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Introduction

The purpose of this paper is %o extend some concents from the
H-structure theory of Banach spaces to the setting of Banach spaces

endowed with vector norms.The main feature of this approach is that

it brings together faets from apparently distinct theories , such as

I « gtructure theory on one side, and Banzch lattice theory on the
y 4 B!

Fa

other.

1

ur paper is divided into &6 sectionse.

§§ 1-3 have an introductory charzcter.The problem ares in this

o

paper can be viewed as a part of the neral theory-of Alfsen~5ffros

type order relations developed by the first author;for this reason,
§ 2 is devoted t0 a brief survey of some basic facts in thot theorye
In §3 we present those facts concerning vector norms and their
duality that.will be needed in the following sections.Since we cane
not glve a satis Eacbovy reference for the duality of vector norms,
we have included sfor the reader's convenience,all details therce.
The main concepts in the paper are introduced in §4.Given a Ba-
nach space E and an isometric vector norm Ti:E ~—3 X gwhere X ig a
Banach lattice, we may ccensider the following two order relations

of Alfsen~Effros type

% &€ Ly ¥y if and only il tf(y) <f(x)+<ftg x)
x Ly ¢ o 1f and only if P(e+x)<PRIVPR+Y) for every
}

Z €EE .
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again

For e | I , the norm of E sone Finds” the relations €

and <, introduced by Alfsen and Effros (411 .For @ =] | ,the
moﬁulus‘cf o Banach lattice E,one finds that both 435‘? and <?M;?
coincide with <;r Y- relation of Alfsen-Effros type introduced by
the first author in [10] .

:Various concepts associated with the above defined relations
isuch a8 centraliszers,projections,ideals and summan&s pare discussed
thrqughout the section 43 in particular sthe duality between the
. centralizers of <KH%>(respectively <KM,? ) and <§Mﬁ€, (respectively
<<L,c?’ )‘is established , here C{J’ denotes the dual vector norm
of ¢ o

In §§5~ 6 we realize the announced unification between some re-

sults from HMestructure theory and Banach lattice theory.Thus,a re-—
sult of Cunningham,Effros and Roy [7] asserts that QVETY Ky -
summand in a dual spaee is weak' ~closed. A result of Luxemburg and
Zaanen: [14].,[15] asserts that every band.in-the dual of & Banach .

lattice with order continuous norm is wealk'-— cfosed. «

Remeriing thatb K = summends end projection bands are particular
insﬁances of our notion of a&n 1«M’T = summand,it is the purpose
of - §5 to gibe a general theorem which includes both of the above
stated results as particular cases.

In the same manner,the purvose of §6 is o give a unified version
of another couple of results: namely)Behrends'result asserting
that every Banach space which igs an <q_ -~ summand in its second
dual is weakly sequentially complete, and Lozanovskii's result asser-
ting that every Banach lattice which is & band in its second dual is
weally sequentially completeoSee [ 3] and respectively (441 for

details.

The first named author is much indebted to Professor E.Behrends

for providing him with a QOP%,loO? the monograph [2] .,
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§1l.Preliminaries

We begin by listing some notations to be used in connection with
a Banach space E ! .
1E s the identity map on E .
BE s the closed unit ball in E .
E* , the dual Banach space of E .
UE » the canonicel inclusion of E into E" .

The term " w'-topology™ will be employed to design any of the
weak'~ topologies o (E',E), C(E,E') and o (E"' ,E") ; the context:
will be clear enough to understand which is the topology the above
term refers to. Convergenme with respect to the w' —topology will
be denoted by _,E:_* .

Ag uvsual , U' will be the transpose of a bounded linear operator
U between two Banach spaces.

Given a vector space E and a seminorm p on E,we denote by (E,p)
the Banach space associated to p.This is by definition the comple—
tion of the normed vector space E/p"l({O}) .The canonical map

T:E — (E,p) is by definition +the composition of the maps

E —— B/ ({o}) — (E,) -

We note that all the results in our paper are true for real Ba-
nach spaces as well as for complex Banach spacesshowever,for the
sake of simplicity we consider only real Banach spaces and we only
indicate?at the appropriate places}the modifications needed by some
definitions in ordexr to cover the complex casee.

Given a vector lattice X; we denote by X, the principal order
ideal generated by =x ¢ X+ 9i,e.?'the set of those y € X such that
|y | ¢ ax  for some a e R, (depending on ¥ )e

The element e € K+ is called a strong order vnit provided that

Xe = X .Whenever X is Archimedean and e is a strong order unit,the



“d -
norm-|| ll, associated %o e is defined by

lxl, =inf{a|ac R, ,Ixlgae}

-

In particular,every x ¢ X+ 1s a strong order unit in the vector
lattice Xj{ s consequently , whenever X is Archimedesn we NAay COne
sider the norm | L on X, o

e shall make use of the well knovm fact that every principal
order ideal X, in a Banach lattice X is orderp isomorphic and iso-
metric (for the norm | lle )i to the Banach lattice C(X) of all

continuous realevalued functions on a suitable compact space XK.

