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PECTRAL CAPACITIES IN QUOTIENT ¥ EECJ‘}CT SPACES
Flerian-Horia Yasilescu

Dedicated to the memory of Constantin Apostol

The definition of a spectral capacity has been proved to be a fruitful one in the
theory of spectral decompositions of linear operators. Most of its standard properties

still hold in the context of quotient Fréchet spaces.

1. INTRODUCTION

One of the most important conecepts introduced by C. Apostol in the theory of
spectral decompositions of linear operators is that of spectral capacity ([2], Definition
2.1). He defined it as a map E from the family of all closed subsets of the complex
plane €, with values closed linear subspaces of a given Banach space X, satisfying the
following conditions:

() E@) = {0}, E() = X;

(<] @'
(1.1)  Gi) E( 0 F_)= 0 E(F _)for every sequence of closed subsets {1 } ; of ©;
m=1 A m=1 n =

(iil)etes E(él) +...4 E(G ), where {Gj}?:l is an arbitrary finite open cover
of C.

C. Apostol showed, in particular, that every decomposable operator T on X (in

the sense of C. Foiag [8]) has a spectral capacity with the property
(1.2)  TE(F)C E(F) and o(T,E(F)) < F for all closed sets I cC.

(We denote here by 0(T,Y) the spectrum of T when acting on Y, where Y is a subspace of
X invariant under T.) : .

This concept of Apostol's has been adapted to various situations, assuming
changes of both the domain of definition and the range, assigned to one or several
operators; nevertheless, all these versions essentially prescrved the requirements {1.1)
and (1.2) (see [1], [10], [16], [17], [22], etec.).

Let X be a Fréchet space (in this work all Fréchet spaces are assumed to be

locally convex) and let Lat(X) denote the family of all Fréchet subspaces ([21]) of X



.(i.e. those linear subspaces Y of X that have a Fréchet space structure of their own
which makes the inclusion YC X continuous). As the notation suggests, Lat (X) is a
lattice with respeet to the sum and intersection of subspaces (see, for instance, [18],
Lemma 2.1). A quotient Fréchet space ([21]) is a linear space of the form X/Y, where X -
is a Frechet space and Y € Lat (X).

Let Xl/Yl’ X2/Y2 be quotient Fréchet spaces and let T : Xl/Yl > XZ/Y2 be a

linear map. We define the set

GO(T) :{(xl,xz)E Xlx XZ; Xg € 'I“(x1 + Yl)},

which is obviously a linear space. We say that T is a linear operator (or simply operator)
if GO(T}E Lat (Xlx Xz). (Hlere we adopt the terminology from [19). A linear operator is
called in [18] & morphism in the category of quotient Fréchet spaces; it is equivalent to
the homonymic concept introduced in [21] in a different manner.) The family of all
linear operators from Xl/Yl into XZ/Y2 is a linear space under the usual operations
((18]), denoted by L(le‘fl,}{z/Yz). When X, /Y, =X/Y = Xg/Yo we set L(X/Y)s=
= L(X/Y,X/Y), which is, in this case, an algebra ((18]). A strict operator T : Xl/YI +
5 XZ/Y2 is a linear map which is induced by a linear and continuous operator TO: Xl e
TO(YI)C YZ; in other words T(x + YI) = Tox + Yz for each x€ Xl' A
striet operator is a linear operator ([18]) (Strict operators are called strict morphisms in
[18] or [21]).

Let X/Y be a fixed quotient Fréchet space. A linear manifold D = D /YcX/Y

* X2 satisfying

will be called a (quotient Frechet) subspace of X/Y if DOE Lat (X). The family of all
subspaces of X/Y, which is easily seen to be a lattice with respect to the sum and
intersection of subspaces, will be also denoted by Lat (X/Y). Direct and inverse images
of subspaces via linear operators are subspaces too ([22]; see also [18]), Lemma 2.1).

Let p(X/Y) be .the family of those linear operators T that are defined on
subspaces D = D(T)€ Lat (X/Y), with values in X/Y. Then D(T), which is called the
domdin of definition of T, has the form D(T) = D (T)/¥, with D (T)e Lat(X). This class
of operators, which has been studied in [22], is a natural extension of the family of
closed operators (and even of the larger family of those linear maps between two
Fréehet spaces, whose graph is a Frdchet subspace, which originates in [4]).

If Te p(X/T), we may also define its iterates. Namely, let D(Tz) = T—I(D(T)}n :
Then D(T?)e Lat(X/Y) and T2: D(T2) + X/¥, given by T% = T(T) € e DY), is a
member of P(X/Y). In general, if T" has been defined (n>1), we set p(r™l) =
=T HDE™) e DT). Then DIT™Y)e Lat (X/v) and T = 7)) € e D™L). Note
also that D(Tnﬂ) e Lat (D(T™).

Let € =€ u{=} be the Riemann sphere and let U c C,, be open. We denote by



0(U,X) the Fréehet space of all holomorphic X-valued funetions on U. Let OO (U,X) be
equal-to 0(U,X) if @ ¢ U and equal to{fe O(U,X); f() = 0} if @ € U. It is known that the
assignment U +O(U,X)/O(U,Y) (Uc ©_ open) is en analytic sheaf Oyy on €, whose
space of global sections T'(U,0 X/Y) on U is given by

I (U,0y,y)=0(U,X)/0(U,Y).

The space T'(U,0 X/Y) will be denoted by O(U,X/Y). The assignment U -
-+ 00({),}{}/()()(8,}() is a subsheaf oOX/Y of OX/Y whose space of global sections on U
equals O()(U,X)/OO(U,Y) and will be denoted by OO(U,X/Y)° Note that both X/Y and
oo(U,X/Y) are (isomorphic to) subspaces of O(U,X/Y) (see [18], Section 3, for some
details).

