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ON THE MILNOR FIBRATIONS OF WEIGHTED
HOMOGENEOUS POLYNOMIALS

Alexandru Dimea

Let w= (Wo’ Sasts ,wn) be a set of integer positive weights and denote by S the
polynomial ring Clx .. X, ] graded by the conditions deg(x,) = w;. For any graded
object M we denote by Mk the homogeneous component of M of degree k. Let f € SN‘ be
a weighted homogeneous polynomial of degree N.

The Milnor fibration of f is the locally trivial fibration f:C™ T\£ 1(0)— € ~{0},
with tipical fiber F = f_l(l) and  geometric monodromy  h: F—F,
h(x) = (twoxo, i ,twnxn) for t=-exp(21i/N). Since hN =1, it follows that the
(complex) monodromy operator h* : H'(F)——H'(F) is diagonalizable and has eigenvalues
in the group G = {ta; a=0,...,N- 1} of the N-roots of unity.

We denote by H'(F)a the eigenspace corresponding to the eigenvalue t_a, for
a=0,.. ,N-1.

When f has an isolated singularity at the origin, the only nontrivial ecohomology
group Hk(F) is for k=n and the dimensions dimHn(F)a are known by the work of
Brieskorn [2]. But as soon as f has a nonisolated singularity, it seems that even the Betti
numbers bk(F) are known only in some special cases, see for instance [9], [14], [17], [20],
[23].

The first main result of our paper is an explicit formula for the ecohomology
groups Hk(F) and for the eigenspaces Hk(F)a. Let (). be the complex of global algebraic

differential forms on Cn+1, graded by the convention deg (udxi Noooo Ndx, -
1 k
=p+t w, chierad +w1. for ue Sp' We introduce a new differential on Q', namely
1 k :
D) =dw - (jwl /N)dfAw , for we Qg with |w| = p the degree of W and d the usual

exterior differential, similar to Dolgachev [8], p. 61.

For g = 0, 5N =1 we denote by ﬂ(a) the subcomplex in .Q, given by
@‘Q.“E“'SN'

s>0 k+1 .

= To a Df—closed form we () we can associate the element
£(w):[i*A (W)] in the de Rham cohomology group I—Ek(F), where & is the

contraction with the Euler veetor field (as in [12], p.467 in the homogeneous case and
n+l
- C

[8], p. 43 in the weighted homogeneous case) andi: F denotes the inclusion.



Theorem A

The maps S:Hkﬂ(ﬂ ,Df)'—‘?ﬁk(F) and 5 : Hkﬂ(ﬂ(a),Df)“—-)ﬁk(F)a are

isomorphisms for any k > 0, 2 =0,... ,N ~ 1, with H denoting reduced cohomology.

In faet, using homotheties inside 0. , it is easy to see that there is a similar
result taking instead of Df the differential D'f(,o =dw + dfAw .

However, the apparently more complicated differential Df is more natural (e.g.
@a D) is a differential graded algebra while ({0, DY) is not!).

The proof of this Theorem depends on a comparision between spectral
sequences naturally associated to the two sides of these equalities (1.8).

Our second main theme is that these spectral sequences can be used to perform

explicit computations, in spite of the faect that the Eﬁ—term has infinitely many nonzero
entries and that degeneration at the E?_-term happens only in special cases (see Remark
(3.11) below).
The eigenspaces H'(F)0 are particularly interesting. If P = P(w) denotes the weighted
projective space Proj(S), V the hypersurface f = 0 in P and U =P~V the complement,
then there is a natural identification H'(F)O = H'(U). We establish a relation between the
filtration on H‘(F)O induced by the sp?ctr‘al sequence mentioned above and the (mixed)
Hodge filtration on H*(U), having a subj\tantial consequence for explicit computations.

Note that the Betti numbers bk(V) are completely determined by bk(U) and
hence one can get by our method at least upper bounds for all bk(V) as well as the exact

(V) where m =dim £ 20) . ) in a finite

value of the top interesting one (i.e. bn+m-1 sing

number of steps (2.8).

Then we specialize to the usual projective space P" and to the case when V has
only isolated singularities and relate the global spectral sequences used until now to
some local spectral sequences associated to each singularity.

In the end we compute two numerical examples to give a precise idea about how
one has to proceed in practice. The example (4.3) may seem rather tedious, but as long

as one misses a better approach, it is a nice illustration of our method.

