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INFINITESIMAL DEFCRMATIONS OF NRGATIVE WEICGHTS

Incian Bidescu

Introduction

Consider the following:

Prcblem. Let (Y,L) be & normal polarized variety over an algebraically clo-
sed field k, i.e. a normal projective variety Y over k together with an ample
line bundle L on ¥, Then one may ask under which conditions the following sta-
tement holds:

(+) Every normal projective variety X containing Y as an ample Cartier divi-
sor such that the normal bundle of Y in X is I, is isomorphic to the projective

cone over (Y,L), and Y is embedded in X as the infinite section,

Recall that the projective cone over (Y,L) is by definition thé projegtive
variety C(Y,L) = Proj(s[T]), where S is the graded k-algebra s(Y,L) = S;ﬂHo(Y,Li)
associated to (Y,L), and the polynomial S-algebra SZTi (with T an indete;minate)
is graded by deg(sTi) = deg(s) + i whenever s£§ is homogeneous. The infinite

section of C(Y,L) is by definition V (T), and it is isomorphic to Y.
o

This problem has classical roots (see f}j for some historical hints). In
[1}, [21, [33 and E4j, among other things, we produced several examples of pola-
rized varieties (Y,L) satisfying (+). If Y is smooth of dimension > 2, and if
TY is the tangent bundle of Y, Fujita subsequently proved in [@]‘the‘following

et :
YéﬁL ) =-0 for every i< o,

1
general criterion: (Y,L) satisfies (+) if B (¥,T
In this paper we prove two main results, The first one (which is in the
spirit of [@]) considers the case where Y has singularities; and is & criterion
for (Y,L) to satisfy (+). This criterion (see theorem 1 in 81) improves a result

of [Aj and involves the space of first order infinitesimal deformations of the

k~algebra S(Y,L). In 52 we apply it to check that the singular Kumner varieties



e

of dimension > 3 and the symmetric products of certain varieties satisfy (+)
with respect to any line bundle. In ¢3 we make a few remarks when Y is smooth
and state an open question, It should be noted that in the first two sections

the Schlessinger's deformations theoty (see LJS], [iﬁ}) plays an essential role,

3

'he second main result (see theorem § in $4) shows that if Y is a P'-bundle
(n>1) over a smooth projective curve B of positive genus and if X is a normal
singular projective variety containing Y as an ample Cartier divisor, then X
S e : s 1 : =
1E dsomorphic to the cone™C(¥,L). The oase Bi= P was d1scusacd in (3], while
the case when X is smooth, in [ and o Putting these results together, we
get a complete description of all normal projective varieties containine a

g

n
P -bundle (nZ>1) over a curve as an ample Cartier divisor (see theorem 7 in §4)
2 $4).

‘Unless otherwise épecified, the terminology and the notations used are stan—

dard,

?1- The first main result

[a)

In the set-up and notations of the above problem, the graded k-algebra 3§ =
= 8(Y,L) is finitely generated because L is ample (see e.g. [ 8], chsp. IIT).
Let Byseses be & minimal system of homogeneous generators of S/k, and denste
by k[Tl,...sTn] the polynomial k-algebra in n indeterminates Tl,...,Tn s £graded
by the conditions that deg(Ti) = deg{ai) = q; for every i = 1,...,n, Then S is
isomorphic as a graded k-algebra to kETl,p,.,Tn]/I in such 2 way that ai cor-
responds to Timodl for every i = 1,...,n (I is the kernel of the homomorphism

mapping T, to a,), Let fl,gOG,f €T be a ninimal system of homogencous genera—
i b T

tors of I, and set:
(1) d = max(dl,,,.,dr), where a, = deg(fi).
Then we have:

Theorem 1, In the above notations assume the following:

-~

1 i S s
i) H (Y,Ll) = o for every i€ 4 , or equivalently, depth(SS )23, where §

+
: 5 : ; +
is the irrelevant maximal ideal of S,

i 1
ii) TS(—i) = 0 for every 1£i< 4, where d is given by (1), TS = Tl(S/k,S)




(2]

is the space of first order infinitesimal deformations of the k-algebra 5, ani

I.= &

1 ; 2
T.(i) is the decomposition arising from the G ~action of 4he graded

in e

' - A i : 1
ra § (see [1343 or also [14] for the definition of TS).

AL/

S e

L

k~algeb

Then the property (+} holds for (Y,@l.

Proof. Let X be a normal projective variety containing Y as an anple Cartier

— o = i
divisor such that OX(Y)QyOY = I. Let t€H (X,O (Y)) be & global equation of Y

in X, icec=0iy ( t) = Y. Denote by S' the graded k-algebra S(X,0 (Y) B

Lo )

= O H (A,O (Lf)) Then using the standard exact seguence
=g

s

o—— 0 (1)) — 0 (i) —— 1t .

2!
the hypothesis i), and a theorem of Serre saying that H (X,GX(iY}) = o for
every idLo, one immediately sees that st/tsi=tg (isomorphism of graded k-alge-

bras, where deg(t) = 1),

Then choose bl,,..,b € 3' homogeneous elements of degrees ol,,,.,q respec—
tively, auuh that b modta = ai, deme Lyssvna iiBhen. 5Y o k{;l,..,,o ,tJ Denote
by P the poiynomlal k-algebra htﬁl,a..,T T] in nt+l indeterminates Tl,...ﬁT A
graded by deg(T ) = q , i = lyevesn, and deg(?) = 1, For every m=1 set

i 3l
n n m
5 = S'/tIS', and consider the surjective homomorphism ﬂ7 JBIES————> 8" Slioh
that (F (T ) = b e 1,6..,n, and ‘f () = t', where for every bLE£S' we bave
i i
denoted by b' the element b modb 2's Let Fl,.,.,FS be a system of homogeneous

generators of the ideal J = Ker(f;), and. put e, = deg(Fi), e R S
Now, according to [18], $1 (lorBlno {141}, we can consider:

: : . m
~ The § -module Bx( /ﬁ,a} of all isomorphism classes of extensions of 5

over k by the S -nodule 8 = § /t’Sm (recall that an extension of Sm/k by S/is

17

a k-algebra E together with a surjective homomorphism of k-&lgebras &

: : : : m \
whose kernel is a square-zero ideal of E, isomorphic as an S -module to B)e

i 1 m :
- The § -module T (S[/k,s) defined by the following exact sequence

W

, 2 1
(2) Derk(P,S)‘ > Hom m(7/7°,8) ———1" (5" /x, 5)

b

where Der (P S) is the S -module of all k—derav&fwons of P in 8, and "y is
defined in the following way: if DE Der (P $) then “¥(D) is the element of
Hom m(J/J »S) defined by the restrlctlon D/J (which necessarily vanishes on Jg).

