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0. INTRODUCTION

Throughout this paper we use standard terminology of differen—
tial algebra from Kolchin's books [K1E;K23 SO0 we denote by 2 a uni-
versal £ -field of characteristic zero with field of constants .:7{
and consider a A-subfield ¥ of U (over which @ is universal) with
field of constants . By a linear A~ J —group EC.ITE wWe mean a

_ﬁ,— F —closed subgroup G of some GL_ (U). Let's make the following:

DEFINITION. A linear A-F -group GeGL () is called split if
it is of the form G=G*AGLH(K) where G* is a ‘g—closed subgroup of
GLH(%) (G* coincides then with the ‘(g’—closure of «G din GLn(%)). G
is called splitable over an extension .?'? of g'"if it dsad ~ 9’1—1-50—-
morphic to a split linear A—?—groﬁp; it will be called splitable
if it is splitable over some extension of 3‘:

Splitable groups naturally appeared in Cassidy's work [C ][C ][C

Oon semisimple and unipotent z_‘f\ —algebraic group. To simplify our expo-
sition assume throught the paper that §“ is algebraically closed. More-—
over we will concentrate ourselves on irreducible linear A - ‘2’ —groups.
Clearly, if such a group G is splitable then tr.degq. % \G:‘«v/;&’{m.
The converse fails as shown by the example of the A —subgroup of
GL, (7A) defined by the equation v (250 et (2.2) below). Our
aim in this paper is to exhibit a large class of G's for which the
converse holds.

Recall that for a linear [;—g”—group. Gd:GLn(Z{) the set of all
A -closed normal irreducible solvable sugroups of G has a unique ma-
ximal element which obviously is A -?’-—closed and will be called the
radical of G. Moreover a linear A - F —group G GL (2{ is called uni-
potent (cf [C{_! if it consists of unipotent matrices. Now we can

state our



MAIN THEOREM. Let G be an irreducible linear 4 —f“—group with
tr.deg.?ﬁﬁﬂ)/ﬁ?é&a. If the radical of G is unipotent then G is split-~

able over some Picard-Vessiot extension of §"

The "extreme" case when G is ; L amE RNl L gemisdm—
ple = is. due to P. Cassidy [bzl':;‘; however we won't use
here hér results and develop instead a gquite différent method based
.on £he.interplay between differential algebra and the Hopf—éigebra-
machinery in [.H] Our method has an interest in itself since it re-
lates splitability with representation theory of Lie algebras and
with representative functions. Consequently we will borrow our ter-
minology of -affine algebrai.c groups from [H] (rather than from [K,’]) :

So C;C’(A), o{_’(g} denote the Lie ‘algebra associated to an asso-
ciative algebra A and to an affine algebraic group § respectively.
@(g) will denote the affine Hopf algebra associated to § . Moreover

g(H) will denote the affine algebraic group associated to an affine
Hopf algebra H; the letter gwill never be used to denote a A -field
(like in [C‘I] ‘ [K,l]). To avoid confusion with orur universal A—field
'M, we denote by U(L) (rather than (L) as in [H]) the universal en-—
veloping algebra of the Lie algebra L. Finally note that by a A -Lie
E’—algebra we understand a A-algebra over ?’which is a Lie algebra;

this is the concept in CBJ and is different from that of A—?—Lie

alcjebra in [C2-} [:sz :

1. FINITE GENERATION

The first step in our approach is the following

(1.1) THEOREM. Let G be an irreducible linear A——?-group with




tr.deg. ?‘<G>/$’<cw. Thenithe A—coordinaté algébra ?’{G} el
tely generated as a (non-differential) A -algebra.

