INSTITUTUL
DE -

MATEMATICA

INSTITUTUL NATIONAL
PENTRU CREATIE
STIINTIFICA Sl TEHNICA

ISSN 0250 3638

—stocr T

S

APROXIMATE FORMULAS FOR FU NCTIONS OF
PRIME NUMBERS UNDER RIEMANN HYPOTHESIS

by
Cristian COBELI

No. 14/1988

PREPRINT SERIES IN MATHEMATICS

DI~ IREQTI

et ™

e



APROXIMATE FORMULAS FOR FUNCTIONS OF
PRIME NUMBERS UNDER RIEMAKN HYPOTHESIS
by '

Cristian C‘OB‘EI;EI‘*

.

February 1988

*) Department  of Mathematics, The National Institute for
Scientific and 'Tekchniqal Creation, Bd. Pacii 220, 79622

Bucharest, Romania.




APPROXIMATE FORMULAS FOR FUNCTIONS OF PRINME
NUMBERS UNDER RIFMANN HYPOTHESIS
by

Cobeli Cristian

Summary. In this paper we denote_by'ﬂkx) the number of
primes £x, by Q(X) the logaritm of the product of all primes < X,
and by % (x) the logaritm of the least common multiple of positive
integersé>m ile also denote by X a real number, by n a natural
number and by ] a prime number.

Under Riemann hypothesis are known results of the following

type:
| 6tx) x| = Jix) %106%x) (1)
(ﬁ&x)-li xl=cjlx1/210g %) (2)

If this hypothesis is not assumed, poorer asymtotic results can

be obtained, but Rosser and Schoerfeld [3] had gives formulas which
are true both for small and for great values of x. The aim of this
paper is to give explicit formulas for the functions ﬂﬂx) and Q(X)
under Riemann hypothesis, that is, to determine the values of

the constants from (1) and (2). We also determine approximate
formulas for some functions related to prime numbers.

The most important results are:

\@(x)-xi<1,5x1/zlog2x for x)3 ‘ (3)
]ﬂ(x)-—li x|m,5x”2(2+1oq %) for xy3 (4)
5log X

IUl_n

- log log x-¢, <

for x;2 (5)
pLX X



[N

: 2
% lOg B - log x - GANLELD lodes for x2 (6)
p¢x = e

where C1=0°26149 72128 47643 and cz=1.33258 22757 33221 are +the

approximate values of the constants B and E from [3].
For small values of x we need the computations s of Rosser
and Schoerfeld [3].

§1. THE FUNCTIONS H(x) AND £(x)

From now on the Riemann hypothesis is assumed to be true.
g>=% + i{ will denote as usual the zeros of the Rieménn zeta function
from the critic bord. The inequality (3) for Q(X) can be infered
from a similar one for %ﬁx). Such an inequality can be obtained from

the basic formula:

e
himsiwa “SZ{({WH : "ﬁf Sy~ St -

? 1=21
S _—_—.._..X o

e 2r(2r=1)

which can be found in Inghan [é] pag. 73. Knowing the fact that

s/

Z:_ ! is convergent for all, from (7) follows that:

Fr1_ S+ :
\{)(x)-v\{;(xm)——ﬁ(x)=x—z(x+” L O (g; 2
¥

SO(SDM) E.(
_Zx1"2r—(x+1)1_2r
2ri2r=1)

r=1

(8)

It is known that - = log 21l£1,8379 end the last sum is much smaller|

than the increasing we'll going to do, so that, our aim is to give

an uvpper bound for the first sum.




According to Inghan [2] pag. 83 we have:

+1
?+1 f+1 i 1./3
= /Vdef-i¥*1L~w~ (9)
L v
b e {0
and also %
a3 52 | o
f(s?'l"]) ‘0/“2 v !
We need now information abkout the zeros ofjf(s). Let N(T) denote
1P (1 i3 R L
the number of g s for which 0L1£ T and F(T)= 2flOg2K' 57 T B Tk
is known that
lN(T}“F(Tﬂ<(0.137log T+0.443loglog T+4.350 {11)

forall Tzz(éee Backlund [Hy. From (11) we can infer the following

two lemmas: v i
LEMAA 1. N(T+1)-N(T)<1,04log T for T)10° ' (12)

Proof. N(T+1)=N(T)<F' (T)+0,137 (log(T+1)+log T)+ |

+0,443 (loglog(T+1)+loglog T)+8,'7(1 lOgil—ll-O 275)ogT+0,91cglog T+

+8,7¢1 ,041og T.