Let Te P(X/Y) andlet Uc € _ be open. Then T induces a linear operator
which extends T and maps the subspace 0O(U,D(T)) into OO(U,X/Y) (see [18], Section 2).
U€ P(0{U,X/Y)) and D(TU) = 0(U,D(T)).

Let ¢ be the coordinate function on €. Then ¢ induces by multiplication a linear

In other words, T

operator
Ly ¢ OWUDIT)) + o(U,DT)).
Therefore we have a linear operator

(1.3) - Ty ,0U,D(T)) + O(U,X/Y)

tu
for every open Uc C . (It is, in fact, a sheal morphism.)

The resolvent set p(T,X/Y) of T e P(X/Y) is the largest open set Vc € _ such
that the linear operator (1.3) is bijective for every open Uc V., The complement
olT,X/Y) of p(T,X/¥) in € _ (which is a nonempty closed set) is called the spectrum of
T. (These concepts have been defined in [18] for T € L(X/Y) and extended in [22] for
T e p(X/Y).)

A subspace Ze Lat(X/Y) is said to be invariant under T e P(X/Y) if
T(Z n D(T))c Z. We denote by T]Z the linear map T:Z n D(T) + Z and call it the
: (Z). The family of all invariant

5ub.spaco:> of T will be designated by Inv(T). The spectrum of the operator T]Z will be
denoted by ofT,Z).
Let Te p(X/Y) and let Z =12 /Yelnv(T) Then T induces a linear operator
T e p(x/7 )thh D(T) = (D o T+ Z MZ , given by T(x + 7 ETRE (x,y) e G (1))

bzom now on by spectral capacity we mean a map E defmed on the closed



subsets of ©_, with values in Lat(X/Y), such that (1.1) is fulfilled (with € replaced by L
and X by X/Y). A linear operator T g P(X/Y) is said to be decomposable if there exists g
spectral capacity E with values in Inv(T) such that ofT,E(F})c F for all closed Fc C
(which is essentially (1.2)). Such a spectral capacity is said to be attached to T.

This concept of decomposable operator extends the homonymie one due to C.
Foias (see [8] or [3]), via the characterization from [9] (see also [16], [17], [22] for other
extensions). Spectral capacities of this type and decomposable operators from L(X/Y)
have been studied in [22]. Unlike [22], we consider in this work "unbounded" decompo-
sable operators, that is, operators from P(X/Y). Our main concern is to recapture, in
the present setting, some of the properties of (unbounded) decomposable operators in
Fréchet spaces (see [16], Chapter IV). At the same time, we try to prove that the
framework of quotient Fréchet spaces allows the development of a sufficiently sophis-
ticated theory of spectral decompositions, in which the contributions of C. Apostol play

a central role.

2. THE SPECTRUM OF A CLOSED OPERATOR

In this section we shall present a characterization of the resolvent set of a
closed operator in a Fréchet space (and therefore of its spectrum) in terms of spaces of
holomorphie vector-valued funetions (see [18], Proposition 1.2 for continuous operators).
Although elementary, it provides, in our opinion, the necessary explanation for the defi~
nition of the spectrum of a linear operator in a quotient Fréchet space, as given in the
Introduction.

Let X be a fixed Fréchet space (which can be regarded as the quotient Fréchet
space X/{0}), and let C(X) be the family of all closed linear operators, defined on linear
subspaces of X, with values in X. It is known ([18), Lemma 2.5) that L(X)(= L{X/{0}) is
precisely the algebra of all linear and continuous operators on X. If T g C(X), the
algebraic isomorphism between D(T) and G(T) (i.e. the graph of T) shows that
D(T) ¢ Lat(X). Moreover, the operator T : D(T) + X becomes continuous when D(T) is
endowed with this topology.

Following [20] (see also [16]), a point z,e € is said to be regular for T e C(X)

if z, has a neighbourhood Vs in@  such that
(1) (z - T)" ! & L(X) for every z ¢ V,nC;
(2) the set {(z - T)—]'x; Ze VO n €} is bounded in X for each x ¢ X.
The set of all regular points for T, which is obviously an open set in € _, will be

denoted by pw(T,X). We shall prove in this seetion that pw(T,X) = p(T,X), where the



latter has been defined in the Introduction.

9.1, LEMMA. Let Te C(X) and let % e {JE,_,(’F,X)“ ¢. Then there exists an open
set V& C, Z, € V, such that the operator ¢ - T : O(v,D(T)) -+ O(v,X) s bijective.

PROOF. Let V& € be an open neighbourhood of 2z such that (z - T)—]L e L(X)
for every ze V and the set {(z - -T)"lx; z ¢ V} is bounded in X for every x € X. Then the
operator ¢ ~ T is obviously injective on O(v,D(T)). Let us prove that it is surjective too.