1. Some speetral sequences

In this section we shall use many notations and results from Dolgachev [8]
without explieit reference.
Let A : ﬂk--*'ﬂk_l denote the contraction with the Euler vector field

N =i - : +

T wiij /axi. For k > 1 we put Of=ker(D: N Yo jma: QLKL 05
and let O; denote the associated sheaf on P. One has also the twisted sheaves
() g(s), for any s ¢ Z.



Leti: U—> P denote the inclusion and put _O_E(s) = i*ﬂg(s).

The Milnor fiber F is an affine smooth variety and according to Grothendieck
[13] one has H(F) = H*(/"(F, _ﬂ_'F)). Let p: F-— U denote the canonical projection and
note that

e G - @ﬂ (-a)

N-1
If we let A-a = [Fi(5 ) U(—a)) and A= & A , then we clearly have
a=0
(1.2) B'F)=H(A), H'(F)a = H'(A;I)
There is a natural increasing filtration FS on A:,i, related to the order of the

pole a form in A;i has along V, namely
(1.3) FSAgi =0 for s < 0 and FsAJa :{w‘/fs; wéQiN_a } for s > 0 similar to [12].

But for obvious technical reasons it is more convenient to consider the decreasing

filtration

e j
(14) = °E A F] B8

The filtration F° is compatible with d, exhaustive (i.e. A UFSA') and

bounded above (F gt 1

A" = 0). Here d denotes the differential of the complex A whlch is
induced by the exterior differential d in _ﬂ via (1.1) and which is given exphcstly by

the formula
(1.5) dw/f%) = df(w)-f"b'“l, where di() = fdw - (Jwl/N)afAw .

By the general theory of spectral sequences e.g. [16], p. 44 we get the next

geometrie spectral sequence.

(1.6) Proposition

There is an E ,~spectral sequence (Er(f)a’ dr) with

E?i: b‘*t(F e /Fb+1

and convelgmg to the cohomology eigenspaee H* (T)

A')

Moreover one can sum these spectral sequences for a = 0,...,N-1 and get a
speetral sequence (E (f), d ) convel-ging to H'(F) And ( (f) d.) and (E (f), d ) are in

5t (I‘)OxH (U), either u:;mg the fact that U = I‘/G, G actmg on I‘ via thc geometric

monodromy or the fact that 'Q'U is a resolution of € [22].

We pass now to the construction of some purely algebraic spectral sequences.

Let (B_,d,d") be the double complex B> it = () stitl =d and d"(w) = - |Wi/Ndaf AW
a a tN-g ?

for a homogeneous differential form (W . Note that the associated total complex B;i,



with B = B , D =d'+ d"is precisely the complex (Q(;)l » D).
stt=k
Similarly B :@qu) =t D)
Consider the decreasing filtration FP on B given by FPBZ ® B:’k"s and
s$2p
similarly on B, Using the contraction operator A, we define the next complex

morphisms, compatible with the filtrations:

5:13;1“....} A, and §:B°

> A
§W)y=Aw™" for weBY,

Note that B® and A" are in fact differential graded algebras, but § is not

compatible with the products.

(1.7) Proposition

There is an Ei—spectral sequence (IEr(f)a’dr) with

. +

and conve:gmg to the cohomology He(B: ) The operator § induces a morphism

5 r : ('E r( a dr) (F‘r(f)a’dr) of spectral sequences .

Moreover one can sum these spectral sequences ’E (f) and get a spectral
sequence (E (f),d ) converging to H'(B‘) and a morphism ('}: (f) d.)— (E (f), d, ). The
proof of these factb is standard e.g. [16], p. 49. Let E (f) (resp. Er(f)) denoie the
reduced spectral sequence associated to Er(f)o (resp. Er(f)) which is obtained by
replacing the term at the origin E?’():Eg’oozc by zero. For a#0, we put
E ( =E (f)

‘ﬂ.e cleatly have natural morphisms 5 pElle = E’P(f)a, g :'Er(f)f>fp(f)

r
induced by J . P We can state now a basie result.

(1. 8) Theorem

rlhe mmphmmb 6 are 1bom01ph15mb for r>1 and they induce 1bomorph15ms

H’(B:ﬁ) (F) and H’ (B) = H (F).

