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case). When A is a domain eA(M) = e{A)-rank (M) by {1\12} (14.8) so in the hypothesis of
our Theorem there are indecomposable MCM-modules of arbitrary high rank if fope= e
The proof follows entirely [Y] our contribution being mainly to extend his Lemmas
(2.10), (2.12) in the following form (see (4.8)):

(1.3) 'Theorem. Let (A,m) be a reduced excellent henselian local CM - ring,
t=A/m, p:=chark and IS(A) the ideal defining the singular locus of A, i.e.
I(a)= O Q. Suppose that
5 gé RegA '
i) [k:kPy ¢ ifp> o0,
ii) if pA # 0 then for every q € Reg A containing pA Aq/pAq is regular,

iii) I (A)u m, i.e. A is not regular.

Then there exists a positive integer r such that

1) A MCM A-module M is indecomposable iff M/I (A) M is mdecomposable,

2) Two indecomposable MC'\] A-modules M,N are isomorphic iff I\I/I (A) M and
N/IS(A) are isomorphic. :

In particular this Theorem gives large classes of isolated singularities for which
there exist Dieterich [D] reduction ideals. A

2= In the hypothemb of (1.3) we get ny <n4 (see (4.10)) where A is the completion

of A. In particular we can improve the rebult from [K] and [BGS] for excellent henselian
local rings (see (4.11)). Though (4.11) can be also obtained using the property of Artin
approximation of excellent henselian local rings (see [Po] (1.3)) as we indicate in (5.6),
we choose here an easier method (see $% 3-4) which is entirely self contained and
proves to be more powerful for these questions. Our Section 2 conteins just
preliminaries arranged more or less after [Y] which we include it here for the
completeness. We supply here a proof of (2.5) because [S] was not available to us.

We would like to thank A. Brezuleanu and N. Radu for many helpful conversa-

tions on Theorem (4.4).

2. The singular locus of an excellent loeal ring.

Let A be an excellent ring. Then RegA :{q € Spec A Aq is-regular} is an
open set and IS(A) = n q defines the singular locus of A, ie.
q ¢ RegA
V(IS(A)) = Spec A \ Reg A.

(2.1) Lemma. Let u: A—>B be a flat morphism of excellent rings. Then

1(B)< w’mgﬂé.

Proof. If q € RegB then g M A € RegA by [Ml] (21.D). Thus a prime ideal



from B containing u(l .(A)) must contain also [ .(B). ol

(2.2) It will be u~efui also to express I (A) as the radical of a certain ideal of A
whose elements can be precisely described. Thlb is already well known for rmgb A which
are essentially of finite type over a perfect field k because in that case the Jacobian
eriterion for smoothness [I\-’Il] (29.C) applies and we have IS(A) = HA/k' In general, given

"a finite presentation A-algebra B = A[X]/a, X = (}x Xn), the nonsmooth locus of B
over A is defined by the following ideal

= Z; Af((f) : a)B

Hp/a =

where the sum is taken over all systems { of r-polynomials from g, r = 1,...,n being
variable (see [Po] (2.1)). Using [Y] &2 we will present such a description of IS(A) when A
is a Noetherian complete local ring having some additional properties.

. (2.3) Till the end of this Seetion (R,m) is a reduced Noetherian complete local

ring with a perfect residue field k. Then either R contains k or R is an algebra over a

Cohen ring of residue field k, i.e. a complete DVR (T,t) which is an unramified

extension of Z(p), p:= chark > 0, t:= pr1 € T. When R contains k we put T: = kand t=10

in order to unify both situations.

Let R('F,R) be the set of all prime ideals g & R for which T—R_ is a regular
morphism. Clearly R (T,R) € RegR because T is regular and regula? morphisms
preserve this property ([M ] (33.b)). When R contains k the other inclusion also holds, k
being perfect. When R is in the unequal .char acteristic case (pR # 0) then we suppose
that

(%) Rq/pRc is regular for every q € Reg R
1

Thus in both situations we have R ,R) = RegR
(2.4) Let x = (xl, oX ) be a system of clements from R such that (t,x) forms a
system of paramctefs in R. I“[om now on we suppose that R is a Cohen Macaul.’w ring

(shortly a CM - ring). Then the canonical map T[X]—>R, X =(X

P X )—; X is finite

and flat (hence free) by Cohen Structure Theorems and [‘Ml] (36.B).

(2.5) Lemma (Scheja - Storeh [8]). There exists x as above such that

)> 1, i.e. for every minimal prime ideal g< R the fraction field extension

R/TI) —
CFe(T[x]]) e-— Rq is (finite) separable.

ht(H

Proof. When ’1 £ k there is nothing to show because charT = 0. ‘Suppose T = k.
Let qseesQy be the minimal prime ideals of R and take an arbitrary system of

parameters y = (yl, E) of R, If the field extensions o E ((y))—w&R el < i<s are
g



all separable then ht(HR/},[[y}])Z 1 by the Jacobian criterion for' smoothness [Ml}
(29.C). Suppose that (O(i)1<i<e

and for every i, 1 <i< e there exists-an element 2, € Rq N k((y)) such that zlp e k((y)).
‘ ; .