Let ge O(V,X) and set f(z)=(z ~’i‘)"1g(z) for ze V. We first show that the
funetion f : V =+ D(T) is continuous. For, let w € V be fixed andlet W <V be a compact
neighbourhood of W It follows from the uniform boundedness principle that the family

{(z - 'F)"l; z€ V} is equally continuous. In particular, the set

2.1 {w-1 " w_ - D glw); we W

0
is bounded in X. Since the set
I

IT(w~-T) e 'I‘)"lg(W); we W}HE

CWe{(w- T)"l(wo - ’1‘)"1g(w); we W}~ {(wo Sy Le(w); we W)
is also bounded in X, it results that (2.1) is actually bounded in D(T). Therefore

(2.2 lim {wo - wi(w - ’l‘)“l(wO - '1‘)—1g(w) =
wrW

in D(T). Using the continuity of g, we infer that

lim T(w - T)"l(g(w) = g(wo)) =
W

= lim w_(w ~'1")_1(g(W)~ glw ) - lim (g(w)~ glw )) = 0.
(o] O O
W WHW

Therefore

(2.8 lm (-1 glw) - glw ) =0
W+ W
o
in D(T). From (2.2) and (2.3) we deduce that

lim (f(w) - f(wo)) =5 m (w0 - wiw - T)_l(wo - ’1‘)"1g(w) +
wrw WHW

+ Hm (w, - )" Hegw) - glw ) =0
W W
o}
in D(T), which proves the continuity of the function f at W Since w € V is arbitrary,

f:V =+ DT is continuous.



Note also that

lim ((w - WO)Fl(WO - T)“l(g(w) = glw = (w = ) e(w) =
W W
0
=(w - T)~1g‘(w Y- (w_ - T)hlf(w )
0 0 o 0
in X, and that
lim T((wj- wo}—l(wo = T)_l(g(w) - g(wo)} - (wo - 'I‘)_]'f(w)) =

ww
0

flw )

i Wo(wo g T)-lg'(wo) ~ g'(wo) 4 f(wo) - wo(wo -T)" 3

in X, where g‘(wo) = (dg/dw_}(wo). Henee the limit

lim (w - wo)”He(w) - fw )

W--w
(@]

exists in D(T). This shows that the function f: V =+ D(T) is differentiable at every point
Wi V. By the (vector version of the classical) Looman-Menchoff theorem, it follows
that f ¢ O(V,D(T)).

2.2. LEMMA. Let T e C(X) and let Vc C_ be open. If ¢~T: 0O(V,D(T)) 3
+ O(V,X) is bijective, then VC pW(T,X).
PROOF. For every ze V n € we define the linear map
Ti= (= T)-lx)(z), Xig X,

where x is regarded as as constant function from O(V,X). Since (¢ = T)']‘ : O(V,X) -+

> OO(V,D(T}) is continuous (by the closed graph theorem), it is clear that D= X »D(F)

is continuous. Notice that

(2 - D)T,x = (z = T = ) 0)2) = (g - D - TV x)(a) = x
for each \a X, and l
T,(z - Ty = (g - T) 'z - Ty)@) = (z - Tz - T) Ly)z) =
= (g - Tz - T) y)Nz) = y

for every y ¢ D(T). This shows that ’I‘Z =(z ~ ’I‘)_1 forallze Vn C.
Let z, € V be fixed and let VOC V be a compact neighbourhood of Z. Then the
set

{z -1 % xe vV.ne€le (g - T)"lx)(\fo)

is. bounded in D(T), and therefore in X. Thus 2, €& pW(T,X), and so V& pw(T,X).



Sl

2.3. LEMMA. Let Te C(X) and assume that « g pW(T,x), Then there exists an
open set V c@_, weV_, such the operator [ - T OO(Vm, D(T) + OV, X} s

bijective.

PROOF. Since » ¢ pw('I‘,X), there exists an open neighbourhood V, of * such
that (z - ’i")"l e L(X) for all ze V_ n € and the set {(z - T)h]'x; Zz€ V¥V, n ¢l is bounded
for each xe X. Then the operator & - T is clearly injective on OO(Vm, D(T)). We shall
prove thatg - T is onto O(V_, X).

Let ge O(V_, X) and set f(z) = (z - 'F)"j'g'(z) for ze V_ n C. Since every point
ze V,, n C is regular for T, it follows by Lemma 2.1 that f€ O(V_ n €, D(T)). We shall
prove that f is analytic and null at infinity.

Let W _cV_ bea compact neighbourhood of ®. Then the set
f(wm AC)i= {(z - T)_Ig(z); z€ W_n @I:}

is bounded in X (by the uniform boundedness principle). This shows that fe oW ,X)
(see the proof of Corollary I.4.14 in [16]). Then, from the equation

(2.4) f(z) =2 'Ti)+ 21 (), ze V. A C,z#0,
g ©

it follows that iimzymznl’l‘f(z) exists in X. Since limmmz~1f(z) =0 and T is closed, we

must have Iizn?_waz"}"l‘f(z): 0. Using this faet, we obtain, agein from (2.4), that

Iim?ﬁ,mf(z) = 0. Therefore

(2.5)  lim Tf(z) =lim (zf(z) - g(z))
Z+CX) el
exists in X. Then we have as above that Hm , Tf(z) = 0. Consequently both f(z) and

Ti(z) = 2f(z) - g(z) are analytic in V,, and null at @. Hence f € OO(Vm,,D('I‘)).
The next consequence of Lemma 2.3 is known (see, for instance, [16], Lemma

I11.3.6) but its proof is seemingly new.

2.4. COROLLARY. Lel T e C(X) be such that = ¢ p_ (T,X). Then T & L(X).

W

PROOF. We take in the previous proof g = x, where x€ X is fixed. Then from
(2.5) we infer that lim2+mzf(z) = X. Since lim_,  2Tf(z) exists in X and the operator T is
-closed, we deduce that x € D(T). Hence D(T) = X, and so T € L(X).

2.5. THEOREM. Let T e C(X) and let V c € _ be open. We have Ve pw(T,}{) if
and only if the operator
Eyscfs LV,D(T)) + O, X)

is bijective.