It turnc out that T (um/k,S) is independent of the choice of the presentation



o

: - s m
Now, the point is that there is a canonical isomorphism of § -modules

(see [18], theorem 1, page 12, or also [14 |, page 410):

1 ¥
(3) o :Bx(8" /k,5) > 17 (5" /K, 5).
, m i S . 32
Since S is a graded k-algebra, T (5 /k,S) has a natural gradation T (S /k,s
= ﬁ?ﬁ_?l(Sm/k,S)(i) arising from the G -action of s (see rlT], page 19),

TE X
. s ~ 2 s - 4 Tm] 3 £ T, m/ 2
Returning to our situation, consider the element of Ex(S /k,S) given by
the exact seguence

1 1
(2 ) R e w5 S

: Fealan >
We need to compute <%((an))é 7 (Sm/x,s) explicitly. By the definition of
1.

the isomorphism of (see [}8]) we need to consider the commutative diagram

with exact rows

2 2
0 e J /T P/J P ——— =0
¥ i
\‘/ / \f
m m+1 W m+1 m
0o——t 5'/4  S' = §- -~ 5 S o

; - - g m
where u is the map deduced from ¢ . Thus v(F . modJ") = t G_(bl,,.,
I i 3
2

with @ (bynl ayb ties! homogencous of -degree e -m, Then wevE&Hom m(J/7°,5)
]! n e ~n i S
I

m+l

corresponds to the vector (Gi,...,cf)g with G!' = w(t g (bl,.“,b JLmogt  SE
= 35 bl

. i
=0 (al,,.,,anso), and recalling the exact sequence (2) we have

Lo
((am)) = class of wev € T (Sn/k,S).

1,1
According to the explicit description of the gradation of T (Sn/k,s) given
i 1l i
in [17], page 19, the elements of T (S /%,8)(3) of degree j correspond to those

2 .
elements of Hom m(J/J°,8) given by vectors (h ,...,h ) with h & § . homogene-
N 1 s i7 e +3 c

ous of degree ei+j; i=15...y8. Since deg(G') = e, -m, the foregoing discussion
3 i
implies:

(4) C(((am))éi Tl(Sm/k,S)(mm) for every mz1,

Now take m

hence C{((al))

Hi

1 : 1
1, Since S = 8, it follows that c(((al))ézT (5/k,8)(=1), =hd

il

© by hypothesis ii). Bub the trivial extension of Bx{(S/k,5) is

o= 5 TS[T]/(TE)——————:fs;:T]/(TZ) ————>s{r]/(?) ¥ § —>0,

m41
bn,t)modt Sie

)‘a
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and therefore there is an isomorphism of extensions

e ST :
0 > 5 % 157 /(1) = S[2]/(1°) ———=s[@1/(1) = s —— 0
_i ]'
z j J
i - .
00— = t’Sa > S£~ =3 >0

2
such that the vertical isomorphism in the middle maps Tmod(T") into ¢,

Assume now that we know that for some my, 2 mgd, there is an isomorphism

[

B e [ o = : Lo i :
SLTj/(Tj) ¥ §° for every 1£i¢{ m; which maps Tmod(T”) into t' = tmodt 3', Then

i =1
recall that there is a general exact scguence (see LIBJ)

1 1 1
(5" /s,8)- st e (s/x,8),

where the maps are homogenzous and the second one corresponds to the inclusion

n : _ : = AR
S >S obtained by composing the natural inclusion SS——=5/m]/(p ) with

the isomorphism s[T]/(1") 2 §", Using this and hypothesis ii) we infer that the
1 I
map TI(SN/S,S)(um)—w~--4f-T (Sm/k,s)(qn) is surjective, which together wiih
: 1
(4) implies that the extension (am) comes from Ex(sm/sfs)': T (Sm/kgs), In other
mn

m+l : : : m41 =
words, S 1S an S-algebra and the canonical surjective map § R oeE

2..map of F-algebras, Then we can easily define an isomorphism of extensions

O —

ey i 1 ey i 1 P
=S = 1 s[p /(™) ———s[nl/(0 T — stri/(™) >0

nt 1 o
>Sadeafpenar - - S nel ot gl

=>-0

where the middle vertical isomorphism is the homomorphism of S~algebras mapping

m+1 m+1
e inito £ et

Tmod (T
e sSumming up, we have proved by induction on m that there is an isomorphism

i d+1 d+1 +1
of graded k-algebras gi1]/(p )= 8 such that Tmod(Td+ ) corresponds 4o

d41 :
tmodt " St. In barticular, there is a commutative diagram

h d+1 4l
S s s e

id canonical gurjection



e

e

i Al ?
Choose homogencous elements c.E Sé such that h(ai) = cimodt SUE RS
; 14

£

i
eegn. Then we claim that
e (5) fi(clg.geﬁcn) =0 ?or every. 4 = 1 .o,
Indeed- Binceltiolicay Y e mo@td+15' = £ (W) eo,nle )) = h{o) = o
A g s e o 5 LAt eg :
Tollows that fi(cl,.,.,cn) et =5 for every i = 1,,..,0.008 fop some i we

would have fi(cl"°"cn) #0, it would £ollow that di & deg(fi(cl,.,.,cn))£3d+l,

5

8 contradiction because 4 = max{dl,..,,d i1
T

Fipnally, using (5) we can construct & homomorphism of graded k-algebras

£ ———=3' by putting f(a_) =g The equations (5) show that this definition
is correct. Then we get & unigue homomorphism of graded k-algebras g:Si@j— > S

such that g/S = £ and g(?) = t. Then it is clear that g is surjective, and hence
an isomorphism, because both S|T| and §' are domains of the seme dimension, In
other words, we have proved that X is isomorphic %o the projective cone Gy,

Q.E. D,

' T i
Remarks. 1) Theorem 1 had heed proved in { 4 in the stronger hypothesis
SRS, ]

1

= 0, where we had in mind an application to weighted projective spaces,

that T

Fes B

2) Unfortunately, the hypothesis i) of theorem 1 is quite restrictive., We do
not know whether theorem 1 still remains valid if one dropa hypothesis 1), even

one assumes for example that cher(k) = o and T ( i) = o for every iE:l.

o

Corollary 1, In the notations of theorem 1, assume that ii) holds, let X be

& normal projective variety containine Y as an ample Cartier divisor such that

1
the normal bundle of Y in X is L. If H (K,OK(iY)) = o for every i>o, then X is

isomorphic to the projective cons C(Y,L) and Y is embedded in X as the infinite

section,

Indeed, the exact seguence from the begimming of the proof of theorem 1 to-
Ak i
gether with the hypothesis that H (X, x(ii’)) = o for every i> o imply that
5'/tS' = 8 (in the proof of theorem 1 the hypothesis i) was used only to deduce

this isomorphism )a

Another immediate consequence of the proof of theorem 1 is the following

purely algebraic result:
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]

