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SPECTTTAL CA.PACITIES TN QUOTIEN'T FIiECLiET $T}ACES

Flot!an-FIoria Vasitrescu

Dedicatecl t'o the rnemory of Constdntin Apc.stol

" T h e d e f i n i t i o n o f a s p e c t r a l c a p a c i t y h a s b e e n p r o v e d t o b e a f r u i t f u l o n e i n t h e
theory of  spectral  decomposit ions of  l inear operators.  Most of  i ts standard propert ies

.  
st i l l  hold in the context of  quot ient Frdchet spaces'

1. INTTTODUCTION

o n e o f t h e m o s t i m p o r t a n t c o n c e p t s i n t r o d u c e d b y c ' A p o s t o l i n t h e t h e o r y o f

spectral  c lecomposit ions of  l inear operators is that of  spectrol  capaci ty ( [2] '  Def ini t ion

2 . 1 ) . H e < , j e f i i r e d i t a s a | n a p E f r o m t h e f a m i l y o f a l l c l o s e d s u b s e t s o f t h e c o m p l e x

p l a l r e C , w i t h v a l u e s c l o s e d } i n e a r s u b s p a e e s o f a g i v e n B a n a c h s p a c e X , s a t i s f y i n g t h e

fol lowing condit ions:

(i) t((,)_ {o}, r1c; = xt

(1 .1 )  ( i i )  D(  n  Fm)  =  n  o (Fm)  fo r  every  scque 'ce  o f  c losed suusets  { r r i f i= l  o f  c ;

l n=1  " '  m=1

( i i i )  X  =  I j (G1)  + . . .  +  l i (Gn) ,  * r t e re  {G i i }1  i s  an  a rb i t ra f y  f i n i t e  open  cove r

of C.

C . A p o s t o l s h o w e d ' i n p a r t i c u l a r , t l t a t e v e r y d e c o m p o s a b l e o p e r a t o r T o n X ( i n

the sense of C. Foias [8])  has a spectral  capaci ty with the property

(1.2) T[(rr ;c 1;1u; anc] o(T,[(F))  c F for a] l  c losed sets F c C '

(We denote here by o(T,Y) the spectrum of T l 'vhen act ing on Y'  where Y is a subspace of

X iuvar iant rr l tder T.)
. fh is concept of  Apostol 's has been adapted to var ious si tuat ions'  assunl lng

, 
changu, of both the donrain of definition and the range, assigned to oue or several

operators;  nevertheless, al l  these versions essent ial ly preserved the requirements (1 '1)

and  ( r . z )  ( see  [1 ] ,  [ 10 ] ,  [ 16 ] ,  [ 1? ] '  [ 22 ] ,  e t c . ) .

L e t X b e a F r d c t r e t s p a c e ( i n t h i s W o r | ( a l l F r d c h e t s p a c e s a r e a s s u m e d t o b e

locally convex) and let Lat (X) denote the faniily o1 s1i /rrdchet subspoces (1211) of x



( i .e. those l incar subspaces y of X that have a Frdchet spoce structurc of Ureir orvn
wlr ich mal<es t lre inclusion yc X continuous). As the notat ion suggests, Lat (X) is a
It i t t ice with respect to the sum and intersection of subspaees (see, for instance, [ lg],
Lentma 2.1) '  A quotient Frdchet spoce ([2iJ) is a l inear space of the fornr X/y, where x
is a Frdchet space and Y e Lat (X).

Let Xr/Y. Xr/Y rbe quotient Frdchet spaees and let T I Xr/y, + Xr/y ,be a
I i  near map. IVe def ine the set

co(r )  =  { (x 'x r )  e  Xrx X2;  x ,  e  T(x ,  +  yr } r

which is obviously a l inear space. We say that T is a l incar operator (or s imply operator)
i f  Go(T)e Lat (Xlx Xr).  ( l lere we edopt the ter i r inology from [19].  A l inear operator is
cal led in [18i  a nreppl l ;5pt in the category of  quot ient Frdchet spaces; i t  is  equiva]ent to
the homonymic concept introduced in [2f ]  in a c l i f ferent manner.)  The fami ly of  al l
I inear operators f rom Xr/y,  into Xr/y,  is a l inear space under the usual operat ions
( [18 ] ) ,  deno ted  by  .L (X r /Y 'X r /Y r ) .  Men  X l / y1  =  X /y  =  X r / y ,  we  se t  L (X /y )  =
= L(x/Y,x/y),  which is,  in this case, an argebra ( t181).  A st f ict  operdtor T r  Xr ly,  +
+ x2/y 

2 is a l inear map which is induced by a l ineaf and cont inuous operator To :  X, +

T ^ x +  Y "  f o r  e a c h  x e  X , ,  A
v / .  I

are ca]led str ict morphrsns in

+  X,  sa t is fy ing  To(Yr )c  Yr ;  in  o ther  words  ' f (x  +  y l )  =

str ict operator is a l inear operator ([18]) (Stf ict operators
[  18 ]  o r  [21 ] ) .

Let X/Y be a f ixed quot ient Frdchet space. A l inear manifold D = Do/ycX/y
will be calied e @uottent ltrdchet) su.bspcce of X/y if Do e Lat (X). .t'tre family of all
subspaces of.  X/Y, which is easi ly seen to be a lat t ice with fespect to the sum and
intersect ion of  uubspaces, wi l l  be also denoted by Lat (X/y).  Direct and inverse images
of subspaces via l inear oper '&tors &re subspaees too ( [22);  see also [18],  Lemma 2.1).

Let p(X/Y) be the fami ly of  those l inear operators T that are def ined on
subspaces D = D(1')  e Lat (X/Y),  wi th values in X/y.  Then D(T),  which is cal led the
dolndin of defttlition of T, has the form D(T) = Do(T)/Y, with Do(T) e Lat (X). Tlris class
of operators,  urhich has been studied in [22],  is a natural  extension of  the fami ly of
c losed operators (and even of the larger fami ly of  those l inear maps between tvro
Fldchet spaces, rn 'hose $aph is a Frdchet subspaee, lvhich or iginates in t4l) .

