INSTITUTUL DE MATEMATICA INSTITUTUL NATIONAL PENTRU CREATIE STIINTIFICA SI TEHNICA

ISSN 0250 3638

INDECOMPOSABLE COHEN MACAULAY MODULES
AND THEIR MULTIPLICITIES

by

Dorin POPESCU

PREPRINT SERIES IN MATHEMATICS

No. 12/1988

Med 24810

INDECOMPOSABLE COHEN MACAULAY MODULES AND THEIR MULTIPLICITIES

by
Dorin POPESCU*

February 1988

*) Department of Mathematics, The National Institute for Scientific and Technical Creation, Bd. Pacii 220, 79622 Bucharest, Romania.

INDECOMPOSABLE COLUMN - LULAY MODULES AND

Dorin Popescu

ABSTRACT. The main aim of the find a large class of rings for which there are indecomposable maximally Conen Macaulay modules of arbitrary high multiplicity (or rank in the case of domains).

J. Introduction

Let (A,m) be a (commutative) houselian Cohen-Macaulay local ring and CM(A) the category of maximally Cohen Macaulay A-modules (shortly MCM A-modules) i.e. of finitely generated modules N. with depth M = dim A. For s.c. N let $n_A(s)$ be the cardinal of isomorphism classes of indecomposable modules M from CM(A) whose multiplicity $e_A(M) = e(m,M) = s$. Take $n_A = 2\frac{s}{2} \hat{n}_A(s)$.

(1.1) First Brauer - Thrait type conjecture. If $n_A = \infty$, then $n_A(s) \neq 0$ for infinitely many s.

When $\dim A = 0$ then $\mathfrak{g}_A(M) = \operatorname{length}_A(M)$ and (1.1) holds by A. V Rolter's theorem ([R], [Au_1] or [P] (7.7)). Using the Auslander - Reiten theory for MCM modules (see [Au_3], [P], [AR_1], [Yalor [Y] Appendix) Y. Yoshino succeeded to solve positively (1.1) for reduced analytic algebras A over a particular the following _ .

- (1.2) Theorem. Let (A,m) be a reduced exaction heaselfan local CM-ring, k:=A/m; p:=chark. Suppose that
 - (i) [k : kP] < w if p \ 0, k'
 - (ii) A is an isolated singularity,
- (iii) if pA = 0 then for every the A $q\not\equiv\underline{m}$ containing pA A_q/pA_q is regular.

Then (1.1) holds

Note that iii) follows from iii when A contains a field (i.e. the equal characteristic

¹⁹⁸⁰ Mathematics Subject Class leation. Primary 131110, Secondary 131115, 13315; Key words and phrases. Maximumy Coner-Macaulay modules, Indecomposable modules, Mutiplicity.

case). When A is a domain $e_A(M) = e(A) \cdot rank(M)$ by $[M_2]$ (14.8) so in the hypothesis of our Theorem there are indecomposable MCM-modules of arbitrary high rank if $n_A = \infty$. The proof follows entirely [Y] our contribution being mainly to extend his Lemmas (2.10), (2.12) in the following form (see (4.8)):

- (1.3) Theorem. Let (A,\underline{m}) be a reduced excellent henselian local CM ring, k:=A/m, $p:=\operatorname{char} k$ and $I_s(A)$ the ideal defining the singular locus of A, i.e. $I_s(A)=\bigcap_{g\notin \operatorname{Reg} A} q$. Suppose that
 - i) $[k:k^p] < \infty$ if p > 0,
 - ii) if pA \neq 0 then for every q \in Reg A containing pA A_q/pA_q is regular,
 - iii) $I_s(A) \subseteq \underline{m}$, i.e. A is not regular.

Then there exists a positive integer r such that

- 1) A MCM A-module M is indecomposable iff M/I_s(A)^rM is indecomposable,
- 2) Two indecomposable MCM A-modules M,N are isomorphic iff $M/I_s(A)^rM$ and $N/I_s(A)^rN$ are isomorphic.

In particular this Theorem gives large classes of isolated singularities for which there exist Dieterich [D] reduction ideals.

In the hypothesis of (1.3) we get $n_A \le n_{\widehat{A}}$ (see (4.10)) where \widehat{A} is the completion of A. In particular we can improve the result from [K] and [BGS] for excellent henselian local rings (see (4.11)). Though (4.11) can be also obtained using the property of Artin approximation of excellent henselian local rings (see [Po] (1.3)) as we indicate in (5.6), we choose here an easier method (see $\S\S$ 3-4) which is entirely self contained and proves to be more powerful for these questions. Our Section 2 contains just preliminaries arranged more or less after [Y] which we include it here for the completeness. We supply here a proof of (2.5) because [S] was not available to us.

We would like to thank A. Brezuleanu and N. Radu for many helpful conversations on Theorem (4.4).

2. The singular locus of an excellent local ring.

Let A be an excellent ring. Then $\operatorname{Reg} A = \left\{q \in \operatorname{Spec} A \mid A_q \text{ is regular}\right\}$ is an open set and $I_s(A) = \bigcap_{q \notin \operatorname{Reg} A} q$ defines the singular locus of A, i.e.

 $V(I_s(A)) = \text{Spec } A \setminus \text{Reg } A.$

(2.1) Lemma. Let $u: A \longrightarrow B$ be a flat morphism of excellent rings. Then $I_{\mathbf{S}}(B) \le \sqrt{u(I_{\mathbf{S}}(A))B}$.

Proof. If $q \in \text{Reg B}$ then $q \cap A \in \text{Reg A}$ by $[M_1]$ (21.D). Thus a prime ideal

from B containing $u(I_s(A))$ must contain also $I_s(B)$. \square

(2.2) It will be useful also to express $I_s(A)$ as the radical of a certain ideal of A whose elements can be precisely described. This is already well known for rings A which are essentially of finite type over a perfect field k because in that case the Jacobian criterion for smoothness $[M_1]$ (29.C) applies and we have $I_s(A) = H_{A/k}$. In general, given a finite presentation A-algebra B = A[X]/a, $X = (X_1,...,X_n)$, the nonsmooth locus of B over A is defined by the following ideal

$$H_{B/A} = \sqrt{\sum_{f} \Delta_{f}((f) : \underline{a})B}$$

where the sum is taken over all systems f of r-polynomials from \underline{a} , r=1,...,n being variable (see [Po] (2.1)). Using [Y] $\S 2$ we will present such a description of $I_s(A)$ when A is a Noetherian complete local ring having some additional properties.

(2.3) Till the end of this Section (R,m) is a reduced Noetherian complete local ring with a perfect residue field k. Then either R contains k or R is an algebra over a Cohen ring of residue field k, i.e. a complete DVR (T,t) which is an unramified extension of $\mathbb{Z}_{(p)}$, p:= chark > 0, t:= $p\cdot 1\in T$. When R contains k we put T:= k and t=0 in order to unify both situations.

Let $\mathcal{R}(T,R)$ be the set of all prime ideals $q \in R$ for which $T \longrightarrow R_q$ is a regular morphism. Clearly $\mathcal{R}(T,R) \subseteq Reg\,R$ because T is regular and regular morphisms preserve this property ($[M_1]$ (33.b)). When R contains k the other inclusion also holds, k being perfect. When R is in the unequal characteristic case ($pR \neq 0$) then we suppose that

(*) R_q/pR_q is regular for every $q \in Reg R$

Thus in both situations we have $\mathcal{R}(T,R) = \text{Reg } R$

- (2.4) Let $x = (x_1,...,x_n)$ be a system of elements from R such that (t,x) forms a system of parameters in R. From now on we suppose that \underline{R} is a Cohen Macaulay ring (shortly a CM ring). Then the canonical map $T[[X]] \longrightarrow R$, $X = (X_1,...,X_n) \longrightarrow x$ is finite and flat (hence free) by Cohen Structure Theorems and $[M_1]$ (36.B).
- (2.5) Lemma (Scheja Storch [S]). There exists x as above such that $ht(H_{R/T[[x]]}) \ge 1$, i.e. for every minimal prime ideal $q \le R$ the fraction field extension $Fr(T[[x]]) \longrightarrow R_q$ is (finite) separable.

