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ON SUPERANALYTIC ALGEBRAS. I

by
Paul FLONDOR and Eugen PASCU

During the last years the interest in superalgebra and supergeometry is
growing. In this paper we consider a notion of superanalytic algebra and study some
of its first properties. By means of some natural functors, we have been able to
reduce ourselves to the more or less classical case of analytic algebras. §1 is mainly

devoted to the fixing of notation and terminology.

51. z, - graded struetures

For the general notion of a group (resp. Eing, module) graded with respect to
a commutative monoid 4 and for some fundamental properties of graded algebraic
structures see e.g. [3].

In this section, we shall consider some definitions and results for the case

A=2Z, = {0,1} - the (additive) group Z/2 Z.

We shall use the additive notation for abelian groups, the neutral element

being denoted by 0.

DEFINITION 1. Let G be an abelian group. A Zz~grading on G is a family
(Gy) of subgroups of G such that G=G_@G.. A supergroup is an abelian group
A‘de ZZ o} 1
G together with a Zz—grading on G.If G = Go@G1 and H = HO@Hl are supergroups,
a morphism between these supergroups is a group morphism u: G * H such that
u(GO)CHO, u(Gl)CHI.

Supergroups and their morphisms form in a natural way a category.




DEFINITION 2. If G = GO® G1 is a supergroup, x € G is called homogeneous
if xe G0 or X € Gl‘ The elements of GO are called even and the elements of G1 are
called odd (0 € G is the only element both even and odd). Each x € G may be uniquely
written x= S X1 with X, € Go’ X; € Gl; X%, are called the homogeneous
components of x.

For each homogeneous element x e G, x # 0 we define p(x) € Z by:

0 if xiseven
p(x) = :
1 if xis odd.

In the sequel, when the notation p(x) is used, we are tacitly assumming that x # 0 is

homogeneous.

REMARK 1. When no confusion is possible, we shall denote a supergroup

G =GO®Gl only by G.

REMARK 2. Let G be an abelian group. By setting Go = G, G1 = {0}, one

obtains a Zz—grading on G. This is called the trivial grading on G. If G, H are

supergroups with respeet to the trivial grading, every group morphism u: G + H is a.

supergroup morphisms. Thus, the category of abelian groups becomes (in a canonical
way) a full subcategory of the category of supergroups.

In the following, rings are supposed to be unitary, the neutral element with
respect to multiplication is denoted by 1, ring morphisms preseve 1 and a subring has

the same unit as the ring itself. Modules are left modules.

DEFINITION 3. Let A be a ring. A EZ-—grading of the additive group A is
compatible with the ring structure if zil/,kf‘.pf:f\MH for each A\u € 32. A ring
together with a Zz—grading compatible with the ring structure will be called a
superring. If A = AO@Al, B = BO@B1 are superrings, a morphism between them is a

ring morphism f : A + B such that f(A )c B , f(A,)CB,.
g 0 o’ 1 1




Superrings and their morphisms form in a natural way a category.

REMARK 3.1If A is a ring, the trivial grading AO = A, A1 = {0} is compatible
with the ring structure. If A and B are rings with the trivial grading, each ring
morphism f: A + B is g superring morphism. Thus, the category of rings becomes (in

a natural way) a full subcategory of the category of superrings.

REMARK 4. As in the case of supergroups, if no confusion is possible, we

shall denote a superring A = AO@A1 only by A.

REMARK 5.1If A = A0®A1 is a superring, then AO is a subring of A (in

particular 1 ¢ AO); hence A and A1 are in a natural way Ao-modules.

DEFINITION 4. A superring A is called commutative if Xy = (—l)p(X)p(y)yx

for each x and y.

If A= AOG-)A1 is & commutative superring, then Aoc. Z(A) ( := the center of

2 2

 the ring A) andif x ¢ Al’ then x2 + X" = 0. Moreover, if 1 + 1 is invertible, then x° = 0

for each x ¢ Al'

REMAREK 6. If A is a superring with respect to the trivial grading, then A is
a commutative superring iff it is a ecommutative ring.. If" As= Ao@Al is a

commutative superring, then A is in a natural way an Ao—algebra.

