non-empty. As Dy " In(‘{/ } is non-

empty by assumption, there exists a Tfield extension N of F=K(Y)

such that the extension N/K is elementary and (€ ig true on N, |

Thus, ¥ satisfies the =LK--aen‘tence@:2(.3":;:?) "Xé’f‘r':eg Q’(_it), (set
x=y, the generic point of Y}, and hence © is true on K too, i.e:,

regn‘D is non-empty, as required. a

Definition %.9. We say that the homogeneous cps lattice

L has regularity property if the opposite inclusion of Lemma 3%.8

holds for every irveducible K=variety Y, i.e., fOr eachf(’c-’vL(K[Y:]}
A
DL (EﬂIm(YI)' is non=empty (equivalently TUD (KEJ.’])u{?} is consis=~
) o

tent) whenever Yre & D is non—~empty.

lemma %.,10. Assume that L has regularity property, Y is an
iprreducible K-variety and U is an L-open subset of ¥ such that

unrr_eg $s non-empty. Then U is Zariski dense in Y.

Proof. Let acUni, o and @ € L(A), A==K[Y] be such that
& __D{?CU As L has regularity proerty and Qpn 24 .g s non=empiy,

TUD(A)U‘I((’B is COHS‘S%EQ?:Lt and hence ‘p@ng 1lea IlOI'l-*GHlpt}’” for eves

ry O#f€A, i.e,,,,ﬁ{j (and hence U) is Zariski-dense in Y. @

Tn the rest of this section we apply the general theory
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ahove to the particular case when the base fi eld K is algebra

cally closed, or real closed, or pwadlcallj,r closed, and L is the

eps sublattice of F generated by the classes modulo T of the Tpoe
2R =

formulas C(”n(xl) :-ﬁ(}{lﬁO)/\((E:a:;, ~h?) for all nip2e

Iemna %.11. i) If K is algebraically closed then L= -7 78

$4) If X is real closed then T i the cps sublattice of F genera

ted by the class mod"ulo T of the L-~formula (5;2, Iin par't:z cul ar,

ZL CL&.\

1ii) If K is p-adically closed then ZLCL.

Proof. i) If K is aigebraically closed then Tk?n(w?}_)
&> (x,#0) for ny2.
P IE R dswead cl}gSe‘&- then Tf—-f(’n(xl)@ ((’z(xl) if n is even,
and T}"q’n(xllw(xlﬁ)) i n jis odd. We get also T (XlﬁO)\?-)(‘?pg (3{1
V5 (-x7)) e

$ii) If K is p-adically closed then KX/KX2 is finite and

Tl (x,#0) &> N/ ¢, (axy1 . 5

Lemma %.12. Let K, L be as above oThen L is homogeneous
and L is the whole Booilean algebr-a o

Proof. The homogeneity of L is immediate. For the conve-
nience of the reader let us prove this in the case when K is rea

closed, Then each member of L ig the clas s modulo T gf &some }"K“

formuila \{/{Klﬂ“ﬁxm) of the ‘form\f/(x)*"\/ /\L(; (f ) with
i=1 J =1 -

fiieK[ié]o Thus, T}“\F(gy X )@{[(F (me‘l)f\ \/ /\ i (f’ J
“'9



el ):}\/£ Co (=21 e j/\ £ (& f.‘lJ (;:, o] ) }J} , where

==l 2 ;
~ o y eg f13 x,f xm
f it Z -+ =X - f & sieesae: gooe e ) ;
1) = mt+1 m+1 1] mel ¥ Xm_’l']_ §
P £ if deg fi’j is even,
ij

-], otherwise.
The last part of the statement is immediate by elimination of

quantifiers, according to Theoremsl.l, l.4 and 1.l4. @

lemma %.1%. Let A be a K-algebra,

1)} I K.as algebraica}ly closed then SpecK,L(M is the
Zariski prime spectrum Spec(A).

ii¥ If K is real close;i then _Spe-cK’L(A) is the real spec=
trum Specr(A). of A consisting of the pairs (p, P), where
pESpec (4) and P is an order on k(p)=Q(4/p), with the Coste=ioy
topology [13,, 14] given by the base of open sets DCal’",,aﬁ):

—‘:{(Z. B )i a; mod EEszP\{O} for ISiSn?j with aygeces8nfho In

particular, if A=PF is a field then Spe(:KpL(F) is the Boolean

space of orders of F with respect to the Harrison topologye.

iii) If K=(X, v} iz & p-adically closed p-valued field of
type (e, f’) then SpecK r(A) consists of the pairs (_I_J, (Pm)n;Q)’
where pcSpec(A} and P, Ck(p} such that (Ic::(p)9 ,mz) is a K-
fn.eld, with the topology given by the subbase of open &ets
D(fgm);z'{(f, (Pm)nzpzﬁ :f mod EEPEB , for fei, my2., In particulary
if A=F is a field then Specy LCF’) i.s the Boolean space of all

2 ¥

g-field astructures on Fe

Proofe i) is trivial, while ii) and iii) follow by Theo-

rems l.4 and 1.1%:. @
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S’&t-'Spe&pl(IL}zﬂSDecK I(g) in the p=adic case and eall it

the p~adic gpectrum of the K-algebra A. |

Lemna 3.14. Let ¥ be a K~variety, AzK[‘f],,. and identify ¥ |

I

with a dense subset of SipecKFLUﬂ,o

o G "xis real closed then the L~topology on' ¥ ia the sfrong
_@Mﬁ@g induced by the unique order of K.

5 0 T K=(K, v} is p-adically closed then the L-topology on Y is

the topology induced by the valuation v of K.

Proofe. i) is immediate.
ii)} We may assume without loss of generality that Y istheaffine

space K®. ILet ¢ be the product topology on K » and V 23 (ql,...
Y61“'Z£'c’m
.,....,aDcy v(a; )>« for 151<n} «{Ev.X, be the fundamental open

neighbourhoods of O. On the other hand, let D(f, m) = D(f, m)N Y=

- =f:}‘f¥=f(g)@lixm}, fC'K[KJ, §=(X1,..¢,Xn) , my2, be the subbase of
the IL-topology on Y. First let us show that the I.-topology ig fi=-

§_+Vo< is L-open for aer, « € vK., Let JLEK be such
. 7 (Xs-as ¥
that v(fh= l bEK be such that v(b)=x, and f (}{)‘.—.-1+ - 2

% Lybiss Ao
(}xi-"]*)

p#A2, respectively f. (X)=1+ "““v“l—_ if p=2, for 1l¢i¢n. Since

0 ‘EcEK 1+flc CKX23 if p#A2, respectively O chK.ch CKx3j 11‘
20 AT ph2
3 If p=2

ner as €, i.ew,

if

p—2, 1’c Tollows atV Cf\l)(f s m_), where m

Leluy “a_aﬂfV_d is I-open. Conversely, let us show that % is finer as
the L-topology. Let f€K[X], mp2. We have to show that D(f, m) is
T —open. For each beK ™ consider the - open set

8) -{ a€Y v (£ ( a)ub)>v(b)+2v(m)5 « Since, by Newton's lemma,

2v (m)+1 , .
g ( c X" » 1t follows that_@(f, my= U/ Ty, is € -open. @

i ¥ be K
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TheoTenm .15, If K,L are as above then L has regularity

propertye

Troofe. Iet T be an irreducible Kevariety, AﬁK};‘Y]ﬂ K 3!_7
and Lf’CL(A) he such that franD is non-empty. We have to show
that T%)(A)U{\P?J S consistent. We distinguish three cases:

1') K. ias algebraically closed: As I=ZL, we n'iaey* assunme that \V

jg the class modulo TA of the IJﬁ»uente11ce /\:L (x)#0, with
: l

:ﬁ'iéﬁg l\iiéle Since Yfé N Dju is non-empty, we get fi;éo for 1gicl,

and hence the required conclusion is immediates

£i) ¥ is real closed: By Lemma 3.11, we may assume that Y is the

0
class modulo T of the I,-sentence 7 \10 (£ (y)) with £, €A,
i=1

14i%1l. By hypothesis, there exists -gefreg such that _;E:‘i(a)}“() for
1¢i¢1l. The conclusion, i.e., there exists an order P on F=K({Y)
such that fif.‘PX for 1€if1, follows by Artin-hang the orem ["?J Thec
vem lede