Proof. When $T \neq k$ there is nothing to show because char T = 0. Suppose T = k. Let q_1, \dots, q_s be the minimal prime ideals of R and take an arbitrary system of parameters $y = (y_1, \dots, y_n)$ of R. If the field extensions $(x_i) : k((y_i)) \longrightarrow R_{q_i}$, $1 \leq i \leq s$ are

all separable then $\operatorname{ht}(H_{R/k[[y]]}) \geq 1$ by the Jacobian criterion for smoothness $[M_1]$ (29.C). Suppose that $(\bowtie_i)_{1 \leq i \leq e}$ are not separable for a certain $e, 1 \leq e \leq s$. Then p > 0 and for every $i, 1 \leq i \leq e$ there exists an element $z_i \in R_{q_i} \setminus k((y))$ such that $z_i^p \in k((y))$. Since \bowtie_i is finite we have

$$k((y)) \otimes R \stackrel{\simeq}{=} \frac{s}{\prod} R_{q_i}$$

Thus we can find one $z \in R$ and $w \in k[[y]]$ such that z/w corresponds to $(z_1,...,z_e, y_n,...,y_n)$ by the above isomorphism. Then $h := z^p \in k[[y]]$ and $z \in k[[y]]$. Adding a constant to z we can suppose that $h \in (y) k[[y]]$. If $h \in k[[y^p]]$ then $h \in k^p[[y^p]]$ (k is perfect) and so $z \in k[[y]]$ which is not possible.

Suppose that $h \notin k[[y_1,...,y_{n-1}, y_n^p]]$. After a coordinate transformation we can suppose also that h is regular in y_n . Applying Weierstrass Preparation Theorem for U - h in k[[y,U]] we find a distinguished polynomial

(1)
$$P = y_n^r + \sum_{i=1}^r a_i y_n^{r-i}, \quad a_i \in k[[y_1, ..., y_{n-1}, U]], a_i(0) = 0$$

and an invertible formal power series $g \in k[[y,U]]$ such that

(2)
$$U - h = Pg$$

Substituting U = h in P we get

(3)
$$y_n^r + \sum_{i=1}^r a_i(y_1,...,y_{n-1},h)y_n^{r-i} = 0$$

because $g(U = h) \neq 0$ since $g(0) \neq 0$ and h(0) = 0. Applying $\partial/\partial y_n$ in (2) we obtain

$$(\partial P/\partial y_n)g + P(\partial g/\partial y_n) = -\partial h/\partial y_n \neq 0$$

and substituting U = h we get $(\Im P/\Im y_n)$ $(V = h) \neq 0$. Thus (3) defines a separable equation for y_n over $k[[y_1,...,y_{n-1},z^p]]$. In particular y_n is separable over $S := k[[y_1,...,y_{n-1},z]]$. Denote $y' = (y_1,...,y_{n-1},z)$. We have

$$[R_{q_i}: k((y'))]_{ins} = [R_{q_i}: k((y))]_{ins} - p$$

for every i=1,...,e, where $[\]_{ins}$ denotes the inseparable degree. Repeating this procedure inductively we finally find a system of parameters x in R such that $k((x)) \hookrightarrow R_{q_i}$ is separable for every i. \square

- (2.6) Remark. If k is not perfect then the above Lemma doesn't hold. If $a \in k \setminus k^p$ then $A = k[[X,Y]]/(X^p + aY^p)$ (after [Y] (2.7)) is a counterexample.
- (2.7) Lemma. Let $q \in Reg R$. Then there exists a system of elements x in R such that
 - (i) (t,x) is a system of parameters in R,

(ii)
$$H_{R/T[[x]]} \neq q$$
.

Proof. If t=0 then we choose a system of elements y in R which forms in R_q a regular system of parameters. If $t\in q$ then by condition (2.3) (*) we get R_q/tR_q regular. Thus there exists y such that (t,y) form in R_q a regular system of parameters. By Lemma (2.5) there exists a system of elements z in R which forms a system of parameters z in R/a, $a:=\sqrt{(t,y)}$ such that the map $(T/T\cap a)[[z]]\longrightarrow R/a$ is generically smooth. (Note that R/(t,z) is CM (see $[M_1]$ (16.C)) and so R/a is CM too). Since q is a minimal prime ideal containing a we get $(T/T\cap q)[[z]]\longrightarrow R/q$ separable and so the map $T[[y,z]]\longrightarrow R_q$ is etale. Thus x=(y,z) works.

Suppose now $t \notin q$ then as above we can choose y in R which forms a regular system of parameters in R_q . Take a system of elements z in R such that (t,z) forms modulo q a system of parameters in R/q. Then (t,y,z) forms a system of parameters in R and $T[[y,z]] \longrightarrow R_q$ is etale (char R/q = 0). Thus x = (y,z) works. \square

- (2.8) Corollary. $I_s(R) = \sqrt{\sum_x H_{R/T[[x]]}}$, where the sum is taken over all systems of elements x such that (t,x) forms a system of parameters of R.
- **Proof.** If $q \in \operatorname{Spec} R$ does not contain $H_{R/T[[x]]}$ for a certain system x then the map $T[[x]] \longrightarrow R_q$ is etale and so R_q is regular because T[[x]] is so. Conversely if $q \in \operatorname{Reg} R$ then by Lemma (2.7) there exists x such that $q \not \supset H_{R/T[[x]]}$.
- (2.9) Let $S \subseteq R$ be a regular local subring such that R is a finitely generated free S-module, $R^e := R \otimes_S R$ the <u>enveloping algebra</u> of R over S and $\mu : R^e \longrightarrow R$ the multiplication map. Denote $I = Ker \, \mu$. The ideal $\mathcal{N}_S^R = \mu(Ann_R^e)$ is called the <u>Noether different</u> of R over S.

(2.10) Lemma.
$$\mathcal{N}_{S}^{R} \cdot \mathcal{Q}_{R/S} = 0$$
 and $H_{R/S} = \sqrt{\mathcal{N}_{S}^{R}}$.

Proof. The first equality is trivial because $\mathfrak{Q}_{R/S} = I/I^2$. Let $q \in R$ be a prime ideal. If $q \not\supset \mathcal{N}_S^R$ then $\mathfrak{Q}_{R_q/S} = \mathfrak{Q}_{R/S} \otimes_R R_q = 0$ as above. Since $S \subseteq R$ is finite free we get $S \longrightarrow R_q$ etale, i.e. $q \not\supset H_{R/S}$. Conversely if $q \not\supset H_{R/S}$ then $S \longrightarrow R_q$ is etale and so

 $\Omega_{R/S} \otimes_R R_q = 0$. Thus $I_Q = I_Q^2$ for a certain prime ideal $Q \subseteq R^e$, $Q \supseteq I$ such that $\mu(Q) = q$. By Nakayama Lemma we get $I_Q = 0$ and so $Q \not \supset Ann_{Re} I$. Thus $\mathcal{N}_S^R \not = q$.