A lattice homomorphism is & linear map U between two vector latw-
tices X,Y such that U(xl A xz)z- U(xl) s U(xz) for every X1 9% € Xo
JE‘:,I?.J:'lal.'L;;rj recall that a Banach lattice is said to have order con-
tinuous norm provided that | Xg |l —> 0 whenever (g lseX s

a net such that X, VY 0. ‘
We refer the reader to the monographs [6 ] and [4571 for

the elements ¢of vector lattice theory wused throughout the paper.

§2. Alfsen~Effros type order relations and the centralizers

associated with them |

2ol DEFINITION oLet E be a Bamach space.An order relation <«
on E is said to be of Alfsen—-]ﬁ‘fros_ type provided that the Tfole
lowing assertions are satisfied :

i) v v implies veu « v,

1id)F fu e v Ldmplien | Gt av. for every aclR ( every a ¢ ¢ |
if E is a complex Banach space),

A 0lca o B dn P implies au << bu for every u € E.




dw) If U K Vs U, € v, and vy K vy + V, , then

ul & Uy U, and C u2 < Ve o+ v2 o

-'"V)""Lz--%- v & 2V implies Khufl ¢ kvl »

vi) u, « v (ne€N) and lv, «vwl—0 implies u< v.

Alfsen and Effros [4]1 have conszdered the following two order
rela'ﬁlons of the above type which make sense for any Banach space

- The relation K ,defined by

uw& v iff vl = el 4 tv-wi
= The relation <, = , defined by
7 Woge oV iff every closed ball containing 0 and v

also contains u.

Observe that the definition of Ly can be reformulated as :
u <<ﬁ v iff llwt ull g max{wi , |=| m-v!l}, for every w ¢ E. While
the verification of the fact that «,  satisfies the conditions
in Definition 2.1 is immediate,the verification of condition iv)
for «M is less oi:vious PR e B

The systematie study of order relationsg of Alfsen-Effros type
was started in 1983 by the first author [10] who made the obser—
vation that in every Banach lattice +the order relation &

given by

VeV iff |vi=(ul + |v - u|

also satisfies the conditions i)= vi) in Definition 2.1.As the

following result shows, K, recalls both «L and <<M

2.2 PROPOSITION.(See [14] ).Let E be a Banach lattice .Then the
following asgertions are equivalent for every uv,ve B

ilu«” V.

ii) Every order interval of E containing O and v also containsi.

iidi) (wta] € (wiViwe v #mwm& wekE .



iv) u v cemd . s v, .

It is perhaps worthwile to mention that the one dimensional
complex Banach space € admits only the trivial Alfsen ~Effros
type order relation ;namely |

u <« v iff u=o2av for some a e [0,1] .

The relation & reduces to the trivial relation precisely on

strictly convex spaces.
In the remainder of this section ;, « will be an order relation
of Alfsen~Lffros type on a Banach space E.

2.3 DEFINITION.The centralizer associated with <« is the set

: U : .
Z (E) of all linear operatorsvon E for which there exist a,b € R,

(depending on U) such that U(u) + au <« bu Ffor every u ¢ E.

2.5 DEFINITION.A projection P on E is said to be & « -Cunnin-

gham projection (or ,simply, <« = projection) provided that Pu € u

for every u e BE.

2.5 DEPINITION.A suhspace of B is called a <« = summand. provi_

ded that it is the image of a «-= Cumingham projection.

The predecessors of the concepis introduced by Definitions 2.3~
2.5 -are the concepts corresponding to the situations L =L
and <« = Ky 0 first considered by Cunninghom and Alfsen and
Effros .See [11 for a eomplgte story.The study of the above con=-
éepts in the abstract setting of anVarbitraryAAlfsenaEffros type
order relation was initiated by the first author in [4o01.

We recollect here,without proofs,some facts connected with centra-

1izers.See [12],[13] for details.

Recall that an f-algebra is a vector lattice A endowed with a
structure of algebra such that - A+- A+ & A+ and the relation
a A b=0 implies se A b=ca A b=0 forany c € &+ <Any

Archimedean f-algebra is associative and commutatives.
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The set Z«(E) is an algebra of bounded linear operators.The
subset Zé:(E) of Z4(E) formed by those U for which the con-
stant a in Definit tion 2¢22 is equel té 0 ig¢one in Z« (E) such
that the order relation defined by it endawé ZQC(E) with a
- structure of Archimedean fwalgebraoThé nap IE is a strong order
unit for Z<<(E) and the norm associated to this strong order unit
coincides with the operator norm on 2 (E).Consequently , %« (E)

is a commutative Banach algebra.

206 PROPOSITION.(See [431 )e 2 o (E ) is an order complete f-
algebra provided that there exists & linear topology + on E such
bhst every & - decreasing net has a greatest lower bound and =«

converﬂe% Gosit,

In the case when E is a Banach lattice and <« = &, %« (E)
coincides with the usval lattice-theoretic centralizer of E; io@oy
the set of those linear operators U on E satisfying |[U(u)lg a | ul
for all ue E, with a ¢ R, depending only on U.