Corollary 2. Let §

k Tlg..osTnl/l ve an [\ ~graded k-algebra, where

N s e S :
polynomial k-algebra kng,‘-.sij in the indeterminates Tl’“""T is graded
& : S E R

the
by aeg(riw ) ==@ED i = e et Some Fiwad system of weigh (0 ,,..,0 )'s
q

1’""’fr of posie

e W i = S - = Vo b et . . .
L8t 5 be an E\t—ffﬂd@h k-algebra such that §'/tS' is isomorphic

and I is the ideal gencrated by some homogeneous polynomials

to 5 as a graded k-alge bra, for somé homogeneous element tES!' of degree 1, If
if : e :
T.(~1) = o for every 1K ig max(deg(f )g,,.gdag(fr)), then S' is isomorphic (as
) A e '

a graded kmalgeﬁra) to the polynomial S-algebra ST7] in such a wvay that t is

$2. 4pplications of theorem 1

The tools for verifying hypotheses of type ii) of theorem 1 have been deve-~
loped by Schlessinger in Lle. The lemma 1 below (which is essentially due to
Schlessinger) provides examples of singular normal polarized varieties (¥, 5)

satisfying the condition ii) of theorem 1.

Start with a smooth projective variety V and with a finite group G acting
V. Denocte by Y the quotient variety V/G and by £:V-———>Y the canonical

morphism. Let L be an ample line bundle on Y and set M

fl

£°(1). ‘Since £ is a

finite morphism, ¥ is also ample, Let 8 = S(Y,L) and 4
L 3 )

S(V,i) be the graded

k-algebras associated to (Y,L) and (V,M) respectively,

Lemma 1, In the above notations assume the fol L lowing:

i) Dim(V)> 3 and char(k) is either sero, or prime o the order (Gl of G.

ii) G scts on V freely oulside some closed Ginvariant subset of V of codi-

mensicn =13,

1 -3 =
1ii) B (V.4 ) = o for every i1 (in characteristic zero this is always

fulfilled by Kodaira's venishing theoren),

-1
iv) H (V,Tvéﬁﬂ ) = o for every iz 1, where Tv is the tangent bundle of V,

Then T ( i) = o for every i>1.

Proof, Since lemma 1 is not given in [19] in this form, we include its proof

for the convenience of the reader. From ii) we infer that the singular locus of

Y, Sing(Y), is of codimension >3, and that f is &tale outs 1de Sln”(Y) Using

this, the normality of Y and Eléj, §7, it follows that f%(M ) = L' for every
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1

hows that G acts on & by automorphisms of graded k-algebras and that
fad

\x 5 A a s x v
the invariant k-algebra 4 coincides with S. Consider the cartesian diagram

[v7}

i> 0. This

Spec(s)-(2 ) = W = —> 1 = Spec(S)~(S+) = W/g
+
Q
v >Y = Vo
with q and p the canonical projections of the Gn—bundles W and U respectively
: : Sl
(see (8], chap. IT 88}  Tf 7 is the ranification locus of " f, then g (W) s

the ramification locus of g, and hence & acts freely on W outside a closed
G-invariant subset of W. In particular, the Singular locus Z of U is of codimen—
sion >3 in U. Then by [igj and 5203 we get that TU = g%(Tw)G’ where TU is the
tangent sheaf of U. Since char(k) = o or char(k) is prime to |al, it follows that

TU is a direct summand of g*(TW), and in particular
= : e o 1
(6) = (U,TU) is a direct summand of X (U,g*(TW)) = B (W,TW).

On the other hand, it is well known that there is a canonical exact sequence

(see e.g. [14] or [21])

¥
o} OW ;-TW————M——:» q, (TV) > 0
which yields the exact sequence
17 17 1
H (""-Tiow) > H (I“sTW) ol W (T ))

G I
«;H(Mf) QJH(VT ”f”L)

TeZ e

The vertical isomorphisms in (7) give the natural gradings on Hl(WPOW) and
: . :
on H (W,q*(TV)) reapeotively, But the middle space in (7) also has & natural

1 X
gradation H (W,TW) = H} H (W,T")(i) érising from the G -action on W, and all
\‘. W n

these three gradations are compatible with the maps in (7). Therefore, using
hypotheses iii) and iv) we get that Hl(w ik )( ) = o for every i< o, There is

also & natural gradation Hl(UgTU) = ﬂ%( " (U U)(i) arising from the G -action
on U, and this gradation is compatible via (6) with the gradation of Hl(W,Tw),
and consequently we get

(8) Hl(U,TU)(i) = o for every i< o,

Since U has only quotient singularities in codimension >3, by [19‘_{ and

EZO] we infer that all the singularities of U are rigid, and in particular,



- 9 -

depch(TU)g;js Then the exact sequence of local cohomology shows that the res—

triction map H‘(U,TU)

—_— (U—Z,TU) is an isomorphiam,
Pinally, since U has only quotient (and hence Coken-Macaulay) singularities
it 1
and codlmu( ) 3, by [19] and [20] we get T = H (=0, TU)Q Recalling (8) and the

iscmorphism H (U—A,TU) = H (b I ) we get thb conclusion of lemma 1, Q.RE.D.

Now we illustrate how theorem 1 Can be applied - via lemma 1 - on some
examples, First we apply theorem.l to the singular Kummer varieties of dimension
2 3. Recall that a singular Kummer variety Y is a variety of the form V/G, where
V is an abelian variety of dimension d> 2 and Gcaut(V) is the subgroup of order
2 generated by the involution wiV——— V defined by u(x) = —x for every x& V
(=x is the inverse of X in the group-law of V). Since for char(k) £ 2 therarare
exactly 22d points ‘of order 2 on V (see [16]), Y = V/G has exactly 22d singula-—

rities (which are all quotient singularities), Now we have:

Theorem 2. Let Y be & singular Kummer variety of dimension d>3, and let L

be an arbitrary ample line bundle on Y. If char(k) ¥ 2 then the property (+)

holds for (Y,L).