LEMMA 2. ;L*m_“ ”-41 &0 (13)

0<¥€10 8y

Proof. The computation was performed using the explicit values
=
of } for T¢500 and than adding the products between the number of

roots in the intervals LSQO-Zk, 500'2k+1], 0¢kgl? , given by the

relation (11), and gﬁ%ﬁi,which is larger than the greatest component

of the sum in this interval. i

iy
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THEOREM 1. { %4x)~x{<:1,5x1/210g2x fer xZJOS {1



Proof. We increase the first sum in the formula Bl 1n the
following way:

e AT P g

e g 841 e Stq
zlww ih §~ mn§~—~)+2 kS R (2150
Gy 0cYe el 8 o | Eleet)
& 10¢Y§@H4
; i ?;_““-
X 1/2 1
+2 e~ = L 2, 0002x L o il
[k+ﬂd}’FWH4) 0<r<iol r
1/2 E iy 3/2 Lo
+2,0002x '/ “ ~+4,0004x ,Xz
10 43/1x+?] . [x+21§3ﬂ
because (xt+1) 1/%11 0001x1/2 and (x+1)3/2 1,0001x3/2 for x2108

Lemma 1 enable us to determine the values of the last two

Sums :
) el Z Le0cteg i e g
8 e 8{\ g =
10¢ < fx+2] 10 1< [x+2]
X+ 2
; x+2
1,00 [ 1087geq 04 $log’t \
10 101
Sl ; TR [eraS]
i ; li§4loo N ¢ S log tdt
[gﬁﬁ}Y§%PTx+4(r n x+1 2
- (90
_ log t 1
<1’O4( HH’?JXH h X

From (8), the last three relations and Lemma 2 follows that:

W () ¢x+80. 0081 x /24 ,04x% 1/2109%x+4,0004x210g x ¢

12 2

et B log = for XZ}OS



An analogous proof for the lower pound enable us to conclude the

proof of the theorem.

THEOREM 2. \ 9(X)”X5(1,5X1/21092X for xz3

ggggg, For x}108 Theorem 2 1is a congequence of (14) combined
with relations O (x)£Hx) for every x and G,98x1/%ﬂ{(x)~9(x) for
.xb121 which is Theorem 14 from LB}. For xéWOS Theorem 2 is a poorer

result than x—2,05282x1/4:@(thx for ch5108 computed in Theorem

18, [3].

P

pr———
§2. THE FUNCTIONS JLz) s 7 Loanm 1od b
p4X

Theorem 2z can be used to determine estimations for othexr func-
tions related to prime NUMDErS. Using the properties of Stieljes in-—

tegral for the function £ which later became precise we have:

e et :

Q_M £(p)=) Tog tdQ(t) : (15)
péx 2 G :

and
e D X %

SE(RU Shen s ek : ,
Sl f(i}(«,) (log 1) ae (16)

p<x 2 :

which follows after an integration by parts.

"Taking £ () =1 ,(16) gives:

X ‘
Tl -2ty [ —ae (17)

Now from Theorem 2 and (17) we can obtaine inequalities for LX)



i Wde 2 : % 1/2
ﬂix)<x+1fi§ ’lOg e g ]og_‘_;_mdt 1558 ; JOg e
N 2 tlog't 3 tlog“t
e i '],5}{1/2(2-:-]_09' x) for XZB

and analogously for the lower bound.
It is usefull to remark for reference Theorem 16,[3} which
is more precise for smaller values of x; and was computed without

the assumption of Riemann hypothesis

1t x = 11 %22 x) for 11¢x¢108

Tx) <li x ' for 2£x<10°

Ofen it is hard to work with approximations in terms of
1li %, so we'll transformﬂ(16) to obtain estimation for the other

functions in the following way:

e X
o E ) O -x) - (f(t) Lo TEeiny . pE()
%%;F(p)_ log x g (@(t) t) log t) dt+Jlog tdL+log 2

which can be write also

e 5
i O(x) -x) f ( ) }/ i)
£ = dt = dt+C 1
:zi; (p) log x & % lLegat +£ log t ht (1)
% (
where Cf log 2 g (.géE%}fdt is constant.

In L3] was computed the approximate values for C,I/X=C1 and

as we announced in the first part of the paper.
1

Y

Clog 2 /X:CZ

For f£(x)=— and f(x)= 1og = (18) gives:



; (e
SR 0f G
. s [@iE)=t) (T+Llog )
/ — = loglogx+C, t==——— - J“ : - (19)
Lﬁgg P 1 xlog % = tleth
and respectively
;gg_g:logx+cz+@(§)~x = f (t;“tdt “ o0
p&x P i

From these last two relations and Theorem 2 folloWs that

: _ : )

; L loglogx~CﬁL:944’5m}Og 2 for 73 (21)
Eex ‘ v x :

and
e 5
éiw.lgﬁ—ﬁ e X—Cz‘i 4,5log x+1?10g x+24 for x)3 (22)
px Vx

which can be combined with Theorems 20 and 21 from [5]:

loglog x+C¢ig?m _<loglog ¥+ C + /? e for 2£ X5108
pé¢x _ leeiopense
log x+C,< /. logp gl i caano e B e
: P 2 =34
p&ex /2
; e

to conclude the proof of (5) and (6).
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