The <K‘e Cumningham projections are precisely the idempotents
in ZG:(E) s 9n éartiéular,all of them commute .The setb E% ()
of all such prosectxons constitutes a Boolean a]gebra of projec=-

t¢ong if we put

M0 =R QPO
PEIAQ PqQ ,

a3
P feomil

i

Given a = summand F of E, the complementary subspace F

Of F ig defined as the set

' { uluwe E, [Obu]nF=4o}} 4
here and elsewhere ,{u,v] denotes as usvally the <« =-order in-
terval {w lee Es udkw @:'v}.-ﬁ useful remark is that if P is a
projection , then : | |

) L =
(Im P = Im P = Kor D



-

For E a vonr Heumamn algebra and K = S o the Cunningﬂ&m'

projections age the cmur 1 projections on the wl—closed two

gided algebraical i Gealw .Sge 1] .
yoy E a, Bﬂn ch lattice and K = <« , the Cunningham pro-

gcci ons are bhe bhau piOJLGblOn‘ 36 M1 .
§3. Vector norme

3.1 DEFIRITION.Let E be a vector space.A vector norm on B ig

a map ¢ defined on E with values in a vector lattice X,satis-

fying the following requisrements :

i) cf(u) > 0 for everyu € E; ¢(u) = 0 iff u = 0.

111 <f(au) = (a]-q:(u) for every a ¢eR , u € E ( every 2 ¢ €
if E is a complex veector space)

i34 ) ¢(u+v) s P () + () for every u,v ¢ E.

If E is a Baunach space,X is a Banach lattice and ¢ satis-~
fies in addition
iv) le(u) U = lull - for every wu ¢ E,

then f is called an isometric vector norm.

3e2 DEFINITION {L.Ve. Kantorovich).ﬁ vector norm @i E ~— X

is said to have the Riesz uO&OMﬂOglbloﬂ property prov1dod that

ﬁgg gf??y u e”E. and everyﬁxl s X, € X with ¢ (u) < < %+ xg,

.\Fhere are vy »u, € E such that u = uy + uy and ¢(uy) ¢ =,

¢ (uy,) < =,
- For latter purposes we record here the following lemnma
3.3 LEA.Let E be a vector space ,X an order complete veclon

&Qﬁce, U: B————s» X a llncar-map and Plg P $E —X sube

llnear meps such thaﬁ U(u) l(u) + Pz(u) for every u € E.Then

there are 11near naps Ul - U2: E ——» X such that U = Ui + U2

end .Y <€ .l For gvary 1 e B 487 ok B
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- Proof.Consider the sublinear map 2:E X E ——» X given by
P(ul 9u21 = PICU ) + Ef(uﬁ) Let D ={(u,u)lve E} .The map
¥:D—» X pgiven by W(v = U(u) satisfies V{v,u) g P(u,u)
for every riu@u} € LnGOﬂQ@QH@mtly s the operatorial version of +the
Hahn =Banach theorem .(“ﬂc L51 ppasge 248)‘aliows ug to extend V to
a 1inear maylgdemeted again by V,defined onithernol whole Ex E
_end sab fylab V(ulﬁuz) < P(ul,ﬁg) fct every (ulﬁug) € EXE .
The maps Uy ,U, _&efined by Ul(u) = V(u,0) 9Uat’,u) = V(0,u) have
~all the reguired propertics.@

We indicate now some representative examples of vector norns

having the Riesz decomposition property (abbreviated,RDP )

i
|
1
!

j
i
|

3.4 EXANPLE. The R - valued vector norms are preCLuélv the usu~-

ml normu.CIOeryghny such a norm has the RDP,

3¢5 LBEAUPLE. If E is a vector lattice,the map ¢:E — E

given by ¢(u) = |u| is a veector norm .The classical Riesz decon-

position property for vector lattices means precisely that P

has the RDP.

3.6 EXANPLE.Let E be a B¢n1ch gpace and let X be an order com-
plete vector lattice.A linear operator UeBE —> % i3 called majo=
rizgineg 1if U(gﬂ) ig order bovndea in X.The set of all majorizing
Operators from E to ¥ is vector space,denoted by IN(I,X).The
map Qgem(E,X)-ﬂ—r X given by F(U): sup U(BE) is a veetor norm
\havingfﬁbP. To sge.thisglet %(U).g X o+ Xy e Lemma 3.3 applied

to thg linear map U and to the sublinear maps Pl ,P2 : B —» X

- given by P (u) = {ull. x; (1 =1,2) yields the linear maps U;,U,

‘such that U= U + U, and U;(u) < Wullex; {i eil,z}, uek). it

2

;:ﬁo}lows that U; € M(E,X) and pw(U;) € =x; .

_Suppose now that X is a Banach lattice and define the norm l{ﬂM

+
i
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on M(E,X) by [Uly = “f.J.(U)‘t‘:eEh'ldowed with this norm,M(E,X)

o

. becomes a Banach space and p  becomes an isometric veetor norm.

3R EXANPLE . Let B be a Banseh space end let X be a vector lot-

tice.A linear cperator U: X——E is called cone summable if
for every x ¢ }’L. we have
n
mm{Z,HUCx)H |“>f Ty p&X, ;, Zmgsxlicoca ()
Ty =9

The set of all cone summable operabors from X %o E is a vector
spacesdenoted by S+(}i,E) -For every U €5, XY, let  @@UDx
be the supremum of the set in (1) The map *x — & ¢T(U)x

(e Xk canl be extended by linearity to a positive linear form

)
+
on X, denoted Dby ¢ (U).We have thus obtained a vector norm

(s (ME) - %7 ,where X~ denctes the veetor lattice of all
order bounded linear forms on X.