DEFINITION 5. Let A = AO®A1 be a superring, and let M be an A-module.
A Zz-grading of the additive group M = MOGD M, is compatible with the A-module
structure if A}\Mpc MA+u for each ),y e Z,. An A-module, together with a Zo-
-grading compatible with the A-module structure will be called an A-supermodule. If

MzMo@)Ml, N = NOGLDN1 are A-supermodules, a morphism between them is an

A-module morphism u: M + N such that u(MO)c No’ U(Ml)CNl‘ v



A-supermodules and their morphisms form in a natural way a category.

REMARK 7.1. If A = Ao@ A1 Is a superring and M = MO@ M, is an A-super-
module, then MO, Ml are Ao—modules.

2.If Aisa superring with respect to the trivial grading, then M = MO&) Ml is
an A-supermodule, iff Mo’ M1 are A-submodules of M.

3.IfAisa superring, then A is an A-supermodule in a canonical way.

4.If A is a superring with respeect to the trivial grading, and M is an A-mo-~
dule, then the trivial grading of M is compatible with the A-module structure of M. If
M, N are A-modules wit.h the trivial grading, every A-module morphism is an
A-supermodule morphism. Thus, the category of A-modules becomes (in a canonical
way) a full subcategory of the category of A-supermodules.

5-Supergroups may be regarded as Z-supermodules (here Z is with the

trivial grading).

DEFINITION 6. Let A = Ao(w})A1 be a superring and let M = MO@ M, be an
A~-supermodule. An A-submodule N of M Is called a graded submodule of M if

N=(NN MO) (NN Ml). In this case, N becomes in a natural way an A-supermodule.

PROPOSITION 1. Under the notations in Definition 6, the following
statements are equivalent
i) N is a graded submodule of M.
i) Homogeneous components of elements of N belong to N.
iii) N is generated (as an A-module) by homogeneous elements (in M).

For the proof see [3].

DEFINITION 7. If A is a superring, & superideal in A is a graded submodule

of the A-supermodule A (see also remark T:3).



PROPOSITION 2. Let a be a superideal in a commutative superring A. Then

& is a two-sided ideal in A.

Proof. Let x = X, tx; and t= ot x€a, te A, As X, and X; belong to &.

(by proposition 1), we have:

XE=Xoto ¥ Xty + Xt +xity =t x4 b Xo + tXg ~ g% .

Henece xt € a.

Let now A be a superring, let M = MO@MI be an A supermodule and let N
be a graded submodule of M. By means of natural identifications, we obtain
M/N = M /N @ M/Ny (Ng=M N N,N; = M;NN). One obtains thus a Zz—g;-ading on
M/N, which is compatible with the A-module structure; M/N will be considered an
A-supermodule in this manner and this grading will be called the quotient grading.

If M and N are as above, the natural projection M -'*-l--HVI/N is an A-—super-I
module morphism. ‘

If A is a superring and acA is a two sided superideal, then A/a with the

quotient grading is a superring. Moreover, if A is commutatiﬁe, so is A/a.
Let now K be a commutative field, char K # 2 (fixed for the rest of the

section). We shall consider K as a superring by means of the trivial grading.

DEFINITION 8. A K-superalgebra is a superring A, together with a superring

morphism iA el A iA is c_zalled the structure morphism of A.

REMARK 8. If A is a commutative ring, trivially graded, then A is &

“K-superalgebra iff it is a K—algebi‘a (in the sense of I4]).

DEFINITION 9. If iA:K + A, and iB:K * B are K superalgebras, a

morphism between them is a superring morphism f : A + B such that the diagram



.F

is commutative.

K-superalgebras and their morphisms form in a natural way a category.

DEFINITION 10. A K-superalgebra iA : K > Ais called commutative iff A is
a commutative superring. .

The category of commutative K-superalgebras contains as a full.
subcategory the category of commutative K-algebras (which are considered as K- |

superalgebras by means of the trivial grading).

