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ON THE MILNOR FIBRATIONS OF WEIGHTED

HOMOGENEOI}S POLYNOMIAIS

Alexandru Dimca

Let w = (wo,. ,wn) be a set of integer positive 'weights and denote by S the
polynomial r ing Clxo,..  ,xnl graded by the condit ions deg(xr) = wr. For any graded

object M we denote by Mk the homogeneous component of M of degree k. Let f € S* be
a weighted homogeneous poiynomial of degree N.

The Milnor fibration of f js the loeally trivial fibration frCn*1: f-1(O)"* C :{O} ,
with tipicat fiber f' = f-'(1) and geometric monodromy h : F----+ Fr

w^  w-
h(x) = (t*oxo,.. ,  , t*nxn) for t  = exp(2ni lN). since hN = 1, i t  fol lows that the
(complex) monodromy operator h* : H'(F)-------g'(F) is diagonalizable and has eigenvalues

in  the  group C =  {  tu ;  a=  0 , . . . ,N  -  1 }  o f  the  N- roo ts  o f  un i ty .

We denote by H'(F)" the eigenspaee corresponding to the eigenvalue t-4, for
a = 0 r . . , N - 1 .

When f has an isolated singularity Bt the origin, the only nontrivial cohomology
group Uk(n) is for k = n and the dimensions dim I-in(F)a are known by the work of
Brieskorn [2]. But as soon as f has a nonisolated singularity, it seems that even the Betti
numbers bn(F) are known only in some special eases, see for instance [9],  1141, [17], [20],

1231.

The first main result of our paper is an explicit formula for the cohomology
groups Hk(F; and for the eigenspaces tlk(p)^. l,etf )--. be the complex of global algebraic

dif ferential forms on Cn+l, graded Ui t t" convention deg(udxirA .. .  A dxik) =

= p + w .  + . . . + w .  f o r  U- 11 lk - -' € SO. We introduce a new differential on f).- ' namely

Dt (c l )=  dco  -  ( io l /N)d fA J ,  fo r  t , ' )€O|  w i tn  lu ; l  =  p  the  degree o f  o  and d  the  usua l

exterior differentia-I, similar to Dolgachev [8], p. 61.

For  a=  0 , . . . ,N- t  we denote  Uy JT (a )  the  subcomplex  in  - f I  .  g iven  by

V7J L -qaqtri.
s20 i" 

- 
u D"-closed form c,J e J)k*l we can associate the element

Jtcul=t i*A (uJ)i  in the de Rham cohomotogy gfoup ttk(p), wrrere A is the
eontraetion with the Euler vector f ield (as in [12], p.467 in the homogeneous case and

t8l, p. 43 in the v,/eighted homogeneous case) and i : F ---+ Cn*I denotes the inclusion.
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Theorem A

The maps $ , Hk*ltO,nr)-----+rfk{E) ano $ : Hk*l(fi(r),Dr)-----,frkgtu gr"
lgrnglqlfrsr1:dl.."ar k ) 0, a = 0,... ,N - 1, 12l! fr gqlSllg teoueed cohomolosy.

In fact, using homotheties inside -I). , it is easy to see that there is a similar
result taking instead of D, the differential Ditd = d r,O + dfAui .

However, the apparentiy more complicated differential D, is more natural (e.g.
r A ' * . .(.J L, Df) is a differential graded algebra while ( rI , D'f) is not!).

The proof of this Theorem depends on a comparision between spectral
sequenees naturally associated to the th'o sides of these equalities (L,g).

our second main theme is that these spectral sequences can be used to perform

expl ie i t  computat ions, in spi te of  the fact  that the E4-term has inf in i te ly many nonzero
entries and that degeneration at the E4-term happens only in speciai cases (see Remark
(3.I1) below).

The eigenspaces H'(F)o are particularly interesting. If p = p(w) denotes the weighted
project ive space Proj(S),  V the hypersurface f= 0 in p and U = p--V the complement,
then there is a natural  ident i f icat ion H'(F)o = H.(U).  Ive establ ish a relat ion betv{een the
filtration on H'(F)o induced by the spectral sequence mentioned above and the (mixed)

Hodge filtration on H'(u), having a sublantial eonsequence for explicit computations.

Note that the Bett i  numbers bU(V) are completely determined by bU(U) and
hence one can get by our method at least upper bounds for ali bn(v) as well as the exact
value of  the top interest ing one ( i .e,  bn+6_1(V) where m = dim f- t (O)".ng) in a f in i te
number of  steps (2.8).

Then we specialize to the usual projective space pn and to the case when v has
only isolated singularities and relate the global spectrai sequences used until now to
some loca.l spectral sequences assoeiated to each singularity.

In the end we compute two numerical  examples to give a precise idea about how
one has to proceed in practice. The example (4.3) may seem rather tedious, but as long
as one misses a better approaeh, it is a.niee illustration of our method.

1. Some spectral s€quenees

In this seetion we shall use many notations and results from Dolgachev [g]
without expiicit referenee.