. ,  I f  T a p(X/T),  we may also def ine i ts i teretes. Namely,  let  D(T2) = f-1(t( ' r ) ) .  .
Then o(T2) e r,at (X/y) and 12 ; n(r2) + X/y, given uy r2g = alqy (E e o(r2)), is a
member of  p(X/Y).  In generBl,  i f  Tn has been def ined (n )  1),  we set D(Tn+1; =
= r-r(r(rn)).  D(' t ' ) ,  Then D(Tn+l) e Lat (x/y) and rnnlq = T(TnE) G e o(TI,+1)). ruote
also th&t n(Tn+i)  e Let (D(Tn).

byLet C- = C u {-}  be the Riemann sphere and iet  U c C_ be open. We denote



O (U,X) the Frdchet space of al l  holomorphic X-valued functions on U. Let p(U,X) Lre
equal toO(U,X) i f  o I  U and equai to{f e O(U,X); f(-) = g} i f  -  e U. i t  is knor. in that the

ass iqnment  U +  O(U,X) /O(U,Y)  (Uc  C-  open)  i s  an  ana ly t i c  sheaf  O" r "  on  C_ whose
space of global seetions | (U,O 

X/y) on U is given by

r  (u,oxl")  = o(u'X)/o(u'Y) '

The space f (U,OX/Y) wil l  be denoted by O(U,X/y). The assignment U +
-r 

oO(U,X)/oO(U,Y) is a subsheaf oOX/y of O*7" whose space of giob&l sections on U
equals oO(U,X)/.O(U,Y) and wil l  be denoted by oO(U,X/y). Note that both X/y and

oO(U,X/Y) are ( isomorphic to) subspaces of O(U,X/y) (see [18], Section 3, for some
detai ls).

Let T a P(X/Y) and let U c C_ be open. Then T induces a l inear operator

TU :  O(U,D(T) )  +  O(U,X/Y)

whieh extends T and maps the subspace oO(U,D(T)) into oO(U,X/y) 
(see [18], Section 2).

In other words, TU e p(O(U,X/Y)) and D(Tr) = O(U,D(T)).

Let 6 be the coordinate function on C" Then 6 induces by mult ipl icat ion a l inear
operator

eU:  oO(U,D(T) )  +  o (U,D( ' i ' ) ) .

Therefore we have a l inear operator

(1.3) dU - Tu : oO(U,D(T)) + O(U,X/Y)

for every open I-J c C_. ( i t  is, in fact, a sheaf morphism.)
The resoltrent set p(T,X/Y) of T e p(X/Y) is the largest open set V c C- such

that the l inear operator (1.3) is bi ject ive for.every open UcV. The complement
o(?,X/Y) of p(T,X/Y) in Coo (which is a nonenrpty ctosed set) is catled the spectrum of
'1. (These concepts have been defined in [18] for T el(X/y) and exten<.led in 122) f .or
T  e  p (x /Y) . )

A subspace Z e Lat(X/Y) is said to be invarianl under T e p(X/y) i f
T(Z n D(T))c Z. We denote by TIZ the l inear map T: Z nD(T) +Z and cal l  i t  the
restr ict ion of T to Z. I t  is easi ly seen that TlZe p(Z), The family of al l  invariant
subspaces of T wil l  be designated by Inv(T). The spectrum of the operator T lZ wil t  be
denoted by o('l',2).

Let T e P(X/Y) and let Z= Z^/Y e Inv(T). Tlren T induces a l inear operatof
t e r '(X/Zo) wjth D(t) = (Do(r) + zo)/Z;given by i(x n zo) = y + Zo((x,y) r 6o,t,r .

Ffom now on by spectrol copdcity we mean a map E defined on the closed
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subsets of C.o, with values in Lat(X/Y), such thnt (1.1) is fuUil ted (with C replaced by C*
and X by X/Y). A l inear operator T e P(X/Y) is said to be decomposoble i f  there exists a
spect|al capaci ly E vri th vulues in Inv( ' l )  such that 0(T,E(F))c F for al l  ciosed FcC*
(which is essential ly (1.2)).  Such a spectr&l capacity is said to be ottoched to T"

This concept of decomposable operator extends the homonymic one due to C.

Foiaq (see [8] or [3]),  via the characteri  zat i  on from [9] (see alscr [16], [1?], [22] for otner

extensions). Spectr&l capacit ies of this type and decomposable operators from L(X/Y)
have been studied in [22]. Unlike [22], lve consider in this work "unbounded" decompo-

sable oper&tdrs, that is, operators fron p(X/Y). Our main concern is to recapture, in

the present sett ing, some of the propert ies of (unbounded) decomposable operators in
F|dchet spaces (see [t6J, Cnapter IV). At the same t irne, we try to prove that the
franrework of quotient Frdchet spaces al lows the development of a suff iciently sophis-
t icated theory of spectral decomposit ions, in which the contr ibutions of C. Apostol play

a centr al r6le,

2. TIII] SPECTRUM OF A CLOSED OPERATOIT

In this sect ion we slral l  present a character izat ion of  the resolvent set of  a

closed operator in a I . ' rdchet space (and therefore of  i ts spectruln) in ternrs of  spaces of

holornorphic vector-valued funct ions (see [18],  Proposi t ion 1.2 for cont inuous operators).

Al though elementary,  i t  provides, in our opinion, t l te necessary explanat ion for the def i -

ni t ion of  the spectrum of a l inear operator in a quot ient l r rdchet space, as given in the

Introduct ion.

L; t  X be a f ixed Frdchet space (which can be regarded as the quot ient Frdchet

space X/{01),  and let  C(X) be the fami ly of  al}  c losed l inear operators,  def ined on i ineaf

subspaces of X, wi th values in X. I t  is knorvn ( [18],  Lemma 2.5) that t (XX= l , (X/{0})  is

precisely the algebra of  al l  l inear and cont inuous operators on X. I f  T e C(X),  the

algebraic isomorphism between D(T) and G(T) ( i .e.  the graph of T) shows that

D(T) e Lat(X).  i \ , loreover,  the operatol '  T:  D(T) + X becomes cont inuous when D(T) is

endov,/cd nr i t l r  th is topology.

Fol lowing [20] (see aiso [16]) ,  a point  zo e C_ is said to be regulor for T e C(X)

i f  zo has a neighbourhood Vo in C* such that

(1) (z -  r )-r  e l (X) for every z e Vo n C;

(2 )  t he  se t  { ( z  -  T ) - l x ;  ze  Von  C}  i s  bounded  in  X  fo r  each  x€  X .
' fhe set of  al l  reguiar.points for T,  which is obviously an open set in C_, wi l l  be

denoted by prr(T,X).  We shal l  prove in this sect ion that pr(T,X) = p(T,X),  where the
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Iatter has been clef ined in the Introduction.

z. l .  LE&{[4A" Let T eCiX; ond let zot t)w(T,X) n C. Thcn there erists an open

set Vc C, zo e V, such Lhat the aperator 6 - T : O(V,D(T)) " O(V,X) is bi iect ive'

P IaooF.  Le t  VcC be an  open ne ighbourhood o f  zo  such tha t  (z -T) - i€ f (X)

f6r every z € V and the set {(z - T)- lx; z e V} is bouncled in X for every x e X. Then the

operaior 6 - T is obviously inject ive on O(V,D(T)). Let us prove that i t  is surject ive too.