PROPOSITION 3. Let iA t K+ A= AOGJAl be a commutative K superalge-
bra. For SCA denote by (S) the ideal generated by S in A. Then

i) There exists an isomorphism of commutative rings
us A/A) > A /(a2
1 o |

ii) Denote by m : A - A/(Al) the canonical projection. Let a = e alsA.
Then the following statements are equivalent

1. a is invertible in A.

23 a,is invertible in AO.

3. m(a) is invertible in A/(Al).

REMARK 3. If iA : K + A is a K-superalgebra and ac A is a two sided

. 1 m

superideal in A, then the composition K*—A—-* A—> A/a furnishes a canonical K-
-superalgebra structure on A/a and the canonical projection T becomes a K~superalge-

bra morphism.



Letiy :K * A= A @A andig: K *B= BOEBB1 be two K-superalgebras.

Letis K AQ® B be given by i = INCAE
Let

(A® B, = (A, ® kB )@(A; ® ¢B))

We obtain a Zz-grading onA@® KB'

By defining a multiplication on A ® KB by
xey)- Zzot) = (-1)PWPEL, o it

for homogeneous elements x,z € A, y,t € B and extending by K-linearity to A ® B,
A® KB becomes a superring; by means of i : K * A@KB, in fact, we have defined =

K-superalgebra structure. Moreover if A and B are commutative, so is A@® KB'

DEFINITION 11. The K-superalgebra i: K ‘*A@KB is called the tensor

+K T Aandi, : K *B.

product of the K-superalgebras iA B

REMARK 10. If no confusion is possible, we shall denote a K-superalgebra
iA : K * A only by A.
DEFINITION 12. A commutative superring A is called local if the set of all

non invertible elements is a superideal in A. In this case this superideal is the only

maximal ideal of A and will be denoted by my.

PROPOSITION 4. 1If A is a local superring and 1+ 1 # 0, then the quotient

‘grading on A/mj_\ is the trivial one.

Proof. If xﬁAl and x were invertible, by denoting its inverse by vy, it
follows y €A, and xy=1=yx=-1 and hence 1+1=0 which contradicts our

hypotheses. It follows then AIC mye



DEFINITION 13. A superring morphism f: A + B between the local super-

rings A and B is local if f(mA)c M.

DEFINITION 14. A K superalgebra jA * K = A is local iff A is a local super-

ring.

DEFINITION 15. If iA :K > A is a local K-superalgebra, then A/mA is a
commutative field R (see proposition 4 and remark 9). By means of the map
iR : K > R given by iR =T e iA, R becomes a K-superalgebra.

iR : K + R is called the residue field of iA oK AL

REMARK 11.1If iA : K + A is a local K-superalgebra, then iA Is injective.
and it follows that 1+ 1 is invertible in A. For each local K superalgebra

iA : K+ A we can consider the K-algebra K + AO, naturally determined by iA'

PROPOSITION 5. Let iA :K +A=s AOGB Al be a K superalgebra. The
following statements are equivalent:
i) A is a local K-superalgebra;
ii) AO is a local K-algebra;

iii) A/(Al) is a local K-algebra.

Proof. i)=>ii) Obvious.

i1)=»1ii) Obvious (see also proposition 3).

iii)=>i) Denote by m the maximal ideal in A/(Al) andby m: A + A/(Al) the
canonical projection. Then, by proposition 3, 'ﬁ"l(m) is the set of noninvertible
-elements of A. 'nnl(m) is a two sided ideal in A. On the other hand, let x = X, + X1
N

xen Ym). As X, is nilpotent, it follows x, € T~ ~(m). We infer X = X=X € 1~ 1(m),

and hence 1~ 1(m) is a superideal.

Let us consider the K local superalgebras A = Ao@\ A, and B = BOGB B1 and



let f:A +B be a K-superalgebra morphism. Then there exists the following

commutative diagram:

A o — B
(0] (o]
j i
l AF VB
(%) A » B
A g
v ; #r

A/ (A, )*ﬁ—-ﬂs/(a])

when jA, jB are canonical inclusions, fo = f [AO, Ta» Tz are canonical projections and
1 is induced by f.