199 _{C“-:(K, v} is p-adically closed: jzéfe mey assune that ¥ is the

class modulo T, of the 1,-sentence . /\ Py (y)) with mp2,

Y =1 *®
14i¢1. Let @‘efregﬂp B i N nI‘D(va‘* According to [18] Corol=

lara A.75, the K-morphism A>K:y> 3 extends to a place Q of
FSKQT} over K such that FQ=K. lLet vq be the valuation of ¥ assig-
ned to Q and w be the composite valuation ve vC), of F.Then w
extends Vv, szQ”l (OVJ, Fngv and vK is a convex subgroup of wh o
In particular, w(jf)'zl, where I ig an elementl of K such that
v(ﬁazl, and the ordered group vK is existentially complete in

wi, by [ 6] Theorem 2.6« Accurulng to the A¥-Kochen-Ershov trane:

fer principle ["3] 3 [16J » [?] 5 [{’O] s [_38] : Bl:( ,[4] , the Henselian va=



e
lwed field (K, v) is existentially complete in the valued field
(F, W), i.e., (F, w) is embeddable over.(K; v} into some p-adi-
cally closed p—falued field (F*, w') of the same type as (K, Vil
In order to conclude that TtJD(A}ui{Y}'lo consistent, 1t remains
to show that QL (EMCF™® for ny2. Let Q' be the pl&c@-: of P

over K, extending Q, whose valuation Var is the composite map

TR |
pel Wy epe ...,»wvrv,< vi> v where <vK 715 the convex hull of vK
in w'F'. Then K=FQ is identified with a subfield of the residue
field F'Qf. Iet acQ (KXR)C'Q'Ml((F'Q )xn}, np2. Since w*' is Hen-

selian and O‘.CIG it follows that (F', v,.) is Henselian. As
s Ve Q
the residue characteristic of (F*, VQ,} is zero, we may apply

Hensel's lemma to the polynomial x* - & and conclude that aéF‘Xnﬁ

as required, B

Theorem 3.16, If K,L are as above then L has finiteness

Property.

Proof. Let ¥ be a K-variety, and U V67y- JF be such that

U is L-open in V. We have to show that U=V f\[) for qemchE X& L
We distinguish three cases:

i) K is algebraically closed: Trivial, since I=Z1 and thus );'L

A
is the whole set of Zariski opén °uhnets of Y.

1i) X is real closed: Then the statement above is nothing else
than the fundamental finiteness theorem for open semi-algebraic

= - o "
sets, conjectured by Brumfiel [;i]"Unproved Proposition 8.1.2,

and proved by various techniques in [id131§3],1§5],[?710

1id) E=(K, v) is p-adically closd: Let (L )K e the language ln
ny2 , end QQF{

e
—

ugmented with the’ one-place relation symbols P,



i
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be the (L jg = theory obtained from the ls-~theory T of p-adi-
b e L
cally closed field extensions of X of the same type as X, by
it = i = (ﬂ e 0. T o
adding the defining axloms I’n(xl) <> (%) X™X0, nz2. 4s L 18
the whole Boolean algebra F, the statement we have to prove i3

equivalent with the following one: given the L} - formulas

5y

Y‘(:{} % §=(xl,,..,u,x Joe 171 2, iF T}-\f’ _—>‘f'/ . and[‘f’l_] is closed
LL[\)’ ]wx‘m reapect to the product topology on K™ induced by
the valuation v, where [\P ]w{ad’mt?‘ e (a}}‘,3 i=1,2, then there
exists a positive quantifler free (:.E‘w}K - formula 9(3) guch
that pg_FKl»«\}’ﬁ@(tA @)}, In order to prove the latter statement,
it suffices, according to van den Dries': Lyndon-Robinson-type
lemma [‘5’.?] , to prove that the forrmulas ‘{’1,‘/’2 as above satisfy
the following lif*:_,ing property: given two models r,N of T, an
intermediate ring between K and F, a K=morphism f:A->I and a
point gz(al,..w,am)c—z&m, 5 f‘(An P C N? ror ny2 and FEYy(a),
then Nf= Y, (£(a))—> ¥p(rla)).

Pirst let us note that £ (AN Fn} =f (A¥N Nn NZ2, 1e€oy
B=(£(A), £(AAFY tmy2) is a sub-K-domain of N=(N, N:np2). In-

deed, let x€A be such that £(x)é ’\f"‘n FX~—KXE“‘“n, there is

e

yéKx such that xyéF‘{n,. and hence f£(x)y=f(xy)eN N « Thus, ygkﬂ“n

=K* gnd x€AN .
Let Vo Vi be the p~valuations of F, respectively N, ex—

tending v, and let I=Ker f. For X,y&A, V; ((£1x )§v (fiy) iFf
or Aciamc(llcf_i‘_‘{i:_ued“_ f"'@"”'(} _

either vy (x)(v (Vm x2 Ty % A e if p#2, respectively

x +?’Cy36:AnF if p=2, where JCis an element of K such that
: . B
v =1, Applying £ we get £ () ST () EN® if pA2, respectively

S TRt dENE . & . .
P (x)“HAL(y)EN", 1.4y VN(f(KMS‘v"Iq(f(iﬂfh Conversely, assume



AT
(f(k< v (£(7)) and vrcﬁ)>va(y) L@y VF(xj}vFCﬁ&Jm Consequent

Iy, VN(;E’(y) ),2-VN('f(X) )QVN(ff‘(y)I‘, 184, XEL and y€I. Thus, the
prime ideal I of A is convex with respect to the valuation Vg
ie@ey given EL, yeA; if v?(xjévF{y} then ycl. As we ghgl} show
in Proposition 3,20, there exists a valuation w of F such that
AL}Ov (me,and;gwf\A=I, Thus, the epl A->f(A) inducéd by £ is

F
jdentified with the restriction of the canonic epi p:.Ov;?vF'we

‘let F =(F ., Fhny2). Let us show that B is a sub-—‘f('wrmm ain
T w” w it
L : . o 1
Of F‘:{ [ leen’ p(O fl l_‘ )3 “_9;-1—1 ;}; _LU.E. Tlf—d'“—ma—llm;:,l/,_ ’j :,

n n L3 - -
= = i 2 I, is oy -
p(OW) i for nz2, and I, 1S a model of pg_:f‘&, i.e., F,is a mo
del of ¥. The first requirement is obviously fulfiled since O
is Henselian of residue characteristic zero, as Ow contains the
Henselian valuation ring O « Moreover, vp induces a Henselian

>
valuation W on Fw such that W extends w, (I‘W}W'VF E:’K and the
value group WFW jis identified with an intermediate convex sub-
group between vK and vFF. In particular '{E(ﬁg'—‘v(«"f) is the smallest
positive element of ??Fw and E?FW_ is a Z-group. Thus, (s w) is a
p~adically closed p-valued field extending K of t:he came type as

R 31 0O my I‘ is a model of T, as required.
So B is a common sub-K-domain of the models N and T, of

s
S

pgKo According to Theorem 1.3_4, N and -.;-?w are elementarily equiva-
len:c: E)ver ge. In particular, the sentence 7!/2 (f(g))%ﬁ”l(f(sl)) is
true on N iff it is true on F , and hence we may assume from the
beginning that A=0 , _N=Fw and T is the canonic epl p:O =T .

As (F, w) is Henselian of residue characteristic zero, we

may identify e with an intermediate model of T between K and I,
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according to [?L]Proposiﬁion 16, By-aﬂﬂUmnblon[%% 8 closed
im{yg] with respect to the topology on K™ induced by v. Since
the property to be closed with respect to v iS«LK -~ definable

and F is an elementary extension of K it follows t db[¥’]

elosed iﬂ[%

o
]

] y where [\" } ..—.ibezr’f‘: F Yy (b)}, i=1. 8,

A

=3

By
On the other hanuf‘k1 1) is true on F by hypothesis, We have

.tq showrthat Fﬁh?é(pfé}}"??l(pggﬁkg Assuming the contrary,

p(g}EE%é]F end there exists Gf@n? SV (E ) such that a—(zwg,.a.
= w =

o ?.zm)-#t[\[’l] p whenever :E»_*GF“‘ and w(z;-p(a;})>« for léigm, Az

F is an elementary field extension of F,, and the p-valuations

N >

w and vp are LKfﬂefinablo, it follows that (F, VF} 1s an elemen-

4

tary valued field extension of (Fw s W). On the other hand,
Vp(a;-plas})> K since w(aimp(ai))>O, 14ism, and WF vr(‘ﬂ) is a
convex subgroup of VFF. Consequentky,}ﬁ57%}ﬁgJ s contrary to the
hypothesis. @

The rest of this section is devoted to the unproved sta-

tement used in the proof of the theogrem above,

Definition %.17. @Given a valued field (F, v) and a sub-

ring A of F, an ideal I of A is called convex (with respect to
the valuation v if for arbitrary at&l and b€A, b€l whenever

- w(a)<e(b).,

Using Definition 1.9, one gets easily:

Lemma 3,18. Let (P, v) be a valued field, A be a subring

of F and I be a prime ideal of A. The necessary and sufficient

condition f - £ . . = :
tlon for I to be convex is that (A/I, R) is a valued domain,
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where R:{(a,mod I, b mod I):a,bEA, v(a)ﬁv(bi}p

Definition %3.19. Given (F, w) and ACF, the convex radiw.

r

cal of the ideal I of A is the set crad(I):{aéA:v(blgnv(a} for
some bEI, n?{}«

Ohviously, crad(I) is a convex ideal, containing the
nilradical of I, and crad (erad(I))=crad(I)., The necessary and
sﬁfficiént condition for I=crad(I) is that I is éonvex and T is
‘a nilradical. crad(I)#A iff IC}?V » One checks easily that
crad(Il) is the intersectibn of all convex prime ideals of A con-

taining T.