Proof

n+1 n+1

B*=F

and hence it is enough to show that J . is an isomorphism. The vertical eclumns in 'E,(f)
g 1 1

Since F A" =0, the filtrations F are strongly convergent [16], p. 50

correspond to certain homogeneous components in the Koszul complex K°.

Ld) Ket—onS gl dl - df s




of the partial derivatives f, = (d f)/('axi), i=0,...n in S. To describe the vertical
columns in El(f) is more subtle. Note that fK* is a subcomplex in K* and let K* denote
the guotient complex K°/fK". There is a map A-s Ky ﬁ’_l induced by /A which is a
complex morphism and hence K" = ker A is a bubcomplcx i Re: =
Let A denote the composition K'— K*-2» &L,
Then the vertical lines in E (f) correspond to certain homogeneoua componcntb
in the cohomology groups H (K). The morphism ’5’1 corresponds  to

Z’S *iH(K)— H'('I\{J'_l) and a well-defined inverse for A ™ is given by the map
(1.10) ¥ : B ® ) — H(K"), V [4 ()] = [dfA A (W)/ND)L.

To cheek this, use that df AW = 0 implies 0 = A(dfnw )= Nfw - dfA A (w).

(1.11) Example

Assume that f has an isolated singularity at the origin. Then f : ,fn form a
regular sequence in S and we get 'Fb’ (f) =0 for s+ t # n and

n t,t il e
()= HE(ke )tN—a" QU)o w

where Q(f) = S/(fo, e ,fn), w =w +...+w_. Moreover, the Poincaré series for Q(f)
(see for instance [7], p. 109) implies that Q(f)k =0 fork>(n+1)N-2w. Hence in this
case all our spectral sequences are finite and degenerate at the Ei—term (the
degeneracy of the component a = 0 being equivalent to Griffiths' Theorem 4.3 in [12]).

-1,n+1

Note that one can have 'E (f)a# 0. In general, one has the next result about the

size of the spectral bequence 'Er(f).
(1. 12) Proposition

'Es’t( =0foranyr>1lands+t<n-m, where m =dimf" ( o=
e e e e e e e sing

Proof

The result follows using the description of 'Es’t(f) in terms of the Koszul
complex and Greuel generalized version of the de Rham-~ Lemma, see [11], (1.7).

(1.13) Coroliary

,ﬁk(F) =0 for k<n-m.

This result is implied also by [15], but (1.12) will be used below in (2.8) in a

crucial way.



(1.14) Remark (Sebastiani-Thom construction)

Let w'= (w‘o, o ,w'n,) be a new set of weights and f (—;C[yo, s ,yn.] a
homogeneous polynomial of degree N with respect to these weights.

Let Cf' be the complex ((Y, Df) associated to f in the Introduction and let
CE,, C}+f, denote the similar complexes associated to f' and f + {'. Then it is easy to

check that
(1.1%) C‘f+f, = C%@C%,
Combined with Theorem A, this gives
(1.16) HYEM= @ BAE@HYE
sti=k~-1
where F', F" denote the Milnor fibers of {' and f + {' respectively, compare to [17].

Keeping trace of the homogeneous components in the formula (1.15) gives
. lr = . ° '
H(F"), —%BH (F)  @H(F)y _,
withe=0,...,N - 1 and H'(F')N = H'(F')O.
e : ‘ e e e [ |
When f' =y, (1.11) shows that H'(F )O =0 and H'(F )c =<¥s

vector space, fore=1,...,N -1,

dy0>, a l-dimensional

It follows that at vector space level

HIEY) = & SHi(F)
c=1,N-1 _
This isomorphism can be identified already at the Ei—ter‘ms of the

corresponding spectral sequences. In this sense 'Er(f) is built from two pieces: 'Ep(f)O
and 'Er(f + ylcj)o. Hence in order to understand the behaviour of 'E (f) it is enough to
concentrate on the piece 'Er(f)o. And this is precisely what we do in the next two

sections.

2. The relation with the Hodge filtration

Let us consider the decreasing filtration F® on H'(U) defined by the filtration pis
on A;), namely

A G e S G s L
(2.1)  FH'(U)=im { H'(F°AL) — H'(A)) = H'(U) }

s

On the other hand there is on H'(U) the decreasing Hodge filtration PH

introduced by Deligne [5].