are not separable for a certain e, 1<{e<s. Then p>0

Since oi-i is finite we have

k(yD® R ‘\:’be'R ;
klyl i=1 i
Thus we can find one z €R and w € Kllyl] such that z/w corresponds to (zl,...,ze,
, yn,...,yn) by the above i_somorphi"sm. Then h:=zP ¢ kily]] and z € kl[y]l. Adding a
constant to z we can suppose that he (y) kllyll. If h ¢ k([yP1) then h € KP[[yP)] (k is
perfect) and so z € k{[y]] which is not possible. _
Suppose that h ,e"k[[yl,.“.,yn_l, yE]]. After a coordinate transformation we ean
suppose also that h is regular in Yo Applying Weierstrass Ppeparation Theorem for U - h

_in K[[y,U]] we find a distinguished polynomial
55 R r-i - ' :
Wps= yn+iZ:13iyn , 8 € Klly ey, 1, U, 2(0) = 0

and an invertible formal power series g € k[[y,U]) such that

(2) U -~-h=Pg
Substituting U = hin P we get

(3) y:;+ ]%lai(yl,...,yn_l,h)yri =0
because g{U-= h) # 0 since g(0) # 0 and h(0) = 0. Applying 2/2 ¥ in (2) we obtain
(aP/ayn)g+£’(3-g/eyn)=-a.h/:)yn;-‘0 - =
and substituting U=h we get (3 P/2 _yn) (V="h)#0. Thus (3) defines a separable
equation for Yo oyer k[{yi,...,yn_l,zp]]. In particular Yo is ‘separable over
Sy = k[[yl,...,ynﬂl,z]]. Denote y' = (yl,...,yn_l,z).'We have
M, = R, kKON, -

. ! =
(R D = (R
1 1
for every i=1,..,e, where [ ]ins denotes the inseparable degree. Repeating this
procedure inductively we finally find a system of parameters X in R such that

- k((x)) e Rq is separable for every i. @
i i :



(2.6) Remark. If k is not perfeet then the above Lemma doesn't hold. If
a € k~kP then A = KI[X,YII/(xXP + a¥P) (after [Y] (2.7)) is & counterexample.

{2.7) Lemma. Let g € RegR. Then there exists a system of elements x in R such
that , -
(i) (4,%) is a system of parameters in R,

(ii) ”R/T[ ¢ q.

: Proof. If t =0 then we chéose a system of elements y in R which forms in Rq a
regular sy&.;tem of parameters. If t € g then by condition (2.3) (x) we get Rq/th regular.
Thus there exists y such that (t,y) form in Rq a regular system of parameters. By
Lemma (2.5) there. exists a system of elements z in R which forms a system of
parameters z in R/a, a: = vf{?,?f) such that the map (T/Tf_\g_i_)[.[?;]] —R/a is generically
~ smooth. (Note that R/(f,z) is CM (see [I\-Il] (16.C)) and so R/a is CM too). Since q is a
minimal prime ideal containing a we get (T/T (0 @)l[z)] —» R/q separable and so the map
* Tlly,z)] — Rq is etale. Thus x = (y,z) works.

Suppose now t ¢ g then as above we can choose y in R which forms a regular
system of parameters in Rq. Take a system of elements z in R such that (t,z) forms
modulo g a system of parameters in R/q. Then (t,y,z) forms a system of parameters in R

and Tlly,z]]<— Rq is etale (char R/q = 0). Thus x = (y,z) works. m

(2.8) Corollary. I (R) :\/Z" Himena , where the sum is taken over all systems
: : SR o R

~of elements x such that (t,x) forms a system of parameters of R.

Proof. If g& SpecR does not contain HI‘/’E[[ ) for a certain system x then the

map Tlx])] —s Rq is etale and so R is regular because T[[x]] is so. Conversely if

Py 2.7) there exists x s . |
g € Reg R then by Lemma (2.7) there exists x such that g ,5 “R/T[[x]}

(2.9) Let SE R be a regular local subring such that R is a finitely generated
> R the

free S-module, R% =R ® R the e*welopmo algebr a of R over S and p: RS

" multiplication map. Denote L= Ker p. The ideal d lJ(AnnR_I) is called the Noether
different of R over S.

R/S © rss =V g

Proof. The first equality is trivial because SZPJS = 1/12. Let gqe R be a prime

~ ideal. if q 75 VR thenl .S'qu/S =Sl R/S c&bRRq 0 as above. Since S € R is finite free we

get SIW}RQ etale, i.e. g7 HR/S' Conversely if g % HR/S then S— P‘q is etale and so

(2.10) Lemma. f e e vnal

i



Q"R/S@’RRq = 0. Thus IQ = Ié for a certain prime ideal Q € R® Q 21 sueh that Q) = q.
e e SEER, B e BT R
By Nakayama Lemma we get IQ =0eandsoQ AnnReI. Thus ¢ g Z g

(2.11) We end this Section by listing some facts from Hochschild cohomology,
which can be found in [P] Ch.11. Let B < A be an extension of rings. The n'th Hochsehild
cohomology funectors I-I%(A, =)i=n Sil): are defined on the category of A-bimodules with

values in the eategory of A-modules and have the following properties
i) Hg (4,M) = mA); = {XG M| ax = xa for every a ¢ A} for all A~bimodules M,

ii) If M,N are two A-modules then Homg (M,N) is an A-bimodule [the left (resp.
right) action of A on HomB(M,N) is given as the one induced from the action on N
' 0
(resp.M)) and Hy (A, HomB (M,N)) = HomA(M,N).
soye il A SEET = ,
iii) H p(A,M) is a factor A~module of DerB(-A,M) = HQmA(QA/B,M)
iv) If A is a projective module over B and