PROPOSITION 6. The following statements are equivalent:

i) f is local;

ii) fo is local;

iii) T is local.

DEFINITION 16. A K-superalgebra iA : K >A is of residue field K-iso-
morphic to K iff the residue field iR : K +R is isomorphic to the K-superalgebra

id
KE——K.

Then, we have:

PROPOSITION 7. The following statements are equivalent for the local
K-superalgebra iA P ICEEA
i) A is of residue field K-isomorphie to K;

ii) AO is of residue field K-isomorphic to K;



SRR
iii) A/(Al) is of residue field K~isomorphie to K.

PROPOSITION 8. Every morphism between two local K-superalgebras of

residue field K-isomorphie to K is local,

Proof. The coneclusion follows by the corresponding result for analytic
algebras.

REMARK 12. Local K-superalgebras of residue field K-isomorphic to K and
their morphisms form in a natural way a full subcategory of the category of

commutative K~superalgebras.

§ 2. SUPERANALYTIC ALGEBRAS

Let K be a commutative field, char K # 2, let nE N, n > 1.
We shall denote by AK(EI" . .,En), the Grassman algebra over K with canonie

generators El\. . “gn (see [1)).

For I=(i),...,i)) with 1<i; <...<i<n, we set |I| =k and B
:Ei E. .IfI—Q),webetlIl -Oandg = 1.
1 i
Each element of & (§_..,.E ) may be uniquely written as EO’«E with @ € K
K*“"1 n ey 1’1 I

I

(the sum has at most 2" terms). In the following, for a sum as above a@ will be

denoted by Oﬂo. We set

BeiE it ) an Gl il =28 ten, 90 crl

and

LG8 ::{IX of | [1] =28 +1,2eN, 20 +1<nl

thus obtaining & Z,-grading on AK(EP &) In this way AK(EP‘”’gn) becomes a

commutative superring. AK(E‘I) is the K-algebra of dual numbers.

DEFINITION 17. For an element C = ch ; of A EJV > "En) we define the

B e s e s e T

e T




order of 0 by

o f Op=0 for alll
ord(@) :=
min{“]}ai-f o}
REMARK 13. If n is even, then J'LK(EI,. . "'gn)o coincides with the center of
the ring AK(F;I.,. ; .,En), and if n is odd, then the center of the ring AK(EI,. : .,En) is the
direct sum between AK(EI,. ..,En)o and the subgroup of the elements of order >n.

(Note that elements of order n are homogeneous).

Invertible elements in AK(%;I.,. : .,En) are characterized by ey # 0. The ideal
generated by El,. ; .,E;n i“.AK(&:lﬂ‘ : .,En) Is a superideal m. It is the unique maximal
ideal, because its complementary consists of invertible elements. The canonical
embedding K =+ AK(EI" 3 .,En) and the fact that AK(«‘;I,. ; .,F,n)/m =~ K turns

(naturally) AK(E e .,En) into a loeal K-superalgebra of residue field K-isom orphie to

K.
Let B:= AK((:I" : .,En) and let A be a commutative K-algebra. Denote
AA(EI}' . .,En) = AQ B (see also definition 11). | |
The elements of AA(EI,. ..,En) may be uniquely written as o = XGIEI with
I

e €A,

AA(El,. : .,En) Is a commutative K-superalgebra; its grading is given by:
B pEpee B ), o= {[Zalglj |1] =22, 8 e N, 22 <n} and

A

Ao ); = {IZaIgII' 1] =28 + 1,8 e N, 22 + 1<)

0 is invertible in AA{El,. 2 .,En) iff @, is invertible in A (see also proposition 3).

PROPOSITION 9. If A is a local K-algebra, then AA(EI,. ] .,En) is a local K-

- superalgebra.




Let us now consider the embedding jA A A(gl" i n) given by:
8.k 2031519
I
where G, = a0y = 0 forl# @.
With respeet to this embedding I\A(F,l,, . .gn) becomes an A-supermodule of

finite type.

We have

PROPOSITION 10. If A is a noetherian ring, then AA(EI.,. : .,E;n) is a (left)

noetherian ring.