If E is a dual Banach spacesthen ¢ has the RDP. This can be

seen as follows let F be a preduzl for ety Bi="F"' .To levery

'E

2
U ¢ 3,%(}’;533) we associate Ue I(F,X ) by U(v)i(x) = U(x)v).
The correcspondence U—>TU establishes a bijection between
S+(X,E) and M(F,X") such that [ (U ) = 0(U) ; it remains %o
use Example 3.6 in order to coneclude the proof.

suupose now that X is a Banach lattice and define the norm | {l‘5

on: S (A E) by llUil; =l «Zndowed with this norm, 5+ (X, E)

becomes a Danach space and @ becomes an isometric vector norm.

3.8 LIANPLE.Let E be a Banach space and let X be a Banach lat-

tice jwe underline that X need not be order complete .Let Mﬁ(E',X)

~be the space of all linear operators U: E'* — X satisfying the
following reguirements -

i) (%) © Y (E) .

ii) There is en x € X such that UCEBE.-) is contained
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in X, end is totally bounded for I 1.
It is well mown that the supremum of a totally bounded set in
a Banach . lattice with strong order unit alwaye e;zisi?sn(}omsequenﬁlgg
Ter every Ue My (B, X) it makes sense to consider the elemens
“U)= sup U(Bg/) of X.We have thus defined a vector norm
My (B.X) — X, with respect to the norm I Il gilen by HUHM=
|l;¢(U)llg M, (E',X) Decomes & Banach space and x becomes an isoe
netric vector norme
The wvector norm e has ’cljzcj RDP.Indeedyas every order ideal Xa:
is order isomorphic and isometric to a space C(X) it suffices to
prove our agsertion only in the case X = C(K).But in this situva-
tion,for every U € M* GES C (K there is a continuous map F:K—E
such that U(u)(t) = w(F()) for every u ¢ E* and t € K.The

hypothesis wp (U) < %y + x, meens that || P(H)l € X (£) + x, (¢)

for every t € KeDefine the continuous naps Fi: K —> E by

Py (6) =G e x, @)\ x, @IF ), if x (£)4x, (£) >0
Fi(t) = 0 y of x (81t %, (4)=0.

o0 -3 6{192} -The operators U; eM, (E',¢(k)) given by U, (u)(é) =
= U(F, @) ( ie€{r,2} ) satisfy all the requirements in the defi-
nition of the RIP. |

The importance of the Banach space M, (E/,Xx) 1lies in the fact
that :%.1: is isometricelly isomorpiiic to the IH-tensor product E@MX
See [Lt‘:\ o

The interest in vector norms with the RDP is justified Dby the
possibility of dualizing such norms.Indeed,given the Banach space
Ly the Dammch lattice X and the isometriec vector norm ¢:iE —» X
v\'r:i.th,the RDP,a duzl vector norm ¢/:E’—> X’ can be defined by

o' (u')(x) = avp  lwcwl
Plu)sx



for every u' ¢ E' and x € X, 3 the map ¢'(u'): X, — R,

is positively homogeneous and additive (because of the RDP) and thus

extends uniguely to a positive linear form on X, also denoted by

Cf?'(u,")a}',i; is clear that Qp’ is a vectol norm 3 in fact, we have
3.9 PROPOSITION. Cf;’/ is an isometric vector norm with the RDP.
Proof.The fact that c?" is V:i..'.?,omeric ig straightforward calcu=

lation.Indeed,

ol O L
Hxist Hxtel @u)Lx
xX2Q - XzQ
= e lwf Wl = lafy o,
(VSTE N
To see that ¢’ has 'RDP , let ) sx/+x;5 SEjuivalently

afleyisellee)txs (L)) weE .
By applying Lemma 3.3 to the linear form u and to the sublinear

forms: U —— x'i( @ (u)) (16{192} ),we obtain the linear forms u,

such that uy(w) s x; (QP(w)(weE, ieft2l)and  u= 4, +Uu, .Hence ‘f)f(“L)S.xﬁ,

and the proof is complete. @
roposition 3.9 allows us in particular to consider 7, "
and 80 on.ie have the following canonigal relation between ¢

al’).d (F Hen

3,10 PROPOSITION . Let Q@ i ———> X be an iscmetiric vector norn
having the RDP.Then

Xt (cf(u.)) = Awp (e (wil

(F{Cwlj Sxf

for every w € E and x'€& X[ oIn other words @“(Jc(w) =Yy ().
Proofe The map U —~———3p X' ('L(J(u.)) is a seminorm on E and the set

of linear forms majorated by it is precisely {u’ Wt e mY

©(w') g x’'y  sthus our assertion is a consequence of the Hahn-Banach

theorem. B



EYAMPLES OF DUALITY.
' The duals of the R ~ valued vector norms are the usual dual
NOYMS o
The.-dual of the vector norm uw ——— || on a Banach lattice E_ . __

is the vector norm u* — > |ut| on E*.