{2. 2} Theorem

One has F*H'(U)2 F 5 111°(U) for any s and FOH'(U) = FH'(U) =

H
O e
= I‘HH (U) = H*(U).



Proof

Let p: PP be the projection presenting P as the quotient of P" under the

group G(w), the product of cyclic groups of orders Wy o

Then T = p(f)i= f(x:,o, T ,x:n) is a homogeneous polynomial of degree N and
let U be the complement of the hypersurface T=0in B

Since H'(U) can be identified to the fixed part in 1*(U) under the group G(w) and
since the monomorphism p* : H*(U)—> H'(D) is clearly compatible with the filtrations
FS and FI‘} it is e}njough to prove (2.2) for U.

To simply the notation, we assume that w = (1,...,1) from the beginning. Then
U is smooth and it is easier to describe the construction of the Hodge filtration [22].
...1(

Let p: X—P" be a proper modification with X smooth, D = p ~(V) a divisor

with normal crossings in X and U = X ~\D isomorphie to U via P z

From this point on it is more suitable to work with holomorphie differential
forms on our algebraic varieties. IfﬂU ls this holomorphic sheaves complex, ﬂ he
algebraic version of it and i: U—>P" is the inclusion, then one has mclus:ona

ik (a_ﬂ )C_ _Q (:s.\/ G A D‘ij’ where f)_l;n(*\f) denotes the sheaves of meromorphic

differential forma on P! with polar singularities along V. By Grothendieck [13], the
inclusion i, ( Q B2 _ﬂ *V) induces isomorphisms at the hypercohomology groups.
And the same is true for the inclusions _Q (loch)c i) (*D)C_ i Hﬂﬁ
j: U— X is the inclusion, f?_ (+D) is defined blmllarly to. ﬂ (»:V) and (] : (log D) is

the complex of holomorphic differentlal forms with logarlthmle poles along D [22]

where

Recall that there is a trivial filtration ¢ on any complex K°, by defining

>
q’>SK' to be the subcomplex of K' obtained by replacing the first s terms in K* by 0.

The Hodge filtration is given by

< 5 j -1 ( j rr £, j '
(2.3) FH(U) = im ZH (G ZS_Qx(log D) —HI(L) X(log D))}
via the identifications

H'(L) 3 (og D)) = Hj, (L5) = H()

=)

The filtration F° on the complex A;) is related to a filtration F° on the complex

= H*(U) = H*(U).

MQ}'?H(*V) defined in thé following way: FS_O_;H(*V) is the siéaf of meromorphie j-forms
onph having poles of order at most j - s along V for j > s and st'ng)n(*‘vf) =0 forj<s.
Note that FS_Q;n(*V):: ‘_Qj ((j - s)N) for j>s. We get next. a filtration on the
complex_Q'X(r::D): p™*( _QP (s V)) by defining F _(7 (+«D) = p*(FS Q L))

At stalks level, a germ u)L..lq ( D) belongs to FQ}X s:D)x if and only if



p*(u)]_sn e ‘QJX 5 where u = 0 is a local equation for V around the point y = p(x).
b
If Vpre++ Yy are local coordinates on X around x such that Vi s V=i g loeal

a a
equation for D, then p*(u) vanishes on D and hence p*(u) = Vll vkl.{w for some germ

w G (9 and integers a; > 1.

Using the definitions, it follows that _ﬂ (logD i _Q (aD ) for j>s and
j»> 0. And _flx(log D) :‘ﬂ C Fbrlo D) for s >f0 We can state thlb as follows

(2. 4) Lemma
. S s
QLo Qi logD) ¢ F (25D for s > 0;
(i) ()3 (logD) ¢ F° ) Y (+D).
We can hence write the next commutative diagram

H'( 0y g LU U0g D)) — H(FS (1} (+D)) B~ H'(FS_O.'PH(*V))
L l =

H((yU0gD) — H(N3D) L m(n: pn*V)

Now H’(-ﬂ.’ n(*V)) = H'(a_Q° = H'(A" )-» ok (U) To compute H*(F _,o (*V)) we use the
P

Ez~spectral sequence Ep,q HP@ 9" s K°))  converging to H'(K*), where

K= I‘b_Q_ ,(#V) and Bott's vame,hmET theorem [8].