(2.11) We end this Section by listing some facts from Hochschild cohomology, which can be found in [P] Ch.11. Let $B \subseteq A$ be an extension of rings. The n'th Hochschild cohomology functors $H^n_B(A, -)$, $n \ge 0$ are defined on the category of A-bimodules with values in the category of A-modules and have the following properties

i)
$$H_B^o(A,M) = M^{(A)} := \{x \in M \mid ax = xa \text{ for every } a \in A\}$$
 for all A-bimodules M,

ii) If M,N are two A-modules then $\operatorname{Hom}_B(M,N)$ is an A-bimodule [the left (resp. right) action of A on $\operatorname{Hom}_B(M,N)$ is given as the one induced from the action on N (resp.M)] and $\operatorname{H}_B^o(A,\operatorname{Hom}_B(M,N)) = \operatorname{Hom}_A(M,N)$.

iii)
$$H_B^1(A,M)$$
 is a factor A-module of $Der_B(A,M) = Hom_A(\Omega_{A/B},M)$

iv) If A is a projective module over B and

$$0 \longrightarrow M' \longrightarrow M \longrightarrow M'' \longrightarrow 0$$

is a short exact sequence of A-bimodules then there exist some A-morphisms $\partial^{(n)}: H^n_B(A,M'') \longrightarrow H^{n+1}_B(A,M'), n \geq 0$ such that the following sequence is exact.

$$0 \longrightarrow H_{B}^{o}(A,M') \longrightarrow H_{B}^{o}(A,M) \longrightarrow H_{B}^{o}(A,M'') \longrightarrow H_{B}^{1}(A,M') \longrightarrow \cdots$$

$$\cdots \longrightarrow H_{B}^{n}(A,M') \longrightarrow H_{B}^{n}(A,M) \longrightarrow H_{B}^{n}(A,M'') \longrightarrow H_{B}^{n+1}(A,M) \longrightarrow \cdots$$

(2.12) Lemma. Let $S \subseteq R$ be as in (2.9) and M un R-bimodule. Then $\mathcal{N}_S^R \cdot H^1_S(R,M) = 0$.

Proof. By Lemma (2.10) we have $\mathcal{X}_S^R \Omega_{R/S} = 0$ and so $\mathcal{X}_S^R \cdot \text{Hom}_R(\Omega_{R/S}, M) = 0$. Now apply (2.11) iii). \square

3. CM - approximation

(3.1) Lemma. Let $S \subseteq R$ be an extension of Noetherian rings such that R is a finitely generated projective module over S, x an element from \mathcal{N}_S^R and M, N two finitely generated R-modules such that M is projective over S. Let $e \in N$ be a positive integer such that $\operatorname{Ann}_N x^e := \left\{ z \in N \mid x^e z = 0 \right\} = \operatorname{Ann}_N x^{e+1}$ and $s \in N$. Then for every linear R-map $\varphi : M \longrightarrow N/x^{e+s+1}N$ there exists a linear R-map $\psi : M \longrightarrow N$ which makes commutative the following diagram

$$\begin{array}{ccc}
M & & & & & & \\
\downarrow & & & & & \\
\downarrow & & & & & \\
\downarrow & & & & & \\
N & & & & & \\
N & & & & & \\
\end{array}$$

$$\begin{array}{cccc}
N/x^{e+s+1}N \\
\downarrow & & & & \\
\downarrow & & & & \\
N/x^{e+s}N$$

Proof. Let N': = Ann_Nx^e. We have the following commutative diagram:

$$0 \longrightarrow N/N' \xrightarrow{x^{e+s+1}} N/N' \longrightarrow N/N' + x^{e+s+1}N \longrightarrow 0$$

$$\downarrow \qquad \qquad \downarrow \qquad \qquad$$

in which the bases are exact. Indeed if $x^{e+s}z \in N'$ for a certain $z \in N$ then $x^{2e+s}z = 0$ and so $z \in \operatorname{Ann}_N x^{2e+s} = N'$. Applying the functor $\operatorname{Hom}_S(M,-)$ to (1) we get the following commutative diagram:

$$0 \longrightarrow \operatorname{Hom}_{S}(M,N/N') \longrightarrow \operatorname{Hom}_{S}(M,N/N') \longrightarrow \operatorname{Hom}_{S}(M,N/N'+x^{e+s+1}N) \longrightarrow 0$$

$$0 \longrightarrow \operatorname{Hom}_{S}(M,N/N') \longrightarrow \operatorname{Hom}_{S}(M,N/N') \longrightarrow \operatorname{Hom}_{S}(M,N/N'+x^{e+s}N) \longrightarrow 0$$

where the bases are exact because M is projective over S. Clearly these bases are also exact sequences of R-bimodules and applying the Hochschild cohomology functors we get the following commutative diagram (see (2.11) ii)):

$$(3) \qquad \begin{array}{c} \operatorname{Hom}_{R}(M,N/N') \longrightarrow \operatorname{Hom}_{R}(M,N/N'+x^{e+s+1}N) \longrightarrow \operatorname{H}^{1}_{S}(R,\operatorname{Hom}_{S}(M,N/N')) \\ \downarrow \chi \\ \downarrow \chi \\ \operatorname{Hom}_{R}(M,N/N') \longrightarrow \operatorname{Hom}_{R}(M,N/N'+x^{e+s}N) \longrightarrow \operatorname{H}^{1}_{S}(R,\operatorname{Hom}_{S}(M,N/N')) \end{array}$$

in which the bases are exact (see (2.11) iv)). Since the last vertical map is zero by Lemma (2.12) we get a linear R-map $\alpha: M \longrightarrow N/N'$ such that the following diagram is commutative

$$(4) \qquad \frac{\Psi}{N/N!} \rightarrow N/x^{e+s+1}N \longrightarrow N/N! + x^{e+s+1}N$$

$$\downarrow \qquad \qquad \downarrow \qquad$$

Note that in the following diagram

(5)
$$M = -\frac{4}{\sqrt{N}} - \frac{4}{\sqrt{N}} - \frac{4}{\sqrt{N}} - \frac{4}{\sqrt{N}} + \frac{4}{\sqrt{$$

the small square is cartesian and so there exists Υ which makes (5) commutative.

Remains to show that $N' \cap x^{e+s}N = 0$. Indeed let $y \in N' \cap x^{e+s}N$ and $z \in N$ with $y = x^{e+s}z$. Then $0 = x^ey = x^{2e+s}z$ and so $z \in N'$, i.e. $y = x^{e+s}z = 0$. \square

Remark. Roughly speaking Lemma (3.1) says that given M,N there exists a function $\Re : \mathbb{N} \longrightarrow \mathbb{N}$ such that every linear R-map $\Psi : \mathbb{M} \longrightarrow \mathbb{N}/x$ $\Re (s)_N$, $s \in \mathbb{N}$ can be lifted to a linear R-map $\Psi : \mathbb{M} \longrightarrow \mathbb{N}$ such that $(\mathbb{R}/x^S\mathbb{R})_{\mathbb{R}}\Psi = (\mathbb{R}/x^S\mathbb{R})_{\mathbb{R}}\Psi$. But this follows easily from a linear form of the strong approximation theorem (see [Po] § 1) which holds in fact in every Noetherian local ring R for every element $x \in \mathbb{R}$. Thus the importance of Lemma (3.1) consists just in giving to \Re a precised form.

(3.2) Lemma. Let B A be a finite flat extension of Noetherian rings, $\underline{a} \in A$ an ideal and $x \in H_{A/B}$ an element. Then there exists a positive integer r such that for every finitely generated A-module N which is free over B it holds

$$\underbrace{\left(\underline{a} N : x^r\right)_N}_{N} = \underbrace{\left(\underline{a} N : x^{r+1}\right)_N}_{N},$$
 where
$$\underbrace{\left(\underline{a} N : x^r\right)_N}_{N} = \left\{ z \in N \,\middle|\, x^r z \in \underline{a} N \right\}.$$

Proof. Step 1 Reduction to the case (a: x) = a.

Since A is Noetherian we have $\underline{a}' := (\underline{a} : x^n) = (\underline{a} : x^{n+1})$ for a certain positive integer n. If $xy \in \underline{a}'$ for a certain $y \in A$ then $x^{n+1}y \in \underline{a}$ and so $y \in \underline{a}'$, i.e. $(\underline{a}' : x) = \underline{a}'$.