PROOQF. Let Ve pw(T,X). From Lemmas 2.1 and 2.3 we derive the existence of
an open cover {VJ} = of V sueh that ¢ -T: o(VJ. D(T)) + o(V. X) is bijective for all
je d. Let ge o(V,X) be given. Then for every je J we can fznd f SO D(T}) such
that (¢ 'I)i =g| V Since (r - T) } - £ )" ¢ on VJ” Vi it foi]o'm;. f —f on V].n‘sfk.

Therefore Um[e is u function f € o('\f D(.[“\ such € This shows

that ¢ - T is onto o(V,X). Asg - T is cbviously injective, it mu t be bijective.

Conversely, the assertion follows from Lemma 2.2.

2.6. COROLLARY. The set Py(T,X) is the largest open set V< Cg with the
property that & = T+ 0(V,D(T)) + 0(V,X) is bijective. Therefore Pry(TsX) = (T, X).

2.7. REMARK. The family p(X)( = p(X/{0}) is strictly larger than the family
¢(X). Indeed, if Y € Lat(X) is not closed in X, then the inclusioni: ¥ + X isin p(X) but
not in ¢(X). Nevertheless, it is the elass ¢(X) which is the most interesting from the

spectral point of view. Specifically, if T e p(X) and p(T,X%) # @, then T & ¢(X).

3. NATURAL SPECTRAL CAPACITIES

The uniqueness of the spectral capacity attached to a decomposable operator,
first proved by C. Foias [9] (see also [10], HGJ, [17] [22] for some extensions) makes it a
very useful concept in the study of spectral du.ompoutions of linear operators. In this
section we shall prove a version of this uniqueness result in our more general setting.
Some other properties, extensions of statements from [2], [8], [7], [13], [14], [161; [171,
[22], will be also presented.

We shall rely heavily upon the work [18]. We shall also use some assertions from

[19] and [22] (generally accompanied by an outline of the proof).

3.1. REMARK. Let
0+ X /Y, = X, /Y, Lo Xo/¥g—+ 0

be an exact complex of quotient Frechet spaces. Then for every open set Uc & | the
complex :
SU FI\U
is also exact. This assertion is proved in [19]._For the convenience of the reader we shall
sketeh its proof.
(IS L(Xl/Ylstsz) is arbitrary, N(S) = N _(8)/Y, is the null-space of §, R(S).=
= RO(S)/Y2 is the range of S and U< € __ is open, then we have the equalities NO(SU) =



:O(U’No(s)) and RO(SU):'O(UJO(S)). These equalities follow from the elementary
properties of tensor products with nuclear spaces (see, for instance, [5]). Then, if
Te L(XZ/YZ’Xfi/YS) and R(S)< N(T), we have the equality

O(U,NO(T)/RO(S)) = NO(TU)/RO{SU) 3

from which we derive the desired exactness.

From now on X/Y will be a fixed quotient Fréchet space.

3.2. LEMMA. Let Te P(X/Y), let Z =2 /Y € Inv(T) and let Te P(X/Z ) be the
operator induced by T. Then the union of any two of the sets o(T,X/Y), o(T,Z) and
O(T,X/ZO) contains the third.

PROOF. For every open UC C __ the following diagram

i k

0+ OU,D(T| Z) ~L» O(U,D() —=+ O, D) + 0
(3.1) 2y =T 2)y Ty~ T Ly- ‘T‘U
iU ky

0+ O(U,Z) ————— O(U,X/Y) —— O(U,X/ZO) + 0

is commutative, where i: Z + X/Y is the inclusion and k: X/Y -+ X/Z0 is the canonical
map. The commutativity of (3.1) follows from the results of [18] (see especially
Theorem 2.8). Moreover, the rows of (3.1) are exact, by Remark 3.1. Therefore if any
two of the columns of (3.1) are exaet (i.e. the corresponding operators are bijective)

then the third is exact as well, whence we derive our assertion.

If Te P(X/Y) and £ e X/Y, we denote by 6T(E) the set of those points ze € | |

for which there is an open set V containing z and a section ¢ € OO(V,D(T)) such that
(z;v = Tv)q) =¢ (where £ is regarded as a section in O(U,X/Y)). G,P(g) is an open set which
is called the local resolvent (set) of T at t. The set yo(£)=C_ \ §5(€) is called the
local spectrum of T at £ (see [3], [16], [22] for some stages of these concepts).

A linear operator Tg P(X/Y) is said to have the single valued extension

property (briefly SVEP) if the operator

ty ~ Ty ,0U,D(T)) + O(U,X/¥)
is injective for every open U< €_, In this case, for each ge X/Y there exists a
uniquely determined section Eqe L (W,D(T))  such  that Gy - TW}‘ET:ES where

W =8 1(g) (see the above references).

3.3. LEMMA. Let T e P(X/Y). The local spectrum has the following properties:




it

(1) v (0) = @;

@2V E Y)Y €)Y v ) for dlEn e X/Y;

()Y, () =€) forallEe x/y and ze ¢\ {0}
(4) if Ee D(T) and ¢ oO(V’D(T)) satisfies (¢

_Tv)q; =& for some open
Ve s o), then g g 00(\/,[)(“1‘2)).

v

PROQF. Properties (1), (2) and (3) are simple exercises.
Let us prove (4). We have:

o~ S O ' =
Tyb =0 +Lpe O(v,D(T) = D(T,).
In other words,

A AN 0
¢ € D((T)?) = DIT?),) = Ov,D(d).