Le t  ge  O(y ,y )  and se t  f (z )=(z - f ) - lg (z )  fo r  zeV.  lVe  f i rs t  show tha t  the

function 6. y + D(T) is continuous. For, iet woe v be f ixed and let ! \ /  cv be a compact

neighbou'hood of wo. I t  fol lows f|om the unifornl boundedness principle that the family

{(,  -  r)-t ;  z e V} is equaily continuous. In part icular, t l le set

(2 .1 )  { (n ,  -  t ) -  l {wo -  r ) -  i  g (w) ;  w  e  w}

is bounded in X' Since the set

{ r { *  - ' r ) - l {uuo - ' , ' , -1* {w) ;  w  e  w}c

c  w .  { ( w  -  T ) - 1 ( w o  - ' r ) - l g ( w ) ;  w e w } - { ( w o - r ) - l s ( w ) ; w a w }

is also bounded in X, i t  results that (2.1) is actual ly bounded in D(T). Therefore

(2.2) l im (wo - wXw - T)- l(uuo - T)- Ig(w) = o
UPW

o

in D(T). Using the continuity of g, we infer th&t

t inr T(wo - T)-l(c(w) - B(wo)) =
r'1o

= 
,i"f1o"o,*o 

- r)-l(s(w) - s(wo)) - 
ffiotst*t 

- e(rvo)) = 0'

Thcle fore

(2.3) l i rn (wo - r)- l(e(w) - s(wo)) = o
F * o

in D(T). From (2.2) and (2.3) \ 'v e deduce that

t im (f (w) - f(vio)) = l im (wo * wXw
***o fito

a l im (w6 -  T)- ](g(w) -  s(wo)) = o
urr wo

in D( ' l ) ,  which proves the cont inui ty of  the

f:  V + D(T) is cont inuous.

-  t ) -1 (wo -  T) - rg ( * )  n

funct ion f  at  wo. Since wo e V is arbi t rary '



Note also that

l im ((w - *.,)- l{wo - r)- ltgtw) - g(wo)) - (wo - r)-lf{w)) =
\ l + w u ( ' " " o

o
.  . - 1  _ l= (wo -  T) 'g ' (wo) -  (wo -  T)-  ̂ f (wo)

in X, and that

I im ' t ' ( (w -  wo)- l {wo -  r : ) - l tg{w) -  a(wo)) -  (wo -  t ) - l f {w)) =
P*o

= wo(wo - T)- ]g ' (vro) -  g ' (wo) + f(wo) -  wo(rvo -  r)-  l r two)

in X, where g'(wo) = (dglc lwXvro).  I - lenee the l imit

rlnr (w * ,o)-1{r{*) - f(wo))
wlw

exists in D(T).  This shows thBt the funct ion f  :  V -r  D(])  is di f ferent iable at  every point
wo e v.  By the (vector version of  the classical)  Loom an- i \ , lenchoff  theorenr,  i t  fo l lows
thut f  e O(V,D(T)).

2.2.  LEMMA. Let T eC(X) anr. i  let  Vc Cco b:e open- I f  e -  T:  
oO(V,D(f))  

. r
*  O(\ ' ,X) is bt  jecLive, then V c pW(T,X).

PROOF. For every z e V n C we def ine re l inear map

rrx = ((6 ,  T)- lx)(z),  x e X,

where x is regarded as as constant funct ion f lom O(V,X),  Since (6 _ T)-1 I  O(V,X) _f
- t  

.O(V,D(T)) is cont inuous (by the closeci  graph theorem), i t  is  c lear rat  T,  :  X * D(T)
is cont inuous. Not ice th at

(z - T)r"x = (z - r)((e- T)-lxXz) = ((f - r 'Xe - T)-1xXz) = x

for each x e X, and

Tr(z - "t)y: ((f - r)-1(z - T)yXz) = ((z - TXq - T)-1yXz)

( ( q - r x r - r ) - l Y ) ( z ) = Y

; for every y e D(T). This shovrs that T"= (z -T)-1 for alt z s V n C.
.  Let zo e V be f ixed and let Voc V be a eompact neighbourhood of zo. Then the

_ set

{ ( ,  -  r ) -1* ;  xe  Von c }c  ( (e  -  r ) - l xXvo)

is. bounded in D(T), and therefore in X, Thus zo e p1r(T,X), and so V c pW(T,X),
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2.3" LEt{F,lA" Let T e C(X) and assume thot co € pW(T,X). Then there er-jsts an
open set v*c c"o, -e v-, such the operatar E-T! b(v-, D(T)) + o(v_, x) is
bi ject ive.

Pl tOOF. Since -  e pr(T,X),  there exi$ts an open neighbourhood Vco of -  $ueh
. that (z -  T)-1e l (X) for al l  ze V- n C and the set {(z -  T)- lx;  ze V- n C} is boundect

for each xe X. Then the operator 4 -T is c lear ly in ject ive on oO(V-r D(T)),  We shal i
prove that 6 -  T is onto O(V_, X).

.  Let ge O(V-,  X) and set f (z)  = (z- f ) -Jg(z) for ze V* n C. Since every point
z € V@ n C is reguiar for T,  i t  io l lows by Lemma 2.1 that f  € O(V- n C, D(T)).  VJe shal i

-  prove that f  is analyt ie and nul i  at  inf in i ty.

Let W- c V- be a compact neighbourhood of - .  Then the set

f ( t { -  n  C )  = {12  -  11 -1g (z ) ;  ze  W-  n  C}

is bounded in X (by the uni form boundedness pr incipie).  This shows that f  e O(W-rX)
(see the proof of  Corol lary I I .4.14 in [16J).  Then, f rom the equat ion

(2.4) f(z) = z-Ll ' f .(z) o z-7g(z), ze v@n c, z * a,

i t  fol lows that i i rn"r*z-l ' l ' f (z) exists in X. since r ir lr  n*z-! f  (z) = 0 and r is closed, we
must have , im-'r*z' 'Tf(z) = 0. Using this faet, we obtain, again from (2.4), that
l im r*-f  

(z) = 0, Therefore

(2.5) lim Tf(z) = rim (zf(z) - eOD
zt@ 'tr@

exists in X. Then we have as above that l imz+coTf(z) = 0.  consequent ly both f(z)  and
Tt(z) = zf(z) -  g(z) are anaiyt ic in V- and nul l  at  co. I lence f  E 

oo(V_, l l (T)) ,
The next consequence of Lemma 2,3 is knoln (see, for instance, [16j ,  Lemma

II I .3.5) but i ts proof is seemingly nevr.

2.4,  COri .OLLARY. tet  T 6 C(X) be such thot co e p!V(T,X).  T'hen , I 'e L(X).

PROOF. We ts l(e in the previous proof g = x,  wlrere x a X is f ixed. Then from
(2.5) we i rr fer that l lm 

n-zf  
(z)  = x.  s ince r ict  n*zTf(z) exists in X and the operator T is

"closed, we deduee that x e I l (1 ' ) .  Henee D(T) = 18, and so T e / , (X).