Suppose that $r' \in \mathbb{N}$ satisfies our Lemma for x and $\underline{a'}$. Then r = n + r' works. Indeed, let \mathbb{N} be as in our Lemma. If $x^Sz \in \underline{a}\mathbb{N} \subseteq \underline{a'}\mathbb{N}$ for some $s \in \mathbb{N}$ and $z \in \mathbb{N}$ then $x^{r'}z \in \underline{a'}\mathbb{N}$ because $(\underline{a'}\mathbb{N}:x^{r'})_{\mathbb{N}} = (\underline{a'}\mathbb{N}:x^{r'+1})_{\mathbb{N}}$. Thus $x^rz \in x^n\underline{a'}\mathbb{N} \subseteq \underline{a}\mathbb{N}$.

Remark. Ass_A(A/ \underline{a} ') = $\{q \in Ass_A(A/\underline{a}) | x \notin q\}$.

Let $\underline{a} = \bigcap_{i=1}^{e} Q_i$ be an irredundant prime decomposition of \underline{a} , $q_i := \sqrt{Q_i}$, $q_i' := q_i \cap B$, $Q_i' := Q_i \cap B$, $b := \underline{a} \cap B = \bigcap_{i=1}^{e} Q_i'$ and $k_i' \subseteq k_i$ the residue field extension of $\underline{B} q_i' \subseteq A_{q_i}$.

Step 2. Case when $k_i' = k_i$, $1 \le i \le e$.

By Step 1 we may suppose that $(a:x) = \underline{a}$. Fix an i, $1 \le i \le e$. Clearly $x \notin q_i$ because x is a nonzero divisor of A/a. Then the map $B_{q_i^!} \longrightarrow A_{q_i}$ is etale and so $q_i^A q_i = q_i^! A_{q_i}$. Since $k_i^! = k_i$ the extension $B_{q_i^!} \subset A_{q_i}$ is dense. In particular we have

$$\mathbf{B}_{\mathsf{q}_{i}^{!}}/\mathbf{Q}_{i}^{!}\mathbf{B}_{\mathsf{q}_{i}^{!}}\overset{\simeq}{\simeq}\mathbf{A}_{\mathsf{q}_{i}}/\mathbf{Q}_{i}^{!}\mathbf{A}_{\mathsf{q}_{i}}$$

and it follows $Q_i^! A_{q_i} = \dot{Q}_i^! A_{q_i}$.

We show that r=0 satisfies this case. Let N be as in our Lemma, and $z\in N$ such that $xz\in \underline{a}N$. Then $z\in Q_i^N_{q_i}=Q_i^N_{q_i}$. Thus there exists an element $y_i\in A\setminus q_i$ such that $y_iz\in Q_i^N$. Since $B/q_i'\longrightarrow A/q_i$ is finite we get $(y_iA)\cap (B\setminus q_i')\neq \phi$. Thus changing y_i by one of its multiple we may suppose that $y_i\in B\setminus q_i'$, i.e. $z\in Q_i^N_{q_i'}$. Since N is free over B we have

 $\underline{b}N = \bigcap_{j=1}^{e} Q_{j}'N$

and Q'N is exactly the q'-primary submodule of N associated to $\underline{b}N.$ Then N \bigcap Q'N $_{j}^{!}$ P $_{j}^{!}$

 $z \in N \cap (\bigcap_{j=1}^{e} Q_{j}^{!} N_{q_{j}^{!}}) = bN \subseteq aN.$

Step 3. Case when there exists a faithfully flat B-algebra C such that for every prime ideal q associated to C $\otimes_B a$ in D:= $C \otimes_B A$ the residue field extension of $C_{q \cap C} \xrightarrow{} D_q$ is trivial.

We apply Step 2 to the case $C \subseteq D$, aD, $x' = 1 \otimes x \in D$. Clearly

 $x' \in D \otimes_A H_{A/B} \subseteq H_{D/C}$. Then there exists r such that for every finitely generated D-module N' which is free over C it follows

$$(\underline{\mathbf{a}}\mathbf{N}^{\imath}:\mathbf{x}^{\imath^{\Gamma}})_{\mathbf{N}^{\imath}}=(\underline{\mathbf{a}}\mathbf{N}^{\imath}:\mathbf{x}^{\imath^{\Gamma+1}})_{\mathbf{N}^{\imath}}$$

Let N be a finitely generated A-module which is free over B and take $N^n=D\otimes_A N$. Then N^n is free over C and so we get in particular

$$(\underline{\mathbf{a}}\mathbf{N}^{\shortparallel}:\mathbf{x}^{\mathbf{r}})_{\mathbf{N}^{\shortparallel}}=(\underline{\mathbf{a}}\mathbf{N}^{\shortparallel}:\mathbf{x}^{\mathbf{r}+1})_{\mathbf{N}^{\shortparallel}}$$

But $(\underline{a} N'' : x'^r)_{N''} = D \otimes_A (\underline{a} N : x^r)_{N'}$. Indeed, $(\underline{a} N : x^r)_{N'}$ is exactly the kernel of the composed map $f : N \xrightarrow{x^r} N \longrightarrow N/\underline{a} N$ and by flatness $\operatorname{Ker}(D \otimes_A f) = D \otimes_A \operatorname{Ker} f$. Thus the inclusion $u : (\underline{a} N : x^r)_{N'} \hookrightarrow (\underline{a} N : x^{r+1})_{N'}$ goes by base change in an equality. Since D is a faithfully flat A-algebra we get u surjective too.

Step 4 General case - reduction to Step 3

We need the following

(3.3) Lemma. Let $S \subseteq R$ be a finite flat extension of Noetherian rings and denote

$$d_{R/S} = \max_{\substack{q' \in \text{Spec S} \\ q \cap S = q'}} \sum_{\substack{([k(q) : k(q')] - 1), \\ q \cap S = q'}} ([k(q) : k(q')] - 1),$$

where k(q) denotes the residue field of R $_q$. Then $d_{R/S} < \infty$ and $d_{R \otimes_S R/R} < d_{R/S}$ if $d_{R/S} > 0$, where the structural map $R \longrightarrow R \otimes_S R$ is given by $y \longrightarrow y \otimes 1$.

Applying by recurrence the above Lemma we get finally a finite flat B-algebra C of the form $A \otimes_B A \otimes ... \otimes_B A$ such that $d_{C \otimes_B A/C} = 0$ i.e. $k(q \cap C) = k(q)$ for all $q \in \text{Spec}(C \otimes_B A)$. Since a finite flat extension is faithfully flat we are ready. $q \in \text{Spec}(C \otimes_B A)$

Proof of Lemma (3.3). Let $q' \in \text{Spec S. Then}$

$$\begin{array}{ll} d_{R/S,q'} &= \sum_{\substack{q \in \text{Spec} R \\ q \cap S = q'}} ([k(q):k(q')] - 1) < \operatorname{rank}_{k(q')} k(q') \otimes_{S} R, \end{array}$$

the last number being bounded by the minimal number of generators of R over S. It is enough to show that

$$d_{R \otimes_{S} R/R,q} < d_{R/S,q}$$

for every $q \in \operatorname{Spec} R$ lying over q' and such that $d_{R/S,q'} > 0$. So by base change we reduce the question to the case when S = k(q') = :k. Then R is Artinian. Let $(k_i)_{1 \le i \le p}$ its residue fields. It is enough to show that

$$\mathbf{d}_{k_1 \otimes_k k_i / k} \leq \mathbf{d}_{k_i / k_i}, \ 1 \leq i \leq e \ \text{and} \ \mathbf{d}_{k_1 \otimes_k k_1} < \mathbf{d}_{k_1 / k} \ \text{if} \ k \neq k_1.$$

First inequality is clear because

$$1 + d_{k_1 \otimes_k k_i / k_1} \leq \operatorname{rank}_{k_1}^{k_1} k_1 \otimes_k k_i = \operatorname{rank}_k k_i = d_{k_i / k} + 1$$

The equality holds only when $k_1 \otimes_k k_i$ is a field. But $k_1 \otimes_k k_1$ is not a field so the second inequality holds too. \Box