DMl e M

Is a short exact sequence of A-bimodules then there exist some A-morphisms

a(n) : i-IB(A,M”)_.ﬁI-lgﬂ(A,M'), n > 0 such that the following sequence is exact.
10— H(A,M)——s HO(A,M) Ho(A,M") HL(A,M1) —>
B Bifensor i e g

n

B(A,I‘.'l”)

—>HR(A,M) —> HM(A,M) — H = H§+1(A,M)__h> e
(2.12) Lemma. Let S <R be as in (2.9) and M un R-bimodule. Then

e e
: ‘/'Ps - Hg(R,M) = 0.

o ol -
Proof. By Lemma (2.10) we !_1,ave 4 S ‘QR/S =0 and so JV“S HomR(ﬂ M) = 0.

Now apply (2.11) iii). o

R/S?

3. Chl - approximation

(3.1) Lemma. Let S ¢ R be an extension of Noetherian rings such that R is a
finitely generated projective module over S, x an element from Jfg and M,N t{wo
finitely gencrated R-modules such that M is projective over S. Let e € N be a positive

i et \ .
integer sueh that Ann x% = {Z €N [xez = 0} = Ann_ x%"! and s € N. Then for every

N N
linear R-map ¢ : M -—-->N/_xe+8+1N ‘there exists a linear R-map Ym —— N which

makes commutative the following diagram



M £ el
|
|
|
y -
\}/
N — > N/xET SN

Proof. Let N': = AnnNXe. We havé the following commutative diagram:

e+5+1 ‘ ; + ‘_2,1
DN e e N > N/N'+ 3575 N — >0
(1), E
xe+s v e
0 NN S o Lo NN SRR
el o T s . : 2ets '
in which the bases are exact. Indeed if x~ "z eN' for a certain z¢N then x 7z = 0 and

SEUZLE Anan?’Hs: N'. Applying the functor HomS(M,—) to (1) we get the following’

commutative diagram:

G+S+IN)-—>D

0 *ﬁHomS(P\-'l,N/N‘)--—«—>IiomS(I\‘I,N/N’)*%?Homs(l\],N/N‘ +x
(2) =

Vv

0 —>Hom ‘(M,N/N‘)m»l‘lomS(M,N/N‘) A—;»I-Ioms(l\-],N/N‘ - xe+SN)-~_>O

S

where the bases are exact because M is projective over S. Clearly these bases are also
exact sequences of R-bimodules and applying the Hochschild cohomology functors we

get the following commutative diagram (see (2.11) ii):

Hom , (M,N/N') —> Homp (M,N/N' + St Hé(R, Homg (M,N/NY)

(3) ek X

= + .
Hom , (M,N/N') > Hom p, (M,N/N' + RN 13%(11, Homg(M,N/N")

in which the bases are exact (see (2.11) iv)). Since the last vertical map is zero by
Lemma (2.12) we get a linear R-map of : M—>N/N' such that the following diagram is

commutative




u —E s ety o N/ + k&SN
l
() oL !
'
v Ve
/N > N/N'+ x%°N

Note that in the following diagram

M
‘l’ et :-, e+.s
(5) ~ Meei=as H—>N/N‘ﬂ X >N/x- °N
! o<- ' ' / +a
M ~ N/N' > N/N'+ x7°N

{he small square is cartesian and so there exists ¥ which makes (5) commutative.
ob o :
- Remains to show that N' (1 x® 8N = 0. Indeed let y € N'(} x¢"°N and z € N with

ets

...0 [,

emma (3.1) says that given M,N there exists &

ot
yzxe z. Then 0 = X y:xgc Sz andsoz e N, f.e. y =X
Remark. Roughly speaking L
function ¥ : N> N such that every linear R-map ¢ :

M ——N/x (:’)N s € N can be

lifted to a linear R-map ¢ + M~ N such that (R/x

SRisLd = (R/x°R)%, ¢ . But this
R R

follows easily from a linear form of the strong approximation theorem (see [Po] §1)

which holds in fact in every Noetherian local ring R for every element % ¢ R. Thus the

importance of Lemma (3.1) consists just in giving to 3 a precised form.

(3.2) Lemma. Let B A be a finite flat extension of Noetherian rings

ideal and x € HA/B an element. Then there exists a

aCAan

positive integer r such ihat for

every finitely gener ated A-module N-which is free over B it holds

(aN : x ) = (N : ) o

where (aN xF)N = { z¢ N xPngN} .

proof. Step 1 Reduction to the case (a: x) = a.

Smce A is Noetherian we have a':

.{
integer n. If xy¢ ,a fOI a certainy € A then X"

=g x')=(a
-1
ycaandsoye @

n+l . Soe
x ' ) for a certain positive

a!, i.e. (a1 x) = g\

({)



Suppose that r'e N satisﬁev our Lemmea for x and a'. Then r=n+r' works.

Indeed, let N be as in our Lemmfz i zc aN ¢ a'N for some s €N and z € N then

t A L D]
yzca[xbec*au,e(al\‘:' = {a'N 1 % )

‘)N a'lN « N* 'lh{ls\fC‘{z‘l\c al.

temark. Ass, (A/g') = /[ ge hss,(A/a) [x £q}.