Proposition %3.20. (Place extension theorem for valyas-

tions)e. wet (F, v) be a valued field, A be a subring of F and I
be a convex prime ideal of A. Theh there exists a valuation ring

P S ot = -
0, such that AVQ,C O, and An 1=l

Proaof. Let M be the set of all pairs (B, J}, where B is
an intermediate ring between A and F, J is a convex prime ideal
of B and ANJ=I, partially ordered by the relation (B, J¥ (Bt ,J*
iff BCB' and BAJ'=T. As (&, D)EM and (M,¢)Sinductive, it follow:
by Zorn‘s lemma that M has a maximal element, S0 we may assune
that Mzgkﬂ, I)}, Then obviously A is a local ring and I is its
maximal ideal. Let us show that A is a valuation ring.‘let XEFNA,
BzA[ﬁ] and J=IB. Assuming that JQEV, crad (J)#B, and hence there

£y

exists a convex prime ideal p of B such that JCp. Since T 18 & u

maximal ideal of A, it follows (A, I)X (B, p), a contradiction.

# =
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o i - : . 1 e - -7 &
16 i - o e
Thus,, &ﬁmvg and h &?noaix J$0 for some 8kl legnw As

I(m one gets v{x)K0, Assuming‘xmlﬁﬁ, we get similarly v(x)>0

a contradiction. We conclude that A is a valuation ring. ]

4, The Rienann space of a commutative Ting

Tn the first part of this section we show that natural ge-

neralizations of the concept of Riemann space of a field can be

given in the frame developed incSection 2. i Kot E
Tet L  be the language of valued domains, i.e., the
language L of rings augmented with a two=place relation symbol R.

The valued fields (K, v} are articular L ~atructures on which
¥ P o0 1

the Telation R is interpreted as foilovs: aRb 1ff v(a)Sv(b)o

-
—

Let T=AGVE be the L al—theory of non-trivial valued algebraically

P ——

closed fields, F(T} be the Boolean algebra of L lmLormulas up to
equivalence modulo T, and ZLval be the cps sublattice of F(T) gene

rated by the class modulo T of the éhalmformula xlﬁO/\leXQ,

As Tf‘(”-#O)é?(XIﬁOI\XWRX1}, the Zariski lattice ZL is

contained in 4L q and ZL,,, is homogeneous, The following sta-

tement is a reformulation of a basic model~theoretic result due ta

Robinson [3@]

Tucorpﬂ.é ]er{ T) 1s woﬂeruted as Boolean algebra by ?L o1

Proof. AS.T}*(xlsoléé(ORxl), t+he Roolean subalgebra B of

F(E) generated by ZL 4 is the cps Boolean subalgebra genera ated

by the class modulo T of the formula ZaR¥ e The equality B=F(T)

=

is equivalent to the fact that the LvaW - theory T admits elimina




RIS
tion of cuantifiers, 1¢€ey T is the model completion of the
upniversal theory Tﬁgof valued domains [ﬁO] . [?Ej s M|

Given a commubative ring A with 1, let D(A), be the
positive I - diagram of Aaggval)ﬂ be the augmentation of Liygy

with constants standing for oloments of A and Tp be the
!

(

((K,v),f) where (K,v) is a non = trivial valued algebralcally
cloged field and f : A=K is & non - nill morphism. Tiet B(A)

1yl A = theory TUD(A)+ o The models of T, are tho pairs

be the Boolean algebra of Q}Val)ﬂ . sentences up To equivalence
modulo, Ty and ZLVaj(A) be the sublattice of B(4) induced by
Thival ZLval(A) isﬂgeneratad by the classes modulo T, of the
sentences a # oAaRb for &a,b €4, Tet R(A) be the spectral space
assigned by Stone duality %o the distributive lattlce

ZLval(A), and ozll it the Riomann spage of A. The underlying

sot of R(A) is identified with the sotb of pairs ( P, V s

where ESESpec(A) and v is = valuation , may be thgzﬁrivial

one ,-Bn k(p) = Q(4&/p), while the topologpy is gmiven by the

subbase of.%pen sets D(a,b) = { (p,v) € R(&A) : zaﬁ%lj; and V(f"WM%)
ST =

—=
==

v(a mod_g)} , for z,b € A. In perticular if A = K is a

fiold then R(K).is the customary Riemann space of valuations
of K [40 . Ch.B,‘él?), with the Zariski topologmy given ,
by the subbase of open sets D(f):{vC-'R(K) 2 V(J’T);O}g fEK .
Thus , we el a contravariant functor R from the caterory.

of commutative rings into the catemory of spectral spacesSe
Note also that the canonic projection R(A)-—pSpec (A)
(s> D is a coherent epi, with @ coheron® canonic section
it EH(E: the trivial valuatiom on "k (p)) o

" On the other hand ,we may considerﬂtha Boolean spdce
BR(A) assimned by Stone duality to the Boolean alzebra
B(A). :
According to Theorem 4.1 its underlying set 1s identified
with that of R(A) , while 1%s topology is finer Ghan that
of R(4) and is.given by basic clopen sets D (&lseessdy o
byesossbns CpseeesCy 9 dysoeessdm) = { ( pyv ) ¢+ v (g8 mod _E)S-

-
P

v( by mod,g), Jasti S g, and v(cj mod E)<:v( dj de.E) 3
1¢34n}. In particular , if A =¥ is a field then The basic
open sets of BR(X) have the form D ( £yyreniy 3:819'%"m D=

{v :v(ﬁ)b(%léién.mm.wﬁj)>0, 1$j$nﬁaTheomumh1
projection of PR(A) onto its Boolean space pSpec(d) , the cons—



)

(-2 4’;: e

tructible spectrum of A, is continuong, and its cencnic section .
| | i
& 4 [

i is continuous too, idenLlfyjn” B Spec(A) W1th a closed subspa=

1
|
b
|
|
i

ce of BR(AY. - : |
Given a field X and a K-algebra A, we may consider the

closed subspaces R(A/K}, BR(A/Kﬁ of R(AY, BR(A), having as under:

lying set the set of pairs (p, v), where p&Spec(A) and v is a va-
luation of k(p) Iying over K, Clearly, R(A/K)} is a spectral spa—
ceg while BRCA/K) is a Boolean one.

Now we introduce real and p-adic versiong for the Riemann

space of a ring defined above. First let us consider the real

cCasege

Definition 4.2. & valued-ordere domain is a triple (A,R,P)

where (A, R) is a valued domain and (A, P) is an ordered domain

satigfying the following compatibility condition: (a+b)b&P, whe-

never bRa but not aRb, for a,b€A. & valued-ordered field is a
valued-ordered domain (F, R, P), where F is a fileld. Identifying
R with its corresponding valuation v, the compatibility condition
above reads as follows: lﬁng:Pg jie.ea., the valuation ring Ov is
convex in F with respect to the order P.

Given a valued-ordered domain (4, R, P}, there exists a un
que structure (F, v, P') of valued-ordered field on F=Q(A) such

that R:{(a, b}GAXszCa)fv(biy and P=ANnPt, I (F, v, P} is a va=-

Iued-ordered field then §:{§ mod‘yvzaéPf\OvS igs an order on the r

sidue field F_ . Moreover, it is well known that the function PP
maps the set of orders of F which are compatible with v onto the

set of all orders of P

v-ﬂ
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oo L0 e

o be the language of valued—ordered domains

and P=RCVOF the L -~ theory of non~trivial-valued-

TSI

= val—-ord
ordered real closed fieds,

-

Theorem 4,5, T=RCVOF is complete and admits elimination

i ot

of quantifiers. It is the model completion of the Loaia S wtheoe

ry of valued-ordered domainse.