Let A z J) k -- {i*- 
1 denote the contraction with the Euler vector field

f *,*1? / 2 x.. For k ) 1 we put f}k = ker ( A r J^Lk --+l1k-i) = im ( A : flk*l.--' !j)

let ..( /; denote the associated sheaf on P. One has also the twisted sheaves
, .  E

)(s), for any s f Z.

and

r)
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Let i: U*-+ p denote the inctusion una put r)ftrl = i-OftO.
The Milnor fiber F is an affine smooth variety and according to Grothendiecl(

[13] one has FI '(F) = H'(f  (F, J)U)). Let p :  F.-]  U denote the eanonical projeetion and
note that -,.].- n'(1 '1)  p* l  l r= tD^ - I  Lu(-a)-  a=0

N _ 1
If  we let  Au = |  (U, ]2 Ut-a))  and A'  = O^ A",  then we elear ly have

a=u
( t .2 )  H ' (F )  =  H ' (A ) ,  H ' (F )u  =  u '14 ' I

There is a natural inereasing filtration F. on Au, related to the order of the
pole a form in A, has along V, namely

i :(1 .3)  nre l  =  0  for  s  (  0  and F 'AN ={* l t ' ; , .d€_OlN_a 
}  ro .  s  > 0 s imi tar  to [12] .

But for obvious technical  reasons i t  is more convenient to consider the decreasins
fiLtration

(r.4) Fsaj = r ' .  Aj'  a  -  l -s-  -a

Tlre f i l t rat ion F" is compatible with d, exhaustive ( i .e. A" = U FsA;) and
bounded above (Fn+lA'= 0). Here d denotes the dif ferential of the complex A. which is
induced by the exterior dif ferential d ini_, via (1,1) and whjch is given 

"*f, l i " i t ty 
Uy

the formula

(r.5) a(d/fs) = d^(.{) ) . f-s- l- 1 ' ' - ' ,  '

By the general theory
geometric spectrBl sequence.

where dr(r,J) = fdiJ - ( ldl /N)dfAd .

of spectral sequences e.g. [ t6J, p. 44 we get the next

(1.6) Proposition

There is an Ei  -spectral  sequence (E-(f)^,  d_)
t ' t l t '

with

g,gPI 11 
"qy--gi g "_11qg_gg ]l' ( r )a.

Moreover one can sum these spectral  sequences for a = 0,  . . .  ,N -  L and get a
spectral  sequence (Er(f) ,dr)  converging to H'(F).  And (Er(f)o,  Cr) and (Er(f) ,  dr)  are i r r
faet spectral seguences of algebras eonverging to their limits as al
I t ' (F)o= H'(U),  ei ther using the fact  that U = F/Gr c act ing on F via t l re
monodromy or the fact that -(1',. is a resolution cf C [ZZ].

We pass now to the construction of some purely algebraic spectra-I sequences..
Let (Ba,d',dtr) be the double complex B; ' t  =O;it_.J ,  d'= d and d, '({r) = - j*- i /Ndf Aul
for a homogeneous differential form ai , Note that the associated total cornplex Bl,

Note that

geom etr ic

Ei't = Ht*t(rta;zrs*ia;)

and converging to the
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with BI = 
,9=n 

ul' , D = d,+ d', is preeisely the

Similarly n' =Sniu, = 1CL'-1, lr).

complex tO1",1 , orl.

Consi<ler the decreasing f i l t r ,at ion Fp on Bl

simiiarly on B'.  Using the contraction operator A ,
morphisms, compatible with the f i l t rat ions:

c  ^ .
[ : B, -----+ A, and $ : n'-------+ 6'

J- (,r) = A(.0)at for r,J € B$t.

Note that B'and A' are in fact dif ferential

compatible with the products.

(1.?) Proposition

?here is an E, -spe etra-lsequence ('Er(f)u, d.) with

graded algebras,
( .

DUI d ls  not

n l z
siven bv F'B' '  =

we def ine the

@ nl'k. s ano
s2P *
next complex

d.: ( 'Er(f)u,d,.) *

l\4 oreover

Proof

h + l  h + l
s i n c e  F . .  . 8 .  =  F . , ,  , A ,  =  0 ,

and hence i t  is enough to shol  that

correspond to certain homogeneous

r1  d f .(1.9) K' : 0 -+ Jt:!. !- -

E!'t = gs+t1psg;/Es+1s;)

99IV_eIg_',1s_ to - lh9,--"tq1lolggy H'(B u). Thg_ rpglgt,L.6 induces a morphism
(Er(f)a,df)of  spectral  sequences ,

one c&n sum these spectral sequences 'Er(f)" and get a spectral
sequence ( 'Er(f),dr) converging to H'(B') and a morphism ( 'Er(f),dr)-+ (Er(f),C.),  Tne
proof of these facts is standard e.g. t161, p. 49. Let F.tr)o trurp, fr(f)) denote the
reduced spectral sequence associated to Er(f)o (resp, E.(f)) which is obtained by
replacing the tefm at the origin E?,o = f;o" = C by zero. For a f  0, we put
f r / c t  - r r r rL r \a , i a  -  ! r \ r / a '

We clear ly have natural  morphisms d. :  'E.( f )u.--  
4t f lu,  i .  :  'Er( f )  - -+ Er(f)

induced by J . .  
We can state now a basic resul t .