On the other hand, ¢ € P(X/Y), and so ¢ € OO(V,D(TZ)).
Let Te P(X/Y), let WS € be open and let F = C_\ W. We define the linear

manifold
(3.1 0. w,p@)={pe OMW,DM), €, - T, ¥e X/Y},
which is a subspace of OO(W,D(T)). Then the image

EO o e o O / A

is a subspace of X/Y.If F=C_, we set E,(I),(F) = X/Y. Since TW extends T, from the

equation
Ty = Ty = Tyylyy - Tyy¥ = €y = Ty)Tyy0,
valid for every ¢ € 0O(W,D(Tz)), it follows that TW maps 0O(W,D(Tz)) into OOC(I'\.?,D(T)).
3.4. LEMMA. Let Te P(X/Y) and let wc C, be open. Then for every open
VC W the operator
Hha "
Ty = Ty ¢ LV, O (W,D(r*) + 0V, 0 ,(w,n(T))
is bijective.
PROOF. There exists a linear and continuous operator
T4 1 OV,0W,x) + OV, O(W,X))
which is given by the equation
(3.3} iz - w)(rof)(z,w) =f(z,w) - flz,z), z€ECN YV, weCnH W

We shall also use the linear and continuous operator




~ Al

8 o oV,0(w,X)) + Q(V,X)

given by (8 f) z) = f(z,2) (ze V). Let T (resp. 8§) be the striet operator induced by T
(resp. § ) fzom O(V O(W,X/Y)) into ()(V O(Vs X/Y)) (resp. from Q(V, O(W,X/¥Y)) mto
O(V,X/Y)) Then from (3.3) we derive eabﬂy the equality

(3.4) (Cv ~ Cw)rci) = -89, 6 € O(V,0(W,X/Y))

(where we use some obvious identifications). We shall show that the operator T induees g
map

r 2
(3.5)  7T:0(V, 0,(W,D(T))) ~ o0V, 0, (W,D(T)) ,
which provides an inverse for Ly - TWV .
If ¢ O(V,OOC(W,D(T))), then £,.¢ is a section in O(V,0(W,D(T))) and we may

write the equalities

(3.6)

Let us prove that
Gy = Ty = Cy = Tyyy)00.

Indeed, it is clear that ercp i;VGci) We also have GTWV¢=TVS<§J since if
(f,e)e G ( WV) then § o\fr8) = (60f,60g)€ GO(TV). Therefore

0 (Cw = TWV)¢ = (QV = ’I‘V)(SCIJ.

On the other hand, the restriction of § to o(V,E%(F)) is just the identity, where
F=€_\ W. Hence

(C“‘,l o ri"‘vv)$ = G(Cw T Tv\]v)d) = (g‘! o rF-\/)(S¢‘n
If we return to (3.8), we get
Cy =Lty = Tygyto = @y -£yy)80.

Since the map Ly, - Gy Is injective (which follows from the fact that if the funetion
(z - w)f(z,w) belongs to O(V,0(W,Y)), then f itself must be in O(V,0(W,Y))), we obtain

(E.»‘;V = Tv\yv)tq) = 6¢°
Thus
Cy = Tygylt = Cy = Ty)ud + Ly - Ty )6 = ¢,

by (3.4). This shows thatt is a right inverse of Ly~ TWV’ Moreover



7 =16 -6 € OV.00,D(),

2
- TS O ey I ]
and therefore td € OO(‘\ ,OOG(%\ DIE))).

Note also that
=i Vh =

(since obviously ¢y, =gyt and if (f,g)€ G (Tyy); then T(,8) = (r fT o8) € G (Toy ).

Consequently (3.5) must be the desired inverse,.

3.5. COROLLARY. Let Te P(X/Y), let W& €, be open and let F = @lfm \W. If
O : e 2 5 : Oprn
te ET(l«) and ¢ € 0OC(W,D(F)) satisfies (z;w - Iw)cb =E, then e 0€ ET(}) for every
we W, where € : O(W,X/Y) + X/Y is the strict operator induced by the evalution at
W ¥
the point w.

PROQF. It follows from Lemma 3.4 that we caﬁ find a section Y&

& OV, 0,(W,D(T 2))) such that (t;v = Tyl

Tnen we have

) = ¢, where VC W is an arbitrary open set,

(CV 5 TV)EW,Vq) = E:w,\/(CV % 'I“.f\\-’\;’hlJ 3 Ew,vq) = qu)’
and Ew,Vq’ € oO(V,D('I‘)). Therefore, for V = W, we infer that YT(swd))C F.

As a matter of fact, we actually have
Yl ¢) = Yp(€)
for every we € n W, which can be shown by similar arguments. We omit the details (see
(18], Proposition IV.3.4).
3.6. LEMMA. Let T € P(X/Y) have the SVEP. For every closed F ¢ C,, weset
EL(F) =1{£ e X/¥; yp(€)e 1} .
Then E(F) = Eq(F) € Inv(T).

PROOF. If £ e EL(F), then £ = (g, -
W=C_ \ F. Hence £ e (F) The inclusion E

T\ ¥, where ¢ = ET[W e ,O(W,D(T)) and
'I‘( )< E(F) is obvious,

That ET(F) £ Inv(T) follows from the equality

(= Ty Tyt = Ty - Ty,
valid for every ¢ € OOC(W,D(TZ)) (which has been already noticed).

The next result extends an assertion which originates in [14] (see also [13], [7],

[221).



$.7. THEOREM. Let Te P(X/Y) have the S8VEP. Then for every closed Fc ©_

one has the inclusion

o(T, Eg(P)< F no(T,X/Y) .