Proof. We first show that lemma 1 implies that Té(—i) = o for every 11,
with § = S(Y,L). Indeed, the hypotheses i) and ii) of lemma 1 are clearly sa—
tisfied, while iii) and iv) follow using the fact that the tangent bundle of an
abelian variety is trivial, together with the fact that the Kodaira's vanishing

theorem for an abelian variety holds in arbitrary characteristic (see fié» .1 Yo

o :
It remains to check that H (Y,L”) = o for every i€ Z (which is the first
hypothesis of theorem 1), If f:V-—-———-ewY is the canonical morphism, then by
i :
(19], L is a direct suamand of £.f (L ) because char(k) £ 2 = ||, and hence

516 the
o

i i 1 X 1 TR e 5
H (Y,L7) is & direct summand of H (1,f,7*(1})) - & (v,£7(1%)). 3y [16],
latter space is zero for i % o beceause fﬁ(L) is ample, On the other hand, 3if

Lo 1
i = o, according to Schlessinger |19], page 24, we infer that H (Y,OY)

1 G 1 ;
= H (v,ov) ; and G acts on H (V’Ov) b > —t, It follows that H (Y oY) =

Applying thecrem 1 we get the conclusion. GeBo Do

Further examples of singular normal varieties satisfying (+) with respect
to any ample line bundle are the symmetric products of certain smooth projective
varieties, Let 2 be a ooth projective variety of dimension d2 3, and let Y be

Smoc
n
the symmetric product ( ) = V/G, where: nz2 is a fixed integer, V = Z (the
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~direct product of Z with itself n times), and G is the symnetric group of degree

n acting en Vby g.la ;... ) = (2 sesesZ o ) for every g2 G and (2_,...,2
1 n g(l) g(n) . 1,;P\, n)
€W Then the ramification loous of the canonical morphism £V —" > z

has codimension in V equal to d = dim(V) 23

Theorem 3. Let 7 be & smooth projective variety of dimension 4> 3 such that

2 2 Uil

H (ZQI) = 0 for every line bundle M ¢n Zy and let n>2 be an irnt ceger. such that

_ - : r n
either char(k) = o, or n> char (k). Tren for every imple line bundle L on Y = Z( )

£ P,

[ =
=
()
:5
o
; J
c+
<!
/_‘-\
N___/
’3"
)
ol
o

fop G110,

Note. The simplest examples of varieties % satisfying the hy potheses of
d+1
theorem 3 are all smooth hypersurfaces in P with d> 3,

and then the see-saw principle (sae [16), 5) immediately implies that £’ (1) =

~ _')(‘ N . v -3 7 =, ) 4

= P (L. ). o@D CED) b e T EPic(Z) and p ¥ =gy projection
sl e S 3 ol : 1 5

- 5 : e * s

of V onto the i-th factor, Since L is ample on Y and f is finite, £7(L) 18 ample

on V, and hence L is ample on Z for every i = lyves R k8 inthe proof of
theorem 2, it will be sufficient to check the following:

1 =
B (V,£(L)) = o for every ie 7', am

1 =t : -
H(Vﬂvﬁf%L))z o, fior.every 4o ;

in order to deduce (via lemma 1) that the hypotheses of theorem 1 ape satisfied,
But these vanishings are easily checked using the Xinreth's .formu ulze, the fact
)&@...@p (T ), the hypotheses of the theorem and the fact that

\
/
e A : bl s e S T On J A e
L, is ample for i = 1,...,n (which implies that H (2,1°) = o for every j<o and
i i

i=1,...yn). Then the conclusion of the theorem follows from theorem 1. G.E.D.

when Y is smooth

e
(@Y
-
Ly 8
i)
[¢h]
B
o
Q
3}
Ay
H
=
r

In this section we shall assume that Y is smooth and char(k) = o. Then it
is known that the space T_(i) can be computed in the following way (sece [231,
S el

T

page 337 and theorem 3.7). First, there is.an exact sequence of vector bundles

o e T O o ) l"z a3 T‘f o)

which is the dual of the exact sequence

T ~5n0  —— 5 0
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: 5 ’
corresponding to the jmage of L in H ("3 Q ) via the canomcal map H (Y,0.) =

¥ Pic(Y) >H (Y, !2 ) induced by the map Oyf‘*———~——?‘(l given by fi—=df/s,
Then it is proved in 100. cit. that
G
- 1 = . i+q s
(9) TS(l) = Ke T(ﬁ (e h@L ) >H (3L @L S8) for every i€ Z ,
3_‘.—-
where S = S( L) ard l,...,q have the same meaning as ay the beginning of §1.

Using (9), the first exact sequence and the Kodaira's vanishing theorem, it
1
follows that thc conultlon H TS(—i) = 0 for every 121 " is a consequence of the
condition * H (x,T ®1J Yy = o for every i1 ". If Y is smooth and char(k) = o,

one can get rid of the unpleasant hypothesis i) of theorem 1 because of the

felloving:

Theorea 4 (See [6]). Let (Y,L) be a smooth polarized variety of dimension
.
sl

22 such that B (Y,T_®L ) = o for every i1 and char(k) = o. Then the property

(1) holds for (Y,

ez
P

Theorem 4 is proved in [6], it is also a qu1cx conseqaunce of theorem 2 in

[22] Using theorem 4 and the main result of [227 we prove the following:

Theorem 5. Let (Y,1) be a smooth polarized varicty such that: char(k) =
7 -1
dim(Y)}> 2, B (Y,TyéﬁL J=ofor i =1andi =2, and the linear system |L| con-

tains a smooth divisor. Then the propert +):holds for (¥.1.):
i 3

1 <
Pzoof. By theores 4 it will b sufficient to show that E (Y,2.®L™) = o for

every i>1. Let B€ [L| be 2 smooth divisor of |L|. Since dim(Y)> 2, H is also

connected. If we denote by I Lg the restriction LQ@OH and by TH the tangent bundle

of H, we have the canonical exact sequence

=i e 1-i
0 ——z THGDLH ———w-——a-(TYQgL )/H > LH o,
which yields the exact sequence
e -1 Ol Al e 0 1-i \
(10.) B (§1,0L ") ——H (h,(TY&)L W=y (H,LH s

For every 1> 2 the 1

a

st space is zero. On the other hand, by the main result
of [?%}(whick extends a thcorem of Mori-Sumihiro), the first space could be £ o

only if (H, L ) ’”'("1 0(1)) (end then i = 2), in which case it follows easily that
(¥,1) ”’(P 0(1)), and whence (Y,L) bas the property (+). Thus we may assume that
H (H,THQDL i) = o for svery 12> 2. Then by (10i) we get H.(H,(TYQQLﬁi)/H) = o for

every iz Z. Finally, using this and the exact sequence
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12 i

—';—‘I‘Y@L“l— -—%-(Tytg}L_l)/H e

T.®L
(111) 0 s e

1

1 —i- 1 !
we infer that the map H (Y,TYéﬂL.l )——— 1 (Y,TYQ§L 1) is injective for every

1 =
i> 2, Therefore H (Y,TYGQL l) = o for everyg iz, Qe DL

Corollary. Let (Y,L) be & smooth polarized variety of dimension d> 2 such

that there is a smooth divisor HE [L| for which the exact seqguence

(12) o e -TY/H Ly, >0

| : _ 1 =

is not split (in particular, H (H,THQQLH ) # o). Lssume moreover that char(k) = o
i ~1

and H (Y,TYQ&L ) = o. Then the property (+) holds for (Y,L).