(1.  8) Theorem

] 'he morlphrsrls d" are isom*orphisrns !_o1.r)1glg_1!sy._fnd!Se-igTgfptlt11.
I I ' (B ' )  =  H ' (F )^  and  H ' (B )  =  I I ' (F ) .

the f i l t rat ions F are strongly convergent I tO],  p.  50
(

d ,  i s  an  i somorph ism,  T l re  ve r t i ca i  cc lumns  in 'E r ( f )

components in the Hoszul complex X' ,

df  ^nr '1
'.. ---t ,l L ----5 u



q

of  the  par t ia l  der iva t ives  f i  =  (? f ) l (?x r ) ,  i=0 , , , .n  in  S .  To  descr ibe  the  ver t i ca l
columns in E,(f) is more subtle, Note that fK' is a subeomplex in K' and let E' denote
the quotient complex K' l fK'.  There is a map A ,fr, '  -  I i ' - l  induced by A which !s.a
complex morphism and hence i<l = t<ur I  is a subcomplex in [ . .

Let 5 denote the composit ion K'-. .  14' 3- 6'-1.

Then the vert ieal l ines in Er(f) correspond to eertain homogeneous components
in the cohomology groups H'fii'1. The morphism I: corresponds to. ,  - ;

I I 
x : H'(l( ') -: H'(I i '- l) and a well-defined inverse for X* is given uy the map

(1.10) v : s'(fr '-1)-- H'(K'), V IA (i.d)l = tdf^ a (,r))/(Nf)1.

Tocheck this, use that df^uJ = 0 implies 0 = A(dfi i ,  )= Nfrr- df^ A (O).

(1.11) Example

'  Assume that f  has an isolated singular i ty at  the or igin.  Then fo,  , .  ,  , fn form a
regular sequence in S and we get 'El , t ( f ) ,  = 0 for s+ t  *  n and

'Bn-t ' t1f;r= Hn*1iK')r^_"= e(f )N_a_ w
where Q(f) = S/(fo,, .  , fn), w = wo+. . .  **n Mofeover, the Poincard series for e(f)
( s e e  f o r  i n s t a n c e  [ 7 ] ,  p .  1 0 9 ) i m p l i e s t h a t Q ( f ) O = g f o r k ) ( n + 1 ) N - 2 w . H e n c e i n t h i s
case al i  our spectral sequences are f ini te end degenerate at the Er-term (the

degeneracy of the component a =_ 0 being equivalent to Grif f i ths'Theorem 4.3 in [12]L
Note that one can nuuu t6-1'n*l{f)u I  O. In general,  one has the next result about the
size of the spectral sequence 'E-(f).

(1. 12) Proposition

'fr"(f)  = 0 for anyr > l  and_s+ t < n - m, _t, irg!9 m = dirnf- l{O).. ,^^.-  s lnE

The result follows using the description of 'E;,t(f) in terms of flre Koszul
complex and Greuel general ized version of the de Rham-Lemma, see [1i] ,  (1.?).

.r (1.13) Corollary

f i l t ( p )  =  o  f o r  r < n - m .

. '  This result is implied also by [15J, but (1,12) wii ]  be used below in (2,8) in a
crucial $iay.
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(1.14) Remark (Sebastiani-Thom construetion)

Le t  v t t=  (w 'o , . . .  ,w 'n , )  be  a  new se t  o f  we igh ts  and f '6C[yo , . . . ,VnJ  a
homogeneous polynomial of degree N with respect to these weights.

Let Cf' be the complex (.f), Df) associated to f in the Introduction and iet
C1,, C1+1, denote the similar complexes associated to fr and f+ f ' .  Then i t  is easy to
check that

(1.1s) c! .*1= clOci,

Combined with Theorem A, this gives

(1 .16)  Frk1F" ;=  O HS(F)@Ht(F ' )
s+ t=k- 1

where F' ,  Frrdenote the Mi lnor f ibers of  f 'and f  + f rrespect ively,  compare to [17].

Keeping traee of the homogeneous components in the formula (1.15) gives

I l ' (F ' ! )o = O H'(F)c@ H'(F)N_c

w i th  c  =  0 , . . . ,N  -  1  and  H ' (F ' ) *  =  H ' (F ' )o .

when f,= yN, (r,rr) shows thst H'(F')o = 0 and H'(F')c = <y|-o-ldy

vec tor  space,  fo r  c  =  1 , . . .  ,N  -  1 .

It foiiows that at vector space level

H'(F")o:  @. X ' ( r )c-  c= 1,N-  1
This isomorphisnr can

corresponding spectral sequences,
N .

and 'E.( f  + y;)o.  I lence jn order

concentrate on the piece 'Er( f)o.

sections.

_),  a 1-di  mensionai

be ident i f ied already at the El- terms of the

In this sense 'E ( f )  is bui l t  f rom two oieces: 'E ( f )
r  r " o

to understand the behaviour of 'Er(f) it is enough to

And this is preeisely what we do in the next two

2. Tlre relation with the Hodge filtration

Let us consider the deereasing f i l t rat ion Fs on H'(U) def ined by the f i l t rat ion Fs

on A;,  namely

(2.1) FsH'(u) = im {rr '(r 'a;) 
--- 'H'(A;) = ri '(u)}

On the other hand there is on Il'(U) the decreasing gggg=_l4gglg FII

introduced by Deligne [5J.

(2. 2) Theorem

pjf-e-!e!  FsH'(U)> Ej+1n'(u) for any-s-and F'oH'(U) = n] 'H' tul  =
t t

= F;H'(u) = Ir'(u).
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Proof

Let p: Pn--+P be the project ion presenting P as the quotient ofFn under tne

group G(w), the produet of eyclic groups of orders wi .
X r r / ^ \  " ,  

wo  wn ,
Then  f  =  p ' - ( f )=  f ( x^ " , , . . , x ^ " )  i s  a  l r omogcneous  po l ynomia l  o f  deg ree  N  and

\ J  t l

Iet  U be the con'rplement of  the hypersurface f  = 0 in P".