- :
Let=a:= N Q be an irredundant prime decomposition of g, q;i= ’\[_C;S;,
i=1 - :
ai:=q;0B, Q:=QNB, b:= =a B= n Q and ki< k; the residue field extension of
i= 1
Bl iEaA -,
% G

Step 2. Case when k = k 1<i<e.
By Step 1 we may suppose thdt (a x)=g. Fixanij, 1 <1 < e. Clearly X & g because x is a

nonzero divisor of A/a. Then the map Bq""}Aq is etale and so inq = q'iAq. Since
k‘i = k; the extension Bq. & A_ is dense. In 11;>articul)ar we have g L
i i
B B 'j’ A LA
1/Q q‘ 1/Q 9
and it follows QA = Q.A .
Q3 iq, Q]r a
\\ e show that r = 0 satisfies this ca se. Let N be as in our Lemma, and z N such
that xz ¢ aN Then z (50 ’\I = Q‘ q . Thus there exists an element v € AN q such that
yiz € QIN. Since B/q = A/q is finite we get (y AN (B\q) g’ . 'I‘hus, changing y; by

one of its multiple we may suppose that Vi B\q y 1584 Z € Q‘ g Since N is free over

B we have s :

bN = (| Q'N
F1 )
and Q&N is exactly the q}i“pl‘imary submodule of N associated to bN. Then
N QN , = QN
) 8
and so .
ze W) (ﬂ QN ,)=bN < aN.
ey =

Step 3. Case when there exists a faithfully flat B-algebra C such that for every

pmmo ideal g associated to C (\T.Ba noB —Cc\) A the residue field extension of

> Dq is trivial.

qﬂC

-We apply Step 2 to the case C<D, abD, = lgeeeD. Cleally



A " (@ 8 - 8 e “ ayal - i o1y Pias -
X € D@AHA/B = HD/C' Then there exists r such that for every finitely generated
D~module N' which is free over C it follows .

(EN‘ $ X'P)N[ = (_{‘_LN’ . X'Hﬁl)l\v

Let N be a finitely gencrated A-module which is free over B and take

N"=Da, N. Then N" is free over C and so we get in particular
A o &

(@) 2N T B

But (aN": X‘P)Nn =D ®A(§N x)

the 7
-V composed map f : N> >N —5N/aN and by flatness Ker (D @, 1) = D ®, Ker f. Thus

j+ Indeed, (aN : XP)N is exactly the kernel of

_the inclusion u : (aN : >:F)N‘——'&(;_1N : xp‘rl)N goes by base change in an equality. Since D
is a faithfully flat A-algebra we get u surjective too.

'Step 4 Generel case ~ reduction to Step 3

We need the following

(3.3) Lemma. Let S ©R be a finite flat extension of Noetherian rings and

denote
dp g = max 2 (K(Q) s k@) - 1),
: g'c SpecS ge&SpecR
gNsS=¢q'

where k(g) denotes the residue field of Rq. Tben dﬁ/s oo and dRrxSR/R < dR/S if

dR/S > 0, where the structural map Re——sR {}E’-'SR isgivenby vy ®1.
Applying by recurrence the above Lemma we get finally a finite flat B-algebra

C of the form ACS-_BA @...@BA such that dC@BA/C:U i.e. k(qﬂC)—-—Iic(q) vfoi- all

g¢ Spec(C @:Bf'x), Since a finite flat extension is faithfully flat we are ready. a
Proof ¢f Lemma (3.3). Let ¢'€ SpecS. Then’

d E ([k(q) = k(g - 1) < rank, ( wk(gD &R,
Riei qé SpeelR g
q 5=¢'
the last number being bounded by the minimal number of generators of R cver 8. It is

enough to show that

g ® /R Cdps,q



for every q & SpecR lying over ¢ and such that dP/S g > 0. So-by base change we
> bl

reduce the question to the case when § = k(q') =:k. Then R is Artinian. Let (k.) be

i l<ice
its residue fields. It is enough to show that : : ;

w1 <1< eandd if k £k

d <d St NS ;
kl @akki/k - Ki/k}i kl Q"kki l\l/i\ 1

First inequality is clear because

1+d X rank, k, @ k.= rank k. = d, , *1
ky @k 7k, e Lok 16

The equality holds only when k1 c§.3kl<i is a field. But kl@kk1 is not a field so the second

inequality holds too. o

(3.4) Lemma. Let S € R be an extension of Noetherian rings such that R is a

* finitely generated projective module over S, x an element from u‘fg and a ¢ R an ideal.

Then there exists an increasing funetion < :N —-»N such that for every s e N, for .

every finitely generated R-modules M,N which are free over S and for every linear
R-map ¢ : M —«&N/(g,xQ{S)}N there exists a linear R-map i M —-»N/aN which makes
commutative the following diagram:

Vi e A > N/(a,xQ(S))N

1

|

1

1

i

\4 s
N/a — e 5 N/ )N

==

Proof. Let r be the integer given by Lemma (3.3) for x and a. Define 9 by
J (s) =1+ max { 1‘,5} . Then given M,N,s, ¢ as in our Lemma we find the wanted ¥

applying Lemma (3.1) for x, N =N/aNande =r. B

(3.4) Lemma. Let x = {xl,...,xn) be a system of elements from a Noetherian ring
R such that for every i, 1 < i< n there exists a Noetherian subring Si of R such that
i) R is finite free over 5.,