2.5.  TI tEOitE&{ .  Let , t  e C(X) ond let  y cC * be open. V)e haye Vc p*(T,X) i f
dnd only t f  thc operator

q -  T :  oO(V,D(T)) 
-n O(V,X)

is bijectiw-



PROOF. Let Vc pr.,(T,X), Fronr Lemmas 2,1 and 2.3 lve derive the existence of

an open covcr {v/}rJ of V such that 6 - 1' :  oo(vlD(T)) 
+ o(Vj,X) is bi jeet)ve for al i

j  e J. Let C€ O0i;X) be given. Then for every j  e J we can f ind f,  e oO(Vj 'D(T)) such

t h a t ( 6 - 1 X j = g l V . . S i r t c c ( 6 - ' l ' X f j - f , . ) = 0 o n \ r r n V o , i t f o l i o u s f r = f O 1 t . \ ' j n V k .
' lherefore there is a function fe o6(V,D(T)) such thot.f lV, = f,  for al l  je J. This shows

that f  -  T is onto 6(V,X). As 6 - T is obviously inject ive, i t  must be bi ject ive'

Conversely, the assert ion fol lows f lom l,emlra 2.2.

2.6. CCIIOLLARY. fle set p 
l\,(T,X) ts the largest open set V c C"e u)ith the

, 
' prcperty thot ( - T : oo(\r,D(T)) 

-f O(v,X) is biiective. Tlerefore piv(T'x) = p(T'X)'

I  Z.?" RE}rt / rRK. The fami ly p(XX = p(X/{  0})  is str ict ly larger than the fami iy

,  
t  

g (X ) ,  I ndeed ,  i f  Ye  La t (X )  i s  no t  c losed  i n  X ,  t hen  the  i nc lus ion  i :  Y  +X is inp (X)  bu t

not in C(X).  Nevertheless, i t  is  the class 6:(X) which is the most interest ing from the

spectral  point  of  v ievr.  Speci f ical ly,  i f  T e P(X) and p(T,X) I  g. ' ,  then T e C(X) '

3, NATURAL SPESfRAL CAPACI"IES

The uniqueness of the spectral  capaci ty at tached to a clecompos&ble operator,

f i rst  proved by c,  Foias [9]  (see also [10],  [16],  l l7. l ,  t221 for some extensions) makes' i t  a

very useful  eoncept in the study of  spectral  decotrposi t ions of  l inear operators.  In thi$

section we sSdl prove a versinn of this uniqueness fesult in our more getrcral sett ing'

Some o ther  p rope l t ies ,  ex tens ions  o f  s ta tements  f ro rn  [2 ] ,  [3 ] ,  [? ] '  [13 ] '  [14 ] ,  I16 ] ,  [1? ] ,

1221, will be also Pt'eserrtcd.
!\ 'e;;hal l  rely heavi ly upon the worl< [18], !Ve shal l  also use some assert ions from

[19] and [22J (generai ly accompanied by an outl ine of the proof).

3.1. REI ' IARI(.  Let

0 .r" X1/yr 'E-* x^r/ur:* xr/vr"* o

be an exact contplex of  quot ient Frdchet spaces. Then. for every open set Uc C- the

com plcx

S , ,  1 ' r '
g + 6(U,XrlY1) -- : - '  g(U,Xr/Y 

r)  
-- : - '  6(U'X3/Yt)  + 0

is also exact.  This assert ion is proved in [19].  Fof the convenience of the reader we shal l

sketch i ts p|oof.

I f  S e l (Xr lY1,x.2/y 
r)  is arbi t rary,  t { (S) = No(S)/y,  is the nut l -sp&ce of S, R(S).=

= R'(S)/Y, is the range of S and U c C- is open, then we have the equal i t ies t . lo(S')  =
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= O(U,l. lo(S)) and Ro(SU)= O(U,I lo(S)) '  These equali t ies fol lot 'v from the elementary

propert ies of tensor products wit lr  nuclear spaces (see, for instance, [5]) '  Thenr i f

T e L(Xr/Y *XrlYr) and } i(S)c N(T)'  vre have the equali ty

o(U,N o(T)/Ro(S)) 
= No(l 'u)/no(su)'

from which we derive the desired exactness.

From now on X/Y wil l  be a f ixed quotient Frdchet space.

3.2. LEMMA./,et Te P(X/Y), tet Z=ZolY e Inv(T) and let ie P(X/Zo) be the

operat.or induced by T. Then the mion of ony two of the sets o(T'X/Y)' o(T,Z) and

.'ff.X/Z ) contoins Lhe Lhtrd.
o

(  3 .1 )

PJIOOF, For every openU c C- the fol lowing diagram

0 + o

lrt
$ lz ) )  -  '

- (r l  z)u

iu
0 - r + 0

is  commutat ive, where i  z Z + X/Y is the inclusion and k :  X/Y '*  X/Zo is the canonicai

map. The commutat iv i ty of  (3.1) fo l lows from the resul ts of  [18] (see especiBl ly

Theorem 2.9).  I t4oreover,  the rows of (3.1) are exsct '  by Remark 3.1.  Therefore i f  any

two of the columns of (3.1) are exact ( i .e.  the corresponding operators are bi ject ive)

then the third is exact as wel l ,  whence we der ive our asseft ion.

i f  ' l 'e P(X/Y) and {  e X/Y, we denote by 6 t({)  the set of  those points z € Coo

for which there is an open set V containing z and a sect ion Q e oO(V,D(T)) such that

(6u -  Tyh = 6 (where E is regerded as a sect ion in o(U'XIY)).  6 t (E) is an open set whieh

is cal ied the locdl  resolvent (set)  of  T at  6.  The set yT(E) = C* \  6T(E) is cal led the

locol spectrum of T at [ (see [3], lll),1221 for some stages of these concepts).

A linear operator Te P(X/Y) is said to have the stngle \'vlued e"ttension

property (br icf ly SVEP) i f  the operator

6u -  TU I  oo(U 'D(T) )  
- '  o (u 'X /Y)

is inject ive for every open Uc C-. In this case, for each EeX/y there exists a

uniquely determined section {T e oO(lV,D(l)) such that GW - TW)ET = E, where

w = 61(f ) (sec thc abovc t 'efcrences).

L

oo(u,n(t)) " ' oo(u,o(t))
t l

l r u - t u  I t u - " u
t t
l v v

^ r l

o(u,x/Y) --; o(u,x/zo)

+ 0,D

J

(U ' i

6 u

o(t

t ,
I '
I
l (u

3.3. LEit lMA.l,et T e P(X/Y), The locol spectrum hos the fol lotrrng properttes:
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(1) Yr(0) = 0;

oo(v,D(T2)).
open Bnd let  F = C"o\ W. We define the l inear

z € C o  V ,  w e C n  W .

operBtor

(2) YT(E + y) c yT(t) u yT(n) for cll [,r1 e X/y;

(3)Yr(zE)  =yrG) /oro l l  q  €  X/y  dnd z€ C \  {0} i

vc  6T(E) ,  thenOe 
oo(v,n( rz) ) .