Proof., According to the proof of theorem 5, the exact sequence (111) shows
o] ~1
that it is sufficient to prove that H (H,(TYQQL )/H) = o.
The exact sequence (101) yields the exact sequence

i =¥ 1 =
(13) HO(H,TH®LH )———%HO(H,(Ty®L )/H)——>H°(H,0H)“a—>a (H,THG\ZILHI).

By [22], the first space could be £ o only in one of the following cases:
d-1 1 ;
either (H,LH) =P ;0(2)), e (H,LH) T (P,0(2)). In the first case (Y,1) %

o
= (P ,0(1)), and hence (Y,L) has the property (+); the second case is ruled out

: 1 -1
because then H (H,THCDLH ) = o, and hence (12) splits. Therefore we may assume
= -1
HO(H,TTT@)LH ) = 0o, and then (13) shows that HO(H,(TY@JL )/BE) = o if and only
pal
1 -1
if J(1) # o. Since 9(1) is the obstruction in H (H,TH@§LH ) such that (12) be

~split, we get the result, G.E.D.

Remark. In a more special situation, L'vovskii proved in [15] a better result
- : : : no,
than theorem 5 or its corollary. More precisely, assume that YCP is a smooth
: . : n ; : :
non~degenerate projective subvariety of P of dimension 22 and degree 23, such
i =aie : ; I n+l : 3 :
that H \1’Ty(—1)) = o and char(k) = o, Let XCP be an irreducible subvariety
n+1 0 3 n : 1 : . z n z
of P such that XNP = ¥, and X is smooth along Y and transveral to P, where
Yo ” ; n+1 2 ) \
P is embedded in P as a hyperplane., Then X is a cone over Y. In fact,
: 1
L'vovskii has an even weaker assumption than H (Y,Ty(-l)) = o:(loa, cit. ). His

proof uses compleiely different ideas,
Coming back to the above corollary, we may ask the following:

Question, Let (Y,L) be a smooth polarized variety of dimension d22 such
thaet L is generated by its global.sections, Find sufficient conditions ensuring

that there is & smooth member Hé}!L] such that the corresponding exact sequence
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(12) is not split. Or, enumerate the situations when (12) is split for H general,

4 necessary condition such thet this guestion has a positive answer is

that Hl(H,TEgﬁLgl) £ o for HE{\L\;general. Is it also sufficient ? In the case
of surfaces, the pairs (Y,L) for which Hl(H,THQSLgl) = o for HE |L| general, can
be easily enumerated., Indeed, by duality and Riemann-Roch on the, curve H one
gets that this happens if and only if (H,LH) EJ(PI,O(i)) with 4 < 1, 2, or 3.
And by & well known classical result, (Y,L) is isomorphic to one of the follo—
wing: (PZ,O(I)), (Plx Pl,O(l,l)), or any smooth hyperplane section of P1><P2C:.P5
via the Segre embedding (the latter surfaces are 2ll isomorphic to the projec—

tive plane blown up at a point).

5 n : =
v4. P -bundles over an irraticnal curve as hyperplane sections

Let B be a smooth projective curve, and let E be a vector bundle of rank
n+l on B, with n»1. Denote by Y = P(E) the projective bundle associsted to E,
and by p:Y——————> B the canonical projection. The main result of this section

is the following:

Theorem 6, In the above notaticns, assume thait the genus of B is positive
5 Z D

and char(k) = o. Let X be a singular normal projective variety containing ¥ =

= P(B) as an ample Cartier divisor. Then X is isomorphic to the projective cone

C(Y,L) and Y is embedded in X as the infinite section, where L is the normal

bundle of Y in X,

The motivation of theorem 6 lies in the fact that, combining it with sonme
b ]

results from [1], [2], and [3], we get the following complete description of

- : ; e , : 9
all normal projective varieties whose hyperplane sections are P -bundles over

a curve:

i
Theorem 7. Assune that B is a smooth projective curve of arbitrary genus,

n
and let Y = P(E) be a P -bundle over B (n>1), Assume furthermore char(k) = o,

Let X be a normal projective variety containing Y as an ample Cartier divisor,

Then one has one of the following possibilities:

3

i 9.7
a) X = P’, Y =P XP, and Y is embedded in X as a quadric.

= ! e 4 1 -
b) X is isomorphic to a smooth hyperquadric in P', Y = P x P ;- end Y sias the

4

intersection of X with a hyperplane of P,
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c) There is an exact sequence of vector bumdles on B of the form

iF
0 > I Uk >
> 3 B o

g -

guch that I ig an ample vector bundle in the sense of [10], E' = B for sone

L'CPic(B), X = P(F), and Y ¥ P(E') is embedded. in X via surjection ¥,
i o

d) X is isomorphic to the cone C(Y,L), with L the normal bundle of ¥ in X

b

end Y is embedded in X as the infinite section.

-

Remarks. 1) In certain cases (but not in all) theorem § was proved in [3],
theorem 6.

2) Theorem 7 is obtained as the result of a long case-by-case discussion
(see [ 1], theorem 5, [2], theorems 1, 2 and 3, and (3], theorems 3, 4 and 5,
‘and theorem 6 above). The most difficult case is when Y is a surface, i.e, E is
a rank tWwo vector bundle., Note that the proof of the result in case Y =
= P(GP4QBOP4(—1)) and X is smooth is coumpletely given in our short note, IL.
Badescu, The projective plane blown up at a point as an ample divisor, Atti
Accad, Ligure Sci. Lettere, 38 (1981), 3-7 ﬂcf. also lemma 2 in [3] and its
proof, for the case X is singula}). inother proof of theorem 7 in case X is
smooth, was subsequently given by P. Ionescu in [12], &8s an application of
the general adjunction mapping, using Hori's theory of extremal rays and
Kawamata—Shokurov contraction theorem,

Proof of theorem 6. According to [21 and (3], the Lefschetz theorem and

the Albanese amapping yield the commutative diagran

ypere el

B

where U is an open neighbourhood of Y in X (in fact, we can take U = Kreg)°

Then X has finitely many singularities, and by Hironaka [}i], there is a desin-
gularization f:X"-————X with the following propertie=: f induces an isomor-
phism f—l(U) = U, the rational map q" = gef:X" —— > B is in fact a morphism,
and the exceptional fibres of f are divisors of normal crossings (i.e. with
smooth l-codimensional components intersecting transversely), Then the normal
bundle of Y in X" is L, and since I is aaple, L is in particular, p-ample. One

of the main point in the proof of theorem 6§ is the following lemma, which is
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egsentially the relativization of theorem 4,2, chap. III of L9J.