L
. I“
i) x; eNg
i
‘Then there exists an increasing function 7 : N —>N such that for every s € N,
every finitely generated R-modules M,N which are free over all (Si)]<i<n and for every
' A(s) e
(s

linear R-map ¢ : M — N/x "N there exists a linear R-map ¢ : M—=N which

makes

A4



commutative the following diagram:

c{) e
M s N
{
1
() 'i} I
|
W ; v
N - > N/x"N

Proof. Denote _bl = (xl,...,xi), i=1,..,n Apply induction on n. If n=1 then

apply Lemma (3.4) for x, and a = 0. Suppose now that it is given a function ' which

il
wor‘k‘:\ for b a-1° Let s€ N and " be the function given by Lemma (3.4) for X, and
1 L5
a=b _%b). Define ~N:N—>N by A (s) = AYs) + Q”(s) Let M,N be two finitely
genﬂlatcd R-modules which are free over all (81}]<;<n and P: M ~—5—N/b Vs )N a linear
e map. Then there exists a linear R-map of ¢ M —=N '“I\/b (:’}N which makes
commutative the following diagram: '
' : Nt
M v > N/b N
o 17 3"SSF ~ N/ G "))N
n = n=1 ¥

Y g qf(:i) s
T /YN & W/ - T
I\/AIII\ & l\/(_t_)n”l, kn)l\

ettt s

Thus there exists a linear R-map Y : M——=N which makes commutative the

following diagram

1
Q
M= = > N ”N/b" (L’)N e N/(b (s ), RS)\’
. =n-1 =1
]
|
5 9} i
|
|
N > N/b° N 5 N/B°N
S i e

Clearly i’ makes also (x) commutative. O

(3.6) Let A be a CM local ring and M a MCM A~meodule. Then every system of
parameters from A is a M- c.ﬁular sequence. Let a ¢ A be a proper ideal.

The couple (A,a) is a Ci\‘i - appreximation if there exists a function J:H—>N

(called CM - function) such that f01 every s € N, every two MCM R-modules M,N and

every linear R-map ¢ : M —>N/a s }N there exists a linear R-map ¢+ M —=N such

that (A/_é}s);_QAq” Z (A/gs};g:[.\ﬂj' in other words the following diagram is commutative:



e = e iy

|

l

{

= 7
1

v b

N R = N/a"N

(3.7) Pu‘pw, ion. Let (R, m) be a reduced complete local CM-ring with a perfect
residue field k, p: = char k and 1 (R) the ideal defining the bmrfula: locus of R. Suppose
_that for every g€ Reg R contammg pR the ring Rq/phq is regular and I (R)c m. Then

(R,IS(R)) is & CM-approximation.

Proof. Let T< R be the Cohen ring of residue field k (see (2.3)). By Lemma
* (2.10) and Corollary (2.8) we have

e
1) =2 gy

where the sum is taken over all systems of elefnen’té x such that (t,x) forms a system of ‘
parameters of R. Then we can find a system of elements y = {yl,...,yr) in 1S(R) such that °
1D I(R) = VYR _
9) for every i=1i,..,r there exists a system of elements x(l) of R such that

¥ (.(i) . g avet o aro T . l:"R -
(t,x*7)) forms a system of parameters of R and y; € J e (1))

Since R is CM the inclusion 5, : = Tllx (i}]}CI{ is finite flat (so free). Let
3's N—>N be the funetion given bv Lemma (3.5) for y. If M,N are two MCM
R-modules then (,x )) is a regular M or N-sequence for all i. Thus M and N are finitely
generated flat over S, 1 < i <r(see[M ] (20.C)) and so free.

Now let u b° a positive mte%r such that I (P) < yR and note that 3 gwen by

N (8) = u 3'(s) works. @

4. Cli - reduction ideals

N

(4.1) Lemma. Let (A,m) be a Noetherian Jocal ring and a < A an ideal. The
following statements are equivalent:
i) (Aa)is a CM-dpproximation,

ii) (A, /@) is a ChM-approximation.

Proof. Let u be a positive integer such that (-xf':g’)uc a. 1f i) holds and
) s N—>N is the associated CM-function then as in the proof of Propoaition (3.7) the
function 3 given by Q(s) = uV{s) works for (A, W a). If ii) holds and 3 is the d::bOC!diCd

CM~-function then the function Y given by () = J(su) works. Indeed, let M,N be two



— .

V(s . .
MCM A-modules, s € ¥ and ¢ : Mm#?N/a (‘L’)N a linear A-map then there exists a

linear map L}f M —=N bqeh that the following diagram commutes:
$ . , .
m—L N/a W s N J‘é) sy ety

¥ v \ ,
N — —> N/WE™N . N/a°N

(4.2) Lemma. Let A—>B be a flat local morphism of CM-loeal rings and a < A

an ideal. If (B,aB) is a CM-approximation then {A,_g) is too.

Proof. We claim that the CM-function < associated to (B,aB) works alao for
' (A,8). Indeed, let M,N be two MCM A-modules,s € K and s P‘.’l-—-—;»N/dQ{ )N a linear
A-map. Then M :B®AI\1, = B@AN are MCM B-modules since by flatness' depth

M = depth, M + depth (B/mB) = depth A + depth (B/mB) = depth B where m denotes the

A

maximal ideal of A. Thus there exists & linear B-map X : M —>N such that the

following diagram commutes

B @A % \ ﬁ/a%(b)f\f

e |

T e i

/
———————> N/a"N
Since M,N are finitely generated modules, the existence of ¥ : M —=3N such that the
above diagram commutes means in other words that a certain linear system of

e S e e sl e =
equations L over A has a solution in B. Indeed, let M= A /(‘31""’ze)’ x (?]})1<J<!]