Since I l ' (U) can be ident i f ied to the f ixed part  in H'(d) under the group G(rv) and

since the monomorphism p+ :  FI ' (U)-> H'( f r)  is ctearty compat ible with the f i l t rat ions

Fs and F, l ,  i t  js  enough to prove (2.2) for f .

To  s imp$- the  no ta t i on ,  we  assume tha t  w  =  (1 , . . ,  , 1 )  f rom the  beg inn ing .  ?hen

U is smooth and i t  is easier to descr ibe the construct ion of  the Hodge f i l t rat ion [22].

Let p:  X ----+ P n b" u prop".  modif icat ion vgi th X smooth, n = p- l (V) a div isor

with normal crossings in X and U = X' . .D isomorphic to U via p. t

From this point  on i t  is more sui table to wo|k with holomorphic di f ferent ia l

forms on our algebraic var iet ies,  I f  n;  is th is holomorphic sheaves complex, 11; tn"

aigebraic version of it and i: U -----+ P" is the inclusion, then one has inclusions
:  r& / l '  \  '  ' ' ' '  /  \ ' \  - :  J ) ; , ,  *he re  f ) :  ^ ( *v )  deno tes  thc  shcaves  o f  meromorph icr * \  r  .  

U /  
, . _  I  r r n \ +  y , /  L  r r r r  -  -  

U ,  
. . , , " ^  . p n \ -  , /  " " ,

dif ferent ia l  forms on Pn with poLar s ingulBr i t ies along V. By Grothendieck [13],  the
,  t A / 1 . \ -  / \ .inelusion i*(*J i  iJ) c J ) 'on(*V) induces isomorphisms at the hypereohomology groups.

And thc same is true f 'or the inclusions Q *(fog O) c J? |t*O) < j* I  6 rvhcre
j:  d->X is the inclusion, J);{*O) is defined similarly to-_O' n(xV) and f1L!(1ogD) is
t lre compiex of holonrorphic dif ferential forms with logarithmii polcs a. long D [22].

Recall  that there is a tr ivial f i l t rat ion C-, on any complex K',  by defining

O-y"l( '  to be the subcomplex of K' oblained by replfcing the f irst s terms in I( '  by 0,

ttii ttodge filtration is given oy

(z. i l  Fr lHl(u) = i '  I  n i(o;r f)"( logr))  --HitO;trornl{

via the ident i f icat ions

H'( O!0og l)) = HI;* {Jg) = n'(J)"t) = H'(0) = H'(u).

The filtration Fs on the complex A; is relatecl

O '  ( *V )  de f i ned  i n  the  fo l l ow inE  wav :  Fs  O  
j  ( r ,V )  i "- " P n  . .  - P n

on Pn having poles of order at most j - s along V for j )

Note  tha t  F" i l . ( *v )=  I I l ^ t t :  -  s )N)  fo |  j  )  s .  I ve  gc t  r )cx r  a  I i t r ra r ion  on  i l re
P i r  p t r  -

comptex Q"(,ro) - oot -Q;n{*v)) by defining Es-f)-; tno) = p*{ns.O;n(xv)).

. -  - qto  a  f i l t ra t ion  F"  on  the  complex
t

the iciaf of meromorphic j- forms

' anc rl/?f;n(*v) = o for j ( s.

At stall<s levei, a germ uJ 6..nlx(xD)" beiongs to n sfl l*t*O)* if and only if
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:" 1r'-O 
UJ.= QjX,*, where u = 0 is a tocat equation for V around the point y = p(x).

"  u l " "  rVn arc  loca l  coord jna tes  on  X around x  such tha t  v1  . . . vv=0 is  a  loca . l
equation for D, then p*(u) vanishes on D and hence pu(u) = , i t , . .  

" iu* 'ro, 
some germ,  Q ]x , *and in tegers  a .  >  1 .

Using the definitions, it. foltows trrat J)t"1reg.p) c ns:.) !t*n) for j ) s andj  ) 0. And O!0ogo) =-0| c r?!(*D) for , {olwu can state this as forows.
(2. 4) Lemma

(i) 0-y5+1 O;(tos D) 6 rsJ2;t,rn) !q s 2 0;

(i i)O;{0osD) c Fo J2k(,*D).

We can hence wri te the next commutat ive diagram

u'( o-15+1J)"(ios.o)) , H.(FS-Oy(*o)) .$ H.(Fs 1l. nlxy;;

I  I  J *
H'( fl|(roso)) -____-+ H.( n;(*D)) 

"e __ H.f J)"n(*v))
^  /  r , \ \  ' . . t B r ,

Now H ' (Onp(*v ) )  =  H ' ( f  lg )  -  H ' (ao)  =  H ' (U) .  To  eompute  H. (Fsr_ ;n( *V) )  we use the
E2-spe.ctral sequence SB'q = Hp(Hq(pn, X.)) converging to H.(X,),  whereK '=  Fs f l ' rn ( *V)  and Bot t ,s  van ish ing  theorern  [g ] .