It followa that }3[2330 = HP(FSA" ) E&’ D 2P _Ob ) and Eg’q: 0 in the other
cases. This spectral sequence degenerateb at E since one cqn represent the generator
of E; 72 by a 3 ~harmonic form X‘ and hence d{; 0. On the other hand % () =0, since
¢ belongs to the kernel of the map H25(pn ) — HZb(U) In fact this map is zero for
s> 0. To see this, it is enough to show that i*(c) = 0, where ¢ = ¢y (](1)) Is the first
Chern class of the line bundle U(I) (in ecohomology with complex coeffiments’) But
Ni*(e) = 0, since it corr esponds to the Chern class of (4 (N )U and this line bundle has
a section (induced by f) without any zeros.

It follows that im(ct) = FSH*(U) and this gives the first part in (2.2).

The similar diagram associated to the ineclusion (204, = i) gives
F°H'(U) = FpH'(U) = H*(U).

To see that FI?I = FII we relate the mixed Hodge structure on H'(U) to the mixed
Hodge structure on H'(V). Considep the exaet sequence in cohomology with compaect
supports of the pair (P, v)

l\+1(

(G e 1—1‘0‘({1) —= K" — gKy) — U)—




This is an exact sequence of MHS (mixed Hodge structures) and it gives an
isomorphism of MHS HI:LI(U) > IIk(V) the primitive cohomology of V [10]. Poincare”

duality gives a natural identification (U is & @-homology manifold):

15(U) = Hom(H 2“ Sw), II D))

Since Hzn(U) = HZn

Hodge numbers

(Pn):C(-n), we get the following relations among mixed

hPs9uS()) = KB “"q(lfign“s‘l(v»

This gives h”IH5(U)) = 0 for any q and s, which shows that F2

5 i o .
H (U) = FoH (U), ending
the proof of (2.2).

(2. 6) Remark. It is an interesting open question to decide whether one has
equality F°H*(U) = &’HH (U) for any s
This is true when V is a quasismooth hypersurface (use (1.11) and the

computation of hP*9(x (v)) given in [21]).

9 st1
H
filtrations on the echomology of the Milnor fiber F, but we will not prove this here. And

We also note that there is a similar inclusion F°H'(F)DF> "H'(F) among
using the formulas for hP*dH*(F)) given in [21] it follows that F®= F‘;;l in the case
when V is quasismooth (i.e. when f = 0 has an isolated singularity at the origin).

In spite of these important relations with the Hodge filtration, we resist the
temptation to change our filtration EEitol = Fs—l (in order to have F° = F;‘I) since we
want Er(f) and Er(f)o to remain spectral sequences of algebras.

Note also that the filtration F° on H'(F) is very close to the filtrations

considered by Scherk and Steenbrink in the isolated singularity case in [19].

(2. 7) Corollary

(i) E S’ (f fors <D

(ii) An\/ c]emenf in 1! ‘(u) can be represented by a d;ffel ential k- form with a

pole along V of ordex at most k.

We note that this can be regarded as an extension of Griffith's Theorem 4.2
[12]. On the side of numerical computations of Betti numbers we get the following

important consequence. Recall that m = dim ¢t (U)smg

(2. 8) Theorem

Let b;(\) dim B (V) denote the primitive Betti numbers of V. Then

(i)b?(\/)=0@j<n-1_(_3£j>n—1+m;



=i =

(i) For k€[0,m] and r > 1 one has.
fizket $,N=-K~s
b (U) < 2;0 dimE (£,

Whenk=m andr 2n=-m the > above meqt,ahty 15 5 an equality,

) =
bn~l+k(v) =

Proof. Use (1.6), (1.7), (1.8), (1.12) and (2.7).
Using the end of Remark (1.14) or (2.6) we get similarly:

Es’t(f) =0 for sl s andda = 1, .o Moo There:is also an analog of (2.8) for
dim HJ(F) but we leave the details for the reader.

3. The isolated singularities case

In this section we restrict to the homogeneous case, W= 1fori=0,. n.