The above theorem allows us to considér the affine algebraic
2 ~group 4§( ?iG}) , where ?{G} is viewed with the natural Hopf
A -algebra structure induced from that of ?{GLH(%)E via the given
embedding Gf:GLn(Zé); similarily we get an affine algebraic ¥ -group
‘9 (%{G}). Note that G can be naturally seen as a subgroup of g(ufG})

via the identifications:

G=HomA_alg(7/f.{G % 'U)

G(Ufch =Homalg(ug(;},2{ )

FFor the proof of (1.1) we need the following lemma (in which Q(R)

means the quotient field of the integral domain R):

(1.2) LEMMA. Let Aa@ be a A-finitely generated extension of
A-9-algebras. Assume @)is an integral domain and tr.deg. Q(& )/Q(U’:!)
£02 . Then there exists a non-zero element se@) such that @[ﬁ/s:}

is finitely generated over A as a (non-differential) algebra.

Proof. Proceeding by induction on the number of A-—generators
of @yover[A we may assume that @aé{b‘% - Let denote as usual the
¥ of
free commutative monoid built on A . If 8 = $11... 5mm and

& _
“1= 511... ng we write 9(’!{ Lf and only if (‘Z‘a&‘ e ) &

ak:

< (Z{&i,ﬁ P ,(Bm) in the lexicographic order. We write 95’? fE

either 6‘0{ or €=/7 . Finally we write 955"? i eéisﬂi for. all i.

¢
For any fe @ put @! =A [@1 b;42<3] and construct inductively (with

respect to £ ) subsets Z‘G of () in the following way: ZO=Q§ and if




4?’ is the succesor of # put

g

Z 1E frzb is algebraic over @

g

%
Zheit

Zui ?[ iE r?b is transcendentsover @9

g pos
Put Z=;JZ - f\=\z and let Amih be the set of minimal elements of

o

/\ with respect to the order "&£ ". Clearly Amin is a finite set

{H‘I P QM}‘ Define R=V&[5b,9.ez] ; it is a polynomial algebna over
‘A (in finitely many variables), which is not a A—sublalgebra of @ .
Now for any ié{h...,M% let Fi be a non-zero polynomial of minimum

8 ; :
degree in G‘j ll:T] such that Fi( @ib)=o. Since Qcﬁ)dFi/dT#O and so

.
si=(dFi/dT) (Qib)ﬁ % = f:gib] ’ si#O hence S=ST...SMé@ is a ncn-zero
element. Now it is easy to check that @b e@efgibﬂ/si] Fri il
1¢1ém and 0,66 .
This immediately implies that §[71/s]=R C@Tb,...,eMb,‘l/s.i,...,1/sw1

and we are done.

(1.3) Proof of Theorem (1.1). We may assume ? is uncountable.
By the above Lemma, the scheme X=Spec@v (ﬁz: ?‘fo) contains an open
set XO of finite type over 3:' Now X is a group scheme over ? Let
of M

M1£ X\XO and look for a neighbourhood X of finite type over

1 1
3:' . We may assume M1 is a maximal ideal. Since ?is algebraically

&
closed,uncountable and G{/M1 isVcountably generated St‘ -vector svace,
a well known argument shows that (fﬁ/M,Is:g", hence M, =ker 94 for some
?—point e i g1e X('f). Now take any g € X(F ) such that Mo=ker 9, &

& XO and conclude by letting X1 be the image of XO via translation

from the right with 9 g;TG X(F).
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(1.4) Note that if we“given a A - F-isomorphism G —$G' between
linear A -?'—groups with tr.deg. :@;{G“?/?dea we get an induced bira-
tional map from “éj’(,}pﬁ”{G}) to '§(§’f§@'§) which agrees with multiplica-
tion maps whenever operations make sense. Such a map must be an iso-
morphism (cf. [L_] p. 5) . This is a remarkable property which does not

hold apriori for A—ﬁ'—grcups of "infinite transcendence degree".

2+« SPLITTING

In this section we prove our Main Theoremn.

A A& -F-vector space V is said to split over an extension .?:
of }' if Ve 321 possesses an ?1—basis (e&: ) with csqeﬁ:. =0 for all
?éA - Start recalling from [B] p. 79 & basiec fact on splitting
A - ?’-—vector spaces (cf. [T] for a generalisation to Hopf algebra

actions more general than derivations).

(2.1) LEMMA. Any finite dimensional rﬁ—gy-—vector space splits

over some Picard-Vessiot extension of ?’