"""". "i1 T:i"^T-:nlt 
ut'"= Hp(r'eo), Ei''= H'(pn,rj,,) un.r uf,o= o in rhe orher

cases' lhis spectrar sequence degenerates at E2 since one can represent the generator
o f  f l ' s  UV a j  -harmon ic  fo rm f ,  and hence c f . ;0 .On ure  o t i re r  handx  (1 . )  =  0 ,  s rnce
[- belongs to the kernel of the map H2s(pn) i l  H2.tul.  In fact this ,nup i .  , .ro ro.s > 0. To see this, i t  is enough to show that i*(c) = 0, where 

"= "rtU1ll  is the f irstChern class of the line Ounal.e 0 ft) (in cohomology with eomplex coefficients!), ButNi"(c)= 0, since i t  corresponds to the Chern class of {!  t tVl u;r. t i , is;; ; ; ;noru nu,a section ( induced by f) without anv zeros.
I t  fo l lov, ,s that im(o()  = FsH.(U) and this gives the j . i rst  part  in (2.2),
The simi lar diagram associateci  to the inclusion (2.4.  i i )FoH'(u)  = FiH.(u)  = H.(u) .

see that Ufi = Ui we relate the mixed Hodge structure on H.(U) to
Ilodge structure on H'(V). Consider the exact sequence in cohomology wjth
supports of the pair (pn, V)

(2.5) ... .-, Hk(U) -------' Frk(pn),-._.-- Hk(v) ._---- u!*ltu) ,_*...

the mixed

eom pact
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o

This is an exact sequence of MHS (mixed Hodge structures) and i t  g ives an
L.t .1 l ,

isomorphism of I \ lHS H; ' (U) :  Fl i (V),  the pr imit ive cohomoiogy of V [10].  poincare'

duality gives a natura] identification (U is a Q-homoiogy manifold):
9 n - c  i n

H"(U) = i lom(Fl '"  "(u), Fr;"(U))
D -  t

since Hfn(u) = Hzn(Pn) = c(-n), we get the fol lowing reiat ions among mixed
Hodge num bers

n0'91u s(u )) = 1',n-P, n-Q1n2n-s-l1v))

This gives ho'q(Hs(U)) = 0 for any q and s, which shows thar F;H'(U) = pf,H'1U), ending
the proof of (2,2).

(2.6) Remark. I t  is an interesting open question to decide whether one has
equa l i t y  F"H ' (u )  =  F ; ' l l ' (u )  fo r  any  s .

This is true when V is a quasislnooth hypersurface (use (t , f t)  and the
computation of hp'q(H;(V)) given in [21J).

!Ve also note that there is a similar inclusion FsH'(F)) El* lH'{n) arong
fj l trat ions on the cohomology of the Milnor f iber F, but we wil l  not prove this here. And
using the formulas to. nP'Q1u'(F)) given in [21] i t  fol lov,/s rhat Fs = f $1 in the case
when V is quasismooth ( i .e. n'hen f = 0 has an isolated singulari ty at the origin).

In spite of these important relat ions v/ i th the Hodge f i l t rat ion, we resist the

temptation to change our f i l t rat ion Fs to Fs= Fs-1 ( in order to have Fs= Fir) since we

want Er(f) and E.(f)o to rem ain spectral sequences of algebras.

Note a-Iso that the f i l t rat ion Fs on II ' (F) is very close to the f i l t rat ions
considered by Scherk and Steenbrink in the isolated sine'ulari tv csse in [19],

(2. ?i Corollary

(i)  E: '^t(f  )^ = o for s (o;

( i i )  fry;"tJ;;  r lk(u) can be represented by a dif ferential 1<-form with a
pole along V of order at most k.

We note that th is can be regarded as an extension of  Gri f f i th 's Theorem 4.2 in

[12].  On the side of  numefical  computat ions_of Bett i  numbers we get the fol lowing

important consequence. Recal l  that m = dim f- t (0)^, ' . - .'  's lns

(2" B) Theorem

^ , - - .  - .  . .  i .
Let br-(V) = dim H'^(V) denote the pr imit ive Bett i  numbers of  V. Tlren

! U

( i)  b?(V) = 0 for j  (  n - 1 orl  > n - r + m;
J -
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(ii) fqi k ( [0, m] glg r 2 I gne [q!-
^  n _ k _ l

o;- t*utu l  = bn-u(u) l  f  d im4,n-k-s(r)o
s=0

I { h e n k = m a n d r > n -m tie above ineguali_ty is an equality.

(3.1) Proposition

H'(S€\ r<) : H.( Ja'u,o)

One can construct a f i l t rat ion Fs on

proof. use (t ,0;,  11.7;, ( i .8), (1.12) and (2.?).
Using the end of Remarl< (t . f  +) or (2.6) we get similarly:

-  r  ( I J a  =  U  f o r  s ( _ 1  a n d  & =  1 , . . , , N  _  1 .  T h e r e  i s  a l s o  a n
dim HJ(F)u but we leave the detai ls for the reader.