(4) tf t, e D(T) dnd Q e oO(V,l(T)) 
sotis/ies (6V - ?V){ =E for sonle open

PROOF. Propert ies (1),  (2) and (3) are simple exercises.

Let us provc (4).  We have:

T,,0 = 0 + (.,,Q e O1y.p1T)) = D(T,,) .v  v .  - ' - v ' '

In other words,

O e D((rv)2) = D((r2)v) = o(v,o62)).

On the  o ther  hand,  Q e  P(X/Y) ,  and so0e
Let  Te  P(X/Y) ,  le t  Wc C-  be

manifold

(3.1) 
oo"{w,o1T;; ={Q e oO11y,p11)), (6lv - rwh e x/y},

whiclr is a subspacc of oO1ry,p111;. Then the image

(3.2) tri,(b') = f6w - rwxooc(hr,D(r)))

is  a subspace of X/Y.I f  F = C-,  we set E;(F) = X/y.  Sinee T, extends T, f rom the
equat ion

r(6w - rw)f = r*(61q - rwb = ((w - rw)rwo,

val id for everyQ e 
,ro(lv,D(T2)), i t  fo ows that rw maps oo(w,D(T2)) into ooc(w,D(T)).

3.4. LEMMA" Let T e P (X/y) and let 1y c C_ be open Then f or every apen
vc w the operator

Ev - Twv : oo(v,oo"(lv,D(T2))) * o(V,ooc(tv,n(r)))

is bijective.

PROOF. There exists a l inear and continuous operator

ro :  O(V ,O( !V ,X ) )  *  
oO(V ,oO1w,y1 ;

which is given by the equat ion

(3.3) (z -  w)Gof )(2,  w) = f  (z,w) -  f  (z,z),

We shall also use the linear and continuous
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6 o : o(V,o(w,x)) 'r o(v,x)
given by (6of)(z) = f(z,z) (ze V). Let r (r 'esp. 6) be the str ict opcrator induced by ro
(resp. 6 o) frorn O(V,O(W,X/Y)) into oO(V,oO(W,X/y)) (resp. from O(V, O(W,X7V;; ;n,o
O(V,X/Y)). Then from (3.S) we derive easi ly the equaii ty

(3 .4 )  (eu  -e  
*hQ =0 -  60 ,0€  o(v ,o (w,x /y ) )

(where we use some obvious identi f icat i  ons), we shal l  show that the operator r inouces a
map

(3.5) r:  o(v,ooc(t\ / ,D(' f  ))) * 
oo(v,ooc(w,D(t2))) ,

which provides an inverse for 6V - TWV .

If  0 e o(v,ooc(w,D(T))),  then 6w4) is a section in o(V,o(w,D(T))) and we may
wri te the equal i t i  es

(3.6) (Ev - 6wx6w - rwvho = (e * - r:ruXrv - 6wh0 =
= ( t *  - r *uXQ -  6Q)= (6w -  rwv)O +  ( (v  -6w)60 -  (6v  - rwv)60.

Let us prove. that

( E w - T t v v h = ( ( v - T w v ) 6 0 .

Indeed, i t  is clear that 6f tVQ 
=6V60. I{e also have 6T*UQ = TV6O since i f

( f ,B) e Go(TrU), then 6 o(f,g) 
= (6 

of,d og) s G.(TV). Therefore

6 (6w - rwvb = (6v - Tv)60.

on thc other hand, the restf ict ion of 6 to o(v,83(F)) is just the identi ty, where
F = C- \  IV. Llence

(6w - rwv)+ = o(6w rwv)4,= t iu  - ru lo4.
'  I f  we return to (3.6), we get

Go -  e*Xe" -  TvJV)rO = ( fv -  6w)dO.

Since the maPEV-6y7 is inject ive (which fol iows from the fact that i f  the function
(z - w)f(z,w) belongs to O(V,O(W,y)), .ren f i tsclf  must be in O(V,O(W,y))),  we obtain

( 6 w - r w v h ( ) = 6 0 .

Thus

(eu -Touuh4 = (6v -6whQ * ((w r"uhO =Q,

by (3.4).  This shows that t  is a r ight inverse of  6V -  TWV. Moreover
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Twf$ =6\ir() -0€ O(V,O(w,D(T)),

and t l ief eforer0 e oO(V,oOc(l l  ,n{r '2))).
Note also that

t (6u -  r*uh = (eu - r*uir0 =0

(since obviously t6V = 6U'r and if (f,g) e co(TIvV), then ro(f,g) = (tof,tog) e co(TWV)).

Consequent ly (3.5) must be the desired inverse.

3"5" COROLLARY. let '1 'e P(X/Y), let W c C- be open ond let F = (}- \  W. I f
-o ,-. ,  -o,-,  "I  e ei(n) and Q e oOc(tr ' ,D(T)) sct isf ies (6W - 1'w)O =\, Lhen e*Q e r i(F) for every

w w, ruhere e * I  O(W,X/Y) -r X/Y is the str ict operator induced.by the evalut ion at
i the point w.

PROOF. i t  foi lows from Lemma 3.4 that we can f ind a section r lr  e
o

e oO(V,oO"(l{,D(f "))) suctr that (6U - TWVD = Q, where V c W is an arbitrary open set.

Then rve have

(6v - Tv)e w,v{r 
= ew,v(Ey - TWV){I = e*,u0 = e*Qr

und .*,y,1, e oo(v,D(T)). Therefore, for v = w, we infer that Yr(ew0) c F.

As & matter of fact, we actual ly have

rr(e *Q) = v,r({)
for  every w e C n W, which can be shown by simi lar arguments.  We omit  the detai ls (see

[16),  P roposi t ion IV.3.4).

3.6. LEI/IIIIA. Let 'l € l'}(X/Y) hove the SVEP. For every closed F c C@ iue set

Er(F) = {t e x/v; y1(€)c n}

Ihen E"(F) = [3(1,)e Inv(T).

PROOF. tf  {  e Er(F)r then E = ((!V - TtV),f ,  where Q = qTlW e .O(W,D(T)) and

w = c- \  F. Hence I e rf tr l .  The inclusion Ei.(r).  tT(F) is obvious.

hat !-r(F-) e Inv(T) follows from the equality

(6w - rw)TwQ = T(6* - r1y)$,

val id for every Q e ooc( l ! ' ,Dff2))  
(which has been already not iced).

The next rcsul t  extends an assert ion which or iginates in [14] (see also [13],  [7] ,

t22i).



3.?" THEOREfiI. Ler

one hds tlre inclLlsion

* t 3 -

r e p(X/Y) have the SVEP. Then /or every closeci Fc C*

oc(w,D(T)))

Lemma 3.3 (4)),  Therefore, to prove the
bi ject ivi ty o1 6V T*Ur when acting on
Lem ma 3,4. This shows that

o(T,ET(F))c F .