For the sake of completness we give the argument. If V is a

: ; ; LS g
A —?—vector space with basis SRR 1€y write Jﬂkeiuzaijej'
Let ak=(aikj) be viewed as an element of %Z’N(i}")o Commutativity
of the Sk's implies that Qpak— gkap+fak,apj=0 for all peand k.

By Kolchin's surjectivity of the logarithmic derivative ik, ke

form in [B.I] p. 51, Corollary (2.9)) there is a Picard-Vessiot exten-—
sion ?1/?’ and a matrix g=(gij)§.GLN( ?".I) such that kag:akg for
all k. Now the elements f‘l T 'fN of V& ?1 defined by e, = Z:'gijfj
clearly form an gtj]—basis of the latter space and we easily check

gkfj=0 fors alil: k and- .




The next lemma translates splitability in terms of locally
finitness; recall that a Am?—vector space V is called locally ' ui

finite if it a union of A~ F-vector spaces of finite dimension.

(2.2) LEMMA. Let G be a connected linear LA - F-group with
tr.deg. F{G> /F4oo . Then the following are equivalent:
=) G is -splitable.
2) G is splitable over some Picard-Vessiot extension of ?’.
3) The A -coordinate algebra ?}’G?j’ is locally finite as a

= ?—vector space.

Proof.r2)z--’>‘l) 1strivial.

1) ==»3) Assume G is A - 5‘:’1—-isomorphic (3"“; algebraically closed)
with a split A—?’-group Hc:‘GLm(Z{). In order to prove that F{G} is
locally findite as a ﬁ-—?—vector space it is sufficient to check that
3”1 {G]] is locally finite as a A- ?1—vector space. By (1.4) we have
9’1’46'31'?1#{? so it is sufficient to check that TfH? is locally
finite as a A—?‘—vector space. Write H=H*n GLm(j{) ; hence ?‘fﬂff =

= Fivy /[Jy,gd:] = }"[y]/(g#) where -y:(yij) and‘gﬁ @‘f[y]; now conclude
by noting that the ?—linear subspaces of ?[y]/(gd ) generated by
monomials in y of bounded degree are A -?’-vector subspaces.

3)=22) There exists a finite dimensional A - F-vector subspace
V of ?f(}} generating ;’{GE as an ?’—algebra. By Lemma (2.1) V splits
over some Picard-Vessiot extension ?’ of #. It follows that the
whole of 3?{ '; splits over ? So upon letting ﬁ—d 1'gG;|' we have
@ @ ®‘6 ’"‘%"1 where the upper A means . "taking constants". Clearly
@‘& is a ¢ -subalgebra of R Since (@{@g’. (R) =] @(‘?&A , the
comultiplication map (R ~»@® ® @ takes R4 .‘LntO @& @ (R,& sO ﬁ,&

becomes a finitely generated Hopf (gwalgebra. Take any embedding




Al Y
% (ﬁ, N GLn("g) and let H* be the ‘-@—closure of g(& ) in GLn(E}f}
and H:H*rmGLn(l'f). Then it is triwvial to check that @ is A - f}"“'q-iso— :

morphic with H. This closed the proof of the lemma.

Let's apply the implication 1) =%3) above to show that the
A—subgroup G of GL1 (Zz{) defined by y"y-(y'}2=0 is not splitable.
Indeed ?{G}: }”[yﬂ/y,y'j . Put 7{"=y'/y; then X '=0.so for all pn®0 . -

Y(n+1): ‘g"ny' which shows that ?iG? 18 ot legeally finite as a

A - ?‘—vector space.