PROPOSITION 11. Let A be a local noetherian K-algebra. Let a be a super-
ideal in AA(‘SI" : ..};n). Then the K-superalgebra C := AA(El" : .,En)/a is local and is a

(left) noetherian ring.

PROPOSITION 12. Let. A be a commutative K-algebra, B = BO@B1 a com-
mutative K-superalgebra, f: A + B a K-superalgebra morfism and let Bl" . .,Bn € Bl'

Then there exists a unique K-superalgebra morphism, { : AA(EI,. ..,gn) -+ B suech that.

F =f and F(E,‘i) =B, i=1,..0.

[+] ']A
Proof

Set F( ] af)) = ] flo)8,
I I

(where if I=i<i <...<ik§n then f; := B ‘...°Bi ,andBw#l)

21 k

Let us suppose now that K= R or K=C .

1

Consider A above to be in turn:

1o As=sKX. X 1l We denote then A , (€ .. .,.F,n) by F

1002 m,n'

Fe Ay

1

K{Xl“ . ..,Xm}. We denote then A.A(E e ,,E;n) by ‘Am,n‘



o 1’3 —

v 0
3.A:=E = the K algebra of germs of C [<~ valued functions

“m,o

= : oA Mg, — -
around the origin in R"". We denote then A(El,. ; .ﬁn) by Em,n'

A and Emn can be infered in a

> i 1] roynortiog o
The following properties of 1m,n’ n :

canonical way.

Fm 5 is a local K-superalgebra of residue field K-isomorphic to K. Its
?

maximal ideal man is generated by Al""’xm’ tl"“’gn' Fm,n is a (left)
b

noetherian ring. The Krull topology is Hausdorff and complete. The canonical embe-

ks o = AR - ; . A -3
dding K{Xl,. : .ng} > K[[}xl,n . .,Xm]] furnishes an embedding i : Am,n Fm,n'

Am s is a local K-superalgebra of residue field K~isomorphic to K and i is a
3

local moprhism m =mg N Am Nt Am " is a left noetherian ring. The Krull

= m,n m,n 2 2
topology is Hausdorff,

Em f is a local K-superalgebra of residue field K-isomorphic to K. Its
¥

maximal ideal is generated by the germs of Xipeee X, and byt Pee oSy

The canonical embedding K{Xl,...,xm} % Emo furnishes a morphism
3

5 i : A s ‘ 5 5 5
i Am,n Em,n’ which is Jocal. The Taylor expansion morphism Em,o
T K[[Xl’ olsrs ,Xm]] (which is surjective by th Borel theorem) induces a surjective local

oy - = S s, A B T H" .____.
K superalgebra morphism p: Em Fm,n withpej=i.

;1

THEOREM 1. (A ) is a K-analytic algebra.

N

Proof. /A 1{(51" : "gn)o is a local K~algebra of residue field K~isomorphic to K

and, as it is a finite dimensional K-vector space, it is an artinian analytie algebra (sce
m,n’o

e.g. [8]). As (A _ ) is isomorphic to K{XP“.,Xm}@KAK(EI,...,EH)O, the

conclusion follows.

DEFIRITION 18. A superanalytic algebra is the K-superalgebra A := Ar-w n/a,
i)

where a is a superideal in Am,n’ a Am,n'
REMARE 14. K-superanalytic algebras and their (local K-superalgebra)

morphisms form in a natural way a full subcategory of the category of loecal K-

-superalgebras of residue field K-isomorphic to K.

T e T

S o,




e

THEOREM 2. Let A be a commutative K-superalgebra. Then the following
statements are equivalent:
i) A is a superanalytic aig‘ebfa,

ii) AO is a K-analytic algebra and Al is an Aommodule of finite type.