Proof. The models of T are identified with the Henselian
non-trivial valued fiei&s‘(K, v) for which the residue field K
is real closed and the value group vK is divisible. According
to Ax-Kochen=Erghov transfer prineiple for Henselian valued

fields of residue characteristic zerw{%]gli6j, T is complete and

fad

model complete, since the theories of real closed fields end of

divisible Abelian ordered groups are £0. It Temains to show that

every valued=-ordered domain A has an up to isomorphism unique

minimal extension to a model of T, Obviously we may assume that
A=(K, v, P)}is a valued-ordered field. First assume that v is non-
” ) I, g o
trivial. Let K be the real closure of the ordered field (K, P);
o/ )

thus P=KEN K", By Lang's place extension theorem for orders [ii],
= ; =2

774, D152, v extends to a valuation w of K such that 1+m cK",

/ ~ 20 B e o -

fetey (Ky Wy K¥) is a model of T extending 4. The uniecity up to

isomorphism is immediate since the real closures of the ordered

o ’ . . . a
fied (K, P) are conjugate in the algebraic closure K= of K and

the valuations of K® extending the valuation w of K are conjugate

taooe
Now assume that v is trivial and let K'=K(x} be a pure

: : : . # Gy
transcendental extension of K. There exists & unique psir (el
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= AT
such that (X*; v®, P*) is a valued-ordered field extension of
(Ky ¥, P)ﬁvf(30?o and xé?f, given by OV,EK[x](X) and P'n K[ﬁ]z
\ e X — : '
x{xnf(x):nzom f@k[ﬁj, f(O}GE’}bjb}, Se it remains to apply to
Ky vy P') the procedure above. - -
Using the previous result, we may proceed as in the first

part of the section tcu?et two contravariant functO¥§ Rr and

BRr defined on the category of commutative rings with values in

the category of 8pectral spaces, respectively Boolean sdpaces,
Given a commutative ring A, the underlying set of Rr(4) and
BRr(A)Y is identified with the set of triples (p, v, P), where

p&Spec(4) such that (k(p), v, P) is a valued-ordered field; the

B

valustion v may be the trivial one. The topology on the spectral

space Rr(4), called the real Riemann space of A,is given by the

subbase of open sets D(a, b}zgty, v, P):a mod péPK, v(a mod_B)
Lv(n mod_g{} For: a,beA, whilé-the topology on the Boolean space
BRr(4A) is ;enerated by the clopen sets D(a, b} as above and the
clopen sets D*®(a, b):{fp, v; P):v(a mod_2)<v(b mod.g)}, a;bEhs
Note that the canonic e;is Rr(4) —> Specr(A), BRr(A) —» BSpecr(A),

- their canonic sections and the canonic: maps.Rf(A)ﬁpng)’ BR (A}
~» BR(4) are coherent. The caonstructible (semiélgebraie} real spec:

trum BSpecer () is identified with a closed subspace of BRr(A). In

particular, if A=F is a field, the underlying set of Rr(F) and
BRr(F) is the set of pairs (v, P) for which tF, vy Pl is a velued
ordered field. The topology of Rr(F) is given by the subbase of
apen Setsl:8>Q]g[§(a)30]ﬂ o€, while the topslogy of BRr(F) is gie
ven by the asubbase above extended with the sats.tffa}>qjg acl, Gi-

ven an ordered field K=(K, F) and a K-algebra A. we mev considaem &1
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spectral space Rr(i/K} and the Boolean .space BRe(4/K}, having

as underlying set, the set of triples (p, ¥, Q) in Re(4) subject

to-KﬁOv and PLQ.

Now let us consider the p-adic ease. Let K=(K, v) be a

p~adically closed p-valued field of type (e, f). Let% € X be

such that v(7}=1l.

Definition 4.4. & valued ¥~domain is a structure

—

A=(Ay R, P tng2), such that (4, R} is a valued domain, (4, Pt
:np2) is a K-domain (see Definition 1.11) and the following com-

patibility conditions are satisfied:

i) &2+ﬁbaEP2=§>aRb if p#A2, respectively a3+§B3GP3:é>aRb"if p=2,
for a,beA;

ii) 4Ra for each a¢k.

A valuedjg;field ig a valued:g—domainzgr(F,R,Pn:ngz)w
where F is a field. Identifying R with its corresponding valua-
tion w, the compatibility conditions above read as follaws:
i)%ﬁEF:l ﬁﬁ%zészCOW if p#2, PGSpectively'{aé?:l+£;36Pi}COw e
p=2; in other words, OV_FCOWg where vy is the p-valuation of Fg
i1)® KCQ, .

There exists a cenonic bijéction between the K-domain
structures on an integral domain and the-g—field structures on ite

quotient fielde. The next lemma puts in evidence a lifting proper-

ty for wvalued K-fields.

gy

Iemma 4.5« Let P be a field extension of K and w be a wvaluz

tion of F/K. The function (Pn)n;2f%>(Pn)n;29 where Pnzié mod;gw:



o= ‘?"9 i

a€0 (\F }§ maps the set of the Ke=field structures on F which

q,-n

are compstible with w onto the set of K-field structures on F .

Proof. One checks easily that the map above .is well de-

A i Wous o - Ehe for ever > a X Tg
fined. Note also that for every (In)n}2'8° ahove, PN 0, is the

preimage of Fi through the canonic epi Q*QJ%F}f Tt remains ta
prove the surjectivity. lLet (Q,) 2 be a waleld structure on

Fe Let Q= g; Q“, QY be the preimage of Q through the epi q,

end Q*=/\ Q"' . Denote by S the set of the K-field structures
2 n =

P“(An)n>2 on F which are com;atlbl@ with w and Satlsfy'P TRl

for n»2, up to the equivalence relation: PwvP' iff there exists

-

an isomorphism of valued K-fields (F, w, P)->(F, w, P') inducing

the identity onn F o We have to show that S in non=empty. The set
S can be described in cohomological terms as follows.

A‘ rid
Denote by FA the Abelian profinite greup,;im F%/Qk 4

1ir
1
exaclt sequence

”f/KXn”’Ilm OI/Q’ , and let G be the group defined by the

S n;?

fvﬁ

I-M'X/Quya FX—%'G ST

The exact sequence above induces the exacl sequence

A
Hom (wF, G) 2> Ext(wF, Fﬁ/Q)~9»Ext(wF, Fﬁ),
where Hom stands for group morphisms and Ext=Ext% « AS
?lﬂﬁ*m e 18 Z=con F is t i b it follow
wedid K /Xn 18 Z~complete and wi' 18 torsion Iree, 1 ollows

1’1{} 2 K
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Aey

by [ijj §39, 54 that Ext(wF, F_}=0, i.eog;l is onto. Denote by
3* the preimage through A»of the class of the canonic exact

sequence

s‘}i i X | 1}:{ % whk 55k
':L—?I.W /Qm OW [fQ_,wﬁb éi P Wl - L

We define a canonic bijection/ﬂ:u-58°, proving in particular

that S is non-empty. If P is a representative of some séS} the

isomorphisms Kx/ifn‘f§FX§X v n>2 determine a canonic morphism

I‘X/'% Hl"}f«,vmnH

P‘ e inducing the identity on f%/Q
n>2 Eos

The morphi.sm above induces a morphism/L(s);wFﬁ>G'which does not
depend on the choice of the reprrsontatlve P of s., By construc-

tlon,thJGS . uonversely, given fES*, there exists h: FX/QVQEX
such that (F 3 h Wi / ,> WF) is the pullback of the pair

A -
(Fi-%'G, ¢.wF€>b)e Let P =h I(EXH)U{O} np2, By the universality

of the pullback, the family b= (Pn)n>2 is uniquely determined
by £ up to an automorphism of the valued field (F, w) inducing

the identity on.Fw& One checks easily that P is a K-field struc=—
ture on F which is compatible with w and Pn=Qn¢ Thus we get a
map ¥ :S%» S. It follows immediately that/q and ¥ are inverse

each to other,. 8

X
Remark. If Ext(wF, Fy/qQ)=0 then S&'Hom(wF, G), In particu-

lar, if w is diserete then S &. In this case, the 1lifting of Q

is unique up to isomorphism iff the canonic morphism fgw%§r is
onto.

IEt-}bal X be the language of valuedzgmdomains and T be
the L . . -theory of the valued K-fields (F, w, P :nd2) for whieh
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w ig non=trivial and F is p-adically closed; in particuler

szFnb n;Zo The p=-adic analogue of Theorem 4,% reads as follows,

|
&
!
‘[

Theorem 4.6. T is complete and admits elimination of

quantifiers. It is the model completion of the L = theory
. =iyal K
=

of walued K-—domaing.

Proofe The models of T are identified with the Henselian
non~trivial valued fields (F, w)} subject to K(;Oﬁ, F,is a p-adi-
cally closed field extension of K of type (e, £) and wF is di-
visible. The completeness and model completeness of T is a con-
sequence of the Ax—KochenwErshov transfer principle for Hense-
Iian valued fields of residue characteristic zero, Theorem 1.14
and the completeness, model completeness of the theory of divie
sibile Abelian ordered groups. In order to finish the proof, it
suffices to show that each valuedzgmfield:§=(F, w, P imp2)
extends to a model E;(§; %} %h:nQE} of T, which is almost mini-
mal in the following sense: for every model N of T extending F

)
w—

there existes an elementary extensionlg‘ of N such that éfis ene
beddable over F into §'o |

First suppose that w is non-trivial and let ﬁebe the
p-adiec closure of tha;§~fie1& (Fy P,in22) s By Theorem 1,15, ﬁ;is
unique up to an isomorphism. Applying Proposition 3,20 to the

valued field (F, ¥), where v is the p=valuaticn of F, the subring

~ A~

O, of F and the convex (with respect to v) prime ideal m.s We ma

: o ~n = = 2 :
extend w to a valuation w of F such that OoC 0, geting the re-
e o b ' '
quired model F of T. In fact, F is the up to isomorphism unique

minimal extension of F to a model of T.