(2.3) Let V, W be A-f-vector spaces. Recall that V @ W and

: : S i

Hom? (V,W) have natural structures of A -# -vector spaces given by
S(x [0 y)=(arx) S VxS (gy) and (cg.f) (x)= {(f(x))-—f(crx) for

&V, yEW, té Homg:, (V,W), é’)é,ﬂ ; in particular the linear dual

VO=Hom,_,,_ (V,F) is a A -F -vector space. Note that if V and W are
&

locally finite,so is V& W; but Hom __ (V,W) and v° need not be
F &
locally finite. -

Now start with a finite dimensional A-Lie g‘-‘—algebra L. Then
the universal enveloping algebra U(L) inherits from the tensor al-
gebra & (L) a structure of A-F-algebra. So the dual U(L)°
becomes a A - ¥ -vector space which is easily seen to be a A- F-
—algebra with respect to convolution. Inside U(L)® lies the conti-
nuous dual U(L)' (cf. [H] p.2289%: vecall that U{E)" is . defined as
the space of functionals whose kernel contains some two-sided ideal
o

of finite coddmensioniand that U(L)' is a subalgebra of U(L) One

: |
checks that U(L)' is preserved by /A : if f€ U(L) vanishes on an
¢

ideal J then ¢ f must vanish on J2. But even U(L)' need not be

locally finite (e.g. take L to be abelian of dimension 3 2).



Next assume the radical Lr &f Livis nilpoteht and denote it by

R. Then in U(L)' lies the algebra @(L) of R-nilpotent representative

functions)which by definition is the space of all functienals in
U(L)' vanishing on some power of Ral(R) e s CH] p.258). We claim

that (L) is preserved by A . Indeed this follows from:

(2.4) LEMMA. If L is a A-Lie ¥ -algebra (of finite dimension) ,

its radical R is a A -ideal.

Proof. By (2.1) L splits over some Picard-Vessiot extension

s

JAN
'3"1 so L& '?:‘I=Lo ®‘651 where LO=(L ®?9~1) . Let RJ be the

radical of Lo. Then both Ro ®€ ?’1 and R®3“ ?“l coincide with the

cadical of .. Tl Now B=(R®. ¥ )n Le(RIG % )AL and the
Ol e ] o 1

o F ¢

latter space clearly is preserved by .

(2.5) PROPOSITION. If L is a A -Lie ® _algebra (of finite
dimension) whose radical is nilpotent, @J(L) is locally finite as

a A -¥-vector space.

Proof. First we claim that one can assume L, splits over 'F’
Indeed by (2.1) L splits over some ;?5"1; suppose we know that
65(1. & 9—"1)=qu where the V, 's are finite dimensional

A—-?’ -vector subsp‘aces of U(L&@F )O. Then @(L)=u(v /"\@(IA));
1 1 el

but one checks that dim__ (V, A® (L)) & dimg, Vo and our claim is
1

o
proved.

st

A : .
So assume L—LO cﬁ&ej . LO—L . Let LO—RO+So where RO is the

radical of LO and SO is a complementary semisimple Lie ‘@—algebra;




then R=R @cg ¥ is the radical of L and S$=5_® ¥ 1is a complemen-

tary semisimple Lie ?—algebra, both R and S being & - § -vector sub-

spaces . of L. Recallihby EHJ PP. 256-259 that the multiplication map

R

Q
p: (U(L) )" @ “(U(L)') ~» U(L)' is an isomorphism of Z -algebras where

(U(L)'):R is the R-annihilated subalgebra of U(L)' with respect to

the left L-module structure of U(L)' defined by (#-f)E(a)==f(ux)
S

(x¢ L, £f€U(L),, ugU(L)) and °(U(L)') is the S-annikilated subalge-
bra of U(L)' with respect to the right L-module structure of U((L)'
defined by (f'x) (u)=f(xu) (xgL, £f€U(L)', ugU(L)). Moreover the

following properties hold:

1) The isomorphism p induces an F -algebra isomorphism
ommte S@uH-@w,

2y (UL ‘)R coincides with the image of the natural injection
el :U(S)'=> U(L)' and

3) The restriction map U{L)' s U(R)"' induces an isomorphism
rg :S(@(L))-——-‘? @ (R), where €3(R) is the algebra of R-nilpotent re-
presentative functions on U(R).