Let g: (€",0) —> (C ;0) be an analytie function ger-m and let (Y, o) = (g (0)
be the hypersurface singularity defined by g. Let _\7_ denme the localization of the
stalk at the origin of the holomorphlc de Rham complex _Q w;th respect to the
multiplicative system % gass oj

Choose £ > 0 small enough such that Y has a conic structure in the closed ball
B, =jyec’ )y} < g} [4]. Let S, =3B, andK = S, (1Y be the link of the singularity

3
(Y,0). Then Thm. 2 in [13] 1mp11es the followlng

(3.1) Proposition
B8N K) = RiOr )

8,0

One can construet a filtration F® on f)_‘g = in analogy to (1.4), nam ely
’

e e RS e S ] o

F ﬂ'g,o «éw /gJ : WGQ_CH,O} fOt‘]_>_ sand F _ﬂ_g,o O:for j<s.

(3. 2) Proposition

There is an E 1~spectral sequence of algebras (E o(g;0), d o) with

t b+t
EY Gr Q

and converging to H* (S 5 K) as an algebra.

Assume from now on that (Y,0) is an isolated singularity and let L =(()" , dg)
denote the Koszul complex of the par*tml derivatives of g. In our case these d”[lV{?thGb
form a regular sequence and hence H¥(L® )=0 for j<n and H"Q)-= M(g), the Milnor
algebra of the singularity (Y,0), see for instance [7], p. 90. Let I' denote the quotient
complex L°/gL. If g: M(g) —s M(g) denotes the multiplication by g, it follows that



- 11 -

) = 0 for j<n - 1, H"H) = ker (g) and H'(I') = coker (g) = T(g), the Tjurina algebra
of (Y,0), see [7], p. 90.
There is the next analog of (1.8), computing E]_(g,o) in terms of H'(I').

(3. 3) Lemma

The nonzero terms s in E (g,o) are the followmg

W E o) = (17 fors elon]

e

(ii) ES’I(g,o)k._ﬂs for s¢[0,n-3], there is an exact _sequence

n-2 u n-2,1 n-1,1 = n nn
0— ()™= B " @00 Lrker @ — 0 and E, " (g0) _O_cn’ojg Th e

where

Ly =0y Ve Ll +agall
(iii) BT 1 Yg,0) = ker (g), B} Yg,0) = T(g) for t > 2.

b

Proof. To get the more subtle point (ii), one uses the well-defined maps

u:()y — EPNg0), uls) = [dg n ot Vgl
194 g,0) — B AL, Brg) = ag 1 p)/g)

and note that im (v)c ker (g) for s=n ~ 2.

(3. 4) Corollary
The only (possibly) nonzero terms in Ez(g o) are IZ 990 = Eg =C and

n- tt e
1 By

n-1-t,f for t> 1.

Ey
Proof. Use the exactness of the de Rham complexes [11}:

— o = -
0 c —>ﬁcn cer —> QCHO 0

0 e e L. . il
We can also deseribe the differentials

d iz
n l=tit =S —an t’t=T{g),

d t ker (E_,) = e
An(n - 1) form o< induces an element in ker (g) if dgnct =g (5 and then

(3.5) d} (o] = [dex - 3]

(3. 6) Example

Assume that (Y,0) is a weighted homogeneous singularity of type



it

(Wl’ see W N), i.e. (Y,0) is defined in suitable coordinates by a weighted homogeneous
polynomial g of degree N with respect to the weights w,
Then M(g) = T(g) = ker (g) and they are all graded CG-algebras.

e 3
Lieti et = 2__, (-1) SWKAX A L LA AXA L Adx and  note that
i=1,n e ! n

dgA < = N-’gw"n, with u)n = dxlf\ /\dxn, It follows that the class of A generates

: aj a |
ker (g). For a monomial x2 = xl : xnn of degree [xal = alwl s +anwn one has by
(3.5)
d] (%) = [(w +]x) - tN)x%00) ]

with w = wyt... W :
: t L
It follows that ker dlxeoker dl.:M(g)tN_w. Hence the Ey-term Ez(g,o) has
finitely many nonzero entries and the spectral sequence Er(g,o) degenerates at E2
(compare to (1.11)).

(3. 7) Example

5

For g = x2y2 R gk y5, one can find a detailed computation of M(g) and T(g) in

[71, p. 96.

It follows easily that [xzyzleker (g) and d}[xzyz]:o for any t. Hence the

Ez—term Ez(g,o} has infinitely many nonzero entries and the spectral sequence Er(g,o)

does not degenerate at Ez.