et
-



Now agssume that w is trivial, and let F*=F(x) be a pure
transcendentsal extcnsnon of F of trenscendency degree one., Let
w® be the unique valuation of F* gubject to FCO, and w® (x)» 0
Owg is the localization of F[x with resgspect to the maximel
ideal xF[kqg m _=xQ . and F* =F, Let P“ﬁ?? fK:(]+w }uﬂﬁ} 22

=l owy oy 't G T R g Np2e

Then F’“‘-‘:(F*;wg »Pring2) is a valued waielﬁ extension of F. Let

i
e

F be the mlana} extension of W‘ to a model of T constructed as
above, In order to show that F has the required property, it suf=

fices to show that, given a non-trivial-valued K-field extension

L3

F* of Fy F' is embeddable over F into some elementary extension

s
et Py

P
—

'd
[+ 2 (e leen3£"=as above, there exists an 371~saturated elemen—
tary éxtension of it; take for instance an ultrapower with rese

pect t0 a non=-principal ultrafilter on the set of natural mumbers
Thus we may assume from the beginning that F““(F”, w", P“ 2 np2)

'd
is I p-saturated. As w" is non-trivial and F" is 53 y~saturated,

'—-O

there exists yé(\F“ﬁn‘such that w¥(y)> 0, Since w is trivial, ¥
nya

is transcendental over F. The substitutfon xky induces an Feem-
; : u ; =
bedding of F* into F, as required. @
= =~

Remark. According to lemma 4.5, the obstruction to minima=!

lity in the trivial valuation case is given by the group morphism

A
Q = fkme-rxnﬁgif F“/Py + More precisely, the necessary and suf-
ny
n.

ficient'condltion for the trivial=-valued K-domain F to have an up

s ez

L g

L i

to isomorphism unique minimal extension to a model of T is that @

o Ppad s T by

is onto.

Using Theorem 4.6, we get two contravariant functors Rp

L

and BRp defined on the category of K-algebras with values in the

¥

catepory of apectral, respectively Bollean spacese. Given a K-alge-—§



sets

o 5% e

bra A, the underlying set of Rp(A)} and BRp(A) is identified

with the set of systems (p, w, P_:ny2), where peSpec(A) and

e
X o

(wyPinp2) is a valued K-field structure on k(p). The topology i

[ —
.

on the spectral space Rp(4), called the p-adic Riemann svace

of A}is given by the subbase of open sets D(a,b,m)xg(p,w,Pnﬁngg):

e : e :
sa mod péPmﬁ W(a.mo&-E)SW(b mo&uy{}‘for a,b&h, m>2, while the

topology of the Boolean space BRp(A) is generated by the clopen
(as above and the clop '
3}
S F g

en
- T Tt e ;
D(a,b,m) sets D' (a,b)={p, W, P, :np2) twla mod plw(b mod
a,bEA, The canonic epis Rp(A)—> SpecA), Brp(A)~—> BSpee p(i},

i

i

thelr canonic sections and the canonie maps Rp(A)= R(A),

BRp(A}— BR(A) are coherent, and BSpecp(A), the constructible

p-adic spectrum, is identified with a closed subspace of BRp(4).

If A=F is a field extension of K, the underlying set of Rp(F)

and BRp(F) is the set of valued K-fields with universe.F., The

—

taopology on Rp(FF} is given by the subbase of open sets[jaé?i;l
[w(a}.}()], my2, aéF, while the topology on BRp(F)} is given by
the subbase above extended with the sotaljw(a)}Q], alFo

The rest of this section is devoted to a density theorem
on Riemann spaces which plays a basic role in the foliowing sece-
tions.

Fix a base field K, assumed to be either algebraically
closed, or real closed, or p-adically closed of type (e, £). Gi=-
ven a K-algebra A, let us consider the Boolean space X(A) and its
closed subspace X' (A}, where X(A):=BR(4/K),; X' (4):=BSpec(4a) if K

is algebraically closed, BRr(A/K), BSpecA} if K is real closed,

BRp(A), BSpecp(A) if K is p-adically closed. Let Z(A) be the pre-

image through the canonic map X (A)—> R(A/K) of the set of patds

(p., w) for which w is discrete with residue field k(p) =k,
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Theorem 4.7. With the notations above, assume that for

every pE&C® (A), the field k(p) is finitely generated over K,
Then Z(A) is dense in the open subspace X(A)\NX'(A) of the Boo-

lean space X{A)}, i:e., X(A) is the union of X' (A) and “the closu-

I‘e Df Z’ (.{k) @

Proofs Without loss of generality we may assume that-
A=F is a Tinitely generated field extension of K, -The-present- -
proof is inspired by the proof of the main theorem oflj?

distingusih three casess

inae 1z K is algebralcally closed. We have 1O show that
DAZ{F) is non~empty for every basic non-empty open set
DzD(fls.ae,fn;glge..,gm):fw:w(fi)QO, I<isn, w(gj)>0, lgjshi%
mgl, g=gl#00 Choose some wéD and denote also by w some extension
: A : i ;
to a valuation of the algebraic closure F of F. w induces on
x*=x(g) a discrete valuation with valuation ring K[gj(g) and
- ok o 3 = - k)
residue field K. Let K'CI be the algebralc closure of K' with
~d

the valuation induced by the fixed valuation w of F. Thus we get

a "@iagram of valued field extensions of K

¢ -~
s

[

et

e

o e e <
T~

\;

o~
Write FﬁK?::KE (tl g e o0e ’tk’ ‘y) ] WheT'@ tl’ o @ & ’tk aPG alg@bfaic’a}.:{;}‘”
independent over K*, so trdeg(F/K}=k+l, and ¥ is algebraic sepa-

~ ‘ ~
rable over K'(t). Let HEK'[bg Yj be irreducible, monic in ¥,
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; ‘ : : . F. f:hy ) Gj (&} v :
such that h,(;,, ¥)=0. Then fi= —F A ~prey— Lo i
= ~ e 3

polynomials G, F. Gj with coefficients in K*, I{ign, 24jsm,

o~ !
As the extension F/K' of non-trivial valued algebraically

closed fields is elementary, there exists (t', y*')K' 84

01 .

fyinga)y Bies, y')=0, éﬁf(tﬂﬂ y’)ﬁO, and ii) w{F

Lr--

w(G(t")), G(L')#0, 1<idn, and w(CG (L', ¥*))>w(G( t‘}) T<T,

o~
Now let ICK®* be a finite extension of X' such that

2 -1 — SN ‘ - :
(B yhiel 1, FCL(t, y)} and the coefficients of the polynomiale

e
sy

Hy G, F,(1sisn), Gs (2858 $m) belong to L. Obviously the induced

valuation ”fL is discrete and L 7K. Let (L, w) be the completion

of the valued field (L, WJL}, Stwa ig discrete, (L, w} is Hen~

- - A - * g - -
gelian, On the other hand, L is of infinite transcendency degree
over L, since the completion of the discrete valued field (KXY,

{ {'); isomorphic to the valued field X((X)) of formal power se-
. . - - 3 . . - . /\
ries in one indeterminate X, 1s embeddable in L.

: ; A : . 1
As the set S of the points (t", y")eéL> — satisfying the

R
i

. - e - - /\- T - : 9 - -
condition 1i) above, with w instead of w and (", y") instead

: - i : A
of 'y ¥'), is open with respect to the topology induced by w,

b

7
ﬁ.

i

3N

there exists an open neighbourhood U CL of O such that

ﬁﬂ“( {"J'T(YELH-CQQ Applying the implicit function tkeoreu [ﬁgj

i=1

Theorem 7.4 to the Henselian valued field (L, w), we get some open
A k

neighbourhoods V,V'CL of 0 and a continuous map)l ”T'(c %”}.>V”‘V?

such that,%(i*} is the unique root of:HQE”, Y%:L[f] TRt e SIANER e

e

each t"™ in the domain of,lm.In_particularf}i(t')zy', Obviously, we

——
—

nay assume that TUVYC U, Thus, if ! "(cﬂ (A) then H{t", A(t"))=

and. (8, A (5"))€s.

Aer drdoo (T/IJ Ta Infinite. we mav nroceand ga 97 fél] + 6
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"Ciom\A such that *Eiegeﬁ % are glgebraically independent

Frnd
; . A
aver L. Let N be the algebraic closure of L(t") in L. Then the

Ne

substitution t%ﬁt" v+%){ﬁ”) defines an Leembedding of the field
L{L? v} into N, inducing a K'=embeddingf :F-»N. It remains to '

observe that the valuation(f“i(m!N}EDﬂZ(F)g as Tequired.

