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INTRODUCTIORN

This paper is concerned with the following question raised by Graham [2]:

a,
It is true that max (——)> n for every chain of integers 0<ay <..<ay?
1<i,j<n 13

n [10] it has been proved that this statement is true for sufficiently large n.

There is given no effective bound n_ for n especially because in the proof the
following result of Hyxley ([4]) is used:

For every £>0 there exists na sueh that for every n>n£ there exists a

7/124E.

prime number between n and n+n . Here na is not given effectivelly. This

difficulty can be overcome if we assume Riemann Hypothesis to be true. The aim of

this paper is to obtain, under Riemann Hypothesis, an effective value for n, This

value 1s n0 = ]0?0.

1. REDUCTION TO SOME INEQUALITIES

We shall use the notation and the proofs from [10]. We denote: p = p(n) the

greatest prime number less than 2n, f(n) = 2n - p, B(i) = the number of divisors of i,

@m

m = max (i). To obtain an effective value for n
1<i<m
satisfying the inequalities from [10], Prop. 2. This six inequalities are:

o it is sufficient to give a bound

— N9
(2) There exists ¢y 0 and mog N* sueh that for any m Zmo and any K < m, the
c.m

interval (K,K + m) contains at least

prime numbers (p. 33)
log m



(3) i;ﬁ Mg (p. 37)

c
(4) 2log n <Z?;£:—’rz (p. 37)
46’ c,f(n)
(5) n - 6f(n) - n" 1/4+3E) ¢ W (p. 38)

In (5) the factor 6 -« f(n) - n( 1/4+3E) ) from (p. 36 1I) resulting from the moquahtles (a),

(b) and (c) has to be replaced by —(—l* , which is obtained from (a) (b) and (e) by
nZ

neglecting the inequality f(n) < n/12%&  Thus we have:

4
n
(51) 6(f(ﬂ))4 Sl < C f(n)
810g n
(6) TR > 1 _ where ey =c_ /8 (p. 39)
TR 1'% B
6n log n

Neglecting the last inequality in ((**), p. 38) we may replace the factor 1/1’1]/3 in (6)

by f(n)/n, obtaining thus:

& 7f(n)
(6" e - n
Tpr e~ Suem

6n - logn

If we apply the results of the following section to the above inequalities we obtain an
n, of the‘order of magnitude of e]OG. In order to obtain a better result, the proof of
(Prop. 2, [10]) has to be improved, for obtai%}ing more advantageous inequalities
(special attention must be paid to the factors 114 M in (5") and (6") which are large).
We shall show briefly how this can be done.
To improve (5') we treat simultaneously (I) and (I) (p. 36) by counting the

number A of couples of the form

((p IS )dﬂ (0 -3 )4, |
\ /Zdl 2/, FdZ {/



where £ varies in 7 and for fixed 5 , keeping fixed 4 (such that, for example, its
' d Xo¥Y
, 2 22
"(p ~ [>) - component™ is maximum), and varying d ) .
[ f’ p ying ds (i.e. varvmgra— o

Applying (a), (b) and (c) (p. 36-37) to Xy:Xg and y;,y, We have:

o -p-Poumy?  _ & em)’

o' 1x2 TR y1y2 n

go"—"xl—x2<21fj(n); té’;}: [3’1'5’2} ¢ 2f(n)

n

Xo E(—\— Jov —11) (the length of this mter'val being < Sf(n)) 3

Va,_ \ vV, | Vn

0
The absolute value has been introduced because it is not known that the

"P—component” of dy is maxim, too. Noticing that the system (xl,xz,yl,yz,'@) is

uniquelly determined by the system (d, J;,xz, J]',’dl) (p being fixed) we have:

A< 24{%?_237
"M n

Thus:

@ aafl)7 2ol

To improve (6') observe first that the system of statements (1)-(5) of (b) (p. 39) can be
applied to -an arbitrary quadruple (yil,yg,}}il,_{;;) (i@ 1,m ) having the property
‘{\fil,yig,‘?il,‘G;Zm {2,3, s ,f(n)} = (. More exactly, (1), (2), (3) and (5) remain true, the
fact that m, > 2 being used only in (4). From (1), (2), (3) and (5) two possibilities
result:

(1°) Vll = ",712 =1, yll S y% Mlyo s sands = in= that  ease. @) implies

oLip-otx = Bilp- By



)
thus [~ is uniquelly determined and hence i is uniquelly determined in

{]A,,..,m}.

i i =1 = o -
(2°) ; y]1 = y!z: 1, y1>1, y9>1 and this implies analogously that i is uniquelly

determined in {1, L ,m}.