Proof. i)=>ii) If we suppose that A = A /a then A is the quotient of
3
(Am,n)o by 2. As (Am,n)o is a K-analytic algebra (by theorem 1), it follows that AO

) ). The other

is a K-analytic algebra (Note that a#Am’n implies ao#(Am,ho

statement follows from the fact that (Am,n)l is an (Am’n)o—module of finite type.
ii})=> i) There exists me N and a K-algebra morphism f: K{XP' ; "Xm} -+ AO

which is onto. Take Gqse e w0, to be generators for the Ao~module Al' Then by

n
proposition 12 there exists a K-superalgebra morphism F : Am ik A such that
)

F =f{and F(E.) =q. iﬁln..,n.
’K{Xl,.. .,Xm} (gl) i 55

F is onto and, as kernels of K~superalgebra morphism are superideals, the statement

follows.

DEFINITION 19. Let A and B be two local K-superalgebras of residue field
K—isombrphic toK,andletf: A +B be a morphism. By means of f, B becomes on A-
-supermodule in a natural way.
f is called quasifinite iff dimKB/mAB { e

f is called finite iff B is an A-supermodule of finite type.

THEOREM 3. Let A and B be superanalytic algebras. Consider the diagram
(%) in §1. Then the following statements are equivalent:

(i) f is finite.

(ii) f is quasifinite.

(iii) f is finite.

(iv) T is quasifinite.




(v) fo is finite.

(vi) f0 is quasifinite.

Proof. We sketech the proof of some implications. Let us denote (Al) by IA’

(Bl) by I, A/l4 by A ,B/I; by B . The diagram (x) becomes :

.F
A 2 » B
o ] o
JA ,"al ) _}B
V _F &
A + B
% ; T8
L ‘f
¥ f \
ﬁ'd Eo

(ii)=>(iv) U induces a surjective K-vector space morphism
Moo s -
'HB : B/mAB Bo/mAOBo

(iv)=> (iii) By theorem 2, A, and B are K-analytic algebras. Then A and B |
are also K-analytic algebras (see also §1). The result follows then by the classical

theorem for analytic algebras (see [4]).

r+1

(iii)=3 (i) There exists r € N such that IB

= 0. Consider then

S SR | 2k :
By = IB/IB for k=1,...r and
r

GrB &= @)B

i=0 K

By means of f, GrB becomes an &o module.
Bk are BO modules of finite type. By the hypotheses it follows that GrB is an

Ao module of finite type. It follows that (via ﬂ‘A), GrB is an A-module of finite type.




SRR

A standard decreasing induction reasoning shows then that B is an A-module of finite

type.

DEFIRITION 20. Let A and B be two local K-superalgebras and f : A +Ba
K-superalgebra morphism. f has the Weierstrass property iff for each B-supermodule
M of finite type the following statements are equivalent:

(i) M is an A-supermodule (via f) of finite type.

(ii) di‘mKI\fI/mAM {

Remark (i) => (ii) is always true.

THEOREM 4. Let A and B be two superanalytic algebras and f: A +B a

morphism between them. Then f has the Weierstrass property.

Proof

The proof is similar to the proof of (iii)=> (i) in theorem 3 above by

7
considering GrM = & M, where
k=1

5 S ke keil
MO = M/IBM, Mk = IBI\I/IB M

REMARK 15.
‘1. An alternative proof of theorem 3 may be given along the following lines:

Due to proposition 12, morphisms from A=A _ /a to B:= Ap q/b ifthao
7

m,n

morphisms from Am o to Ap q A standard reasoning allows then us to need to prove
b 2

the equivalence of the finiteness to the quasifiniteness only for the case of

f: A > A
¥

A D, here the arguments from (iii)=23» (i) may be immediately transposed.
)

2. One can consider a superdifferentiable algebra to be the K-superalgebra

B Em,n/a where a is a superideal of finite type in Em,n’ a Em,n‘ E is then a




Sy
differentiable algebra in the sense of Malgrange [6]. Morphisms have to be defined as
having the "lifting" property mentioned above. Then, an analogous of the proof
sketched in 1, above furnishes a proof to the equivalence of finiteness and qua.sif
finiteness of K-superdifferentiable algebras.
In the following, unless otherwise specified, by a morphism between two K-
superanalytic algebras, we shall understand a K-superanalytic algebra morphism.