3. The isolated singularities case

In this section we restr iet to the homogeneous case, w. = 1 for i  = 0, . .  .  ,n.Let g: (Cn,o) ,*> (C,o) be an analyt ic function germ and iet (y,o) = (g_1(O),o)
be the hypersurface singularity defined by g. Let j)*,o Oenote the localization of thestalk at the origin of the holomorphic de Rham con
murt ipricative system 

{sr; r2 oJ. 
tplex i} tn with respect to the

choose € ) 0 smarl enougir such that y has a conlc structure in the crosed baii

l : : l lu"-"r lvlSe] [4]. Let sa =? B. and K = s, o y be therint( of the singularity(Y,o). Then Thm. 2 in t13J implies ttre fou-owine. 
c

analog of (2.8) for

P'JLi,o = 
l* , eJ-'; *.,e Con,o ]

J)-'*, 
o in ana-logy to (1.4), namely

f o r i ) s a n d  F s n  j  = n r ,
t i r w  

l r J < s '

(J. Z) proposi tion

rh e,Le-1!,9 l_E t :9ge_9ll a-l _le_q q 9 ! 9 e_ 91 el ggpry l (E n ( g, o), d. ) rv i t h
psr t _ p1s+t1,-,"s 6rr l  -  . r - j  ( . rF. l  t .g ,o)

.9nq_c_glyglCttq.to H'(s€ .. x) as an at_g.9!ji.

Assume f rom now on  tha t  ( y ,o )  i s  an  i so la ted  s ingu la r i t y  and . l e t  L ,= (O .
denote the I{oszui complex of the partial derivatives ;;;.; il ;:"",r"* .'"""lr"J:l
form a regular sequence and henee gi(t ' )=0 for j(n and Hn(L.) = M(g), the lr4itnor
algebra of the singulari ty (y,o), see for instance [Z], p. g0. Let I .  denote the quotient
eomplex L'lgL'. if g: [a(g) --+ M(g) denotes the multiplication by g, it fo]lov/s that
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1 ,  h - l

H'(i ' )  = 0 for j(  n- 1, H" '( I ' )  = ter(g) and H,'( I .)  = coker (g) = f(g), the Tjurina algebra
of (Y,o), see.[7],  p. 90.

There is the next analog of (1.9), computing Er(g,o) in terms of H.(I.) .

( 3 . 3 ) L e m m a  '  ' '  '

' 
fhe nonzero term_s in Er(g,o) are the foltowing.

(l) El'o(g,o) = Oin,o for s e[o,n]

'  ( i i) e! ' i(s,o)= JL| &f sq[0,n-3], there is _an exacr se-qrence

- 0 ---+ Ill-z4lf -2'1ts,o) i, ker (s) ---z o grq Bf-1,11g,o) = fl n _ /s nn _ -
where  

r  -  
cD 'o ' '  "  @r l ' 6 r

o .- ' Y = ( f1'cn,o)/(g o'cn,o + cg)r 11'*n,o).

(i i i) nf-t-r,t{g,o) = ker(g), rf-t,t{g,o) = T(g) for t > 2.

Proof. To get the more subtle point ( i i), en" uses the well-defined maps

, , Qi ---+ rl'1(g,o), u(* ) = t(dg r, cr )/gl

v ; e f'1(g,o) 
---+ Hs+2(L.),v[ p /gJ = t@s ̂ p)/g]

and note that im (v)c l<er (g) for s = n - 2.

(3. 4) Corollary

3p 9{v_logssibly) nonzelo terms in E^(e,o) are E?'o = E?'1 = C and, r -  1 - r  i -  ; - r  r  -  - -  z  " '  " - -  Z  - z
L ' Z  -  

" ' ,  E ,  " ' $ r  t  2 1 .

Proof.  Use the exactness of  the de I iham contplexes [11]:

0 -+ c ---Jl:- ----- -_-__- Jl n 
- __-__+ 0-cn,o ' "cn,o

o -> c ---> n? ---> ... --, 0 ?-t.
!Ve can also describe the differentials

n -1 -1 ,  t  d1  -n -1 .  tdi : ker (s) - E; *; Ei "" = r(s).

.._ An (n - 1) form o< induces an element in ker (g) if dg 46 = B p and then

(3.5) ai t.<J = Ido( * tf i l

(3. 6) Example

Assume that (Y,o) is a weighted homogeneous singularity of type



(w1,'  'wn; N)'  i .e. (y,o) is defined in suitabre coordinates by a weighted homogeneouspolynomial g of degree N with respect to the rveights rv.
Then j\a(g) = f(g) = ker (g) and they are ail graded C_aigebras.

Let 
"< 

= L 1-' ri+l- . -- ."
i = l , n  

t '  w ' x ' dx ln  '  .  'A  dx 'A  . . .  Adxn  and  no te  tha t

dg,t  
"(  

= N"gr i ln,  wi th a,=dxrA.. .Adxn. I t  fo l lons that the ciass of  c(  generares
k e r ( g ) .  F o r  a  m o n o m i a l  x a - - a l  . . o n - o ,  r - a i
(3 .5 )  

-  ^ I  "  '  xn  o I  deg ree  l x * l=  a rw ,  *  "  '  *an t ' vn  onc  has  by

dl(xL )  = t (w + lxal  -  tN)xadnl

w i t h  w =  w 1  * , , .  * n .

I t  fo l lows that kel  
I  +

ffiT "Tt1''; ";;; 
ll # il i i ;Tj ?l :l ":;,iili ", j Ll "i,. "Tll.?l? l,,i;

(3. 7) Example

For g = *2 y2 * *5 n y5, on" can f ind a detai led computation of M(g) and T(g) in[7],  p. 96.