PROOF.If F = € the assertion is obvious, so that we may assume F # € _. Let

W =& _\F andlet Vc W be open. Then the diagram
B 5
ET(F) noDAT) =t ET(H
‘woTw Sw Ty
rr :
2y s o w,nem)
0OC(W,D(T ) 09ctWs

is easily seen to be commutative. Using the funetors 0OV, =) and OV, = ), we obtain the .

commutative diagram

By = Ty '
(5:7) Sw = Twy Sw Ty
Ly~ Tyy

2
0OV, 0, (W,D(T ) ———— O(V,OOC(W,D(?)))

(see [18] for some details).

We have to prove that the operator
(3.8) gy =Tyt JOV,ERF) n DIT)) + OV,EL(F)
is bijective. The space Ep(F) is isomorphic ‘to the space OOC(W’D(T))’ since T has the
SVEP. Similarly, the space _ET(F) n D(T) is isomorphic to the space.OOC(E-V,D(TZ)) (by
Lemma 3.3 (4)). Therefore, to prove the bijectivity of (3.8) it suffices to prove the
bijectivity of Ly = Tyys When acting on the lower row of (3.7), which follows from

Lemma 3.4. This shows that
U(T,ET(F))C B

As we clearly have
Ep(F) = Ep(F no(T,X/Y)) ,

it follows from the above result that

o(T, Ep(F)) = o(T, Ep(F 0 o(T, X/ YD) e F nolT,X/Y),
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which completes the proof of the theorem.

3.8. REMARKS. 1° Theorem 3.7 is connected with another important observa-

tion of Apostol's. Namely, he proved directly that if X is a Banach space and T€ L(X)
has the SVEP, then there exists a holomorphie functional ecaleculus with functions
analytic in neighbourhoods of a given closed set FE C, associated to the linear map
TIET(F) (2], Theorem 2.10; see also [6], [7], [13], [22] for further development). It
follows from Theorem 3.7 that if X is actually a Fréchet space and T€ C(X), then
ET(F)E Inv(T) and (J('l‘,,!L‘,I\(]E))c F for each closed F& €. Hence the existence of a
holomorphice functional caleulus for T| ET(F) (as well as its consequences) can also be
obtained from the general theory of Fréehet space operators (see [16], Seetion IIL3).
The Fréchet space structure of Ep(F) and the spectral inclusion U(T,ET(F))C F (with
respect to this structure) has been first noticed in [14] (when ET(F) is supposed to be
closed in X, the assertion goes back to [3]).

2° If Te p(X/Y) has the SVEP, then the assignment F + ET(F) provides a map
with the properties (i} and (ii) from (1.1) (with € replaced by €_). If for every open

cover{Gj};Ll of € one has

X/Y = ET(G l) SR ET(G n)’

then the operator T is decomposable, via Theorem 3.7.

Conversely, we shall see that every decomposable operator has the SVEP and its
spectral capacity is uniquely determined and coincides with the natural one, given by
Lemma 3.6.: :

3% As one might expeet (see Corollary 2.4}, if T€ P(x/Y) and ® ¢0(T,X/Y), then
Te L(X/Y). This assertion is obtained in [22]. For the convenience of the reader, we
shall sketch its proof. Let U=¢€_ \o(T,X/Y) and let £E=x+Ye€X/Y. Take
¢ e 0O(U,D(’I‘)) such that (CU - TU)¢ =L IEefe OO(U,DO(T)) is in the coset ¢ and
gE 0O(U,X) is in the coset TUd,m, then ¢f - g - x€ O(U,Y). This shows that x€ DO(T),
Therefore D(T) = X/Y.

3.9. LEMMA. Let T e L(X/Y) be such that ® g£o(T,X/Y) and let U € € be open,
U 20(T,X/Y). Then the operator

ty - Ty 00U,X/Y) ~+ O(U,X/Y)
is injective.

PROOF. Let ¢ € O(U,X/Y) be such that (ZU - TU)(I) =0, IV = U\ a(T, X/Y), then
¢|V=0. In other words, if fe O(U,X) is in the coset ¢, then f|Ve O(V,Y). If
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A 2 o(T,X/Y) is a Cauchy domain such that A< U, and T is the boundary of 4, then the

Cauchy formula

glz) = (omi)”} [ w - 2 Yw)dw, ze b,
I‘

defines a functio_n ge O(A,Y). On the other hand, since fe O(U,X), we must have fla =
= g| A. Therefore fe O(U,Y), that is ¢ = 0.

3.10. LEMMA. Let Te P(x/y) and let zj = Xj/YE Inv(T)(j = 0,1,2) be such that

either Z, O Z is in D(T) and X/Y = Z, + Z,. If o(T,2,)0 @?f('l“,Zz)Uo('lf‘,Z1 n ZZ)) =@,

2 1

then 7. G 7.
0 1

PROOF. Let0:Z =+ XZ/(Xl n X,) be the operator given by the composite of
the canonical map X/Y - X/Xl, restricted to ZO, and the natural isomorphism from
X/X1 onto }{2/0{1 n X,) (induced by the decomposition X/Y =27, + ?‘2)‘ We shall show
that 6 = 0, which clearly implies our assertion.

LetEe Z and let U = p(T,ZO). Then there exists a section ¢ € OO(U,ZO n D(T)}
such that (z;U ~ l‘U}de =f, Let

6,12, 0 D(T) +(Xy0 D(TH/(X 0 X,)
be the restriction of 6 (note that X, n X,< DO(T) from the hypothesis). Then 90 and 6
induce, respectively, the operators

8,: 0MUZ n D(T)) + OO(U,(X2 n D (TH/(Xy n X o)

1'0
0, :0(U,2) » OU,X,/(X) 0 X)) .