Thus, there are at most two indices i& {1, et ,n? such that

. . mi T 5
Sdaalofes. . w}-o.

Suppose (for working a choice) that for m, EE‘_&‘Z indices i, we have 1 < y; < f(n).

m
; 4:1'9 o
Then, we can proceed as in (a) (p. 39) and we obtain:

Hence, for m > indices, we have the same value 1< yq < f(n) for yll.

c
24n  Mog n

2. INEQUALITIES FOR ARITHMETIC FUNCTIONS UNDER RIEMANN

HYPOTHESIS

The exponent "7/12 +& " from Huxley's result can be replaced by "11/20 +
+ &1 (ef. [6]) and using Riemann Hypothesis it can be replaced by "% +£ " (ef. [5]) (in
fact in this case we have lx(x) <4 x{ = O(x%log x) [7]). But we need an inequality
valid for all x, and this will be done in this section.

As usually, we note by (x) the ]ogdrithm of the product of all primes <x

and by (x) the logarithm of the least common multiple of positive integers R

We summarize the results of this section in the following:

PROPOSITION 1. Under Riemann Hypothesis the following estimations

ocecurs:
3 il
(a) [ Vo) - X | <1,493% *log2x for x> 108

b) [9(x) - x| <1,5X ?log2x for x> 3



1
(c) ]71' ()= Iix! <1,5%%(2 +log %) for x> 3
(d) f(n)<4,5\/?10g2n for n> 1029
(e) For any mZ]O9 and any K<m, the interval (K,K + m) contains at least
8m

e prime numbers.

Proof. (a) We start from the basic formula ([5], p. 73)

< ; - ‘f‘i-] (0 1(_]5 Py 1-2r
7 lﬂmzzwwwzﬁinéﬂgf ”—xgmp*%)‘?:ﬁ%ﬁm<

where f = 1 + 10 ‘denotes the zeros of the zeta function from the eritic band. From

(7) it follows (note thatz—-

7 sl

(8) Y)(x) (LIUI(X +1) - }Ul(x) =x _':_):-‘ (x + 1)?*1 ) .\'P+1 §,(0) : ZE}_ZQ(PQ‘ (X;")l)l 21 :
e Bl el

5 is convergent for a>1):

1
It is known that m log 27T <1,8379 and “the last sum is smuch smalle; than the

increasing we si 1al’gma|\e, so that, our aim is now to give an upper bound fm the first
sum.

We have

Nl

e (

4.] §> ( ‘ z
plpel ]\"*

Pt |

and also

(><+1)P+1—><P'+1.E i £ 1932+ x3/2
pipsa . [

(10) }
|

We need now information about the zeros of g(s) Notmg by N(T) the number off’ 's

for which 0< Y™ T and defining F(T)=(T/2T o ol2r/9%) - T/27] - 1/8, then:

(11) !N(T) = F("i')/ <0,137log T + 0,443loglog T + 4,350



SR
for all T > 2 (see [1]). From (11) the following two results can be inferred:

(12)  N(T+1)- N(T)<1,04logT  for T>108

—

(13) o i
0< <108

(the computation for (13) was performed using the explicit values of I~ for T <500
and the inequality (1) for the intervals [500 . 2K, 500 . 2K*1], 0<k<17).

To increase the first sum in (8) we use (9) and (13) for 0< Y < 108, (9) and

(12) for 1085 ¥~ <Ix + 2], (10) and (12) for [x + 21<¥", obtaining thus:
3 ) 3 )
\P(X)'( X+ 80,008x* + 1,04x*log“x + 4,0004x *log x < x + 1,493x *log®x

for x> 1708, and analogously for the lower bound.
S b) Eorsix > 108 we can combine (a) wi‘th. the relations # (x) < (x) <
Bt + 1,42625* (191, Theorem 1)
For x< 108, ovenmbre the inequalities x - 2,05282x% <Q(x) <x are true (cf.
[9] Theorem 18).

(e) We have:

Jf(rx) = Q (x)/1log x + ? & (t)/tiog2t)dt
p

A

From (b) we obtain

';.‘ 2 X X4 % ".2 : 1
(x) LELIXJOBX €002 0g20)qt + JEELSTIRTE iy o 3o 4 1og ),
5

3 tlog‘zt

log X
and analogously for the lower bound.