Case 2: K is real closed. As the proof is‘quite similar,
we point out only the spec1f1c factse. In this case, the basic
open,mct D has the Forn sz P} 2w (f:)20, 1¢i¢n, w(g;)}O 1h3<m$
rkéﬁx, IskSEJ'With myl, 8=g,#0. Choosing (w, PICD we take F to
be the up to iscmorphism unique minimal extension of (F, w, P)
to acvalued real closed field. The minimal extension of (K'=
=K (g}, wﬁK“,‘Pr\K“) is identified with the algebraic cloéura of
K* in %& Vith the notations.frcm the case 1 suitably modified,
we get, by model completeness of the theory of non-triviélwvalueﬁ'

N'P‘ 5
real closed fields, some (t', y?)éK'h+1 such that i) and ii)

above, completed with the specific condition G(t IR (t‘, it )CFX
: . R (ﬁ, ¥) ~
1<iL1, with i “MﬁTETM- y are satisfied.As above take LCK' to
be a large enough finite extension of K'. As the fixed wvaluation
~S o~
w of F and the unique order of F induce the same topology on L,

4 . . e - - AA
the respective completions of L are identified, and hence (L,w,P)

is a Henselian discrete valued-ordered field extension of L, with

~

La=K. The last part of the proof is quite identical with that

from the case 1.

Case 3: K=(X, v) is p-adically closed. Now we may teke a

basic open set D of the form g(w, Pp:n;?):w(fi¥30, 1¢ig<n,



wig, Js){ﬂ, 15 j%m, rp€F 0 5 Kk jjﬁ myl, 822, g=g4#0. Choosi npj
(v, P _:n32)ed, we take ¥ to be the up to somorphism unique mje-
nimal extension of the non=trivial-yvalued K-field (Fy w, Pﬂﬁn;2)

to a valued.p-: ally closed K-k ield, and we identif fy the minie

‘mal extenaon of the non-trivial-valued I"»— ield (K*=K{g}, WJ'K*?

o

PﬁnK‘:n},é?} with the algebraic closure K* of - K! 3_n F, The proof

continues as in the case I. We have only to use the following

factas:

s

a) the model completeness of the theory of non-trivial-

valued p-adically closed K-fields, applied to the ex-tension ?/I’{‘ :

o % £
b) the p-valuation v of F and the valuation w of P indu-
: o’
ce the same topology on the convenient finite extension LCK' of

o :
K', and thus, the completion L of % with respect to v has a cano=-

nselian discrete=valued r(imfield, i

=

nic structure of

5o Some natural continuous maps on the Riemann space of

a field

Given a totally ordered Abelian group = s one defines a mar
[x F{O}—} Ru{j{w}: (et ,ﬁ}i—-}cs{ :ﬁ ; as follows: Let Aﬁ be the convex sub-
group of [ generated by ﬁﬁOs and A{; be the maximal convex sub-
group of [F properly contained 3,r145 % DiwEieg [5;;/. ﬂ/s « Then the ordee~

red group 4,5/_/3[5

Fix a morphism of ordered grou ps)\ Z\ *‘?‘? Ulth Ker/|

embeddable in lhe ordered group R of reals.

/
= ol
‘Aﬁ ® Ifa{%'__&"gf

H-

i

400, if sign(c()rrsign(ﬂ)
set'x :f) =

~d0, otherwise,
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/) s seted e (’)m - ~;-;C Re As 2?, is unique, up to miltiplica~-

g

tion by s pasmtlve constant, the definition does not depend on
the choice o:f"kl., If £:[ ¢ ig g morphism of ordered Abelisn

groups, /€[, ﬁ@r\ Ker £, thene : (,)')v-T (X} of ((5)@ Irefe e O}‘:/E’.Lr and

B"Cz\ \A , then ¢ (5-{a< 'J‘) O [%)r with the usual conventlono

?

j-% oSt ey 0
(1ot} o =
Z;ao it 09N

The next lemma jis immediate .

lemma 5.1l. Let F/K be a field extension, v be a valuation

of F/K and A be an intermediate ring between K and F, such that
A is finitely generated over K. Define the mapogv:Fé—)vF by

oA (£)=max (0,~v(£)) for £EF, and let | w,4 be the convex suberoup
oft vF generated b.YO(V(A}, For a systemy(@l,“.,gn) of generg-

tors of A over K, let us pu‘tﬁ = max X (g.).. Then r A is the
convex subgroup of vF generated by {bv o Moreover,, for each feA,
: ¥

—

there is a bound Nfgge }f y independent on v, such that «V(f)g I\l’fw

-
-~

@
ﬁvrg-

With the notations above, denote by R(F/K), the closed sub
space of the Riemann space R (F/K) consisting of the valuations v
for which A¢0Wo For a system E;(gl’“'*gn) of generators of the
K-algebra A and some £€A, define the map ug f:R(F/I{)ﬁhawLb,ao)cg
§== ,

according to the rule: u f(v)zﬂ.’ (£) [S # bne checks easily that

g

the map u = is COI’l'tlIZIlOU.S'o

P

NO%:E let f£= (_f‘j-l jer be an arbitrary family of elements of A
such that f generates the.K=algebra A, In particular,f mey be

the whole A. Then the family of continuous maps (ti e ) inda-
J Jéd

ces a continuous map mg f,R(F/KlA"'? [O 29 \{0_}9 Where 0"- (0) sege
S
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Denote by P ‘? the "prajectivized® version of the Hausdorff

space [b#ﬂ) as defined in [éﬁj B P is the quotient of the
Hausdorff space fb o) \{b} by the cioued equivalence relation
identifying the points (t'}jeJ and (at’>°GJ for a0, If..

(ti)jéJ is a an element of [b =) \{03 the point of P Ly determined

by*(tj) is denoted by Ltj](“'homogeneoua coordinates"), Ag the

: o
canonic map [b‘*} \{O?%%gy is open, E? is a HFucdor £ space,

kalng'the composite of g o with the canonic map above

we get a continuous map uf:R(F/K)A-ugfb.which does not depend on
the choice of.§a As the domain of uf is quasi-compact, its image
Im(uf) is a compact subspace of_gy.

B
=

let us call a point ot B Lntﬁggal if it has the form

Plnt

Py the set of ine-

[%J jeg » Where t 62 for every jeJ, Denote by

of,

tegral pOlﬁtéY%?o The next result is an immediate consequence of

Theorem 4.7

e

Proposition 5.2, Imfuf)fyg;nt is dense in Im(up)e ©. I

j}k’ia real closed, let Rr(F/K)A be the preimage of R(F/K)£ through
the continuous canonic map Rr (F/K)—->R(F/K), and u, P:RP(FVK)ﬁ-%fy
- ’ : g

‘be the continuous map induced by'uf, I'ts image is & compact subg-

—a
s

pace of P yﬁ Similarly, if K is a p=adically closed field, we may
consider the preimage Rp{F)A of R (Fy K)& through the continuous map

Rp(F)—> R(F/X} and the eorresponding continuous map uf p:Rp(F}~3ﬁJ

Using Theorem 4 T, we get real and p-adic versions of Proposition

B elis
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6. Compactification of affine varieties over locally

compact fields:A non-standard approach

Given a locally compact Hausdorff space X, a compactifi=-

A A 3
cation of X is a pair (X,7), where X is a compact Hausdorff spa~-
. Ko ’ ; ;
ce and Z:K—ﬂfx ig a continuous embedding mapping homeomorphicale
A

1y Xonte an open dense subset of X. The following general proce=
dure of compactification is described in [?6] I.%. Assume that

fe¥->Y¥ is a continuous map end ¥ is a compact Hausdorff space, -
+ . : b . : : x

Let X denote the one~point compactification of X, in which X is

identified with the complement of a point +. Consider the conti-

AN

RE Sle e + : 3

nuous embedding i:X-» X x¥:ixb> (x,f(x)}, and let X be the closure
' - + - e ,
of i(X} in X¥ x ¥, and 7 be regarded as a map of X into X, Set

‘A A - o
B=p“1(+), where p:X-——)-Xi is the projection to the first factor,

Ay e
One gets Xzy(XJL/B,°Z(X} is open dense in X and ¥ maps X homeo -

A
morphically onto 9 (X). The pair (X,%7) is called the compactifica-

tion of X determined by f. The points of B are called the ideal

points of the compactification. The projection q:§;>Y maps B ho=
meomorphically onto a closed subset of ¥; we may identify B with
q(B), and also X v-rith"z(}{)o In the following we give a descrip=
tion of the set B of ideal points in terms of the non=standard
Analysis. The basic notions of the non-standard Analysis can be

fw@in&ﬂ,&ﬂ,&ﬂe

Consider the higher order structure (X, ¥, £} and

iet CKX, Yﬁ, fﬁnf) be an enough saturated enlargement of (¥,Y,f)

For every x¢X (similarly for the points of Y), we denote by/a.ﬁ}
the monad of x with respect ta the topology of X, i.ea,/%(x)z

‘X‘ . . s " o
=(\D", where D ranges over all open neighbourhoods of x. More
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generally, if xext, let/te(x):ﬂﬁxg where D ranges over the open
subsets of X for which x€D™, As X and ¥ are Hausdorff spaces,
ﬁ(x)/\/% (x*) is empty for every pair of standard points x,x€X (Y’

such that x#x'. Since f:X—>Y is continuous, f/ﬁ(}’))C“/Q(f( ) for

each }de ‘, & pou’tt XEX‘“ ie called near-standsrd 5f ?’C/da) f‘or

some atX. As X is Hausdorff, for every near-standard point %€x™

there is a unique a&X such that xe/i(a}; call a the gtandard part
of x and dencte it by st(x). Denote by nst (Kﬁ’) 'thé set of all
near-standard points of XX mhas we get canonic retracts ste
o’nst(xjt)%’}{', stinat (Yﬁ)*%’fg of the canonic embeddings X-pnet (%)

- ns.t(ffﬂ). As Y is compact, we get n&t(Y"‘f)=Yx.