Now we come back to our global setting and let Z denote the singular locus of

Consider the restriction morphism

4. % e —_—— 5 i
(38 ¢ ._QPn(.V) > flpn(*\) :
and the associated morphisms

S oy . e S : -'V]r)
Grpf = Grp( L1 V)~ Gri( (1, paV)
A moment thought shows that Grf;g) is a quasi-isomorphism for s< 0. A computation

using an Ez—speetral sequence as in the proof of (2.2) shows that
i ns ; e e
H (GPF(_OPH(*V)) = H'(GrpA7)
Assume from now on that Z is a finite set, namely Z = { Qpyeee ,apg . Choose
the coordinates on P such that H : X, =0 is transversal to V and Zcp gaen We
denote again by & the corresponding points in ©" and let gly) = £(1,y).

Then .,(1£)11{*\/) g < A_Q;ﬂ ) this identification being compatible with the
el paeate]



L b

F filtrations. Thus we get

H'(GI';( O V) )) = @ H(Gr: { ﬂ_ »
A i o L
3
We can restate these considerations in the next form.

(3. 8) Theorem

The restriction map S) induces a morphism S : E (f) - & E (g, j) of
=L,pe

spectral sequences such that at the Eg ~level ??t is an isomorphism for s < 0.

(3. 10) Corollary

If all the singularities of V are weighted homogeneous, then EZ’t(f)oz 0 for

s < 0.

In fact, the examples seem to suggest that in this case the spectral sequence

E (f), degenerates at E,.

(3. 11) Remark

Let f be a homogeneous polynomial such that V has an isolated singularity of
the type considered (3.7). Then Er(f)o surely does not degenerate at Eq. Note that
£ (c{: ntl
sequence Er(f)o is a subobject in the huge spectral sequence considered in [23], p. 209.

,0) —> (C,0) is concentrated in the terminology of [23], p. 206 and our spectral

Hence in this ease that spectral sequence does not degenerate at E2 and this gives a

negative answer to the question at the top of p. 209 in [23].

By Theorem (2.8) the interesting Betti numbers for V in this case are just
/ , )
b._;(V), bn(V) and we can get b (V) from E 10, >
But one has a simple formula for the Euler-Poincaré charaecteristic in this case

[6]:
(3:12) V)= AW S )“Z niv,a.)

i=1,p
where V denotes a smooth hypersurface in p" of degree N and pu(V, & ) =dim M(g,a ) are

the cozmspondmv Milnor numbers.
In this way we get b (V) knowing b_(V). We remark that there is a formula for
)((F) similar to (3.12) and which appears in ihe special case n = 2 as Theorem 6. A in [9].

(3. 13) Proposition

A =1+ 0N - ™= N ) e )l
i=1,p



Sl

Proof.
— ! + S e L
If ¥ denotes the closure of F in P™, one has X (F) = X (F)> X.(V). One then use
(3.12) and the remark that the singularities of F are just the N-fold suspensions of the

singularities of V and hence

u(F, (a; 2 0)) = (N - D(v,a,).

For concrete computations it is useful to use the following. Assume that
fl’ S ,fn is a regular sequence in S (this can be always achived by a linear change of

coordinates!). Then the Koszul complex K*  (1.9) is quasi-isomorphic to the complex

> 0

i
(3.14) 0—> Q1) s Q,(f)
where Ql(f) = S/{fl’ 38 ,fn) and fo denotes multiplication by fo. An indiecation of the
. e P Mgy o
dimensions of H “(K W = Q(f)l<‘i’i-1 and H (K ) >ker (f )

exact sequence

K- Can be obtained from the

f
(3.18) 0—>ker(f ) —> Q(f), —=>Q,(f) 0

kN1 Wy 77
since the Poincaré series of Ql(f_) is known.

Similar results hold in the non isolated singularities case.

4. Explicit computations
(4. 1) Example (Computation of HI(U))

a a
Let f= fll... fkk be the decomposition of f in distinet irreducible factors.
Then it is known that bl(U) =52

211—2(V) =k -1 and it is easy to check that the closed
forms

W, = (@E) - (N/NXAD/(D)

where N, =deg(f), i=1,...,k generate HL(U) with only one relation: Zaiwi: 0.

Compare to (2.7 ii).
(4. 2) Example (with isolated singularities for V).