S nypte e ol (i a
N=A /(-’l ei)i s (2! }L)l_ﬁlf_ﬂ” S

is given by the matrix (Lﬁ )]<J<n Then L has the following form

= (a,,...,2. ) a system of generators of &” and ¢
1 o ¥ g

1<p<n!
é1
Zl e 1< i<e, 1 <<
3117 7;1311\3\11 == Rk
SV, =€
N e e e gt Sl ST 1<jen

ju Ju o<;1 A <<ju‘ a=1c JA s’

Clearly ot gives a solution of L in B. By faithfully flatness L has also a solution
= 1 3 o ~ « o - o 1 STRIE » . R Y i e N ) £
(kjil’ P u_ ;) in A and the matrix (Aj}l) defines a map ¥+ M—%N such that a

diagram as above commutes. O



(4.3) Proposition. Let (A,m) be an excellent local CM-ring, p:= char (A/m), and
— L] ——
IS(A) the ideal defining the singular locus of A. Suppose that ‘

i) for every g € Reg A containing pA the ring Aq/pﬁq is regular,

: ii) there exists a flat, reduced noetherian complete local A-algebra (B,n) such

that ' |
(ii‘) (B,n) is CM and its residue field K 1'5 perfect,

(112) for every q &€ Reg A the map f&q i Aq @AB is regular |
(i) I A) €m. ‘
Then (A,IS(A}) is a CM-approximation.

. Proof. Let q'€ SpecB and q:= g' (1 A. If q& Reg A then Aq——> Bq' is regular by
i ) and so q' ¢ RegB. Thus if ¢ 75 I(A) then ¢ A1 JB), e I(B)= I(A)B. Moreover
I (B) =~ 1 (AL (A)R by Lemma (2.1) .

If q' contains pA then A /pA is regular (see i)). Since A /pAq——my-B /pB ,xb'
regular by base change we get B x/qu: regular too. Applying Proposition (3. 7) to (B n) -
we note that (B IS(B)) is a CM-approximation. By Lemma (4.1) (B,IS(A)B) (T
CM-approximation and so (A,IS(A)) is too (see Lemma (4.2)). o

(4.4) Theorem. Let (A’E) be a reduced excellent local CM-ring, k:= A/m,
p:= chark and I ‘(A) the ideal defining the singular locus of A. Suppose that

i) [k : kPl < oo ifep0,
_ii) for every g € Reg A containing pA the ring Aq/pAq is regular.
iii) ES(A) c m.

Then (A,IS(A)) is a CM~-approximation.

Proof. If k is perfect then apply Proposition (4.3) for B = ?\ the completion of
(A,m} (the map A‘mbﬁ is regular because A is excellent and ﬁ is reduced because A is
$0). :

If k is not perfect let K:= kl/pm aﬁd P its prime subfield. Then from the

following exact sequence

rf{/p Sl E{/k =2 'Qk/P } K

-

we get Jank I; /k—< rank 'Qk/P = rank, i</ kD {eo, where K/k denotes the

imperfection module [M ] (39.B).

Using EGA (42.2.(;), or [NP] Corollary (3.6) there exists a formally smooth
Noectherian complete local A-algebra (B,g) such that

1) B/nx K



2)dimB =dim A + rank K /K’
Then the struetural mor ph]sm A — B is regular by Anc‘rc, Radu Theorem (see
{An}, or [BR]] RE J\,J) because A is excellent. Moreover B is a reduced CM-ring by [I\*]]]

(33.B). Now apply }.‘lopohﬂtlon (4.3).

(4.5) Lemma. Let (A,m) be a Noetherian henselian local ring and a < A an ideal.
Suppose that (As_*-j) is a CM-approximation. Let 3 : N —+N be its CM-function and

L ":)(1). "Then a !‘.-‘]CI\& A-module M is indecomposable iff M/arl\«] is indecomposable

-
over A/a .

Proof. (inspirated by [Y] (2.10)). Clearly I\'I/zfm is decomposable if M is so (use

the Nakayama's Lemma). If M is indecomposable then FndA(M) is a local A-algebra, A

- being henselian. Let { be an idempotent from Lnd ('\]/a ‘M). Then there exists a linear

i -map g: M—>M such that g:=(A/a)g g = (A/.s_{)-c.. f( 3 is a CM-function). Clearly g is

an idempotent. Since EndA(?\’!) is local the sub-A-algebra

{(a/2)gh| heknd, (m)} < End,, (M/ah)

is local too. Thus g = 0 or g = 1. Then a(M /a M) contains either Im £ or Im(1-f). Since f
is idempotent we get either Imf = Imf =0 or Im(1-£)=Im(1 - )" =0. Thus £ =0 or
=0 : :

(4.6) Lemma. Conserving the hypothesis and the notations from (4.5), let M,N be
two MCM A-modules such that M (resp. N) is indecomposable and h : M—s N g linear
A-map. Suppose that _(,A/gl‘)$£\11 has a retraction (resp. section). Then h has a retraction

(resp. section).