The dual of N, CELE) czn be isometyically identified with
B4 (F 4, EY) +When thig identification is performedg one can show,
the
L

by uveing techniques in L1 that the dual norm of the vector
2 2

porm M oOn M, (E')F) 4is the vector norm @ on. S+(F)Efj_

§4. The relations & © and Ly and their dug-
)

Throughout this section E will denote a Banach space,X a Banach

lattice and cf:E == L oon isometric vector norm.iWhensvar

will be consigercd,it will be understood that ¢ has the RDP.

49.1 DEFINITION., The relation <<'—,¢? on E ig defined by
u <<L,L{>q" wlpinig @ (v) = (f(u)—{»ce(q.:-ut) .
The' relation «M,CP on E is defined by
u«M,(?'u" iff Plwtu)s W)V @ (W)

for every w e E.

4.2 PROPOSITION. << © and << are order relations of
)

M,
Alfsen-Effros typee.
Proof.The verification of conditions i)-vi) in Definition 2.4
for <« P is guite elementary.For instance,the verification of
)

iv) needs only the triangle inequality.Indeed ,we have by hypothesig

P w) = puy) ¢ plug-wy) , ieih2t



e

and
PG, )= i) i)
Then
QU+ V) € @V 4V, -y ~u,) t gty )=
€ @ oimug) o Ply) + LY, ~ U, )4 Plu, ) =
R Coa i u) o @by
which implies that Uy Uy < L)‘? vy o vV, and W < Ly Mgty o

The fact that <« satisfies all conditions in Definition

_. M,cp
2.1 except for iv) is also straightforward.The verification of

iv) is reduced to the ecalar case and proceeds as follows.We have

by hypothesis u; <y o v (f€{4,2y) and V1 K UitV «Given
w € E , we have to prove that QW+ U ) < Plw)v (W, +u, )

and @ (Wi tu, )€ QW)V P (Wt vi4 1) Let X = @lw)reu )+ @y, )t

TP PV ) cAs P(W), Prv) and P(w) all belong to X, € 6{192} )

and X, is order isomorphic to a space C(X),all we have to prove
ig . that the relations

S(tf’(w+u4))£ma.x{S(L()(W)})g(cp(w-{-ut+u‘,__”)i' (2-)
g(cg(w-i- Ut Up)) S Mmax S(tp(w)), S (p(w+ ugr 0, 3 b (3)

nold for any {attice homomorphism & : L. R ;’i’o this purpose
let S ,M@:e any such Riesz homorphism anéd consider the seminorm p
o T e t{)"‘(x};) given by plu) = g((?(u)) .The hypothesis implies
that T(wt;)«MT(ﬁ";)(i e{l,2}) end Tvy <Ky vy + Tv, in (F,p),
where T : F —— (P,p) denotes the canonical map.CGonsequently,

we also have

DGy s, Tu, + T, ()
and
Plg) + T(u,) S Tl )t Tl ) (5)
Now recall that the definition of K M nakes use of an element

which runs over the whole spacejby taking T(w) as that element



)

in (4) end (5), onec' obtains precisely (1) and (3)e &

For t_{ﬁ(u) = lull , the norm of B, we have & ia
]

ana
For "-% o Banach lattice and ¢ (u) = |u| ,the modulus of E we
ave <« = - 3 See Proposition 2.2
have < Lyep <<M;‘P = 3 Ne jole! 2 e
We leave as an open precblem the gbtudy of the relations & @
b
and < and of the concepts assocciated ©. with them in the

th(?

gituation when ¢ i
3@6 R 3980

The centralizer asgociated with < <o (respectively

o}

one of the vector norms defined in Eyramnles
I

< e )
L?

will be denoted by ' 2, (E) {respectively ZM o (E)).
}

4¢3 PROPOSITION.Let U be 2 bounded linear operator on B. Then
UeZ

Ly (
(E') (respectively Z

respectively ZMJ“(’ (&) Y if and only if U’

ZM,t{”

Proof.Suppose first that U ¢ ZL (E}T‘s’ithou"t; loosing generality,
)

)

Lyp? (E) )

we may assume that 0 £ U < 1}:? in L (E). ~«Let W' ,n' ¢ E?
gnd u € E be given.By hypothesis we have P(w) = LF(UM,)+t?(u- Uw).

The inequality |

(wi+ Ul )dw)

Wi (uw=-Uw )+ (w4 w)(Uu) ¢
€ @Uwy (@ (u-TUuw)) ¢ @/ (w+ w)(e(Uw)) s
£ (QUw) v o/ (w +ury) (@)

shows, by btaking suprema,that

P (w +Uw ) sc(a'(wf)vce’(w'.a-w)) %
|

which means that U*(u®) <<M : w/ , as w' was arbitrary.Hence
1
ur ¢ 7 GRS
M,

Now suppose that U ¢ ZM 0 (E) 3 28 above,we may assume that
)

0L U< lE Let u' ¢ E* and v,w ¢ E be given .1.‘.’9 have
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(U/w,)(”)+ (u,’ “'UIU‘."){W) = LL.’(U'U‘ FREYY —Uw) <