(3.4) Lemma. Let $S \subseteq R$ be an extension of Noetherian rings such that R is a finitely generated projective module over S, x an element from \mathcal{J}_S^R and $\underline{a} \subseteq R$ an ideal. Then there exists an increasing function $\mathcal{I}: N \longrightarrow N$ such that for every $s \in N$, for every finitely generated R-modules M, N which are free over S and for every linear R-map $\mathcal{I}: M \longrightarrow N/(\underline{a}, x^{\mathcal{I}(S)})N$ there exists a linear R-map $\mathcal{I}: M \longrightarrow N/\underline{a}N$ which makes commutative the following diagram:

 $\begin{array}{cccc}
M & & \varphi & & N/(a,x^{\gamma(s)})N \\
\downarrow & & & \downarrow \\
\downarrow & & & \downarrow \\
N/aN & & & & N/(a,x^s)N
\end{array}$

Proof. Let r be the integer given by Lemma (3.3) for x and a. Define \Im by \Im (s) = 1 + max $\{r,s\}$. Then given M,N,s, φ as in our Lemma we find the wanted Ψ applying Lemma (3.1) for x, $\overline{N} = N/aN$ and e = r. \square

(3.4) Lemma. Let $x=(x_1,...,x_n)$ be a system of elements from a Noetherian ring R such that for every $i, 1 \le i \le n$ there exists a Noetherian subring S_i of R such that

i) R is finite free over S;

ii)
$$x_i \in \mathcal{X}_{S_i}^R$$

Then there exists an increasing function $\gamma: N \longrightarrow N$ such that for every $s \in N$, every finitely generated R-modules M,N which are free over all $(S_i)_{1 \le i \le n}$ and for every linear R-map $\phi: M \longrightarrow N/x$ N there exists a linear R-map $\psi: M \longrightarrow N$ which makes

commutative the following diagram:

$$(*) \begin{array}{c} M \longrightarrow N/x^{\Im(s)}N \\ \downarrow & & \downarrow \\ \downarrow & & \downarrow \\ N \longrightarrow N/x^{S}N \end{array}$$

Proof. Denote $\underline{b}_i = (x_1, ..., x_i)$, i = 1, ..., n. Apply induction on n. If n = 1 then apply Lemma (3.4) for x_1 and $\underline{a} = 0$. Suppose now that it is given a function \mathcal{N}' which works for \underline{b}_{n-1} . Let $s \in \mathbb{N}$ and \mathcal{N}''_s be the function given by Lemma (3.4) for x_n and $\underline{a} = \underline{b}_{n-1}$. Define $\mathcal{N}: \mathbb{N} \longrightarrow \mathbb{N}$ by $\mathcal{N}(s) = \mathcal{N}'(s) + \mathcal{N}''_s$. Let M, \mathbb{N} be two finitely generated R-modules which are free over all $(S_i)_{1 \le i \le n}$ and $(S_i)_{1 \le i \le n}$ which makes commutative the following diagram:

Thus there exists a linear R-map $\Psi\colon M\longrightarrow N$ which makes commutative the following diagram

Clearly 4 makes also (*) commutative. [

(3.6) Let A be a CM local ring and M a MCM A-module. Then every system of parameters from A is a M-regular sequence. Let $a \subset A$ be a proper ideal.

The couple (A,a) is a CM - approximation if there exists a function $\Re : \mathbb{N} \longrightarrow \mathbb{N}$ (called CM - function) such that for every $s \in \mathbb{N}$, every two MCM R-modules M,N and every linear R-map $\psi : \mathbb{M} \longrightarrow \mathbb{N}/a^{\Re(s)} \mathbb{N}$ there exists a linear R-map $\psi : \mathbb{M} \longrightarrow \mathbb{N}$ such that $(A/a^s)_{\otimes_A} \psi \cong (A/a^s)_{\otimes_A} \psi$ in other words the following diagram is commutative:

(3.7) Proposition. Let (R,m) be a reduced complete local CM-ring with a perfect residue field k, p: = char k and $I_s(R)$ the ideal defining the singular locus of R. Suppose that for every $q \in \text{Reg } R$ containing pR the ring R_q/pR_q is regular and $I_s(R) \subseteq m$. Then $(R,I_c(R))$ is a CM-approximation.

Proof. Let $T \subseteq R$ be the Cohen ring of residue field k (see (2.3)). By Lemma (2.10) and Corollary (2.8) we have

$$I_{\mathbf{S}}(\mathbf{R}) = \sqrt{\sum_{\mathbf{X}} \mathcal{N}_{\mathbf{T}[[\mathbf{X}]]}^{\mathbf{R}}},$$

where the sum is taken over all systems of elements x such that (t,x) forms a system of parameters of R. Then we can find a system of elements $y = (y_1, ..., y_r)$ in $I_s(R)$ such that

1) $I_{c}(R) = \sqrt{yR}$

2) for every i = 1,...,r there exists a system of elements $x^{(i)}$ of R such that (t,x(i))) forms a system of parameters of R and $y_i \in \mathcal{N}_{T[[x(i)]]}^R$

Since R is CM the inclusion $S_i := T[[x^{(i)}]] \subset R$ is finite flat (so free). Let J': N->N be the function given by Lemma (3.5) for y. If M,N are two MCM R-modules then $(t,x^{(i)})$ is a regular M or N-sequence for all i. Thus M and N are finitely generated flat over S_i , $1 \le i \le r$ (see [M]] (20.C)) and so free.

Now let u be a positive integer such that $I_s(R)^u \subset yR$ and note that \Im given by λ (s) = $u \lambda'(s)$ works. u

4. CM - reduction ideals

- (4.1) Lemma. Let (A,m) be a Noetherian local ring and $a \subset A$ an ideal. The following statements are equivalent:
 - i) (A,a) is a CM-approximation,
 - ii) (A, \sqrt{a}) is a CM-approximation.

Proof. Let u be a positive integer such that $(\sqrt{a})^{U} \subset a$. If i) holds and $\gamma: \mathbb{N} \longrightarrow \mathbb{N}$ is the associated CM-function then as in the proof of Proposition (3.7) the function $\widehat{\gamma}$ given by $\widehat{\gamma}(s) = u \widehat{\gamma}(s)$ works for (A, \sqrt{a}) . If ii) holds and $\widehat{\gamma}$ is the associated CM-function then the function $\widehat{\gamma}$ given by $\widehat{\gamma}(s) = \widehat{\gamma}(su)$ works. Indeed, let M,N be two MCM A-modules, $s \in \mathbb{N}$ and $\varphi : \mathbb{M} \longrightarrow \mathbb{N}/a$ $^{\mathfrak{I}}(s)\mathbb{N}$ a linear A-map then there exists a linear map $\psi : \mathbb{M} \longrightarrow \mathbb{N}$ such that the following diagram commutes:

(4.2) Lemma. Let $A \rightarrow B$ be a flat local morphism of CM-local rings and $\underline{a} \in A$ an ideal. If (B,aB) is a CM-approximation then (A,a) is too.