Ienma 6.1. The set BCY of ideal points of the compsetifle
cation determined by f:X-3 ¥ is the image of X% nst (X)) through
the composite map Xx-——% YE = ngt ¥y —-Ff"-;p b %

Proof. Consider the commutative diagram

& o i ‘
x*— % (X x ¥)Fenst (@ x Y}ﬁ}L‘(X’D{%ﬁ}K =
T . , at

Lot Syt ey

-b,
Let (x, y)€X X ¥ be such that (x, YIEL(D), i.0., either x=t, or
x€X and y#f(x). We have to show that the necessary and sufficient

condition for (x, y) to belong ta '1/{\_\21"_(}{} is that z=+ and y=at (f &z
for gome #EXTN nﬁt(Kx); Assuming x€X, we get (x,, y‘)ﬁ—'}? iff the
intersection/‘i((x,, y)‘)f\ i@E ias non=enpty . Asﬂ((x, y))*ﬂ(v)*}/‘c(v)
and 1 (x)*= {c:» £(2)):2¢x%9, it follows (x, yleXepthere is zex®

such that z €M4x) and Flz)EA(vES>T(2)=v. contrary to the assumntio:
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=, yﬁ@éi(K}a Aasume-xn+$ Then the m&ﬁﬂ&/égf) a0 }iﬁﬁ LQ }

is CK?\\HSu(X ))Uf;}g and hence (+, v)Lf<$%her@ is JE?ﬁiﬂﬁtfﬂ )
. such that f(z}%kty}ﬁ Toes yﬁst(ffz)}e &

Now let us apply the procedure above to the following

algebraic-geometric situation. Let L be a non-discrete locally
compact field. Thus L is e:uher-C‘ Ry or a local field, i.e,, a

Cauchy complete valued field with s discrete valuation v(set vi=

i e

=Z) and finite residue field Lv::F Q=p ;3 if cher L=0 then I is

,ﬁqlf « U1 b SR

a finite extension of the field Sp of p-adiec numbers, while
L??q(ﬂ)) if char L=p. Let { ‘:Lﬁﬂbgﬂﬂ be the corresponding abso-
lute value; if L is a local field then x’= g~V ) for XEL,,
-and so v(x)m_lagq(!x[} set also v(x): u“loge\!fl; in the case
L=, R. "

Let YC L” be an affine L-variEty. Y is elosed in the affi-
ne space L7 with respect to the topology induced from L. Thus ¥
has a canonic structure of Hausdorff locally compact space. Giver
a family.;:{f,}qu of regular functions in the coordinate L-alge-

bra L[V]: [JJ such that T generates L[f] over L, one de as

in [26] 1.3, a continubus map inYf>I§4 according to the rule:

Qiqg) l}og(lx (s )| +ci]J6I » Where c)1 is a real constant, ot

-

only role is to assure that the logarithms are well defined and

strictly positive, so that @f is well-defined. According to [éﬁj
Proposition I.3.1, the closure @ () o @ (Y) in gy '8 compact

- ==

it is also metrizable if J is countable, Thus we may consider the

7~ .
compactification ¥ of Y determined by @f and apply Lemma 6.1 in

order to describe in non=standard terms the set B(Y) of the ideal
points of the compactification,

Thus we have to con31d0r an enlargement IL¥X of L, assumed



b

' s : :
to be ,L:\I = gaturated. For instance, we may eonsider an ultre-

B

power with respect to a nonmprincipal ultrafilter on the set
H* :
of natural numbers. Let L, bm the ﬂubrlng' of? L consisting of

o n ] ] | o - ‘3-: : >
the fini elements of L IL with respect to the canoniec extensic

im

[ , :I7 > R* of the absolute value of | Y Lf;l gxéLﬁf: [:-:Js@g_
for some @ER, G&P’O}@ It is well known that L?in ig a Henmselian

» 3 i * o ‘g €
valuatioen ring of Lj“y whose maximal ideal Linf consists of the

infinitesimals of = ZL, 1.0e4 L 1‘1.5‘ {LCL s 6%. for every czmy Q;.O;‘
and whose residue field is identified with L. The corresponding
valustion v is the composite mayp (L° )X‘ & R&-—)R where

=iy * ~ 7%/7 is a divisible ordered group, and v is the cano=
Tmn Lh g

nic extension to I of the map V':LL}R; in the local field case,

Qe

the extension of v to L&‘&is the composite valuation of the valua-
tion w:ili -}Z and the ﬁaluation \;, The enlargementq* of the to-
pology € of L generates a topology in the wsual sense on L* whic!
coincides with the topology induced by the valuation Vo Note
that nst(Li"‘)=1§in /4.(0}‘“ £ and the map st:ns‘t(Lﬁ:)—;‘aL is
the canonic epi O,;_--)BL{; = L

' Given the Levariety YC Ln", theinternal set Y* is identi-
fied with the 1.X ~variety ¥ @ 1, L™ and the in'ternal ring L Y:}:}f
ig #:-generated by the cgordinate L° «-algebra L [Y @ Lj'j
=L[¥]® , ¥, Tt foltows casily ;L,hat net (Y“)“zsaCY LE]CO@
the composite map Y\n st (X)) -——-—-3- &"(m S (Q 0™ 4’9 ()

c_;;.}’y is nothing else than the map a]—}uf( }(v) for a@ffj“ u,ur-h that

—_—

I'[g‘]gfo& s Where Ilf(f}:l{(lf‘/m LET}'P is the continuous map as=
signed to the family '{‘(ra) (f’ (a)) _J of generators of L[d]

defined in Section 5. As a consequence of Lemma 631, we get the
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required non-stendard description of B(Y).

o :
: s Fif. -{-'-‘-’w g 5270 ‘)""'S‘ i el L ‘—y 0}9
Proposition 6 B(Y) uf(a}Cv):?(fyg l} Og

T« Compactification through valuations: The main results

Let us assume that the locally compact base field I, is

: o b S8 - z :
of characteristic zero, YCL is an irreducible I~variety and

‘gb(fj)jGJ is a countable family of generators of fhe L»algébra of
coordinates L[f], By Lemma 2.9, there'exists a countable subfielcd
K of L such that K is existentially complete in Ly Y is definead
over X, YzYCKE(Ek L and:£ generates the K-algebra of coordinates
K[?(K£]=K[§tlof the irreducible Kevariety Y(K)Q‘Kﬁ, According to
Theorems 1:1, le4, .14, the condition upon K to be existentially
complete in L is equivalent to the stronger one: L is an elemen-
tary extension of K; and also to the weaker one: K is algebraical:
1y closed in L. Thus K is algebraiceally closed, or real closed,
or p-adically closed of a suitable type (é, ).

Consider the non-empty set Yfe of regular points on Y,

g

in ¥ with respect to the

pr————

and let Y be the closure of"i‘re

reg g

Hausdorff locally compact topology on Y. If L=C then Yfe =Y, ac=

- 24
cording ta L34] CheT o Far-Lég it 18 possible to have Efegﬁyo For
o in the case I=R or a local field of characd=
teristic zere (more generally for real closed and p-adicaliy close

a description ef Xfe

fields) see fa]Theorem ialo)and Lemma %.8, Theorem %.15 of Sec=

tion %. Note that ¥ .ep 18 definable by a first order formula in

=t

©

the Tanguage of K. Now let C be a clopen subset of Yreg’ If 1=
then C=Y since Y is connected [34]0h.?, §2. If L=R then the semie

algebraic set Y  hasg finitelv meny connected components which
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are semialgebraic too [idli and hence C is a union of sueh com=
ponents; in particuler C is semialgebraiec definable ovep the
countable real closed subfield K of R, If L is a local field
ther ¥ is totally disconnected, and hence there exists a lot of
clopen subsets of §;Gg& We shall assume only that é is definablei
in the language of fields with paraleters from the field L, Of |
couree, we may assume that the countable s ubfleld Kof Lis |
Targe enough such that C is definable over K. Let C be the com- |
pactification of C determined by the restriction to C of the |
continuous map @f; YJ?ﬁy defined in Section 6. According to
Proposition 6.2, the compact space of the idesl points of the
conpactification E\admits the non=standard description B(C)=
=fuf(é)($):agcks L[aj%Oéﬁ o The main goal of this section is to
give an alternatlvo description of B(C) in valuation-theoretic
terms,

Let-A=K[f(K{)=K §] and F=K(Y (K))}=K(y} be the coordinate
K-algebra and the fielaaof rational functigns of the irreducibie
Z~variety Y (K)C KX,

First let us consider the complex case, ana let um-R(F/K)&

S
——
——

*?‘%? be the contimious function defined in Section 5.