Proof. Since (A,a) is a CM-approximation there exists a linear A-map
: N—M such that (A/a)@g is a retraction (resp. section) of (A/g)®h. Then
Im(1 - gh) ¢ aM (resp. Im(1-hg) € aN). Since EndA(M) (resp. En%‘{l‘-l)) is alocal ring we
get gh=1-(1L-gh) (resp. hg) bijective. Thus h has a retraction (gh)—lg (resp. a
section). o
(4.7) Let b be an ideal in a Noetherian local ring (B ,n) Then b is a
CM - ](,C}UCLlOn ideal if Lf e following statements hold:
i) A MCM B-module M is indecomposable iff M/bM is indecomposable over B/b,

i) Two indecomposable MCM B-modules M,N are isomorphic iff M/bM and

N/bN are isornorphic over B/b.

16



Note that our CM~-reduction ideal is not necessarily n - primary as in [D). If b

is & ChM-reduction ideal of B then'b” is also one for every s € N.

(4.8) Theorem. Let (A,m) be a reduced excellent henselian local CM-ring,

k:= A/m, p:= chark and Is(f"'} the ideal defining the singular locus of A. Suppose that

i) k:kPI<e ifp>o, ;
ii) for every g€ Reg A containing pA the ring Aq/pAq is regular,
(A)e m .

iii) IS

"is a CM-reduction ideal of

Then there exists a positive integer r such that IS(A)
A.
The proof follows from the Lemmas (4.5), (4.6).

Let Ny be the cardinal of the isomorphism classes of indecomposable MCM

£

A-modules.

- {4.9) Corolary. Conserving the notations and hypothesis of Theorem (4.8) let B
be the completion of A with respect to IS(A). Then
: i} A MCM A-module M is indecomposable iif B @AM is an indecomposable MCM
B-module , :
ii) Two indecomposable MCM B-modules M,N are isomorphic iff B @AI\;I, B@AN
are isomorphic over B. :

In particular n, <n

A B°

Proof. i) By Theorem (4.8) there exists re N such that I&_(A)F is a CM-reduction
ideal of A. Let M be an indecomposable MCM A-module. ’l‘T‘}Cn B@AM is a MCM
B-module by flatness and M= E\'I/IS(A}FI‘.I is indecomposable over A:= A/IS(A)P. Since
AZ B/IS(A)FB it follows that (B XAK) @A M is indecomposable over B @AK and so B@AI\-I
is indecomposable too.

Conversely if B ;:';:Ai“\‘ s an Endecorhposab]e MCM B-module and x a system of
parameters in A thenxisa B @y M ~- t'Aegtrxlar sequence. Since A -—» B is faithfully flat it
follows that x is M-regular sequence, i.e. M is & MCM A-module. Clearly M must be
indecomposable because ]365\}'\! is so. '

i) If B, M 2 Bg,N then Bg,

p A

% B, N and so £, M= A@,N. Thus M= N
X
because IS(A)P is a CM-reduction ideal of A, O |

A

(4.10) Corollary. Let (A,in) be a reduced excellent henselian local CM-ring,
k= A/m, p-= char k. Suppose that

i) A is an isolated singularity, i.e. m = IS(A),

ii) [k : ‘r:p] <o if p > 0,

iii) for every q ¢ l'?‘eglg‘:\ containing pA the ring A /PAC‘ is regular.

. -} I
& : FOSEN . e k.
Then n, < n4q, where A is the completion of (A,m). S i ’Lq%{\)

AT



Remark. When k is perfect and pA =0 then Corollery (4.10) is &n easy
consequence of [Y](2.10), (2.12) and [Po] (1.3) (see our (5.6)).

(4.11) Corollavy. Let (A,m) be a reduced cxcellent henselian - .+ local
ring. Suppose that ‘

i) A is an isolated singularity of equal characteristie,

i) k= A/m is &)

jii) The completion ﬁ is & simple hypersurface singularity (resp. a singularity of
Stype A D)

R

rebraieally elosed and char k o 2

[8
o

Then A is of finite CM-type (resp. of countable CM-~type), i.e. A has a just a
finite (resp. countable) set of isomorphic classes of indecomposable MCM A-modules.
The proof follows by [GK], K], [BGS] and our (4.10). ‘

L)

5. Bounded multiplicity Chi-type

(5.1). For beginning we list some definitions and facts from -the.

Auslander-Reiten theory for the MCM modules. (see [Au3], [ARI]" [Bl el al, or [¥]
Appendix). : ‘

Let (A,m) be a henselian local CM-ring and M,N two indecomposable MCM A~
modules. A linear A'wmap f:M—>N is irreducible if { is not an isomorphism and given
an;lf‘ factotization f = eh in the category CM(A), g has a section or h has a retraction.
The AR - quiver of A is a directed graph which has as vertices the isomorphic classes of
indecomposable MCM modules over A and there is en arrow from the isomorphic class
of M to that of N provided there is an irreducible linear map from M to N. A chain of
irreducible maps from M to N .is a sequence of irreducible linear maps:

f I
l\-ﬁou_l'—»} M e o i vith all l‘vii indecomposable MCM A-modules; n is called the

length of the chain. If A is an isolated singularity ‘then the AR-graph of A is locally
finite, i.e. each vertex may be incident to only a finite number of other vertices (sce
[Auz], [AR3] and [Y] (A.18))

The following two Lemmas are jusf variants of [Y] Lemmas (3.1), (3.2), or [D]

51

(5.2) Lemma. (Harada-Sai lemma for MCM-modules). Let n be a positive
integer, Mi’ 05152” some indecomposable MCM A—modules and fi : h‘]imlm—s’mi,
1< 52” some nonisomorphic linear A—méps.