$ @I (@ Up+w=Uw)) § @/ e oy v P(w))

ag
= z.e(Uv+w-Uw):c‘ﬂ(wa('n—w))Sce(w)vce(w _
1'33‘ hypothesis.By taking the appropriate suprema we obtain
?’(U'uf)*-‘{’f(&!-’"uful)sl?'(d) Az the reverse inequality ¢ '(u')s
s (UW)t ¢ (W-UW) is always true, we obtain that UL/ €L o &t
hence Ute€Z, ., () .
Finally .if U' ¢ ZM, t{J,(!:_") (respectively Z'L,LP’ (&) ) then

usen o (E")(respectively 2 (") ) by what have just been
) N

M,
proved.Jaking into account Proposition 3.10 we conclude that

UeiZ tivel 4 o
Lo CE) (respectively M,cp(E)) @
4¢4 COROLLARY.The map U —> U' is an isometric,clgebraic and fal-
lice . homomorphism, of 2 () (respectively 2Z. (E)) into
L My

(E*) (respectively Zz, . (E)),

215y L,

ProofeThe fact that the map vnder consideration is well defined
follows from DProposition 4. The lattice homomorphism part follows
by cox.ubining The next two remarks.First,it was shown during the proof
of Prepozition 4.3 that the map U — U' $akes ZL:‘P CE
(respectively Z%&o (Bl Jidnto ZM,%" (E')+ (respechively
ZL,:{: (E') + JeSecond, .in every Archimedean f-algebra with unit

the relation and =0 is equivalent t0: 6% 0,420 amd of =0. @

4¢5 PROPOSITION. For every projection P on E the following are
equivalent

i) P is an «MJ"P -~ projection .

ii) Qv+ Pu)c@(v)v (v "“l“-] for every u,v ¢E.

iii) @)= @(Pu) v @(u-Pu)  for every u € H.




ey 3-? o

Proof. Clearly, 1) <= ii) and 4ii) = ii).
ii) = iii).Notice First that CPL) » P(u-Pu)s Flu). Lfor

every v € E.On the other side,

cP(Pu.%(bqp)v):cp(U~+P(u-u))5<p(n)wfq(ug
for every u,v € E,which implies

Plu) = @(Pru + (1-P)°w) € @ (Pu)v o (w=Pu)

for every u ¢ EB. ® :

4.6 PROPOSITION., ZL,?’ (BE*) snd Zm,$ﬂ (E*) are order come—

plete f=algebras.

Proof.let <« be one of the relations <KL;V’ and <rM)?,9
By Proposition 2.6 , it suffices to show that every -decreasing
net has a greatest lower bound and w'- converges to it.The latter

1
fact cen be obtained via standard arguments 1f we prove that every |
<< - order interval fu'yv*] is w'~ elosed ( aad hence,wf-compact). |
By condition iv) in Definition 2.1, [u',v'] = u' + G,v' = u'] ;
in order to conclude the proof it remains to remark thuat the lower
gemnicontinuity of each map 3z' —s ?'(z‘)(x) (x ¢ X+) implies -
that [0,v* - u'] is w'- closed. B

We shall introduce now the notion of =n idezl .

47 DEFINITION. An & = ideal (respectively an
Lysess e M,(P

of E 13 a closed subspace I of E with the property that the

- idesl) |

polar 12 ofid is an <« ( = summand (respectively an & o T
M,q) A

summand ) in E* .

The terminology is motivated by the cuse when K =<y first |
treated by Alfsen and Effros (17 «They noticed that the Ky =
ideals of & ¢ -Aif%L@ma, are precisely the norm closed two sided

algebraical ideals.

The case K = L

is considered belowe. o Ayl
ol G [:’.ﬁzi‘zl{gz
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408 PROPOSITION .Let E be a Banach lattice and let I he g
closed subspaze of B o Then the following assertions are equiva-
Lent

i) I is an «_ = ideal

ild) I is an order ideal , ieeeyls [x| emd =xe¢ I imply

yel.,

Returning to the abstract setting described a% the beginning
of this section, let us establish the conditions that must be
‘ Yo A = 2
satisfied by an ideal in order %o be summand .

4.9 PROPOSITION. Let I bs an ~ ideal (respectively an

&
L,
<<M}? ~ideal ) in E.Then the following assertions are ec‘ruiva,lent :

1) Fdaan o - summend (respectively an <« ~gunnand )

L@ M, @
1i) The Cunningham projection associated with I° is  w'- con—
tinuous
e 0-ts : =
o ) e ¢ is w' ~ cfosed -

iv) Por every u e E there isav I euch that u'(u)=wis)

= =
for every. b € 36

Prop.g.ﬁlrst,af ol gdenote by Q the Cunningham projection onto I°

and remark that IO‘L

= Rer Q e
i) = iv).Denoting by P the Cumningham projection onto I , we
have Q = (1B ~ P)* by Proposition 4.3 .Consequently,for every

T
tie TS and. ne E we have

ww) = w' (Puw) + ' (u - Pu) = w’cw)

with v = Pu ¢ I.