Let f = xyz(x + y + 2), n = 2. Then V consists of 4 lines in general position
in Pz and its topology is simple to describe. However, the dimensions of the eigenspaces

H'(F)‘1 are more subtle invariants, e.g. one cannot derive them by the methods of Oka

<

[17].

First we compute explicit bases for the homogeneous ecomponents of Q(f):

; 2
Q(f)o = <1, Q(f)1 = <X,V,2>, Q(f)2 = <x2,y ,zz,xy,yz,zx>
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(f) = <x3,y ,.43 fzy,y 7,z2x,>,vz and

Q(f) =iy ,yk,zk,xl’_j‘y,yknlz,zk_““p for k > 4.

Then we look for the elements in HZ(I{") and define:

Wyy = x(x + 2y + z)dy A dz + y(2x + y + 2)dx A dz

-and (V) by eyelic symmetry.

yz! Wyx
Then dfA W Xy =df hw vz =df A W e 0 and these three forms give a basis

for H (K )

’lhe six forms x (’uxy’ y w S "Uyz’ z u)yz, Zw, ., X . generate H*(K )5
with one relation among them (their sum is trivial).
; - o ke | 2 v i
And the six forms x “‘)Xy’ y u’xy’“' form a basis for H™(K )k+4 for any
k > 2.
1,

K’ Hz(K')k == Iis(Ii')k and the nontrivial kernels

and cokernels are listed below together with EO’O(f) :

It is now easy to compute d

BL) R Z(f) =

‘0,1 = ;‘1,1 5 3
E, (f)O—L2 (f)omex

The computations also show that the spectral sequence degenerates at E2 and
hence we get the complete results. One can restate them by saying that the monodromy
Hl(F) =¢? and its action on Hz(F) = b

characteristic polynomial (t - 1)3(t + 1)(‘(2 ST

operator h™ acts trivially on HoP) =¢C has

(4. 3) Example (with nonisolated singularities for V)

An jrreducible cubic surface in P3 with nonisolated singularities is projectively

equivalent to one of the next normal forms [3]
(i) & cone on the nodal cubic curve;
(ii) a cone on the cuspidal cubic curve;
(i)' s x%2 + y2t = 0

2 3

(iv)Bi iz Ly + xut=-0

The topology of the surfaces (i)-(iii) can be described easier e.g. using [18], so

that we concentrate on the last case: = hz + y3 + xyt. The homogeneous components

of Q(f) are given by
Q(f)o = <1> and Q(f)k = <z,t>) + <zk"1x, zkhl Pl 2yz> for k > 1,
where <z,t> denotes the veetor space of all homogeneous polynomials in z,t of degree

k. Hence dim Q(i’)k =k + 4 for k > 2. Consider now the differential forms:



S

u’Jl = xdx Ady A dz + ydx ady 4 dt

W g = xdx Adz Adt + tdx Ady A Gt - 3ydx Ady A dz

wg= tdx AdyAdz - 2zdxAdyAdt + xdya dzAdt ¢ S
Then some tedious computations show that:

by e
H (K)4—<u)1, wz,w3>

it : ,
H(K )5 =<zt W g+ <z,t>1u)3 X Wo¥ ey 5>

B : : S R e
H(K)k+4—<z,t>ku)2+<z,t>ku)3*<Z 52" W2t Ty,

for k > 2. This last veetor space has dimension 2k + 5.
And similarly one gets Hz(K')k+4 = <z,t>kw , with W) = (6yz - tz)dX/\dy - xtdx ndz -
- ytdx Adt - 3xydy A dz - 3y“dy A dt.

After these complicated formulas it comes as a surprise that the speectral
~ sequence E (f) degenerates at E2 and the only nonzero terms are

~0,0 052 N2 =
B = Bl SR =,

It follows that H*(S) :H‘(?z) and hence S has the same rational homotopy type as PZ,

according to Berceanu [1], who has proved that a projective complete intersection (with
arbitrary singularities) is an intrinsically formal space.

Concerning the Milnor fiber one has HY(F)=C with trivial action of hE,
Hz(F} =2 with the characteristic polynomial of h* equal to e t+1 and
H(F) = H3(F) = 0.

Note that via [17], one can use (4.2) and (4.3) to compute quiekly several other

-

examples.
Finally we express our hope that the ecomputers might play an important role in

doing concrete computations with the method presented in this paper.
g P
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