Lemma 2, Led ghiX"M-——r > B be a surjsctive morphism between the nor—

mal projective varieties X" and B, and let Y be an effective Cartier divisor

on A" such that the restricticon ptY ——— 38 of g" is surjective, Assume

that the normral bundle I, of Y in X is p-ample. Then there is a canonical com-

//\

-~

- e

with X' a normal projective variety, q':X'————>B & morphism, v a-birational

nutative diagram

morphis such that v is on isomorphism in a neighbourhood of Y, and v(Y) is a .

g'-anple effective Cartier divisor on X',

Proof of lemma 2. First we are going to show that for i3> o the follcwing

three conditions are satisfied:
; i
i) L~ is p-very ample,

Chplars

ii) The canonical map g"*q"(0

SR (iY) is surjective,

}\.“
iii) The canonical map q”(

A”(IY)) =— = & (L ) is surjective,

Indeed, since L is p-ample, i) holds., Now we prove iii). Consider the exact

sequence (iz1)

@0, (1)) —p, (1) —>r"a(0 ((inl)'r))iia-ﬂlq;(o

! - Sl
X - yer X (lY))_"—’th_}‘(L )

X'Il

induced by the exact sequence 0 —3>0 ((i-l)f)wﬂmﬁ (iY) STt 0. The

{{H Al‘
last sheaf is zero for i» o because L is p-ample (see [8], chap. III, (2.2,1)).

-~

Hence the map £, is surjective for every iz j (say). Since g" is a projective
i

: A
morphism, R q:(O

x”(,jY)) is coherent on By and therefore [ becomes an isomor-
i

phism for i >0, i.e.. iidi) holds,
To prove ii), observe that by [8], chape-IT (3:4.7), ix)iis equivalent to

the fact that for every affine open subset D = Spec(4) of B, the sheaf

Oxn(

e -1 : 20 o ~ y A
the natural map HO(BSQ;(OX”(iY)))‘= H (q" (D)sgiu(lf))‘““““~“v B (DaP%(L )) =

1= ' =
iY)/q" “(D) is generated by its global sections for i3» o, But by Iii)



Al e

o, ~1 i
ZH (p (D),L7) is surjective for i 3y o because D is affine, Using the fact
1% e Al
that L is p-very ample, it follows that L /p ~(D) is generated by its global
sections, and hence (by the above surjectivity), QX”(iY)/q”_l(D) is generated

by its global sections,

Now fix an i>> o such that i), ii) and iii) are fulfilled. From ii) it Bel=

lows that there is a unique B-morphism ¥l b P(q"(0,_ (iY))) such

K”
(Y). Since L1 is p-very

¥ e
hat 1) )5=u0. At Set X = v (X1') and =
that vl(OP( o K“(ti) & X ‘1( ) Loy
ample, we know that Vl/Y:Y-——m——9'Yl is an isomorphism and that in is & B-very

-1
ample Cartier divisor on Xl. Furthermore Y = v (Yl) because a global equation
of the Cartier divisor iY on X" separates points X, X' such that €Y and x'&

EX"-Y. Then consider the Stein fTactorization of vl

w

Since V%(O

X"> E‘OK' ard X" is normal, X' is also normal., Notice that
-1

v/1:Y ——— Y = v(Y) is an isomorphism and Y = v “(Y'), so by Zariski's

main theorem (see ES], chap, III, (4.4.1)), v is an isomorphism in a neighbour—

hood of Y in X". Since w is a finite morphism and Yi

?Xl” >-P > B,

is B-ample, Y' = w"*“(‘fl) is<

g'-—ample on X', where q' is the composition X'

emma 2 is proved,

Note. The above proof of lemma 2 is an adaptation of the proof of theorem

4.2, chap, III in [ §{ to the relative case,

Proof of theorem &, continusd, Ve apply lemma 2 to the desingularization

X" of X such that g" = qef is & morphism s and get the normal projective variety
X' a3 in lemma 2 (in particular, Y becomes an effective Cartier divisor on X!
which is q'mamplgjcﬁbtice that v blows down to points only subvarieties of X"
that are contained in the axoeptiénal locus of f, and since X' is normal, by

= X

f87, chap, II, (8.11.1) we infer that there is & unique morphism usX'—
such that qou = q' and £ = wev, lotice also that the construction of v and X!

is canonical and depends only on X and the rationel map q, and not of the choice

of the desingularization f:X" =R

With this construction in hand, we can prcceed further, Since Y = P(E) and
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L is & p-ample line bundle, there is an HéEPic(B) and a positive integer s>1
such that

: ~1
Tt S )3 * (0 whe 3) = 3
(14) OY(:*)(E:‘\p (u ), where OY( ) OP(E)(S)

Replacirg E by BE® N, with Nﬂ?Pic( B) of sufficiently high degree, we get

that L = O (s)@ﬂﬁim’bggm ). In other words, we may assume that in (14)

P(E@N)
4 has sufficiently high degree,

hecording to the Lefschetsz theorem, there is an F& Pic(U) such that FQ@OY =
:‘Oy(l) (efe e, [2], tHe proct of theorsy ). Seb U = f“l(U) and U' = u“l(U)_

. - Lo e - 3 . - .
Since U" = U'S U', we may consider the sheaf F on U", and since X" ig smooth,

F extends (non-uniquely) to & line burdle om A", still denoted by F. Since the

map Pic(U)-
=(0

>Pic(Y) is injective, (14) can be translated into P /U”'E’
),"(I')CfF ”h(u))/t" Therefore = there is a divisor D supported by the exceptional
fibres of f, such that F° = g 0, (1)®q" (n)ogo (D) If D & D, = D_, with D am
D 2 o, after replacing F by F& K"(D—) (fhlch still has the restriction O (1)
to Y), we may assuae that D zo. Furthermore, since i is of sufficiently h1gn

=
fibres XU = gq" (b ) are all smooth and transverse to all compeonents of D aa

degree, for a ﬂererwl divisor B oo b ElM | (vith b, A tor i #3), the
I 1 J

well as to all thb]r possible intersections, Thus, replacing D by Dv - p Dt
imn.

with D! ; K., we get
m~4 12

(15) B #o_ (Y)&q*(om),

Gl
where D" is a normal crossing positive divisor on Al-such that D = @ + D',

with Supp(D) contained in the exce?tional fibres of f and D' a sum of dist;net
fibres of q". (and hence D'is reduced ), Then, ucco“dind to Kawamata and d Viehweg,
(see Ll}] or dl ), for every i& /7 we put F( 1) = F G@Of”( [ﬁD”/s] where if