As we ciear ly have

E"(F) = r"(F n o(T'xlY)) ,

i t  fo l lows fr .om the above resul t  that

l

!

0(T,ET(F'))c F n s(T,X/Y) .

PROOF. If  F = C_ the assert ion is obvious, so drat
W = C.o\F and let Vc W be open. Thcn the diaglam

T
E (F) n D(T) * e"(P)

r {
l r * - t *  l r * - " *
l o T w l

ooc(w,D(T")) 
-------+ 

ooc(w,D 
(T))

is  casi ly seen to be comn)ut&t ivc.  Using the

eom m utat ive diagram

we

the

+ {( 3 . 7 )  
1 6 " - " * v  

t ,

|  .  _ ,1 .  l 5w
oo(v,ooc(w, D (r2))) .j].U-* o(v,o

' w v

(see It8] for some detai ls).

I{e,have to prove thet the operator

(3.8) 6v - Tv : oo(Vrrir(F) n D(T)) * o(v,ET(Ir))

is bi ject ive. ' fhe space I;1(l ' )  is isomorl>hic.to the space oOc(W,D(T)), since T has the
SVEP. Similarly, the space .s"(F) n D(T) is isomorphic to the space. ooc(Iv,D 

(T2)) (by

may assume F I C-. Let

functors oO(V, 
.  )  and O(V, "  ) ,  we obtain

biject ivi ty of (3.8) i t  suff ices to prove the
the lower row of (3.?), which fol lows fronr

o(T,trT(F)) = o(T,Er(F n o(T,x/Y)))c F n o(T,X/y) ,
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which completes the pr"oof of the theorem.

3.8. RE&,l.arRKS. 1o Theorern 3,? is eonnected with enother important observa-

t ion of Apostol is. Namely, he proved direct ly that i f  X is a Banach spaee and Te L(X)

lras the SVEP, then thefe exists a holomorphic functional calculus with functions

anaiyt ic in neighbourhoods of a given closed set Fc C, associated to the l inear map

TIET(F) ([2],  Theorenr 2,10; see also [6],  [?],  [13], l22l lot further developrnent). I t
fol lows from 'fheorem 3.? that i f  X is actu&Ily a Frdchet spece and T€ C(X), then

0r(F)e 1nv1'p; &nd o(1', , t1,(F))c F for each closed I.  C-. Hence the existence of a

hoiomorphic functional calculus for Tler(F) (as well  as i ts consequences) can also be

obtained from the general theory of Frdchet space operators (see [16], Section II I .3).
' I 'he Frdchet space structure of I i r(F) and the spectrBl inclusion o(T,ET(1.))c F (with

respect to this structure) has been f irst noticed in [14] (when Er(F) is supposed to be

ciosed in X, the assert ion goes back to [3]) .

2 "  I f  ' t e  P (X /Y )  h8s  the  SVEP,  then  the  ass ign rnen t

ni th the propert ies ( i )  and ( j i )  f ronr (1.1) (wi th C repiaced

" ou " . { c J l ,  
o f  c  one  hus

J  J - I

x/Y = Er(C r )  
+  . . .  +  r , t (Cn) ,

then the operator T is decomposable,  v ia Theorem 3.?.

Conversely,  we shal l  see that evcr iy decomposable openator has the SVEP and i ts

spectrel  capsci ty is uniquely determined and coincides with the natural  one, given by

L e m m a  3 . 6 . ,

3o As one might expeet (see Corol lary 2.4),  i f  ' t  e p(x/Y) and -  f  o(T,X/Y),  then

T€ L(X/y),  This assert ion is obtaincd in.  [22].  Ior the convenience of the reader,  we

sha l l  s l<e teh  i t s  p roo f .  Le t  U=Cco \q ( ' l ' ,X /Y )  and  l e t  {=x+Ye  X /Y .  Take

0 s 
.O(U,D(T)) 

such that (eU -TU)Q =[.  I f  fe oO(U,Do(T)) is in the eoset 0 and

ge  
oO(U,X)  i s  i r r  t he  cose t  TUQr  then  6 f  -  g  -  x€  O(U ,Y) .  T i r i s  shows  tha t  x€  Do(T ) "

Therefore D(T) = X/Y.

F + tT(F) provicles a map

by C-). i f  for every open

that 6'y'o(TJ/Y) ond let U c C be open,3.9. LEr"t[4A. Let T e l(X/Y) be such

U ) o(T,X/Y). 1'hen tl& operator

tU -  TU :  O(U,X/Y)  +  O(U,X/Y)

is tnjective,

PROOF. Let S e Q$J,X/Y) be such th&t ((U -  ' f  
U),0 

= 0.  I f  V =

OIV=0 .  I n  o the r  n 'o rds ,  i f  f  e  O(U ,X)  i s  i n  t he  cose t  ( ; ,  t hen

U \ o(l,X/Y), then

f  lV  e  o (V,Y) .  I f
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A > o(T,X/y) is a Cauchy domain such that T c U, and I is the boundary of A, then t lre

Cauchy f ornula

g(z )  =  (2n i ) *1J  { t  -  z ) - l f {w)o* '  ze  a  ,
I

de f ines  a  func t ion  ge  O(A,Y) .  On the  o ther

=  g l  A  "  Tnere f  619 16  o(u ,Y) ;  tha t  i s  0  =  0 .

3.10. LEMri lA. Let 7 6 P(X/Y) ond let

either Z, or ZZ is in D(T) ond y1y = Zr+ Zr.

then zoc  zL '

PRooF.  Le tS:Zo +  X2 l (X1n X2)  be  the  opera tor  g iven  by  the  compos i te  o f

the canonical map X/Y -r" X/Xt, restr icted to zo, and the natura-l  isomorphism from

X/X, onto Xrl(X, n Xr) ( indueed by the decomposit ion X/Y = Zt n Z)'  We shal l  show

that g = 0, which clearly implies our assert ion'

Lett,eZo and let U = p("l ,Zo). Then there exists a section 0 s oo(U,zon l(t))

such tha t  ( f  
U  

- ' rub  :  { .  Le t

0 oz zo n D(T)  + (x2 n Do(T)) / (x1 n x2)

be the restriction of 0 (note that x1n x2c Do(T) from the hypothesis). Then

induce, respect ively '  the operators

0r :  oo(u,zo n D(T))  +  
oo(u, (x ,  n  Do(T)) / (X1 n x2)) '

ozlo(D,zo) * o(u,Xzl(Xr n xr))  '

I\,1oreover,

(3.e) or(6u - ruh = (ru - tu)orQ = ol

(see [18], ' lheorem 2.9), where i  i ,  t t te operBtor indueed bv T in Xrl(X, n Xr) '