Suppose that
i) m' is a CM-reduction ideal of A for a certainr € N,
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ii) length (M./m'M) < n, 0<ign.
Then (A/m°)g (£ on® o ) =0
The proof follows easily f;om [HS] Lemma 12 and our Lemma (4.6).

(5.3). Lemma. Let n be a positive integer, M,N two indecomposable MCM
‘A modules and ¢: M—=>N alinear A-map. Suppose that

1) m is a CM-reduction ideal of A for a certainr < I\IT,

2) (A/mY)e P # 0,

3) there is no chain of irreducible mapb from M to N of length < n which is
nonfrivial modulo m :
Then

i) there exist a chain of irreducible maps
f g

M = Mo >M —> ... Sty

and a lincar A-map g : I\’!nm->-N such that (A/_]EP)@ (g o fno ofl);f' 0

ii) there exist a chain of irreducible maps
€n N . 5 NN
o nole e Ty

N
n

and a linear A-map f : M——-;»Nn such that A/Lnrcg)(glo e B © f)#0
The proof follows as in [Y] (3.2).

(5.4) Theorem. Let (A,m) be a reduced excellent henselian local CM-ring,
ki= A/m, p'= chark,. [ the AR-quiver of A and I'® a connected component of ['.
Suppose that
: i) A is an isolated singularity,

if) " © is of bounded multiplicity type, i.e. there exists n € N such that all
indecomposable MCM modules M whose isomorphic classes are vertices in ° hold
e(M) < n. : ’

iii) [k : KP] <oo if p>o,

iv) for every g € Reg A containing pA the ring A /pAq is regular,

- Then | = ['®and [ is a finite graph. In partlculdt A is of finite CM-type.

Proof. (inspirated from [Y] (3.3)). By i) we have IS(A) = m and it follows that [‘_n_r
is a CM-reduction ideal of A for a certainr € N (see Theorem (4.8)). Let x be a system

of parameters of A and M a MCM A-module. By [MZ] (14.11) we have

1engthA(M/xm): e(xA,M)

because x is a M-regular sequence. Let u¢ N be such that mug xA. By {MZ] (14.3),



(14.4) we get

e(xA,M) < e(m¥,M) = e(m)ud

where d- = dim A. Choosing x in _mP it follows
(1) lengthA(J\-‘]_/mPTvT) < e(M)ud

; :
Let Jl be the class of all MCM A-modules whose isomorphic classes are

f . el v .
vertices in | . Using (1) we get

(2) lengthA(T\}/r}wr:\l) <= nu? = constant for every M ¢ Jb,

Let M,N be two indecomposable MCM A-modules and f: M—=>N a linear
A-map such that (A/pjr)@ f#0.If M€ then there is a chain of irreducible maps from
M to N of length < t: = 2% which is nontrivial modulo m'. Otherwise there exists a chain
~of irreducible maps as in Lemma (5.3) i) 2

f1 f
M= MO——«-» I\’]lﬂ—b ————>Mt
arild a linear A-map g: M~—>N such that A/Er@ (g- ft° ofl);f 0. Then
A/_njrc& (fta...c-fl);f 0 which contradicts Lemma (5.2) (M, are all in [" © because [ © s .
conex and apply (2)). In particular we get N€dJb. Conversely if N ef then a dual
argument (using (5.3) ii) instead 1)) shows that Med and there exists a nontrivial chain
of irreducible maps from M to N of length < t.
If M is a finitely generated A-module there exists a lincar A-map f: A —>M

A/m)@ £ # 0 (choose xe M\ mM (M is finite!) and take f(a) = ax). If M & oG

!

“o . Moreover if M is an indecomposable A-module then MGM because Aét.-%.

such that

G o~

then A ev
Thus 1'% =T . Since I' is locally finite and every module from M can be connected with

A by a chain of irreducible maps of length <t we conclude that [ is finite . a

(5.5) Remark. When A is Artinian then our Theorem is a consequence of [R],
[Aul]. When A is complete, pA = 0 and k is perfect then our Theorem follows from [Y]
(1.1).

(5.6) Remark. Another possible approach to study the CM-type is to use Artin
approximation theory (see [Ar], or [Pol). Let (A,m) be a Noetherian local ring with the
property of Artin approximation (shortly A is an AP-ring), i.e. for every f{inite system
of polynomial equations { over A, every s € N and every formal solution 3? of f in the
.completion A of A there exists a solution y of f in A sueh that y = § mod _zDSA. Let M,N
be two finitely gencrated A-modules. If A is an AP-ring then

FAS
i) M is indecomposable iff A d\‘a\;'\-l is so,
¥ £



1/\ 7
i) M & N iff A®,M Q—jA@AN.
For the proof note that the question can be expressed by the compatibility of

some systems of polynomial cquations over A (as in the proof of (4.2); but this time the..

N
equations are not linear). In particular the CM-type of A is finite if the CM~type of A
is so. Since excellent henselian local rings are AP (see [Po] Theorem (1.3)) we note that

our Theorem(5.4) follows from [Y)(1.1) when k is perfeét and pA = 0.

24
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