Proof. We claim that the CM-function $\widehat{\gamma}$ associated to (B,aB) works also for (A,a). Indeed, let M,N be two MCM A-modules,s \in N and $\varphi: M \longrightarrow N/a \widehat{\gamma}(s)$ N a linear A-map. Then $\widehat{M} = B \otimes_A M$, $\widehat{N} = B \otimes_A N$ are MCM B-modules since by flatness depth $\widehat{M} = \operatorname{depth}_A M + \operatorname{depth}(B/mB) = \operatorname{depth}(B/mB) = \operatorname{depth}B$ where $\widehat{M} = \operatorname{depth}B$ such that the following diagram commutes

$$\begin{array}{cccc}
& \overline{M} & \xrightarrow{B \otimes_{A} \varphi} & \overline{N}/\underline{a} & \overline{N}/\underline{a} \\
& & \downarrow & & & \downarrow \\
& \overline{\Psi} & \downarrow & & & \downarrow \\
& \overline{N} & \longrightarrow & \overline{N}/\underline{a} & \overline{N}
\end{array}$$

Since M,N are finitely generated modules, the existence of $\underline{\psi}:\overline{M}\longrightarrow \overline{N}$ such that the above diagram commutes means in other words that a certain linear system of equations L over A has a solution in B. Indeed, let $M=A^n/(z_1,...,z_e)$, $z_i=(z_{ij})_{1\leq j\leq n}$, $N=A^{n'}/(z_1,...,z_e)$, $z_i'=(z_{ij})_{1\leq j\leq n}$, $z_i'=(z_{ij})_{1\leq j\leq n}$, $z_i'=(z_{ij})_{1\leq j\leq n}$, $z_i'=(z_{ij})_{1\leq j\leq n}$. Then L has the following form

$$\begin{split} &\sum_{j=1}^{n} z_{i} \gamma \ X_{\gamma \mu} = \sum_{\lambda=1}^{e'} Y_{i\lambda} z_{\lambda \mu}^{\prime}, \quad 1 \leq i \leq e, \quad 1 \leq \mu \leq n^{\prime} \\ &X_{j\mu} - w_{j\mu} = \sum_{\lambda=1}^{v} a_{\lambda} U_{\lambda j\mu} + \sum_{\lambda=1}^{e'} Y_{j\lambda}^{\prime} z_{\lambda \mu}^{\prime}, \quad 1 \leq j \leq n \end{split}$$

Clearly $\underline{\Psi}$ gives a solution of L in B. By faithfully flatness L has also a solution $(x_{j\mu}, y_{i\lambda}, y'_{j\lambda}, u_{\ll j\mu})$ in A and the matrix $(x_{j\mu})$ defines a map $\underline{\Psi}: M \longrightarrow N$ such that a diagram as above commutes. \Box

- (4.3) Proposition. Let (A,\underline{m}) be an excellent local CM-ring, p:= char (A/\underline{m}) , and $I_s(A)$ the ideal defining the singular locus of A. Suppose that
 - i) for every $q \in \operatorname{Reg} A$ containing pA the ring A_q/pA_q is regular,
- ii) there exists a flat, reduced noetherian complete local A-algebra (B,n) such that

(ii \underline{n}) (B, \underline{n}) is CM and its residue field K is perfect,

(ii₂) for every $q\in \operatorname{Reg} A$ the map $A_q\longrightarrow A_q\otimes_A B$ is regular , (iii) $I_s(A)\subseteq \underline{m}$.

Then $(A,I_s(A))$ is a CM-approximation.

Proof. Let $q' \in \operatorname{Spec} B$ and $q:=q' \cap A$. If $q \in \operatorname{Reg} A$ then $A_q \longrightarrow B_{q'}$ is regular by ii_2) and so $q' \in \operatorname{Reg} B$. Thus if $q' \not \supset I_s(A)$ then $q' \not \supset I_s(B)$, i.e. $I_s(B) \supseteq I_s(A)B$. Moreover $I_s(B) = \sqrt{I_s(A)B}$ by Lemma (2.1).

If q' contains pA then A_q/pA_q is regular (see i)). Since $A_q/pA_q \longrightarrow B_{q'}/pB_{q'}$ is regular by base change we get $B_{q'}/pB_{q'}$ regular too. Applying Proposition (3.7) to (B,n) we note that $(B,I_s(B))$ is a CM-approximation. By Lemma (4.1) $(B,I_s(A)B)$ is a CM-approximation and so $(A,I_s(A))$ is too (see Lemma (4.2)).

(4.4) Theorem. Let (A,\underline{m}) be a reduced excellent local CM-ring, $k:=A/\underline{m}$, p:= chark and $I_s(A)$ the ideal defining the singular locus of A. Suppose that

i)
$$[k:k^p] < \infty$$
 if $p > 0$,

ii) for every $q \in \text{Reg } A$ containing pA the ring A_q/pA_q is regular.

iii)
$$I_s(A) \subseteq \underline{m}$$
.

Then $(A,I_s(A))$ is a CM-approximation.

Proof. If k is perfect then apply Proposition (4.3) for $B = \hat{A}$ the completion of (A,m) (the map $A \longrightarrow \hat{A}$ is regular because A is excellent and \hat{A} is reduced because A is so).

If k is not perfect let $K:=k^{1/p^\infty}$ and P its prime subfield. Then from the following exact sequence

$$\Gamma_{K/P} = 0 \longrightarrow \Gamma_{K/k} \longrightarrow \Omega_{k/P} \otimes_k K$$

we get $\operatorname{rank}_K \lceil \frac{1}{K/k} \leq \operatorname{rank}_k \binom{1}{k/P} = \operatorname{rank}_k \binom{1}{k/kP} < \infty$, where $\binom{1}{K/k}$ denotes the imperfection module $[M_1]$ (39.B).

Using EGA (22.2.6), or [NP] Corollary (3.6) there exists a formally smooth Noetherian complete local A-algebra (B,n) such that

2) dim B = dim A + rank_K $\int_{K/k}$

Then the structural morphism $A \longrightarrow B$ is regular by André-Radu Theorem (see [An], or [BR $_1$], [BR $_2$]) because A is excellent. Moreover B is a reduced CM-ring by [M $_1$] (33.B). Now apply Proposition (4.3). \Box

(4.5) Lemma. Let (A,m) be a Noetherian henselian local ring and $\underline{a} \in A$ an ideal. Suppose that (A,\underline{a}) is a CM-approximation. Let $\Im: N \longrightarrow N$ be its CM-function and $\underline{r} = \Im(1)$. Then a MCM A-module M is indecomposable iff $M/\underline{a}^{r}M$ is indecomposable over A/\underline{a}^{r} .

Proof. (inspirated by [Y] (2.10)). Clearly M/\underline{a}^rM is decomposable if M is so (use the Nakayama's Lemma). If M is indecomposable then $\operatorname{End}_A(M)$ is a local A-algebra, A being henselian. Let f be an idempotent from $\operatorname{End}_A(M/\underline{a}^rM)$. Then there exists a linear A-map $g: M \longrightarrow M$ such that $\overline{g}:=(A/\underline{a})\otimes g=(A/\underline{a})\otimes f(\ \)$ is a CM-function). Clearly \overline{g} is an idempotent. Since $\operatorname{End}_A(M)$ is local the sub-A-algebra

$$\{(A/a) \otimes h \mid h \in \operatorname{End}_{A}(M)\} \subset \operatorname{End}_{A}(M/aM)$$

is local too. Thus g = 0 or g = 1. Then $g \cdot (M/a^r M)$ contains either Im f or Im(1-f). Since f is idempotent we get either Im $f = \text{Im } f^r = 0$ or $\text{Im}(1-f) = \text{Im}(1-f)^r = 0$. Thus f = 0 or f = 1. \Box

(4.6) Lemma. Conserving the hypothesis and the notations from (4.5), let M,N be two MCM A-modules such that M (resp. N) is indecomposable and h: M \longrightarrow N a linear A-map. Suppose that $(A/\underline{a}^r)\otimes_A h$ has a retraction (resp. section). Then h has a retraction (resp. section).

Proof. Since (A,\underline{a}) is a CM-approximation there exists a linear A-map $g: N \longrightarrow M$ such that $(A/\underline{a}) \otimes g$ is a retraction (resp. section) of $(A/\underline{a}) \otimes h$. Then $Im(1-gh) \subseteq \underline{aM}$ (resp. $Im(1-hg) \subseteq \underline{aN}$). Since $End_A(M)$ (resp. $End_A(N)$) is a local ring we get gh = 1 - (1-gh) (resp. hg) bijective. Thus h has a retraction $(gh)^{-1}g$ (resp. a section). \square

- (4.7) Let \underline{b} be an ideal in a Noetherian local ring (B,\underline{n}) . Then \underline{b} is a CM -reduction ideal if the following statements hold:
 - i) A MCM B-module M is indecomposable iff M/bM is indecomposable over B/b,
- ii) Two indecomposable MCM B-modules M,N are isomorphic iff M/bM and N/bN are isomorphic over B/b.