0 ik
iv) =>idii).Let -u‘s e L ’L, “'i; Ji'__,-, w! .To prove that w e X1° S
take any u ¢ E.By hypothesis ,there is a v ¢ I such that z’(ouz-e’w)
for every =z® € I°flf As vl and A/ ~-Qu’ Tbelong to I°'L, it

, f(_)ll ows that



—

W) = bm w (W= dam W (0) = W)

= (Qu i) + (W - Quii(m) = (W= 9u)w) ,

. s oty
Hence (Qu/ Mw)=0 ; as u was arbitrary, v' ¢ I° .

iii) => ii) Follows from the well lmown fact that a bounded
pij@CtiOﬁE;ﬂ E' ig w'- continuous iff Im P ond Ker ¥ are w'-
cfosed -

ii) =»> i) Follows from Proposition 4.3.m

§5. A situation when all 4o~ Sumands are w'-closed

i

A result due to Cumningham,Bffros snd Roy [71 asserts thot

every <Ky = summandin & duzl Banach space E* is w'- closed;con-

sequently, every &y = ideal in E is an & = sumnnd.

On the other side, every (projection) bund in the éuul of a
Banaeh lattice with order continuous norm is w'- clo=ed; this fael
was first noticed by Luxemburg and Zasnen :See 41 .

It is the purpose of this section to bring together bothe of
the above mentioned results, by deriving them as corollaries from
the more general theorem stated belowe.

Throughout the section,E® will be a Banach space,X & Banach lat-

tice with corder continuous norm and <PEB — X on isometric
vector noxrnm with the RDP.

5.1 THEOREL.Ever < , = summend in B* is w'-clogsed .

]

Proofi.liet I be 2n «M‘Prw summand in E' and let P be the

}

Cunningham projection onte I.In order to prove that I is w'=closed

R /
it suffices to show that u'® ¢ I whenever u} €l uk.-ii»ou
and sup luf ll < oo jsee [31  oBub w-Pu HLLJ~PuQu%-Pm’€l

and u® -~ Pu' € Ker P; hence we may assume from the beginning that

u* € Ker P and we have 4o prove that u'=0 .
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Denote by £ the positive linear form ¢(w') on X .In order

We' that £ = 0 1t suffices %o show that the carricr S, of

s
~.

£ o ieeoythe disjoint complement of the set {x Fze X, Féixlli= G}
\a\_‘ﬁ )'
is reduced to "{'G\-}t_uﬁlﬁ_‘glis is so becsuse ¥ is order continuocus § sece

Lel.

=50, lats X c Sf X, and & > 0 be given.Put I = sup Eiu’é (.
)
As the norm of X is order continuous,there is an £, € X' such

that (g - £ ).},(x) < & whenever g & X* and lgll < M. See

Ls1.
For every n e we have
ce’(w"s+mw’):n?“(u~’3)v ncp’cw)=<e’(u-"é~)vnﬁ, (6)

But ;
il s luii A & CR L) ~fe )s

e v nf s (Fe + (g - 0 )V (friptipd-Tely )=
.:Xi& \/n',(f ~‘r(<f>’(u,’5)n:ﬁ& )+ > ()

It follows from (&6),(F) and the inequality l\<{> '(u})\l §™M  that

@/ (Wt nw)x) (8 vnf )G e . (&)
The. funetion 2z' ——s cf°(z')(}:) being lower semicontinuous,we
obtain from (8) ,
() $o0 = @/(wtnw )y s (f, v nf )6 ve
For every n e N  there is an x € [0,x 1 sueh that
fe %n) + nf(x-xo) % (f Vv nf)(x) - ¢

Consequently, :
("‘"“)#CK) < fé (X)) *+' m #(K—-xn) +2E

and finally
P s, () G ke (9)

for every n eN o We shall derive from (¢) the inequality

-~

£(x) < 2& 3 as €>0 was arbitrary and x was in Sg , this will



.conclude the proof of the fact that £ , and hence u' , are
eqgual. to 0. '

Indeed , if £, (:}:n) ¥ f(x, ) < 0 for some n , then f(x)<2e
Let us therefore suppose that (_a.,,l) - ( ) > 0 for sl wH,
As [0,x] 4is wealkly compact as being an order interval in a
Benaeh lattice with order continuous norm {see [6] SLandy Lisi)
we may assuge , by passing if necessary to a subseguence,that
Xy — 4 € [0,x]1 weakly.From 0 g :::‘(:cﬂ) < Jﬁ— fé x) it follows
that- #(y) =0 ; a8 [0sx] C Sf ¢ btne latiter eguality implies

that y = 0. Hence f&(}:n) —> 0 and the conclusion follows
from the relation

{00 € ﬁ& (%) _nzﬁth) FdiEC f’g("n)"’lﬁ .

5 2 CORCLLARY.Gvery < ~- ideal in ¥ is an < —gumnmand .
Enst L,¢
5.3:COROLLARY.Tne map U — U' dig an isometric slgebraic and
' is ian 5% E By
order isomorphism of Z[_qp(b’) onto ZM)(\O,( )
Proof. Let A denote the image of ZL ‘-{’ (e) under the mnap
2
U — U* ,Ag the £ - algebra A v (EY) is order complete by
?