: j:,*-",,',"-',':,;ff l:,,:ll'';i;*::::'H:,'1;l'l;ffi jHJ;.::,J:;
does not degenefate at  E2,

Now w€ come back to our global  sett ing and let  z denote the singular locus of
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Consider the restr ict ion morphism

( 3 . 8 )  P  , O _ ' - ( * v )  *  O ' ( * v )J  
-  " p n .  . p n \ "  . /

Bnd the associated morphisms

- - s . .  ^  s ,  n .  . lbrFy : tiri '( r L 
nn(xv)) 

--* c1i( OinGv) | 
"1A moment thought shows that Cr.f  g is a qu asi_ isom orphism for s ( 0. A computationusing an E2-spectfal sequence as in the proof of (2.2) shorvs that

H'(cr;( O;n(*v)) = H.(crfA;)

,n" """,:;Til:J"s ffiT,TT.'.'i='.'i:'::"lll^l'T:'',i = 1 1,,... ,aoJ . *'oo,e
denote again by a the "",,.illlJ"; ,:;: :: :xTnT ;,: ili;: 

pn - [ = cn. wu
Then ( )on(xvr l r=  

9^Or ,o ' ,  
th is  iden t i f i car ion  be ing  cornpar ib le  w i th  the
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(3. 9) Theorern

The restr ict ion map O induces a morDhism P : E (f) ->
r '  ' o @ En(g,a,)  of

j = l , p  J

.. _spcctral sequences such that at thc Er-ljf9j 91'tft g1-.1:Srgphig4_lqr r < 0.' j - J

(3. 10) Corouary

If ali the singularities of V aie weighted homogeneous, then

F fiitrations. Thus we get

H'(cr;( o'_^(*v)1,))= @ i l ' (cr:( .rL :  -  ))'  1 .  -  -Pn tL  
i= lp  

n  - ,  *  
I ,a j

We can restate the$e considerations in the next form"

- nt p(v,a,) l
i =1 ,p

r|'t{f)o = o fo.
s (  0 .

In fact, the examples seem to suggest that in this case the spectral seguence

E.(f)o degenerates at E2.

(3. u) Remark

Lei f  be a homogeneous polyp6pinl  such that V has an isolated singular i ty of

the type eonsidered (3.7).  Then Er(f)o sureiy does not degenerate at  82. Note that
f  ,  (cn+l,0)--+ (c,0) is concentrated in the terminology of  [28J, p.  206 and our speetral

sequence Er(f)o is a subobject in the huge spectral  sequence considered in [23],  p.  209.

I ' lence in this case that spectral  sequence does not degenerate at  EZ and this gives a
negat ive answer to the quest ion at  the top of  p.  209 in [231.

By Theorem (2.8) the intelest ing Bett i  nunr bers for V in this case are just

bn_1(V),  bn(V) and we can iet  b, . , (V) f rom En_l( f )o,

But one has a simple formula for the E uler-P oi  ncar6 character ist ic in this case

t b  l :

$.r2) l(v) = f(v o) + 1-1;n I u(v,at)
i=1 ,p

where Vo denotes a smooth hypersurface in p" of degree N and U(V,ar) = dim M(g,a.) are
fhe  o^r rF{n^n . l i  nc r  n r i lnor  nUmbers .

t In this way we get bn_,(V) knovving b,.,(V). I{e remarl< that there is a fornrula for

/(n) 
s imitar to (3,12) and which appe8rs in the special  case n = 2 as Theorem 6. A in t9l .

;
(3. 13) Proposition

/-(F) 
= 1 + (- l)n[(N - 1)n+1
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Proof.

i f  F denotes the elosure of F in pn+l, one hasfr(F) = X(F) .  X(V). One then use
(3'12) and the remark that the singulari t ies ofF are just the N-fold suspensions of the
singularities of V and hence

p(F, (at :  o)) = (N - l)p(v,a,).

For concrete computations it is useful to use the foilonring. Assume that

. i  f t ,  .  . ,  , fn is a regular sequence in S (this can be always achived by a l inear change of
coordinates!).  Then the I{oszul complex K' (1.9) is quasi- isom orphic to the complex

- (3'14) o - Qr(t) -19* qr1i l  - '  s

where Qr(f) = Sl(rf f , , . ,  , fn) and fo denotes mult ipl ieation by fo. An indieation of the
dimensions of l ln*l{X')n ye(f);-n_1 and Hn(X';O-t<er (fo)U_r. can be obtained from the
exacl sequence

(3.15) 0 ->ker (fo)n ---.o a1(Ak 
j9> 

e1(f);,+',s-r-' e(f)u*"-7 0

since the Poincard series of Qr(f) is known,

Similar results hold in the non isolated singulari t ies case.

4. Expiieit eomputations

(4. 1) Example (Computat ion of  I l  1(U))

a 1  a v
Let f  = f f '  .  , .  f t  ' '  be the decomposit ion of  f  in dist inet i r reducible factors.

Then i t  is known that bl(U) = b;n_2(V) = k -  1 and i t  is easy to check that the closed

fornrs

uJ, = (df,)/( f ,)  -  (Ni/Nxdf)/(f)

where  N.  =  <Jeg( f i ) ,  i=1 , . . . , k  genera te  g1(U)  w i t t r  on ly  one re la t ion :  f  u . ( , .=  g .

Compare to ( 2.7 i i ) .

{4. 2) Example (r,vith isolated singuiarities for V).