L ;Z:a Zl is a [D -divisor on X" (with Zﬁ £ Z& if g4 5, f}ﬁj denotes

the 1ntcgra7 divisor 42; [a ]Z& s Where La] denoteb the largest integer La

&
Notice that if i = js + r is an arbltrary integer such that o£r{s-1, then by

°

(15) we get:

(18) F(i) = Oxu(Ji)‘fiff’( )-

Now, the second main point in the proof of theorem 6 iz the following:

: b i) -1
Lemna 3. 2or((xth)

e

= 0 for.every i =1 apd b = ool

¥ «

Proof of lemma 3, This proof follows the well known philosophy consisting

: ; ; : : _ : LR S0
RS I ng e obal e s R e On e b hot SR A R ST e e T S
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Let N be a sufficiently ample line bundle on B such that NQ&qu;((F(l))"l)
o 'b . it
is generated by ifs global sections and such that HG(B,NQ@R qﬁ.((F(l)) l)) =

for a>1, b = 0,1 and 28 (i fixed), Consider the Leray spectral sequence

b a e i).=1 o 83b y o)
E;’ = H (B, NKR q;((F(l)) )) ==—=2q ' (x",q"*(N)Q@(F(l)) l).
a,b
By the choice of N,we have E;’ = 0 for a’> o, which implies that

5°(B, NOR® q;((F(i))"l)) ?'Hb(X",q”%(N)QQ(F(i))Wl).

Sinee NGﬁqu"((F(i))“l) is generated by its global sections, it is suffi-
cient to show that the left-hand side is zero, or by the above isomorphism, that
the right-hand-side is zero, To this end, using the fact that N is sufficiently
ample, by Bertini we can choose 2 divisor ©p t eee 4 CGGELN] with o, £ S
i # j) such that X; = q"_l(ci) is smooth, not included in Supp(D"), and trans—

1

verse to D. Then we have the exact sequence

B (xn, (p¢1)y 1y -2 (o * @)y P, i)y

with 2 = ixv . Notice that since £ (o ) = K”(I) and Y is ample on X
Oxu(ll) 1ct;enaratcd by its global sections for i>7 0 and the self-intersection
nuzber (O oo =0 Og ))> o (and hence O (Y) is nef ang big in the terminology
of | 217) Therefore, recalling (15) and the definition of “( ), the first coho-
mology Spaee is zero by the Kawemata-Viehweg vanishing theorenm ([ij] (élj he
third cohomology space is also zero by the sanme venishing theorsm applied on
the smooth (but possibly disconrected) variety Z, and hence the middle space
is zero, QoEaD; |

o

o -ﬂ(i) 1 1 {
Corollary (to lemma 3). For every i € 7 set G = V*(r )is Then R quGmi) =

i
= o for every i> 1,

(ot

Proof of the corollary, From the definitions we casily get that F
;‘(F(i)) §?OX“(D +D'), with D, and D reduced effective divisors on X" such
P

that D1 D' and Dg( D. Since O (D ) = ¢"*(N) for some NePic(B), we get

G = q'*(N)Q<v ((r( )) X”(DZ)) (by projection's formula). Thus, it will be
-1
sufficient to show that
kg (1) 1 1 3 Ve i1 &
A7) Ry ((F) @0, (D)) = o for every i3 1.

But we have an exact sequence

\Js
o

> v%((zﬂ(i) )—1)_____} v%((F(i) )_lr;y'_:*f OX"(BZJ) > R



£ rle
where the support of R is conftained in the image B' of the union of the excep-
tional fibres of f under the morphism v, let r:B'——————=B denote the restric-
tion of q' to B'. We get the exact sesquence

qu;(vk((F(i))ml))'"—ﬂﬁ—»-qu;(VQ((F(i))*lgaoxn

=Tk
(DE))-—W,.»R r (R).
Since B'NY = # and Y is q'-ample. (lemmd 2), the fibres of r are all finite,
and hence r is finite, and in particular, the third sheaf is zero. By considering

the spectral sequence

-bsa b

® - 2% @ (1)) 2%

= el

1 Sl e e
we get that that R q;_(v*((F(l)) )Y R q;(F(l)) )s and from lemma 3 it follows

that the first sheaf in the above exact sequence is also zero, whence (17) holds,

Proof of theorem 6, continued. Having lemma 3 and its corpllary (which is
the second main ingredient of the proof), we can finally conclude the proof as

follows, Recalling (14), we distinguish two cases,

: ~1
Case s = 1, Replacing E oy E@M ~, we may assume that I, = OY(l)' Then by

lemma 3 and its corollary, R q;ﬁOXI(—Y)) = o for b = 0,1, Now, the exact sequence

o D};,((i—l)‘f) -L—;-ox,(iy) ——-_'?-OY(i) > 0

0
(where t € H (x’,OX'(Y)) is a global equation of Y on X') yields the exact sequence

Rqy(0, ((1-1)T)) -

>R qw(Oxr(iY)) w—ﬂ‘»Rlp_*(OY(i)) (1Zo).

: = 1 :
Since by 8], chap. III (2.1.15), R'p (0_(i)) = o for every iz o, and
— ‘i<'

i
1 1

since we know that R q;(OK (=¥)) = o, by induction on i we get that R q;(OXl(iY))=

= o for every i> o, In particular, the above exact sequence yields for every

i> o the exact sequence

>0,

(18,) o——>a:(o,((1-1)7)) -i"-%q;_{o‘..(l‘f))wm—}p (0,(2)) -

>

By (8], chap, III (2.1.15) again, @ p (0.(i)) = 8(8), where S(E) is the

T =) : ~ Y
<< :
symmetric O —algebra of E. Denoting by S = & q' ( an) from (18 ) we get

=0
S/tS % S(B). Since S(B) is generated by its homogeneous part S (B) E of degree

one and since deg(t) = 1, it follows that the graded OB—algebr& S is generated

by Si = q;OK'(Y). In particular, the natural homomorphism S(F) ——=§ is sur-
jective, where F = q;qxi(Y). On the other hand,since q;ﬁOx'(wY)) = o (lemma 3),
and (:Qp#(ﬁ (1)) € s(E), by induction on i in (1ai) we infer that §. is & local-
{n+i+1>
4