S(u(r) "y is

Since S is a A -subalgebra of L it follows that
a A -F-vector subspace of U(L)' so one sees that the map u is a
A -map, hence so is ';I Since &« and /3 above are obviously A -maps
it follows that the induced isomorphism of g"—algebras GB(L) g
~ U(sS @@(R) is a A -map. So it is sufficient to check that each
ef U(Ss)' and @(R) are locally finite as A -$ -vector spaces. Now
@(R):uvn where V_ is the subspace of all functionals on U(R)
vanishing on (R-U(R))"; clearly V. are finite dimensional - F -

-vector subspaces of (B(R). To check the assertion for U(S)' we

prove the fGllowing(apriori)more general:



(2.6) LEMMA. Let S be A—-Lie g"'“algebra (6f- finmite dimension) .
Assume that for any S-module V of finite dimension we have Ext;( 7Y =05

Then U(S)? is, lecally Fimbte se 5. A~ F vestor space.

Proof. We have U(S) ‘=uVJ where J runs through the set & of
all two-sided ideals of finite codimensio-n and VJ={féU(S) S B ] S’
We shall be done if we show that the VJ'S, are preserved by A For e
this it is sufficient to check that any ideal J€ 5 is a A —ideal.

Let J€J , put N=dim, U(S)/3, let V= ¢ " viewed with its na-
tural structure of A-—?«wector space and fix an -?—linear isomor-
phism V& U(S)/J. Moreover consider the algebra map ¢ :U(S)—» End (V)
which takes any u€ U(S) into the endomorphism of V corresponding to
the multiplication from the left by u in U(S)/J; clearly ker ¢ =J.
Now ™ restricted to S vields a representation it :S-——*:g,g(v). Since
Homg__ (8-, ?Q {(V)) is a &—?-vector space we may consider for any
f'¢e & the linear map Sfé Homg_\,(s, 3/@ (V)). It is easy to check that

g}? are in fact cocycles for S in ?,g(V) where 3{(\7) is viewed as
ad

an S-module via the representation S £ “?&{(V)

Ext; (V,,V):H'E (S,%(V)) is assumed to vanish, J“f must be coboundaries

so there exist h‘i rivtee ’hm & 35 () istdh that for: any =g S

7ég£ (g,é (V)). Since

S;(f ‘X”"ﬂgi?": Ef(x)'hi]

For ecah index i consider the ?-—linear maps D1 ,DZ:U(S)-—-——:- End (V)
defined by Dy (u)= §; (¢ (W)= (& u) and D, (u)=+ (w)h, ~h, < (u).
One .checks that both D1 and D, are ¥ -derivations i.e. satisfy

the formula:

D{uv )=D(u) P (v)+ % (u)D(v), u,v & U(s)



where D=D1,D2. Since D1 and D2 agree on S they agree on all of U{(S);
but this shows that if f(u)=0 for some ugU(S) then LF(J;u):O. Since

this holds for all indices i, kery is a A -ideal and we are done.

(2.7) Next we relate groups and Lie algebras. Start with an
irreducible linear A -$-group G and let g - 4 37’;’@}) e |
@("%h .:?—'?Gj Let's put a structure of A -Lie % -algebra on o{fa(":?)
as follows. First consider the A —:?'—vector space structure on
@(f{j})o; next check that with respect to convolution [P(-§)O becones
a A —-?’-—algebra, hence gf(ﬁ:;(@)O) becomes a A~Lie 3’ —algebra.
Finally check that gf(g) (which is defined as a Lie subalgebra of
G(_a(ﬁ)({%)o) et. [H:l p.36) is preserved by A . From this consﬁruc—-
tion we see that the naturally induced embedding e :63(‘«'3 ) —— e

&

SRS U(o?f(g))'[H] p. 230 is a A-algebra map.

(2.8) LEMMA. Let ‘%r be the radical of ‘%and G_ be the
radical of G. Then:
1) The defining ideal of € _in (?(§) is a 4 -ideal.
L
2) $Ufc. h=-4Ufe}) .

54, Gr is unipotent if and only if %r is unipotent.