Moreover,

(3.9) 8,y - Tyk =@y - TyPd =68 |

(see [18], Theorem 2.9), where T is the operator induced by T in Xz/(Xl ﬂ-XZ).
Next, let V=C_ \ (O‘(T,Zz) uo(T,z, n Z?)). Then
o, X, /(X 0 Xg) € 0(T,Xo/¥) Uo(T,(X) N Xg)/Y) =

1

::0('1‘,22) ot %, Zz) ;

by Lemna 3.2. Hence the operator
Ty-Ty ¢ OV,(Xy 0 DTH/(X) N X)) + O(V,X,/(X; n Xp))
is bijective and we can find a section

0q€ LWV, Xy n D (M/(X, n X))



Srhs

such that (?__‘,v - 'i\‘v)cb? = 0E. If ¢1 = 8140, let us ohserve that

~

Un v tun

by (3.9). Thus there is a section

(¢ )(¢1]Un'\/-¢2|UnV):O,

¢O € O()(U U \!,(X2 n DO(T))/(X1 n XZ))
such that tbo [U = 4)1 and <b0 IV = @2. Woreover {Z;U T TU . V)qao =@E. But Uu V=
=C,_. Hence ¢ =0 (see the proof ‘of Theorem 3.7 from [18]), and so € =0.
Consequently Zoc Zl‘

The next result is a sufficient condition which insures the SVEP (see also [7],

Bemerkung 1.2.3 for Frechet space operators with bounded specetrum).

3.11. THEOREM. Let T € P(X/Y) be such that for every open cover {Gl’GZ} of
C , there are a quotient Fréchet space Zo’ an operator S € P(ZO) and two subspaces Zl’
Zy€ Inv(S) such that Z,=Zq * Zy U(S,ZJ- n Zk) & Gj n G (j,k = 1,2), X/Y € Inv(S) and
S|(X/Y) = T. Then T has the SVEP.

PROOF. It suffices to prove that the operator

(.»q = rI‘U : O(U::D(FI‘)) & O(UsX/Y)

is injective for every open dise Uc €. Let U, V be open dises such that V. Ve U. Then |

G, =U and G,=C, \ V provide an open cover of & . Let Zj: XY (j=0,1,2) and
Se P(ZO) be given by the hypothesis, with respect to the cover {(}1,62}].
The complex of quotient Fréchet spaces
o
O Zl n Zz'——%* ZIXZZ
is exact, where a(n) =(n; -n) and B(nl,nz) =N, + N, According to Remark 3.1, the

g

complex

Olyy B

(3.10) 0 +olU,Z b, oW,z,) * 0

1
is also exact, where OiU(clJ) = (¢,~d) and BU(EDl,Lbz) =¢1 + ¢2. The exactness of (3.10)
shows that O(U,ZO) = O(U’Zl) + O(U’ZZ) and that _O(U,Zl) n O(U,Zz) = o(U,Z1 n Zz).
Therefore o(U,ZO)/o(U,Z?) is isomorphie to O(U,Zl)/O(U,Zl n ZZ)’ which in turn is
isomorphic to O(U,Xl/(X1 n XZ))‘ Let

8 : o(U,D(T)) + O(U,P'(}/(X1 n X,))

be the composite of the canonical map

0U,Z) * OlU,Z /OWU,L,)



and the above isomorphism. We shall prove that the diagram

e
OU,D(S) —* OU,X,/(Xy N X))

(3.11) -8 L

Sus Py

W
o(U,ZO) ek O(U’Xl/(xl n Xz”

is commutative, where% is induced by S in Xl/(X1 N XZ)" First of all note that
c(%,xl/(xl N X)) € 0(8,24) UO(S,Z) N Zy) ©

by Lemma 3.2 and the hypothesis. Since ¢ U we must have ESEL(Xl n X?)), by
Remark 3.8.3°. If & € 0(U,D(8)), we can write ¢ = cIDl + @2, with ¢j € O(U,Z ) (j=1,2). As
we have @ ?iG(S,Zl) c U, then Z, < D(S), as above. Hence @1 € O(U,D(?}

o= 0is ¢, € 0(U,D(8)). Therefore

ana ¢
1 d 30

and (CU ~ SU)(IJJ- € O(U,Zj) (j = 1,2). Consequently

e(fZU =Syl = €y - Sy e = @y - SU)"O‘?I )
showing that (3.11) is commutative.
Now, let ¢& O(U,D(T)) € O(U,D(S)) be such that (CU ~ TU)¢ =0, and let
¢ = ti)l + ¢2 be a decomposition of ¢ as above. Therefore, by the com mutativity of (3.11),
0= @\LU Syl = @y - Sy,

Pas

According to Lemma 3.9, the operator LU - S,, is injective. Hence <1J e 0(U, Z1 i )C

U
(U,éz), and so ¢ = da + (p2 (U /z) Since 0(S, /L?) nvsz=g@, it follow.s that ¢|V =N,
As Ve N a iz arbitrary, we must have ¢ = 0.