2

ly free O_-module of rank for every i>o. It follows that the surjec-
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s : : i
tive maps S (F) %»Si are all isomorphisms because S (F) and S, are vector
i
bundles of the same rank., Thus $ & S(¥), and recalling that Y is g'-aaple (lemma
2), we get that X' ¥ P(F) is the projective bundle associated to F. The exzct

sequence (181) become s

e

1 > =2 > B >0,
(19) o : oB >-F

a) The exact sequsnce (19) does not splif. Then & result of Gieseker (see
[7], theoren 2.2, or also [5], (4.16)) together with the fact that OY(I) is
ample (which implies E ample), show that F is ample, or equivalently, OX'(Y) =

= 0 )(l) is ample. (and not only g'-ample), Since X' = X" is a desingulariza-

P(F
tion of X whose exceptional locus does not intersect Y, it must be zero-dimen-—

sional, In other words, £:X" = X! >~ X has finite fibres, and hence, by
Zariski's main theorem, f is an isomorphism. In particular, X is non singular,

and this contradicts the hypotheses of theorem 6. Therefore case a) is impossidle.

b) The exact sequence (19) is split. Then F = EPO_, and the surjection
D

EGBOB-m———e~oB yields the zero section B‘;—E———erV(E) = Spec(8(E)) > X =

P(F), where the second map is the natural open immersion whose complement is

nr

Y = P(8) (see (8], chap., II, £8). Since E is an ample vector bundle on B, by
Gravert's criterion of ampleness for vector burdles (see [10], (3.5)), the
zero section i(B)c:’X' can be blown down to get the projective veriety

Proj( ?EZHO(B,Si(E))ETj) (with T an indeterminate of degree 1), Since Si(E)‘=
= pﬁ(oy(i)) for every i o, the latter variety is nothing but the cone C(Y,L).
Now, the morphism f:X' = P(F) ———> X has to contract the curve i(B) to a

point (since Y is ample on X), and hence one gets 2 morphism 6(Y,L) —=Z%.

Since Y is ample on both C(Y,L) and X, as in case a) we infer that this morphism

is in fact an isomorphism, and theorem 6 is proved in case s = 1,

. e ety ; % ; = 5 :
Case 8 >2, Let i€ 4/ be an arbitrary integer, and set i = js + r, with

(jY), by (16) and the ?rojection's formule

@l

o{r¢s-1. Since f%(ox'(jY)) = 0
(20) Gi'z’ox,(jr)éisr , With G = 0.

Furthermore, by (14), (15) and the definition of the ¢ 's we have
#

(21) 6,0, ¥ oy(i)ﬁéy*(m"%gng),

where M ,..., ¥ | are line bundles on B (M = OB)' Then by (20) and (21) for
0 g-1 o

every 12 o we have the exact sequence



t A =3
G > G, 0 (i M "M .
o = - >- Y(l)Q@p ( @jhr) >0
Let D = Spec(4) be an arbitrary affine open subset of B such that E/“ =~ O 1
M/D E’OD and AT/D = D fior every odrg 8=l. Set Kﬁ = q' l(D) and fD = (D)
Then the above exact sequence restricted to Xé becomes
i
g = : :
OB g s (1) =g
1-8 a1 YD
; - = : ,
Since by the corollary of lemma 3 we have H (Xﬁ’Gi s) =Rq'(6, )/D=o
= S
for every i<s, exactly as in case s = 1 we get
il : —
H (K}:)’Gi) = o for every i € 2 .
and hence ‘the exact sequence (1>0)
t o]
22 =L 1,6 >H (X!
(22,) o e ) (X356,
=0
Denote again by S the graded A-algebra S = €5 H (Xﬁ,Gi). Then t €85 =
G o ) S
= H ( 5 K'(Y)) is an homogensous element of degree s. Since HO(YD,OY) = A and

|
by lemma 3, H (Xﬁ x.( 1)) = q"(oxn -1))/D = q"({F(ﬂ)) )/D = o, it follows

that So = A, Then ljj H (Y 0 ( )) =4 T ,..,,T j y Where To’°°"Tn are n+l

=0

indeterminates (2ll of degree 1). By (4&1) there are n+l elements of S1 =

= =70
3 D

L-subalgebra of S generated by to""’tn and t. Then one has a surjective map

’Gl) such that ti/YD =T, for i = 0,1,...,n. Let §' denote the graded

<9

of greaded A-zlgebdbras ! T I ’°"°’Tn 17-~———é—8 mapping T into t and T into t
il 1 1

i = 05...9n, where the polynomial A-algebra A[T,T gios ek ] in n42 veriables
S L) n
is graded by deg(T) = s and deg(T ) = 1 for i = 0,...,n, That it is easy to
i

gee that this map is in fact an isomorphism of graded A-algebras,

On the other hand, by coneidering the exact sequences (22, ) (i>0) and
is
using the fact that H (i' K'(mY)) = 0, an easy induction on i implies that

gi (8}

= S(b)5 where according to [8;, chap. II, S(o) denotes the graded A-algebra

(=),

such that (S SiS for every iZo. Recalling also that Y is a q'-ample

Cartier divisor on X', we infer that
fende o~ .-,.,(3) = . «g(s) "_:’ TR (o 3 )
XL Proj(s) & Proj{s‘'™’) = Proj(s ) = proj(s'),

or else, that Xy is isamorphic to the (n+2)-dimensional weighted projective
space PA(l,n..,l,S) over 4 of weights (1l,...,1,s). Furthermore, the restriction
q':Xﬁ——nu—arD coincides to the canonical projection of Pﬁ(l,..sgl,s) onto D =

= Spec(4). In particular, for every b ¢3B, AL = q'"l(b) is isomorphic to the

=l g
: 3 - : " - = is nué e n
weighted projective space P(1l,...,1,8) over k and Y, = p (b) is contained in



e

X} as the infinite section (i.e., the subvariety V+(T) o 21l o e PR

Ssumming up, we showed that there is a closed subset B' of X! such that q!
defines isomorphism of B! t = (4l
efines an isomorphism of B' on B, B nxy = V;(To,...,Tn) = Proj(a{T]), and
R T T 3 g - hes Bt @ o £ ~
B'N Xb is precisely the vertex X of the cone Xb =P e (s>2). Let
YEY be an arbitrary point and let Ly be the generating line of the cone X (\)
- 3 3 2 p y
Joining y and x_, .. Then X'-B' is the disjoint union of all I — X (when
2(¥) T PAY)
yEY), and hence we get a well-defined function f{ :X'~B' ——>Y by putiing
Tilx) =3 if foLy. The above discussion shows that 7 is in fact an algsbraic
morphism defined in a neighbourhood V of Y in X! (er in X) which is a retrac-—
tion of YCV, Then using lemma 3 in [3] (cf. also [6], (3.1)), we infer that
X =C(Y,L) glsoaf s>2

Theorem 6 is completely proved,  Q.Z.D.
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