Proof. 1) Consider the embeddings e, and e{,j :G?(cgr) T
e
‘{1
—» U(ZL ()" as inclusions. Then the defining ideal of -;ff}r in
6)(‘%) is precisely the intersection (taken in U(j(%)) Ll ek &’)(‘%)

with the kernel of the map

UL (§)) — UL (§ ) =uL(G) )"

But since by (2.4) ,,f (g )r is a A -ideal in /¢ (%’), 7 is a A -map

and we are done.



2) We have group inclusions

G .e4(eic })

r

From the fact that G (respectively G) is Zariski-dense in § (%{Grg)
(respectively in ‘%(‘EHG i’ )), it follows immediately that § (Z{J%Gr%)
is an irreducible normal solvable subgroup of 4§ (gtij) ience it i e
contained in % ('L{%G})r. On the other hand, by assertioen 1) the

A—g‘—group G'z'%(’M%Gf)rr\G is irreducible and dense in ‘5’?; (’?/{)’Gf)r.

Clearly G' dis. normal in G and selvable so G'c G'r. Taking Zariski

closure we get %(u;G%)r:%(%‘%GrEE’) and we are done.

3) If G_ is unipotent, ?A%sz is locally unipotent as a G_-mo-
dule [HQS p. 65 so it will alsoc be so as a ‘?j (’L{%G})r-module by
assertion 2). So ‘%('L{%G% )r {and hence also “gr) is unipotent. The

converse is obvious.

(2.9) We are in a position to conclude the proof of the Main
Theorem. Indeed if Gr is unipotent, by Lemma (2.8) above 8_; has a
unipotent radical. By [H} p.260 the image of GD(%) via the map
e: @ (G)—s UL (G)) is contained in B (§)). Since by Proposi-
bien. (205), @((:Zf(('%)) is locally finite as a A -~¢,?“~—vector space so

S wiill, be @(C%) and we may conclude bj/ Lemma (2.2).

3. FINAL REMARK

In proving our Lemma (1.2) we in fact proved
the following useful "d(—fvisage" property: let b&f{r 6’}) be an extension
of integral A ~O-algebras such that @) is A-—generated over (A by one
element; then there exists a non-zero element se@ and a (non-dif-

ferential) sub u{z‘e.-algebré Rief @[1/31 such that R is a polynomial



&% ~algebra (in possibly infinitely many variables) and ﬁ?[T/sj i
finitely generated as a (non-differential) R-algebra. Here is an
application. Let tw&@%, t#0; since Qﬁ}/stl is finitely generated

as an R-algebra there is anon-zero element F& R such that any prime
in R not containing F is the trace on R of some prime in G§£1/tj
Viewing F as a polynomial with coefficients ing% and picking any
noﬁwzeré coefficient f of it we get that any prime'P in J& not con-
taiming*f dsithe trace on U& of some prime Q in 65 not containing t,
i.e. the ring B[H/ﬁ} ﬁgakQ(gﬁ/P) is non-zero. But if P is a A -ideal
the latter ring is a QA —-f-algebra hence possesses at least one
prime A -ideal. Consequently Q above can be chosen to be a A -ideal.
Using an obvious induction we get a quite elementary and short proof
of Seidenberg's theorem on "extending differential specialisations”
(et EH] p. 140 for an.arbitrary characteristic generalisation)
saying if U&C@ is a ﬁmfinitely generated extension of integral
ﬁs—@-algebras.then for any non-zero te (@ there exists a non-zero
fe\y‘% such that any prime ﬂ—ideal in (}f‘% not containing £ is the
trace imn Lé% of some prime é—ideal in @not containing t. Now exactly
as in [B,] this implies a "differential Chevally constructibility

theorem".
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THE AUTOMORPHISM GROUP OF A NOM-LINEAR ALGEBRAIC GROUP

A. BUIUM

The aim of this paper is to prove the following:

Theorem. Let G be an algebraic group (non necessary linear) over a field k of
characteristic zero. Then:

1) Aut G is a locally algebraic group,

2) Aut® G is linear, i

3) If L is the largest connected linear subgroup of G and A = G/L then the

kernel of the homomorphism Aut G -+ Aut Lx Aut A is an algebraic group.