Note that our CM-reduction ideal is not necessarily n - primary as in [D]. If \underline{b} is a CM-reduction ideal of B then \underline{b}^S is also one for every $\underline{s} \in \mathbb{N}$.

- (4.8) Theorem. Let (A,\underline{m}) be a reduced excellent henselian local CM-ring, $k:=A/\underline{m}$, p:= chark and $I_s(A)$ the ideal defining the singular locus of A. Suppose that
 - i) $[k:k^p] < \infty$ if p > 0,
 - ii) for every $q \in \text{Reg } A$ containing pA the ring A_q/pA_q is regular,
 - iii) $I_s(A) \subseteq \underline{m}$

Then there exists a positive integer r such that $I_s(A)^r$ is a CM-reduction ideal of A.

The proof follows from the Lemmas (4.5), (4.6).

Let n_A be the cardinal of the $\underline{isomorphism}$ $\underline{classes}$ of $\underline{indecomposable}$ MCM A-modules.

- (4.9) Corollary. Conserving the notations and hypothesis of Theorem (4.8) let B be the completion of A with respect to I (A). Then
- i) A MCM A-module M is indecomposable iff B $\otimes_{A}^{}$ M is an indecomposable MCM B-module ,
- ii) Two indecomposable MCM B-modules M,N are isomorphic iff B \otimes_A M, B \otimes_A N are isomorphic over B.

In particular $n_A \leq n_B$.

Proof. i) By Theorem (4.8) there exists $r \in N$ such that $I_s(A)^r$ is a CM-reduction ideal of A. Let M be an indecomposable MCM A-module. Then $B \otimes_A M$ is a MCM B-module by flatness and $\overline{M} = M/I_s(A)^r M$ is indecomposable over $\overline{A} := A/I_s(A)^r$. Since $\overline{A} \cong B/I_s(A)^r B$ it follows that $(B \times_A \overline{A}) \otimes_A M$ is indecomposable over $B \otimes_A \overline{A}$ and so $B \otimes_A M$ is indecomposable too.

Conversely if $B \otimes_A M$ is an indecomposable MCM B-module and x a system of parameters in A then x is a $B \otimes_A M$ - regular sequence. Since $A \longrightarrow B$ is faithfully flat it follows that x is M-regular sequence, i.e. M is a MCM A-module. Clearly M must be indecomposable because $B \otimes_A M$ is so.

- ii) If $B \otimes_A M \cong B \otimes_A N$ then $B \otimes_A \widetilde{M} \cong B \otimes_A \widetilde{N}$ and so $\widetilde{A} \otimes_A M \cong \widetilde{A} \otimes_A N$. Thus $M \cong N$ because $I_s(A)^r$ is a CM-reduction ideal of A. \square
- (4.10) Corollary. Let (A,\underline{m}) be a reduced excellent henselian local CM-ring, k=A/m, $p=char\,k$. Suppose that
 - i) A is an isolated singularity, i.e. $\underline{m} = I_s(A)$,
 - ii) $[k:k^p] < \infty$ if p > 0,
- iii) for every $q \in \text{Reg } A$ containing pA the ring A_q/pA_q is regular. Then $n_A \le n_A$, where A is the completion of (A, \underline{m}) .

Remark. When k is perfect and pA = 0 then Corollary (4.10) is an easy consequence of [Y] (2.10), (2.12) and [Po] (1.3) (see our (5.6)).

(4.11) Corollary. Let (A,m) be a reduced excellent henselian local ring. Suppose that

- i) A is an isolated singularity of equal characteristic,
- ii) k: = A/m is algebraically closed and char $k \neq 2$,
- iii) The completion \hat{A} is a simple hypersurface singularity (resp. a singularity of type A_{∞} , D_{∞}).

Then A is of finite CM-type (resp. of countable CM-type), i.e. A has a just a finite (resp. countable) set of isomorphic classes of indecomposable MCM A-modules.

The proof follows by [GK], [K], [BGS] and our (4.10).

5. Bounded multiplicity CM-type

(5.1). For beginning we list some definitions and facts from the Auslander-Reiten theory for the MCM modules. (see $[Au_3]$, $[AR_1]$, [P], [Ya], or [Y] Appendix).

Let (A,m) be a henselian local CM-ring and M,N two indecomposable MCM A-modules. A linear A-map $f: M \longrightarrow N$ is irreducible if f is not an isomorphism and given any factorization f = gh in the category CM(A), g has a section or h has a retraction. The AR - guiver of A is a directed graph which has as vertices the isomorphic classes of indecomposable MCM modules over A and there is an arrow from the isomorphic class of M to that of N provided there is an irreducible linear map from M to N. A chain of irreducible maps from M to N is a sequence of irreducible linear maps: $\frac{f_1}{M_0 \longrightarrow M_1 \longrightarrow \cdots \longrightarrow M_N} \text{ with all } M_1 \text{ indecomposable MCM A-modules; n is called the length of the chain. If A is an isolated singularity then the AR-graph of A is locally finite, i.e. each vertex may be incident to only a finite number of other vertices (see <math>[Au_2]$, $[AR_3]$ and [Y] (A.18))

The following two Lemmas are just variants of [Y] Lemmas (3.1), (3.2), or [D] § 1.

- (5.2) Lemma. (Harada-Sai lemma for MCM-modules). Let n be a positive integer, M_i , $0 \le i \le 2^n$ some indecomposable MCM A-modules and $f_i: M_{i-1} \longrightarrow M_i$, $1 \le i \le 2^n$ some nonisomorphic linear A-maps. Suppose that
 - i) m^r is a CM-reduction ideal of A for a certain $r \in \mathbb{N}$,

- ii) length $(M_i/\underline{m}^rM_i) \le n, \quad 0 \le i \le n.$
- Then $(A/\underline{m}^s) \otimes (f_{2n} \circ \dots \circ f_1) = 0$.

The proof follows easily from [HS] Lemma 12 and our Lemma (4.6).

- (5.3). Lemma. Let n be a positive integer, M,N two indecomposable MCM A-modules and $\mathcal{C}: \mathbb{M} \longrightarrow \mathbb{N}$ a linear A-map. Suppose that
 - 1) \underline{m}^{r} is a CM-reduction ideal of A for a certain $r \in N$,
 - 2) $(A/m^{r})\otimes \varphi \neq 0$,
- 3) there is no chain of irreducible maps from M to N of length < n which is nontrivial modulo $\underline{m}^{\rm r}.$

Then

i) there exist a chain of irreducible maps

$$M = M_0 \xrightarrow{f_1} M_1 \longrightarrow \dots \xrightarrow{f_n} M_n$$

and a linear A-map g: $M_n \longrightarrow N$ such that $(A/\underline{m}^r) \otimes (g \circ f_n \circ \dots \circ f_1) \neq 0$

ii) there exist a chain of irreducible maps

$$N_n \xrightarrow{g_n} N_{n-1} \longrightarrow \cdots \xrightarrow{g_1} N_o = N$$

and a linear A-map $f: M \longrightarrow N_n$ such that $A/\underline{m}^r \otimes (g_1 \circ ... \circ g_n \circ f) \neq 0$... The proof follows as in [Y] (3.2).

- (5.4) Theorem. Let (A,m) be a reduced excellent henselian local CM-ring, k:=A/m, $p=char\,k$, Γ the AR-quiver of A and Γ^O a connected component of Γ . Suppose that
 - i) A is an isolated singularity,
- ii) Γ° is of bounded multiplicity type, i.e. there exists $n \in \mathbb{N}$ such that all indecomposable MCM modules M whose isomorphic classes are vertices in Γ° hold $e(\mathbb{M}) \leq n$.
 - iii) $[k:k^p] < \infty$ if p > 0,
 - iv) for every $q \in \text{Reg A}$ containing pA the ring A_q/pA_q is regular, Then $\Gamma = \Gamma^0$ and Γ is a finite graph. In particular A is of finite CM-type.