Let f  = xyz(x + y + z),n = 2. Then v consists of 4 l ines in general posit ion
9

1 in P" and i ts topology is s imple to descr ibe. Howcvcr,  thc djmensions of  the eigerrspaces

H'(F),  are more subt le invar iants,  e.g.  one eannot der ive them by the methods of Oka

-  t r r l .

First  we compute expl ic i t  bases for t l te holnogeneous components of  Q(f) l

Q(f)o = a12, Q(f) ,  = (x,y,z),  Q(f) ,  = <*2,u2, 
"2,*y,yr,r*>
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Q(f)J = ("3,y3, 
"3,*2y,yz 

r,r2*,xyz) and

.and q)yz, cdr" by cyelic symmetry.

o 
Then dfA L{) xy 

= df A uJ yz= df A uJ

for l I ' (K')n.

Q(f)k = <xk,yk,r l t ,*k- ly,yk-1",rk-1*> for k ) 4.

Then we look for the elements in I-I2(K') and def ine:

r-,J -,, = x(x + 2y + z)dy A dz + y(zx + y + z)dx A dz
^ J

," 
= 0 and these three forms give a basis

The six forms x @xy, v ll xy, y wyz, ,Qyr, 
" 

'r) zxt x.o zx generate Hz{x'),
with one relation among them (their sum is trivial),

And the  s ix  fo rms xkrJxy ,  ykd*y , . . .  fo rm a  bas is  fo r  l t2 (K . )p+4 fo r  any
k > 2 .

It  is now easy to compute cl :  HztN')u ---+ f i3{x')u and the nontr ivial kernets
and cokernels are l isted below togethcr with E; 'o(f)o:

n O r o / p 1  - , 0 1 2 1 6 1  ^ 9  t  1-  P2  \L t2  =  E; " ( f )3  =  e  i " ( f ) r  
=  c

p o , I f f )  =  r . i , 1 r r )  = C 3" 2  , , ' o .  L 2  \ \ , o .  | '

The computBt ions also show that the spectfal  sequence degenerates at  E, and
hence we get the complete resul ts,  One can restBte them by saying that the monodrorry

operator h* acts t r iv ia l ly on Ho(F) = C, Hl(F) = C3 and i ts act ion on g2(f)  = CG ha"
chBracter ist ic polynomial  ( t  -  f )3(t  + 1Xt2 + 1).

(4. 3) Example (with nonisolated singularities for V)

An irreducible cubic surface in F3 with nonisolated singularities is projectively

equiva.lent to one of the next normai forms [3]

(i) a eone on the nodal cubie curve;

( i i )  a cone on the cuspidal  cubic curvel

( i i i )  S ' :  x 2 z  *  y 2 t  =  0
O Q

( i v ) S : x " z + y " + x y f = [

The topology oi the surfaces (i)-(iii) can be desqibed easier e.g. using [18J, so

that we concentrate on the last  case: f= xLr* yJ + xyt . ' I 'he homogeneous components
n f  O i f l  aFa  o ' i r r an  h r r

Q(f)o = 111 and Q(f)u = <z,t)k * <rl t-1*, zk-ly, zk'2y2> for k ) 1,

where (z,t)U denotes the vector spaee of all homogeneous polynomials in z,t of degree

k, I-Ience dim Q(f),. = l< + 4 for k ) 2. Consider now the differentia] forms:
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uJ ,  =  xdxa  c )yAdz+  ydxAdy4d t

t^) Z= xdx Adz Adt + tdx A dy,r Ct - 3ydxl ciyzi dz

d 3 
= tdx 46yn dz -  2zdx l t  dy A dt + xdy^ dzl \dt

Then some tedious computat ions show the,t :
a

H"(I(')4 = ( t'J 1t d z, ,.;z>
a

,  
t " (K ' ) b  =  l z ,D rd  z+  <z , t >LL4 )3+  ( x  J2 , y  d , v  d r>

Hr(K')k+4 = 1zi)oto r+ <z,t)rru)3 * (rk- 1*, rk- ty,"n-'y', d B
' for k ) 2. This last vector space has dimension 2k + 5.
:  And  s im i l a r l y  one  ge ts  U2(X ' ) , _ , ,

- ytdx ̂ dt - 3xydy 4 a, - sv2cv jil l.
= (z , t )UUJ ,  w i th  c rJ  =6yz-  t2 )CxnAy -  x tdxn  dz  -

After these compl icated formulas i t  comes as a surpr ise that the spectral
squence 

!*(0 
degenerates at EZ and the only nonzero terms are

no,o/r \  -  ro,2tr t  -  ' .or2rct  - , . .
"  

'  r r / o  =  E ; ( r / l  =  E ' ; l f ) z=  C .

I t  fo l lovrs that H'(S):g '(p2) and henee s has the same rat ional  honrotopy type as p2,

according to Berceanu [1] ,  who has proved f l tat  a project ive complete intersect ion (with

arbi t rary s ingular i t ies) is an intr insical iy formal space.

Concerning the Mi lnor f iber one has Ho(F) = c with t r iv ia l  act ion of  h*,
n2(f)  = C2 with the character ist ic polynomial  of  h* equat to t2 + t  + 1 and
H 1 1 n 1  = H 3 1 p ; = s .

Note that via [17], one can use (4.2) and (4,3) to compute quickly several other
exam ples,

Final ly we express our hope_that the computers might play an important role in
dolng concrete computations with the method presented in this paper.
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