Proposition 4.69 it is the closed linear hull of the set of its
idempoten'tsjieeng the <<M,\f, - nrojections. As A is closed
and containg all <« M, projections by Theorem 5.1 | it fol-
lows that A = ZM)?, (E') . B

The results mentioned at the beginming of this section are res-—
pectively derived as particular cases of Theorem 5.1 by taking @
to be the norm of a Banach space,regpectively the modulus of a

Bonach lattice with order countinuous norme.



§6 « << = summands end weak sequential completeness

&3

4 ecloasicel result due to Lozanovekil Ukl asserts that if a
Banach lattice E has the property that ZE(E) is 2 band in BEY

0

then E is wehkly sequently complete.

A more recent result dve to Behrends [3]1 asserts that if a
Banach space E has the property that ja GEY ds.an «, =sum-

-

mand in EY , then B is wealkly sequently complete.

It is the purpose of the present section to show that our
general theory allows %q bring together the sbove couple of re=
gults. The proof relies on two lemma ,whose borrow some ideas
from Behrends (371 . We note that unlike in [3]1 , no appeal to
the principle of local reflexivity is made.

Given a topological spsce ¥, a function £: K — R and
a point % ¢ X , we denote by Lf(t) the interseetion of all
sets E{gﬁ) ie.eey the closure of £(V) ),where V ruas over

all neighborhoods of t in K.

6.1 LEMA.Let E he & Banach space and let u" ¢ E" be such
that
laur + T (u) I =lat- a4+ hud (10)
for every a e R and u ¢ EJ.Denote by £ the restriction of

u®  to the topologleal space BE‘ o endowed with the w'=topologye.
Thexn Lf(u'} = L= fluril Jlu"ll] for every u! € Bge -

Proof.Clearly Lf(u°)C:[-ﬁuﬂH,ﬂu”ﬂ] For the reverse inelusion,
let a € [-fu’y, nw"t] ,let V be a neighborhood of u' in BE“

w.ck

and let € >0 be given.There are 3> 0 and a,,..., u,

guch that
(v ) vie By, ,lviu)-wieplsy,1¢isnl V. @

Define g : Ru" + C'E(E) — R vy qbu’« T ()= of +uwi(w).



We have
lq (6w + T )] < lat 1] + 1wl s 1el eIl « ful =

= || e & Jg (w il

by (10, hence g has an extension of norm ok meﬁ"’“ 1 to v

again denoted by g . As ‘7E’ (%Ez) is w' ~ dense in B.w g
A

there ig a v' ¢ B

7 (1)
and

lg.(?E(J_@)—vf(u,;)R?? 5 lisicn. (1)

But j(jE(LLL))::L{.’(LLL:); henee ((4) and ({3) dmpiy that vie Vo
As D‘(U.") =2a ond €>0 was arbitrary, it follows from (12. )

that a € £(V) .As V was arbiteary: Sd g Lf(u'). =

6.2 LENIA.Let E.  be a Banach space,let (uq),ﬂ € E and let
4 4
ult e B Lg guch that ‘7&: (@0 SR and (10 ) holds for

every a €[R and v € E .,Then u" = 0,

Proof.Let £ be the restriction of u" %o the compact space
(for the w'~ topclogy ) BE’ .The fact that Te () AW e
implies that £ 1s a function of first Baire class, hence the set
of points u* e BEQ at which £ is coantinuous is nonveid.At every
such point u' we must have Lf(u°) = {f(u)} ;conseguently,

Lemmina 6.1 gives u" = 0, &

6.3 THEOREN.Let E be a Banach space, X a Bunach lattice and
$:E —X on isometric vector norm with the RDP.Suppose thatb

5’5 (B) is an <L "f’”h summand in E". Then E is weakly secouenti-
5
ally complete.

Proof.Let (u C B be a weak C: uchy sequence.There is u ¢ EY

Ynin
such that g (w,) W,

£ «Denoting by P an

L (Fﬂ
onto ¥, (E) seshawer T (o) =Pt Wil SR e D (E)

- Pro iectiun



e

ﬂ-' 2&"! .

and w'-Puf e Keu P, Hence sit may be assumed from the begine
ning that u" ¢ Ker P ; the proof will be concluded by showing
that u" = 0.

To this purpose, let £ ¢ Ly ahd let p be the seninorm on B
given by plu) = £{ ¢(u)).Denote by P the Banach space (E,p)

and by T:+E — F-  the canonical map ,which is a bounded

.

operator.Conseguently,

: w! (14)
7F <Tu’n) _____U\i___? T”H,H
& straightforward compubation shows that
T4y = g,fa"f{'@rf)(:?) (1s)
for every v* € E" .The relation u" ¢ Xer P implics
: o " e 5 " 14 L Hé)
P lawn” + 'JE (w)) = || P )+ (JE(ULJ)
for every a ¢ R and u € B.Corbining (s) with (¢) we obtain
: :
“,& A X ‘jF (Tw) l =lal. 0T w e Tw (1%)

for every a ¢ R and u € E. Taking into account (%),UF) and
Lemma 6.2, it follows that T*(u") = 0 ,that is, (F”(u”)(f} =
by (5). As £ was arbitrary in Xﬁ% y wWe infer that uYv=0 .and

the prood iz coumplete. @
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