Proof. (inspirated from [Y] (3.3)). By i) we have $I_S(A) = m$ and it follows that m^r is a CM-reduction ideal of A for a certain $r \in N$ (see Theorem (4.8)). Let x be a system of parameters of A and M a MCM A-module. By $[M_2]$ (14.11) we have

 $length_A(M/xM) = e(xA,M)$

because x is a M-regular sequence. Let $u \in N$ be such that $\underline{m}^{U} \subseteq xA$. By $[M_{2}]$ (14.3),

(14.4) we get

$$e(xA,M) \le e(m^u,M) = e(M)u^d$$

where $d = \dim A$. Choosing x in m^r it follows

(1)
$$\operatorname{length}_{A}(M/m^{r}M) \leq e(M)u^{d}$$

Let $\mathcal M$ be the class of all MCM A-modules whose isomorphic classes are vertices in Γ . Using (1) we get

(2) length
$$_{A}(M/m^{r}M) \leq s := nu^{d} = constant$$
 for every $M \in \mathcal{M}$.

Let M,N be two indecomposable MCM A-modules and $f: M \longrightarrow N$ a linear A-map such that $(A/\underline{m}^r) \otimes f \neq 0$. If $M \in \mathcal{M}$ then there is a chain of irreducible maps from M to N of length $\langle t := 2^S$ which is nontrivial modulo \underline{m}^r . Otherwise there exists a chain of irreducible maps as in Lemma (5.3) i)

$$M = M_0 \xrightarrow{f_1} M_1 \longrightarrow \cdots \xrightarrow{f_t} M_t$$

and a linear A-map $g: M_{\widehat{t}} \to N$ such that $A/m^r \otimes (g \circ f_{\widehat{t}} \circ \dots \circ f_1) \neq 0$. Then $A/m^r \otimes (f_{\widehat{t}} \circ \dots \circ f_1) \neq 0$ which contradicts Lemma (5.2) (M_i are all in Γ^0 because Γ^0 is conex and apply (2)). In particular we get $N \in \mathcal{M}$. Conversely if $N \in \mathcal{M}$ then a dual argument (using (5.3) ii) instead i)) shows that $M \in \mathcal{M}$ and there exists a nontrivial chain of irreducible maps from M to N of length < t.

If M is a finitely generated A-module there exists a linear A-map $f:A \to M$ such that $(A/\underline{m}^r) \otimes f \neq 0$ (choose $x \in M \setminus \underline{m}M$ (M is finite!) and take f(a) = ax). If $M \in \mathcal{M}$ then $A \in \mathcal{M}$. Moreover if M is an indecomposable A-module then $M \in \mathcal{M}$ because $A \in \mathcal{M}$. Thus $\Gamma^0 = \Gamma$. Since Γ is locally finite and every module from \mathcal{M} can be connected with A by a chain of irreducible maps of length < t we conclude that Γ is finite . \Box

- (5.5) Remark. When A is Artinian then our Theorem is a consequence of [R], $[Au_1]$. When A is complete, pA = 0 and k is perfect then our Theorem follows from [Y] (1.1).
- (5.6) Remark. Another possible approach to study the CM-type is to use Artin approximation theory (see [Ar], or [Po]). Let (A,m) be a Noetherian local ring with the property of Artin approximation (shortly A is an AP-ring), i.e. for every finite system of polynomial equations f over A, every $s \in \mathbb{N}$ and every formal solution \hat{y} of f in the completion \hat{A} of A there exists a solution \hat{y} of f in A such that $\hat{y} = \hat{y} \mod m^s A$. Let M,N be two finitely generated A-modules. If A is an AP-ring then
 - i) M is indecomposable iff $\widehat{A} \otimes_A^M M$ is so,

ii) $M \cong N$ iff $\widehat{A} \otimes_A M \cong \widehat{A} \otimes_A N$.

For the proof note that the question can be expressed by the compatibility of some systems of polynomial equations over A (as in the proof of (4.2); but this time the equations are not linear). In particular the CM-type of A is finite if the CM-type of \widehat{A} is so. Since excellent henselian local rings are AP (see [Po] Theorem (1.3)) we note that our Theorem (5.4) follows from [Y](1.1) when k is perfect and pA = 0.

REFERENCES

- [An] M. André, Localisation de la lissité formelle, Manuscripta Math., 13 (1974), 297-307.
- [Ar] M. Artin, Algebraic approximation of structures over complete local rings, Publ. Math. IHES, 36 (1969), 23-58.
- [Au₁] M. Auslander, Representation theory of Artin algebras II, Comm. Algebra, 1 (1974), 269-310.
- [Au₂] M. Auslander, Rational singularities and almost split sequences, Trans. Amer. Math. Soc., 293 (1986), 511-531.
- [Au₃] M. Auslander, Isolated singularities and existence of almost split sequences, Proc. ICRA IV, Lect. Notes in Math., 1178 (1986), 194-241.
- [AR₁] M. Auslander and I. Reiten, Representation theory of Artin algebras III, Comm. Algebra, 3 (1975), 239-294.
- [AR₂] M. Auslander and I. Reiten, Representation theory of Artin algebras IV, Comm. Algebra, 5 (1977), 443-518.
- [BR₁] A. Brezuleanu and N. Radu, Sur la localisation de la lissité formelle C.R. Acad. Sci. Paris, 276 (1973), 439-441.
- [BR₂] A. Brezuleanu and N. Radu, Excellent rings and good separation of the module of differentials, Rev. Roum. Math. Pures et Appl., 23 (1978), 1455-1470.
- [BGS] R.-O. Buchweitz, G.-M. Greuel, F.-O. Schreyer, Cohen-Macaulay modules on hypersurface singularities II, Invent. Math. 88 (1987), 165-183.
- [GK] G. M. Greuel and H. Knorrer, Einfache Kurvensingularitaten und torsionsfreie Moduln, Math. Annalen 270 (1985), 417-425.
- [D] E. Dieterich, Reduction of isolated singularities, Comment. Math. Helvetici 62 (1987), 654-676.
- [EGA] A. Grothendieck and J. Dieudonne, Elements de geometrie algebrique, IV, part 1, Publ. Math. IHES, 1964.
- [HS] M. Harada and Y. Sai, On categories of indecomposable modules I, Osaka J. Math., 8 (1971), 309-321.
- [K] H. Knorrer, Cohen Macaulay modules on hypersurface singularities I, Invent. Math. 88 (1987), 153-165.
- [M₁] H. Matsumura, Commutative Algebra, Benjamin, New York, 1970.
- [M2] H. Matsumura, Commutative ring theory, Cambridge University Press, 1986.
- [NP] V. Nica and D. Popeseu, A structure theorem on formally smooth morphisms in positive characteristic, J. of Algebra, 100 (1986), 436-455.
- [P] R.S. Pierce, Associative algebras, Graduate Texts in Math., 88, Springer-Verlag, 1982.
- [Po] D. Popescu, General Neron desingularization and approximation, Nagoya Math. J., 104 (1986), 85-115.
- [R] A. V. Roiter, Unbounded dimensionality of indecomposable representation of an algebra with an infinite number of indecomposable representations. Izv. Akad. Nauk.

SSSR, 32 (1968), 1275-1282 (Russian).

- [S] G. Scheja and U. Storch, Lokale Verzweigungs-theorie, Schriftenreiche des Math. Inst. der Univ. Freiburg, 1974.
- [Ya] K. Yamagata, On Artin rings of finite representation type, J. of Algebra, 50 (1978), 276-283.
- [Y] Y. Yoshino, Brauer Thrall type theorem for maximal Cohen-Macaulay modules, J. Math. Soc. Japan, 39 (1987), 719-739.

INCREST

Department of Mathematics Bd. Păcii 220, 79622 Bucharest ROMANIA