(d) We have 7] (2n) = JU(p); thus (c) implies:

2n 1 :
f(n)/log2n < [ dt/logt = 1i(2n) - 1i(p) < 3(2n) (2 + log 2n) < ‘ié-_—l-—@%—
2 _

forn > 10239,



(e) We have:

(\__,’ e ]\"*'m 1
0k +m) = J(K)> jm (dt/log t) - 3(k + m)*(2 + log(k + m)) > (m/log 2m) -
k

- 3 V2m(2 + log 2m) > 8m/9log m for m> 109,

3. EFFECTIVE DETERMINATION OF Ny

We now return to the inequalities of§: 1. We choose ¢, =8/9 and mg = 1(]9
as in Proposition 1 (e). The inequality (5") is implied (using Proposition 1 (d)) by the

inequality:
logn> 2log(9 - 24 . (4,5)0) + 26loglog n

which is verified to be true for nzl_[]m (in fact, for n> 1059878 por such an n it is
easy to vérify (1), (3) and (4) (for (1) we use Proposition 1 (¢)). The only problem now
is to verify (6") where a factor n " is still present. It is known (see [8] or [3]) that
2] e O(1/loglog n), but if we apply this method and the estimation for TC(x) given in
Proposition 1 (e) we get an n, greater than 1079 (but not so much more gréater‘). So,
we prefer to verify more direetly that (6") is true for all n_>_1070. The inequality (6")

is implied by:

(14) 6 « 3 _ Sloglogn + Jog(7 - 4,5 - 9 - 24)
= log n

To verify (14), it is sufficient to prove that @nﬁ 0,35041864 for nzmm (this number
being obtained by introducing the value n = 1070 in the right side of (14)).

: Suppose there exists 1121070 such that C‘} n <0,35041864 and let m<n be
maxim such that T(m)= n© . Then m>10%7, For, if m<10%7, then there exists
q<1000 such that q4'm, and thus mqg<n- and Tmq)> T(m) = ngn which s
impossible. Therefore m > 1057 and &(m) > m0,35041868 (; Z(m)2’853832 m).

oI
Letm=2-"+3 * ... be the decomposition of m into primes. Then



NG
: . 2,85373 :
A W’(_o(qﬂ) qu)z,ssw\,ﬂ
q e e &

: ¢+ 112,85373
For g prime and &XEN™ ot g(e ,q) = e e : £

O

and G(q) = max g(e(,q)
g% ol

Then:
G(2) = g(3,2) < 6,53171
G(3) = g(2,3) < 2,55466
G(5) = g(1,5) < 1,44574
G(7) = g(1,7) < 1,03267

Glq) = g(1,a0) < 7,22867/q< 1 for q> 7

M = G(2) - G(3) - G(5)< 24,91173; M - G(q) < 180,0785/q, thus ifo(q >1 then q< 179.

' Moreover M - G(11) - G(13) - G(17) - G(19) - G(23) <1, thus there are at most
four factors q>7 for wiwieIm{qzl (say qy, d9, 93 and q4). Since the products
M- g(2,11) - G(13) - G(17) - G(19), M - g(2,11) - g(2,13), M - g(3,11) are all less than 1,

4
it follows thatzoiq <4, hence,
i=1 e

.
q.
g Lo Gl

T {4:.
Lo 3

Gl B R
It follows that 2 2.3 3.5 5.7 751057 gnq 8(°C,2) - g(°(3, 3) - g(*X,,5) -

- g(%q,7)> 1,

But G(2) - G(3) - G(5) - g4, 7)< 0,9925< 1
G(2) - G(3) - g(5,5) - G(7) < 0,91636< 1
G(2) - g(8,3) - G(5) - G(7) < 0,7857 < 1

(13, 2) - G(3) - G(5) - G(7)<0,8685 < 1.

Thus <2012, 05 <7, <4, O <3 and this would imply that 212- 37 54. 735
> 1057, which is not the case. |

We have obtained the following:

PROPOSITION 2. Under Riemann Hypothesis, Graham's Conjecture is true



for.any nZ][)?U.

RERMARK. Of course our aim was to prove that under Riemann I]ypothes;’s
Graham's statement is true for every n, but our attempt has failed. We do not want to
increase the length of this note by showing how (by similar metlhods) N, can be still
decreased. It suffices to say that we have made all the éomputaﬁons again with
various values for n and we have made the exponent 70 in Proposition 2 less than 60

(but no less than 50).
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