The following version of the normalization lemma holds:

PROPOSITION 13. Let A be a K-superanalytic algebra, alc...c‘ar be a
chain of proper superideals in A. Then, there exist an unique d € N, a finite injective
morphism Uy K{Xl"

=i K
that Ud (ai) T (Xl"'.’xh(i)).

"”Xd} + A, and for each i€ {1,...,1‘}, there exists h(i) € N such

roof. The idea is to show that d is the least among the natural numbers m

for each there exists a finite morphism u_ s K{x Xm} * A. For the second part,

LA
one need only consider the case A = K{ 1, Xd} and then the conclusion follows by

[1), Ch. TI; preliminaries.

PROPOSITION 14. Let A be a K-superanalytic algebra, a, b, be two proper
prime superideals in A. Then, all -maximal chains of prime superideals

a=p.<p, <GP, = b have the same length r.

Proof. Prime superideals contain Al + Ag. If p is a proper prime superideal

in A, then pf‘.AO is a proper prime ideal in Ay Moreover, iff) is a proper prime ideal
in Ao,q a proper prime superideal in A with qﬁAODE), then the proper prime
superideal p ::Ea + ")“l satisfies: pcq. Also if p and q are different prime superideals
in A, then pf"r[-c.o # qﬁAO. The conclusion follows then as in [1] for the K-analytic
- algebra Ao'

By the Krull dimension of a commutative superring A (denoted by dim A) we

mean the supremum length of strietly increasing echains of proper prime

I

s

\\5!
Ay




superideals of A.

REMARK 16. 1. If A is a commutative ring, considered as a superring by
means of the trivial grading, dim A coincides with the usual Krull dimension.

2. dim A =dim E =dim F = m.
m,n ! Em,n m,n i

PROPOSITION 15. Let A be a K-superanalytie algebra. Then dim A =

=dim Ao = dim A/l, =d(where d is given by the normalization lemma).

Proof. The first equality holds by (the proof of) proposition 14. There exists
a bijective correspondence between ideals in A/IA and ideals in AO which contain A%.
As prime ideals contain A%, the second equality holds. The last equality follows by

the normalization lemma.

REMARK 17. 1. For K-superanalytic algebras, proposition 12 may be res-

tated as follows: If mn € N, A is a K-superanalytic algebra, (Oii) are even

i=1,.c.,m

elements in mAand (Bj) are odd elements in A, there exists a unique morphism

j=1,.0n

U'Amn

e A such that U(Xi) =051 = 1,...,m and u(Ej) SBais s

J
2. Finite fibered sums exist in the category of K-superanalytic algebras.

THEOREM 5. Let A be a K—supéranalytic algebra. The following statements
are equivalent:
i) There exist m,n € N such that A = A
m,n
ii) For each K-superanalytic algebras B and C, for each surjective morphism

u:C +B and for each morphism f: A +B, there exists a morphism v: A + C such

that f = u ° v (i.e. A is a projective K-superanalytic algebra).

roof. Due to proposition 12 and remark 17. 1, we need only to prove ii)=>i).
: First, we claim that there exists m € M, such that A/iA = K{Xl’“"xm}' Indeed, let
us consider two K-analytic algebras B and C, a surjective morphism u: C +B and a

morphism T : A/IA + B. Let f: A » B be given by f =To T 5. There exists vi A » C
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such that f =u ° v. As IC = 0, there exists \';: A/IA +C  sueh: that ¥ o TTA = v, ]f
follows T=u o'y. Hence, A/IA is a projective K-analytic algebra and (e.g. by [8]) our
claim follows. In the following we shail identify A/IA to 1<{x1,...,xm}.

ey 7 % ap e 1 o 4 ¢ -

Next, by remark 17. 1, there exists Sp A/IA A o suelis e that T %5a
Now, let Bl""’sn be a minimal system of elements in Al, which generate A]

as an Ao—module. By means of Sy» A becomes an A/IA~modu1e., It is a standard

argument then, that A is generated as an A/IA—module by (BI)I (where, as usual,

8@ =1 and for I=1<i <. ¢ e Sn, By s= Bi1 i Bik)n Consider the ecanonical
embedding Jm,n : K{Xl,...,Xm} > Am,n' By proposition 12, there exists a morphism
U -Am,n = AA/IA(EI""’gn) *+/A  ssueh- - that:- °jm,n =050 u(E;i) = Bi

foriii= 1, natlls obviously onto. We shall show now that u is injective.