3.12. REMARK. When Y = {0} and therefore X, Zj (j = 0,1,2) are Fréchet spaces,
then the requirement o(S, 7}. n ? )C Gjn Gy, (j,k = 1,2) from Theorem 3.11 may be
replaced by weaker one a(S, Aj) = G (j = 1,2), provided Z,,Z, are closed subspaces of 2
(as stated in [7]). Indeed, in this oabe, if Uc € is an open disc {more generally a smplv
connected open set) and O(T,Z 1)C U, then OV(S,Z1 n Z,
proof of Theorem 3.11. Nevertheless, if Z n 72 € Lm(?’ ) is not closed in Zl’ then the

)€ U, which suffices for the

inclusion o(S, 7 [ )C U may not be true, as simple examples show.
For operatow with bounded spectrum, the condition from Theorem 3.11 is

necessary too, modulo similarities (see also i)

3.13. PROPOSITION. Let Te€ L(X/Y) have the SVEP and assarﬁe that

4944
fu@d\ 'L‘ig
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© g0(T,X/Y). Then for every open covei {QI,Q } of O(T,X/Y) there are a quotient
Fréchet space z an Injective operator 6. X/Y +7 o’ an operator § € L(zo) and two
subspaces 7,7, E Inv(S) such that / s Zi + ,_7,2 a(s,z.) c G, {j=1,2) and S]EO: To’

e @
where '[‘0 = OTB and Lo < O{X/")e

PROOF. For every open and bounded set U c € we define the quotient Fréchet

space
FplU) = O(U,X/Y)/(Ey; - T;)0U, X/Y)

(see [13] for Fréchet space operators). It is easily seen that T(; and &y induce the same
action on F'T(U). Moreover, 9(%;,Fn(U)) € U.
Now, let {Ul,Uz} be an open cover of 9(T,X/Y) such that Uj c ﬁj < Gj., and with

ﬁj compact in © (j = 1,2). We define the quotient Fréchet space

Lo = FplU )% FT(UZ)
and the operator 6: X/y + Z, given by 0t = (I8)},[8),), where [EJJ. is the coset of & in
i (U.) (j = 1,2). Since T has the SVEP, the operator 0 is clearly injective. We also set

Zy = Fo(uy)xloh z, = {odx Fp(Uy) and S € L(Z ) given by

o
Having these objects defined, our assertions follow easily.

We are now in the position to prove the uniqueness of the speectral capacity
attached to a decomposable operator in our sense (see also [9], [10], [16), [17], [22],
ete.). 2

3.14. THEOREM. Let T € P(X/Y) be decomposable and let E be a spectral

capacity attached to T. Then T has the SVEP and E(P) = 15,1‘(5‘) for all closed F ¢ €.

PROOF. That T has the SVEP clearly follows from Theorem 3.11. If F=F c C
is fixed and £ € E(F), then the section

b= &y - (] EEN,)E e Ow,pe)
satisfies the equation (C - T )Ci? =&y where U = C,\ F. Therefore & € ET(F),
Conversely, let {GI’GZ} be an open cover of €, such that F G1 and (_}2 nF=
= @, and let Zj = E(GJ-) (j = 1,2). Since E is a spectral capacity attached to T, we have

C_T(T,Zz) U 0(’!‘,21 n Zz)c Gyu (G n G ): G2 :
Then it follows from Lemma 3.10 that ET(F) c E(G )

If {G } is a family of open sets such that each G, _ shares the properties

1,n




]G

of G andn {f}l Q2 i} = F, it results from (1.1) that
. L
E o E(G = E(f
pF)e n (Gl,n) ()
n=1
Consequently ET(F) = E(F) for each closed Fc €.» and the proof of the

theorem is completed.

3.15. REMARK. One can also settle in this context the problem solved in [15]
for Banach space operators (see also [7], [13], [16], [22], ete.). Namely, let T€ P(X/Y)

have the SYEP. Then for every open Uc € one can define the quotient Frechet space

FT(U) = O(U,X/Y)/(Ey - TU)OO(U,D(T)) :

The assighment U * FT(U), which is a presheaf with respect to the natural restrictions,
corresponds to the sheaf model of a Fréehet space operator introduced in [13] (see also
[11] for sheaf theoretical results). Since both U + O(U,X/Y) and U + OO(U,D(T}) (and
‘hear e - &

therefore U (CU TU)O

proof of Proposition 3.5 from [18]), cne can derive that U * FT(U) is actually a sheaf.

O(U,D(T))) are acyelic sheaves (this fact- follows from the

Next, if Fc U is a closed set, then the natural operator ET(F) ""FT(U) is
injective. Moreover, the image of ET(F) via this operator consists of those sections
- from FT(U) whose support is in F. If, in addition, T is assumed to be 2-decomposable
(i.e. condition (iii) from (1.1) is valid only for n < 2), then one ean show that T is
decomposable, via the fact that the sheaf U * FT(U) is, in this case, soft, as done in
[13], Section 4. We omit the details (the case T € L(X/Y) with ® £0(T,X) is treated in
[22]).

3.16. EXAMPLES. 1° Let K be a compact subset of the real line and let
X = A(K) be the Fréchet space of all analytic functionals carried by K (see, for
instance, [12]). If T € L(X) is the operator induced by the muitiplication with the
independent variable, then T is decomposable and the spectral capacity of T is given by

E(F)=A(FnK), F=FcC,
(see [17] for details). We note that ET(F) € Lat(X) but, in general, ET{F)_ is not a closed
subspace of X.

22 Let KO, K be compact subsets of the real line, K< K, and let X = AYK),
Y = A'(KO). Then X/Y is a quotient Fréchet space. If T € L(X/Y) is the strict operator
induced by the multiplication with the independent variable, then T is decomposable

[22]). The spectral capacity of T is given by

Ep(F) = (A'K ) + AYF n K)/AK ), F= 1~ €y »
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In particular, the strict operator induced by the multiplication with the independent

veriable in spaces of hyperfunctions on the real line [12] (which sre quotient Fréchet

spaces) is decomposable. .

3° To get a genuine "unbounded" decomposable operator in a quotient Fréchet

space, it suffices to take a direct sum of an operator of the previous type and, say, an

unbounded selfadjoint operator.
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