Theorem 7,1 (compare withlj?%]m%eorem T.3.6). B(Y}nLﬁ(d

\
el
—

Proofe. Let us show that B(M)C In(up) o Let_§=(al,,,o,%asﬁ‘

—
—

be sueh that C[a]¢0@ . We have to find weR (F/K), satisfying

p(w)=u (1)(vl¢ By the definition given in Section S5 1 f(n)(;)r

-'-::'

~[o< P50 _']JCJ » where Ag (£ (a)) =nax (0,~v(f 4 (a))),



O
= g (- Bl D ) S )
nax ¢(a: )= min v(a: ). By contlnuity of the polynio~ ..
v . WL 143 1 s
1<ign
mial funetionu with respect to the valuation V, there exists

g =
a family ( ”"CJ of non-negative elements in vﬁ =R such tha

€ et £ - tNale = e ey x - 3"‘“‘}:
P‘frf-i (?)\?PE ang éfv L5 (;f) ) = (LJ (g)) for every .;7 B0y v e ’bn)@"

- e s ¢ .
subject. to v{b-a)= min VCbi“a°)>5:e Consider the countahle svg.
== 3 1 1 Jd o
1<i¢n

tem of formules in the language of valued Tields with parameters
Vi

in C, in variables z=(z s Wy, oy X ! SR
da? d a = (-’-’Ilgwu)ﬁ’zll}a '_Ecyregﬁ vg-g)))/:lz £ or J€Jo
Since ¥ =Y it follows that the system above is finitely satige
[&2

3 b
Tlable. On the other hand, the enlargement (C,[|) of @€,/ 1) ie

assumed to be&ﬁlnsaturated and hence the valued fielgd (Cx v)

s k* u%aturatea t00. Consequently there exlsts bGSY rep such

(1)”uf( )(v;@ As bGYﬁ “(Y(F)Qb reg’ it follows

rolldny 4.2 that there exists a valuation w of F/K such
that g mod<§;:§ and F&:K(b)o Denote by w the composite of the
valuatlons w and V%g( p) e Then WeR (F/K), and vK(b) is identified

with a convex subgroup of wF. Finally, we get wffw)=u (v)x
! = £ (b)

o

¢
(a)(W}E as required.

—

g
Conversely, let méR(PVK)A We have to find some a(l such

that C QJ#O“ and Uf( )(‘)“uf(w)@ Since the theory of non-trivial
valued algebraically closed fields admits elimination of guantie

. : o . . . o b )
fiers, (F, w} is a countable non-trivial valued field and (C* v

- oo Al . « i :
e aﬂ~}ﬁlnsaturated non~trivial valued algebraically closed field
with the common trivisl velued subfield K, it follows tHat there

exists a chmboddlngﬁgpuw,unﬁ%(c s v}w Let a‘R(y). Then

| = v)=u,(w)} since is identifiec
a € rcrg C[a]f@ Aﬁowland ggqa)(v)"ﬁg(h} since wF ia identif 9(

-_

6 = ®©
with an ordered subgroup of ¥Gr=R, i

sy,

STV Lt o oYY

Next let us consider the 1eal cose.  snd Jateis
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be the continuous map defined in Section %. Given a c¢lopen sub~-
get C of Y e it follows, by the finitenesa theorem for open

semialgebraic sets, that there exist some polynom1a1 functions

,kaéﬁ 4 fchﬂ , 1¢i€m, 139, , such that C= u ﬂ gz
i=1 j=1° “ 2
N
( }>Qf¢ Denote by C the clopen subset of Rr(F/K), given by
i 2?, o
= /) f(w,F)ERe (J:*/T:)A,.h. -&P‘
=1 5N

Theorem 7.2 (oomp re with Ld6j Proposition I.4.2}

BC&)=quTCC),

oy
——

Pv4
Proofe. IMirst let us show that B(c) C uf (C) . Let acCt

-

be such that_R[%]fOej We look for some (w, PK;G sueh that

) ¢ X k3 or ey - . 1
wf,r(W’ L)=uf(a}(v). Proceeding as in the proof of Theorem f,1ﬁ
= = ._G }-M 4 . : |) a) 2
we find some b ed C¢™ such that ufgp)(v =uf(ﬁ)(v o Applying

= )
[is] Corollary A.2, we get a valuation w of F/K such that
¥ mod.gé;g and F&;K{b)o'Let v be the composite of the valuations
& 6 _ . + ] @
w and VJY(b¥° As Fe inherits from R a structure (“[F(b)*
”(bxﬂt??) of va]ueo~0ﬂdeﬁle1eld there is at least one order P
of F such that (Pf\O%}mod EF:K(bJF\Rﬁg and 1fgW(P, It follows

o/
(w, P)EC and U r e ?}*Wf( )(x)“uf( )(v} as required,

- - =

Conwersely, let (w, F)CC. We look for some d@C such that

R[5]¢0° and n, £(a )(v)zuf (w, P)+ Applying Theorenm 4,3 to the
l

I
}1 - uaturated non»tr VJ?J valued=ordered real closed field

1
b
(R ,'\?7, ' 2)5

the countable non-trivial valued-ordered field
(F, w, P} and their common trivial valued-ordered subfield K,

a2
Vool ), Then

rEs

we get a L—emboddLng;l (FFy w, P)~%ﬁ(q

¥
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E’*wa( Yoo @s Rlsfoy and "r(a D=, (v, B,

Finally, let us connger the p- adﬂc cage. Denote alsoc by

e ]

v thg restriction to X of the discrete valuation v of L, Thu

K=(K, v} is p-adically closed of the same typs as (L. v

Jo Lot
T v —_ ; » £ b - 3 3 -
L p»RP(Ple %y,be the continuous map defined in Section 5. Con=
- (z‘ ; T . " i

sider a clopen subset C of k o which is definable by a first

order formula in the language of K, According to the p-adie ana-
logue of the finiteness theorem for open semialgebraic sets (see
Theorem 3.16), there exist some polynomial functions h. €éA=

18i¢m, 1%3%1; 5, and a natural number 822 such that

o : b
C= U/ ff\faGYW¥w:hijha}€in} o Denote by C the clopen subset of
1=l gel =t ey ,

FaTd ¥ L -

Rp(F), &iven by C=U/ /) (w, P n: 122} € Rp (F) :1..€€C}.
4 =1 5=1 1 L1=8
~
Cheoren T 5,-B(0)=n (&),
_:‘f'ip

5 :

Proof. Let a€C” be such that L[é]fﬁ. . As 1in the proof
R = = W

of Theorem 7.1, we get b€ Yfeg{\cx and a valuation w of F/K such

that a, F (b }\v‘“‘f( }{G), ¥y mod ma=b and rﬂ V(b) The residue field

-5

a
i & “}‘: = » ¢ E R " :m

Fe inherits from L™ a valued K~field structure (V'F(b)" K(bhﬁL -

ing2). According to Lemma 4.5, this structure can be 1thea to a

valued K-Ffield

structure (w, P,:n22) on F such that 0,F7ac0s:

sa mod e GOT;} and ann 0s) mod -_-EIG}:K(E)N M pon nz2. Thus
e [ ¢
w, P n22)eC and u : . =y v) = Core
(v, e ‘ggp(”s P in2) dg(é)(v) uf(a)(v)@ Therefore
: ~) wz S —

B(C}CU}‘ (C).

Iyp ' :

= = :

Conversely, let (w, Pn tng2)EC. Applying Theorem 4.6 to the

/

}Wlwudturated non-trivial-valued p-adically closed K—field
(]

(Lﬁ,v L™:in)2) and the countable non-trivial-valued K~field



= e
-

(F, w, Pﬁ:n}E),'we get. an embeddingnza(F, w, P :n}2)~%(1?, v,
p sl . S 4

Pmy2). Then g=Ap €YY N6, Lfa]f op and (o NOE

U (v P_mp2). Thus, \u}éwj(C @

::JID 7‘“"

We now drop the assumption thut the vaaPJOry Y is irre-

ducible. The final result is an immediate consequence of Lemma
2.1%, Theorem 4.7 and Theorems Lol vy Tato

Corollary 7.4, Assume Y is an arbitrary L-variety.

a) (556] Corollary I.5.8). If L=C then B(Y)fhf&nt is
dense in B(Y).

h}([éé] Corollary T.4.5). If I=R and C is a clopen subset

s 2 8 le€ey a union of connected components of ¥, then BCCEQ”jnﬁ

is dense in:Blc):
¢ If L is a loecal field of characteristic zero and ¢ is
: Lt -
a first order definable clopen subset of Y, then B(C}fy?J is

dense in B(C).
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