Next, let v = C* \ (s(T'22) u 6( ' l ,Z !  
n Zr)).  Then

o(ix2l(x1 n x2)) c o(T, 'Xr/Y) u o(T,(X1 n Xr)/Y) =

= 6(,t,Zr) u o('t,2, n Zr) t

by Lemma 3.2. Hence the operatof

ty-tu : oo(v,(xz n Do(T))/(x, n Xr)) + o(v,xrl(X, n Xz))

is  bi ject ive and we can f ind a sect ion

02s oo(V,(X2 
n Do(T))/(x l  n X2))

hand, since f € o(U,x), we must have f I  A =

Inv(T)( j  = 0, I ,2) be such thdt

P(T ,Z  )u  o ( ' t , z  t ^  z ) )  =  W,

0 and 0

z i =  x  j / Y  e
Il o(T,zo)^
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such that (6V - 6V)Oz = 0[. If 4,, = 0r0, ]et us observe that

(6 ,  n  u  
- iu  

n  u ) t4 , ,  lu  n  v  -  4 , r lu  n  r ' )  =  o ,

by (3.9). Ttrus there is a section

Qo e  oo(u  u  V , (X ,  n  Do(T) ) / (x t  n 'x r ) )

such that 4lo lu = O, ano Qo lv = t |2'  i \ ' loreover (69 g y -

=C- .  I Ience 0o=0 (see the  proo f  o f  ' l ' heore t r  3 ' ' /

C onsequently Zoc Zy

i r r u ) o o = o 6 .  B u t  u u v =
from [18]),  Bnd so 0E = o.

The next resul t  is a suff ic ient concl i t ion vrhich insures the sVEP (see also [7] ,

13emerkung I .2 '3 for Frdchet spsce operators with bounded spectrum)'

f.rf. f'gAOnEM. Let T e P(X/Y) be such that for every open ssver {CtGrl of

C* Llrcre are a quott ent Frdchet space Zo, an operator S e l(Zo) ancl tt'Jo subspoceS 21,

22  e  Inv (s )  such  tho t  zo=  z rn22 ,  o (s , z  j  n  Zn )c  G ,  n  Gu  ( j ' k  =1 ,2 ) ,  X /Y  e  Inv (S )  ond

S |  (X/Y) = T. ? 'hen T hos the SVEP.

PROOF. I t  suff ices to prove tnat tne operator

tq -  
"u 

r  o(u,D(r))  + o(u,x/Y)

is inject ive for every open disc U c C. Let U, V be open discs such that V c V c U' Then

c1= u  and Gz =  C. "  \  V  prov ide  an  open cover  o f  C- '  Le t .Z ,  =  X j /Y  ( j  =  0 r i ,2 )  and

S € P(Zo) be given by the hypothesis, with respect to the cover tGl 'C2J'

The complex of quotient Frdchet spaces

a B
A o  Z l  n  ZZ*  Z7x  ZZ- - - - r  Zo  +  0

is exact, where o0't) = (nr -n) anO B(nt,nr) = t l  * n2. According to Remarl( 3'1'  the

com plex
0r., Bn

(3 .10)  g  - r  6 (u ,2 ,  n  z r )  +  o (v  ' z  l )  
x  o (u ,22)+  o(u ,zo)  +  0

is atso exact, where oU(0) = (0,-0) and BU(O1,QZ) = Qf -F 02. Tlre exactness of (3.10)

shows that O&J,Z,) = O(U,zt) + O(rJ,zz) and that .6(U,zr) n O$),Zr) ? }\J,ZL ^ Zz)'

Therefore O(IJ,2 o)lO(V,Zr) is isomorphic to O(U,Zr)/o(J,zr n Zr), which in turn is

isomorphic to o(U,Xrl(Xt n Xr)).  Let

0 :  o (U,n(T) )  +  o (U,Xr / (X ,  n  Xr ) )

be the composite of the canonical map

o(u,z o) 
* o(u,z o)/ o(tJ,z 2)



-1?-

is

and the above isomorphism. lVe shall prove that the diagram

0
o(u,D(s)) -1 o(u,x1/(x1 n x2))
t l

(3 .1 i )  |  eu  -  tu  l6u  
-  tu

t l
* g v
o(J,Zo) -+ O(u,xl l(xi  n x2))

( (u -  suFQl ,

commutative, where'S is induced by S in Xr/(X, n X2)'  Fifst of al l  note that

o{3,xr/{x,  n Xr))co(s,Z1) uo(s,zt  n zz)cv

by Lemma 3.2 and the hypothesis. Since co P U we muli t  have 3 e f ' (X, n Xr)) '

R e r n a r l ( 3 . 8 . 3 o ,  l f Q e O ( U , D ( S ) ) , w e c a n w t i t e s = Q r + 0 2 r w i t h q j € O ( U ' Z j ) ( j  = 1 ' ? ) '

we have - Fo(S,Zt) c U, then 21 c D(S), as above' Hence 0t € O(UtD(S)i,  and

Sz = 0 - O1 e o(u,D(s)). Therefore

([u - su)q, = 14u - su)ot + (6u - su)Q2 '

and (Eu - sU)Oj e oQ,z:| ( j  = t 'z). consequently

0(6u - su){ = (6u - su)so =

shorving that (3'11) is commutative.

Now, Iet 4,€ o{U,D(T)) (:  o(U'D(s)) be such

d = dr. + 6^ be a decomDosit ion of Q as above' Therefore,

o = 0(6u - sg)o = {eu - 3urc0, .

According to Lemma 3'9' the operator 6U - SU is inject ive' f lence 0t e O(l l  'Z I  n Z2\ c

c  O( \ l ,ZZ) ,  and so  Q =  01  o02 e  O(1) ,Zr ) .5 inss  o(S '22)  n  V  =@,  i t  fo l lows tha t  QIV =  0 '

AsV c V c U is arbitrary, lve nlust have 4 = 0. -

3.12. REfUARI{. Ivhen Y = { 0} anO therefore X' Zj ( j  = 0,1,2) are Frdchet spoces'

then the requit 'ement o(S,Zj n Zl() c Gjn ck 0,( = 1,2) from Tlreorem 3'11 nray be

replaccd by weal<er one o(S,2.) t  G j  ( j  = i ,Z), provicied Zt,Z, are closed strbspaees of Zo

(as stated in [ZJ). Indeed, in t ir is case, i f  U c C is an open disc (tnore genera]ly a simply

connected open set) on6 o(T,Zr)c U, then o(S'zl n Zz)c U, whiclr suff ices for the

proof of Thcorem 3,11. Nevertheless, i f  Z, n z2€ Lat(z I  is not closed in z1' then the

inclusion o(S,2, n z2) c v n. lay not be true' as si lnple exampies shol '

For operators with bounded spectrum' the condit ion from Theorem 3'11 is

necessary too, mo,luio sirni lar i t ies (see aiso [?]).