Note that assertion 1) above answers a question of Borel and Serre in [BS] p.

152. Morecver 3) shows in particular that if Aut L and Aut A are algebraic groups, so is
Aut G. ' :
In [BS] the above theorem is proved under the assurhption that G is linear. Our
terminology and background are those of [BS]; in particular all locally algebraic
schemes are assumed to be geometrically reduced and the assertion "Aut G is a (locally)
algebraic group” means that the corresponding funetor defined on the category of
' locally algebraic schemes is representable by a (locally) algebraic group. As explained in
[BS] it is not reasonable to look for I'epz'eé;erltabiliﬁy in the category of non-reduced
schemes. Nor should one expect that for non-linear G, Aut G is an extension of an
arithmetic group by an algebraic group. :

The main ingredient in the proof of the above theorem will be-our construction
in [Bu] p.96 of an equivariant completion G of G; the idea is to show that, upon choosing
G carefully, any automorphism of G which ean be "connected” with the identity lifts to
an automorphism of G.

The proof of the theorem will be done in several steps.
§ 1. Assume first that k is algebraically closed and let Y be any locally algebraic

scheme acting on G in the sense of [BS]. Then Y will also aet on L and since by [BS]




Aut L is a locally algebraic group there is an induced morphismy : Y- Aut L. Assume
that v(Y) € Aut® L. Under this hypothesis one can put & Y-action on Chevalley's
construction of orbit spaces as follows. Start with a finite dimension al k-s subspace E of
- kIL] such that (E n M)K[L] = M (where M is the ideal in k[L] of the unit of L) and E is
both L-invariant (with respect to the action of L on k [L] via left translations) and
Aut® L - invariant {with respeect to the natural Aut® L - action on k{L]). By the way all
group actions we are going to consider in this paper are left actions. That such an E

exists can be viewed by considering the semidirect produet Lx Aut® L (where p is the

p

natural action of Aut® L on L) acting natur ally on L; then the semidirect product above

d d
acts rationally on k[L]. Now if d = dim (G nM), P = P(/\E), P, =P(/ME n M))eP and

P: Lx2—* P is the induced action map then Y naturally acts on P and L (via Aut® L)
fixing Py (E)ne checks that ¥ is Y-equivariant. Next we put a Y-sction on our
construction in [Bu] p. 9. Recall that we defined actions T:Lx(GxP)— GxP,
T(x,(g,p)) = (gx_I, Y(x,p)) and 0 = Gx (GxP)—> Gx P, 6(h,(g,p)) = (hg,p) and using [Mu] p.
127 we con-structed a projective morphism w: Z~+ A such that .the first projection
GXP—"’- G is the pull back of w via the natural projection v: G— A and such that the
resulting projection u: GxP—+Z is a principal bundle for (L,T). Moreover 6 is seen to
descend to an action 6: Gx Z—* Z and upon letting T 11(l,po) we have that the map
¢ : _G_—F Z, $lg) = Blg,z 0) is an immersion and that wod) = v (see [Bu] p.96 for details).
Now T and 0 are clearly Y-equivariant this providing a Y-action on Z making u and @
Y~equi€ar'iant maps. In particular 2, is fixed by Y so ¢ is Y-invariant so we have an
induced Y-action on the closure G of ¢(G) in Z as well as on the "boundary"
D = G \¢(G).

§ 2. Let ﬁs prove assertion 1) in the_thcbrem (with k algebraically closed). Since
we want to apply the criterion in [BS] pD. 140 we first construet a certain connected
algebraic group H® as follows. Let I' © Gx G x G be the graph of the multiplication map
of G and ' the closure of T in G xG x G. By [FGA) the functor