By ii) there exists a morphism v: A =+ such that uev = 1A‘ We show

A
m,n

now that B, = ... = B_ # 0. If this were not the case, then:
1 n

1 i s 7.
v(B.) = E. + E 4 chfl, where Y € K{)xl,...,?sm} and

e T

£)=0.
[1] =2k+1<n

For 1€ {1,2,...,n}, if we denote Yl{l} by Yi et
5 (] ;
W  wpegaehel e T g
L U s<]I]=akeicn VT

We state that for eachi andl from {1,2,....,:1}, Yi € mK{x x 1e Indeed, by applying
ls =3 nJ ;

uin (1) we get

e o -
0= )ulyhB, + : u(Y;)BI
jr:

1 Y0 3T = ki

If Yigz/mh«{x b then it is invertible; hence u{w’;) is invertible. One obtains B, as
e X
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a combination {(with coefficients in AO) of the other elements Bk’ and this contradicts
the minimality of the chosen system 'Bl,...,Bn and hence our statement follows.
If 81 ® e ® Bn were equal to zero then, V(Bl)" weni V(Bn)‘—" 0 and then we

would obtain:

n :
. 1 {
where 6 is a sum between I (1 + Yi) and products of factors of type (1 + yi) and ¥3

i=1 K
where at least one factor of type Y‘;( appears.
It follows that & is invertible in I{{Xl,....,xm} and then El L En = () which
cannot hold. Hence 81 * e Bn # 0.

Next, we show that if a € A/IA and sA(O:) 4 Bl L Bn = 0 it follows @ = Q.

We have: (v e sA)(a) . V(Bl) * e ® v(Bn) =20 V(Bl)'_ s V(Bn) #0 and (ve SA)(a) =

(o) = Yi= YD + ; ,...___..; YIE;I where u(Y) = 0.

=
L 2< | 1] =2k<n

It follows jm’n(OL) e z 0. As (T, e u)(y - v,) = 0, then:

G, oy o vile's (d)is (s, o u)(jmrga)‘r*{m) Rl ey =0

Finally, we show that u is injective. Suppose u( Xﬁlil) = 0. It follows:
I

(2) Jsp )8, =0
I

By multiplying (2) by Bl Ay Bn’ we obtain sA(OLO) : Bl sives Bn = 0. Hence a, = 0.

Inductively (with respeet to |I]), by multiplying (2) by BL (where
IUL = {1,.,..,n}s INL = @) we obtain as in the case I =@ above that Otl =( for each 1

and hence u is injective. g.e.d.

An alternative point of view on superrings is as follows:
A commutative superring is a pair (AO’AI)’ where AO is a commutative

unitary ring (whose multiplication is denoted by Hy ) A1 is a unitary. Aowmodule



i
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(Ao—scalar multiplication is denoted by My ) and there exists an A ;-module

A
ol -1
morphism Hy o AZAI + AO, and if we denote by u: A] X Aj > AzAl the canonical
1 i ]
map and by ﬁ'Al : Al X Al > A, the A -module morphism given by T.?Al = pAl'"O U,
then the following diagrams are commutative.
pAl X 1A1
Alelx_Al onxAl
T 2 n
Al Al Ao’Al
AI X AO . ~> Al
Ao’Al
U x1

e e A XA

it | e

e X ;Z

Ag oty i
AO i Ao > AO
Ha
0

A superring morphism between (AO,Al) and (Bo’B.l) is a pair fo,fl, where fo g AO *iB
is a ring morphism and fl PA > Bl is a morphism "over fo" (i.e. f is a group

morphism and the following diagrams

fo'xfl-
onAl ———— BOxB1
B b
A LA, BB,
£
1
Ay ———— B,
2
At
ha s L AzBl
iy H
Al Bl
fO
o 0



are commutative).
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