3.13" PROPOSITIOI{-. Let 't e L6/y) have the SVEP otrd ossume that

that (6U - TU)Q = 0, and let

by  the  commuta t i v i tY  o f  (3 .1 i ) '

by

As

$o

As'd'-r'vf'((



- Fo(T,X/Y), Tl'ten f or eyery open cover {G',6}o} af o(T,X/y) tlrcre are a quotient
F'r{chet space Zo, on injective operator 0 , X?y 

-* 
Zo, an operator S e 1,(Zo) ond ttro

subspoces ,^r,?3u Inv(s) such thut zo= 7,L..7,2, o(s'Zj) c G' ( j= i ,2) ond i lEo= 1.o,
where To= 0T0-r on<j [o = 0(y7y;.

* ]B-

PIIOOF. For every open and bounded set U c C we def ine the quot ient Frdchet
space

rT(u) = o(u,x/y)/((u - Tu)o(u,x/y)

(see It3] fol Frdchet space operators). I t  is easi ly.seen that ru and tu induce the same
aetion on Fr(U). Moreover, o(EU,Fr(U)) c U.

_ "o*, 
Iet lU'Uri be an open cover of o(T,X/Y) such that Uj. ! j .  Gj, and with

U, compact in C ( j  = 1,2). We define the quotient Frdchet space

Zo = l ' r .(U,)x lq'"(Ur)

&nd the operator 0: X/y + Zo given 5y 0{ = 11E1r,1{12), whe.e [EJ, is t tre coset of 6 in
FT(Ui) ( j  = 1,2). Since T has the SVEP, the operator 0 is clearly inject ive. We also set
z ,  =  i r " {u r )x  {o } ,  z r=  {  o }  x  r r (u r )  and s  €  L (Zo)  g iven  by

s ( Q l ' 0 r )  =  1 6 , ' 1  0 , , 6 , ,  Q o ) ,  ( 0 , , 0 o )  e  z ^ .
" 7 '  " 2

Having these objects defined, our assert ions fol low easi ly. '

We are now in the posit ion to provc the uniqueness of the spectral c&pacity
attached to a decomposable operator in our sense (see also [g],  [10], [16], lLI l ,  LZZI,
etc . ) ,  -1

3.14. Tf I I ICREM. Let T e P(X/y) be decomposoble and tet  E be a spectrol .
capacity dltoched to T, Then T hos the SVEp ond lt(p) = ]jr,(F) for ott ctosed F c c'_.

PROOF. That ' I '  h&s the SVEP clear ly fol lows from Theore m 8.11. I f  F = F c C-
is f ixed anci  E a O(F),  then tne secuon

Q = (6u - (r I r(F))uf 1q e oo(u,D(r))
satisf ies the equation (6U - TU)Q = f,r  where U = C-\ F. Therefore E e ET(F),

Conversely, iet {c'Cr} be an open cover of C- such that F c i ,  ana G, n f =
= @, and let Z. = E(Gj) ( j  = 1,2). Since l i  is a spectt 'al  capacity attached to T, we have

a(T,Zr) v o(T,ZL n Zr) c Gru (C1 n Cr) = C,

Then i t  fol lows from Lenrma 3,10 that E.n(F) c E(e 
")..  \ @

, I  tc l ,nJn=l is a fami ly of  open sets such thst  each G1,p 
"hur""  

the propert ies

I
i

I
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t -  1
of  C"  und n  {G,  - ;n  >  l J  =  F ,  i t  rcs r . r i t s  f rom (1 .1 )  tha t

I  - L r l l

Er(F)c 
ni, 

u,ar,n' = r'(f) .

"-) = it(F) for eaeh closed F c Cor &nduonsequen{. iy rT(r '

theorem is com pieted.

proof of the

context the pfoblem solved in [ ] .51

[22), etc.).  Namely, let T e P(X/Y)

define the quotient Frdchet spaee

tne

3.15" REMfili.K. One can a-Iso settle in this

for Banach space operators (see also [7] ,  [13] '  [16] '

have the SVEP, Then for every open U c C- one can

i 'r(u) = o(u,x/y)/(4u - ru)oo(urD(T)) .

The assignmen, g + fr , (U),  which is a presheaf with respect to the netural  restr ict ions,

corresponds to the sheaf model of  a Frdchet space opefator introduced in [13] (see also

lr l l  for  sheaf theoret ical  resul ts) .  s ince both U ' '  o(U,x/Y) and U + 
oo(u,D(T)) 

(snd

t l rerefore U -} '  (6 
U 

-  TU)oO(U,D(T)))  are acycl ic sheaves ( this fact  fo j lows from the

proof of  Proposi t ion 3.5 from I tg]) ,  one can der ive that u - ]  Fr(u) is actu&I ly a s lreaf.

Next,  i f  F c U is a c loseci  set,  then the natural  operator ET(F) o j?r(U) is

in ject ive. Moreover,  the image oi  E"(F) v ia this operator consists of  those sect ions

;p6p /r"(U) r{hose suppoft  is in F. I f ,  in addi t ion, T is assumed to be 2-decomposeble

( i .e.  condit ion ( i i i )  f rom ( i .1) is val id only for n < 2),  then one can show that T is

decontpos&ble, v ia the fact  that the sheaf U + FT(U) is,  in this case, soft ,  as done in

[13 ] ,  Sec t i on  4 .  I {e  o rn i t  t he  de ta i l s  ( t he  case  Te  L (X /Y )  * i t 5  cogo (T 'X )  i s  t rea ted  i n

t221\.

3"16. EXAMPLES. 10 Le'r  t (  be a cornpact subset of  the resl  l ine and let

X = Ar( l<) be the Frdchet space of al l  analyt ic funct ionals camied by X (see, for

instance, t121).  I f  TE L(X) is the operator induced by the muit ip l ieat ion with the

independent var iable,  then T is decomposable and the spectral  capaci ty of  T is given by

(see [rf ]  for detai ls).  I{e note that Er(Ir) € Lat(X) but, in general,  Er '(F) is not a closed

subspace of X.

2o Let I (o,  I (  be compact subsets of  the real  l ine, I (o c l ( ,  and 1"1 y= A'(K) '

Y = A'( l {o).  Then X/Y is a quot ient Frdchet space. I f  T e l ' (X/Y) is the str ict  operBtor

induced by the mult ip l icat ion. wi th the inclependent var iable,  then T is decomposable

[22].  
"he 

spectral  capaci ty of  T is givcn by

E T ( F )  =  ( A ' ( K o )  +  A ' ( F  n  K ) ) / A ( K o ) ,  p = p c c - .
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In part icular, the str ict operatof induced bv the mult ipl icat ion with the independent

variabie in spaces of hyperfunctions on the t 'eal I ine I i2] (which ere quotient Frdchet

spaces) is decomposable. .

3o To get a genuine t 'unbounded't decomposable operator in a quotient Frdchet

space, it suffices to take a direct sum of an operator of the previous type and, say, an

unbounded self adjoi nt operator.

1 1 .
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