St+{ee Aut (GxS) | aDxS) = DxS, (@xaxa)(Fxs) = Fxs)

gl
is representable on the category of locally elgebraic schemes by a locally algebraic
group H; we let H®° be its connected component. There is a natural action
n:H°xG - G which is faithfull and hence effective in the sense of [BS) p. 139. Let
‘now Y be any connected sléebraic scheme acting on G and Yo € Y be such that the
corresponding automorphism of G is given by some o, € H® in order for Aut G to be
locally algebraic (with Aut® G = H°®) it is sufficient by [BS] p.140 to prove that for any
y € Y the corresponding automorphism of G is given by some point of H°. Now both H



and Y act on G hence on L so by repres sentability of AutL we get morphisims
B:H— Aut L,y : Y- Aut L. Since v(y ) =8 (rx }e Aut® L we get that v(Y) € Aut® L so
our discussion in 1 af plies. In pdrtlculm ¥ acts on G letting D and ' globally fixed so
there is a morphism § : Y—» H. Since 6(3,?0) =0 € H® we get that G(Y)rc H° and we

are done,

%3. To prove assertion 1) in the theorem for general k it is sufficient by [BS] p.
140 to prove the following: assume in 572 that G descends to a subfield k of k such that
k is the algebraic closure of k o5 then both H° and its action on G descend to l< R
prove this we have to be more careful about our choosing E in 3} To find a good I note
first that L descends to 'l<0: Liies LO &) k. Then choose a finite dimensional s subspace Eo

of !{O{LOI such that E @k contaifs a system of generators of M and put

L Vs(E o&K) c kL] where the sum is taken for all s ¢ prAut L. It Is easy to see that
E=F for all elements ¢ of the Galois group glk/k ) Consequently r)(k/k ) acts on all
our schm resELLP P, ,Z,G,D,T sueh that the maps Y, T, 6, 0, 6, n are g(k/ko)—equivariant

. and we are done by Weil descent.

%‘4, To prove assertion 2) in the theorem we may assume k is algebraically
closed. We must show that H is linear. Let G— G be a H°-equivariant resolution of G;
then the map v: G— A is nothing but the Albanese map of G and is H°-equivariant
(with respeet to the trivial action of H® an A). So H® c ker(Aut°G  » Aut®(Alb(G J))),
whlch is linéar by [Li] and we are done.

A different argument for 2) using neither [Li] nor equivariant resolution is

. il o . G
Implicitely contained in 35 below.

r>‘ 5. Now we prove assertion 3) in the theorem. Let K! be the kernel of
Aut G— Aut L x Aut A. We will construct a linear algebraie group K acting on G such
that the image of the corresponding homon*xorph]sm K-+ aut Gis K.

Start by considering the normalization G of G dnd denote by W C‘——+A the
morphism induced from w: Z—» A; the morphism @: asng induced by ¢ : G-— Z will
be an open immersion and W « ¢ =

Moreover let D be the effective reduced Weil di\'isor on é\ whose snpoort is
E}\\cg((}) and let Cf}(nlg ) be the coherent reflective sheaf on G corresponding {o nD n2 s
Note that F = \'-'\‘1,: (nm is a subsheaf of v, (/ and since v is affine T mil generate
Vi (,9 as an O 4 ~algebra for n > N (Na suitable mtefrcv) Then the bymmemc algebra S
of l Is thuped with a natural SUI‘]GCU(}H Sty (9 inducing a closed embedding

CF%X'" SpeeS of A-schemes. NMorcover consider the natural open embedding

s



X~ X* := Proj SIT], let 'G* be the closure of G in X*, L* the closure of L in X* and
I'" the closure of T'(= graph of the multiplication map) in X* x X* x X*, Note that the
group Aut (I?N) of automorphisms of the coherent (%—module PN has a natural
structure of linear algebreie group and it acts (algebraically) on X and X*. Define the
linear algebraie group ‘

K ={oe Aut (F)0G™ =G%, o] ,=id ., (axaxe)r *=T%

L L

Clearly K acts on G and the image of K-— Aut G is contained in K'. To prove
that it actually coincides with K' it is sufficient to note that any automorphism of G
contained in K' induces by %1 an automorphism of @ and hence of & which fixes D.
lence any such automorphism induces an automorphism of FN and of X* thus coming

from some element of K. Qur theorem is proved.
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