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MULTI-ANALYTIC OPERATORS AND SOME FACTORIZATION

THEOREMS

Gelu POPESCU

Let ‘T:{T1 ,Tz,. . } be a sequence of noncommuting operators
on a Hilbert space/ such that the matrix [T1,T2,..‘. 1l is a coﬁ-—
traction. An extension of the Sz.-Nagy-Foias commutant lifting
theorem [10,4,6,7] shows that there is a close connection between
the commutant of § and the commutant of a sequence 50={S1,82, otivie }
of orthogonal shifts on a Hilbert space H >A ' such that the operator
matrix [81,82,.. ] is nonunitary (see Section 2). The operators
belonging to the commutant of Y will be called multisanalytic
(or jo~analytic) operators.

The main aim of this paper is to provide some factorization
theorems and to apply them to the study of S —analytic operators
and of the lattice of the invariant subspaces of o e

LAt 7={_/{4CJ{: Sn.%c:./’a{-for anyeri=la 2y, 5 :

First, we present a universal model for segquences T of
noncommuting operators in terms of orthogonal shifts f (see alse
[9,3,4,5,6,7)]) and, in connection with this, we point out the
role of the lattice LatJf in the study of the invariant subspaces
of .T

Section 3 is devoted to an extension of the abstract

Beurling factorization problem [8, p.8] and to the application




of this fact for proving a version of the Beurling-Lax theorem
DT,7,§J for 37. In other words, we shall show when an operator
TeB(H) admits a factorization of type T=AA* for some.f~analytic
operator AeB(¥) and we shall give, as a consequence, a charactemis
zatien . of the elements of ‘Lat f .

The last section aeals with the following extension of the
abstract Szego factorization problem: when an operator TeB(¥) has
a factorization of type T=A*A for some:f*analytic operator AeB () .

For this,*it is easy to see that .a necessary condition is that

SETSn=T fox any n=1,2, ...
(7

S;Tsm=0 for any n#m; n,m=1,2,...

Such an operator TeB(@¥) satisfying () willShercalled
f—Toeplitz operator. We extend the abstract Szego factorization
[8, p. 50] for obtaining a similar result for nonnegative :f—Toe—
plitz operators. By applying this theorem, we obtain an ¥ -inner-
-outer factorization of jp—ahalyﬁic operators and a factorization
for the nonnegative invertible ¥-Toeplitz operator [8, p. 521

In Sec@ion 2 we establish some results concerning the struc-
ture of the tf—Toeplitz operators and, in particular, of :f-ana—
lytic operators. As in the classical case, we shall associaﬁe to
each,ff—Toeplitz operator a "symbol" which is an operator in our
setting.

Let us remark that at this stage of our research the con-
nections between the tf—Toeplitz operators and their "symbols"
is far from being well understood. .

Concerning ff—analytic operators, in a subsequent paper

we shall give a parametrization of the set of all contractive



Y —analytic operators on a Hilbert space, in terms of the choice
sequences [2].
I take this opportunity to thank Professor Gr. Arsene for

the useful discussions on the subject of this paper.

1. UNIVERSAL MODEL

Throughout this paper A stands for the set {1,2,... ,k}
(keN) or the set N= {1,2,...}. For every neN let F(n,A) be the

set of all functions from the set {1,2,...,n} tol /Y Jana

T=UFrn,n, where F(0,0)={0] .
n=0

A sequence Y ={SA‘} of unilateral shifts on a Hilbert space ¥

Ae N
with orthogonal final spaces is called a A -orthogonal shift if
the operator matrix [S‘I ,82,.. ] is nonunitary, i.e.

L= o (® S,3) #{0} . This definition is essentially the same as
. AN

that from [6]. The dimension of XL is called the multiplicity of
the A -orthogonal shift. One can show that a A -orthogonal shift
is determined up to unitary equivalence by its multiplicity.

For our purpose we need an operator version of the Wold
decomposition [11,8] for selq.uences of isometries with orthogonal

final spaces [4,6]. _

THEOREM 1.1. Let vz{VA.ﬁ}\eA be a sequence of isometries on

a Hilbert space K, with orthogonal final spaces. Then:

(). P =T — S5 ¥y .w& is the projection of K onf:=Xo (® V.X);
() A A A
AEA : AEL




(ii) Z va’é—-—sP (strongly) as n-% , where P is a projec-—
feF (n,A)

tion;
o
(iii) PX=() ( @ Vf.‘k):
n=0 feF{n,a)

k
(iv) Z z VfPOV”ff——;Q::IK-P (strongly) as k-» oo ;
n=0 feF(n,A)

(v) QJ{:{ke]{; lim Z I V"f‘k Il 225 };

N30 féF(l'l,A}

(vi) PX and QX reduce each V, (xeA);

19 — *
(vii) (I Vx V.\

K AEA ) IPK:O:

(viii) {VA lQK}AeA is a A-orthogonal shift;

(i) 2P+Z,V PV:, K=PK® ( ® V_P X), where for any
X fE?-' feior £ fG:'}‘ f o

fe Biln,A) M stands for the preduct V

£ £(1)7£(2) " VE(n)
This version can be proved directly or can be deduced from
[6, Theorem 1.3]. We omit the proof.

COROLLARY 1.2. A sequence 17:{\7 of isometries on X

1
Aldaen
with orthogonal final spaces is a A -orthogonal shift if and only
1

Time s N VB0 Fowial i
n~+oe feF(n,A)

Specializing the Wold decomposition to the case of a /A -or-

thogonal shift, we obtain:

CORCLLARY, 1.3. If j):{skhﬂ_/\ is a: A-orthogonal shift on X




and L -Fo (@ X)), thenK= @5

f:;f, and each keX has a unique
Aen A fe¥

fepresentatlon k= z S l . 1.eX. Moreover I\ k ”2: 5_1_. [Fde= ] 2 and

£ £ £
fe¥F fe¥F

lf=POS°'f"k (fe?f} —Where PO::IK-— J‘-}EA AS; is the projection of X onJt

Now one can easily prove the following characterization of the

subspaces Moot ¥ which reduce each S;\ (de) , that is Me(Lat P )N (Lat y*).

COROLLARY 1.4. A subspace b of ¥ reduces each SA (red) if
and only if

M= @ s .

feF
where .// is a subspace ofL=X O (® SK
AcA

Let us note that the A-orthogonal shifts 30={SA}A€A can be

thought as universal models for sequences T = ilTAﬁ;\eA of noncommut-

ing operators.
This fact has been proved in [6,7]. However we next give
another proof generalizing the results from [9,3].

THEOREM 1.5. Let Tz{T } be a sequence of operators on €

AlAEN
such that S T#T,¢T, and lim 2,  [[T;h [[?=0 for any heif.
A€ ¢ n-w feF (n,A)
el : i o : . - I
Lettf {SASJ\eA be a A-orthogonal shift on a Hilbert space such

that

din (KO ( @ 8,K))ydin ((T, - > o
AEA AEN

Then there exists an invariant subspace Moof each S; (ae.n)

such TlS unitarily equivalent to | S* i.e., there exists

o
a unitary operator U such that




—

Ur. = (S* U for each ) e
\ ( - ‘J,{’,) Ac A
e Proof. Denote lf=7<69 @® SJC and D= (I —7 i ) 1/2 Since
oo AC[\. € acaidid

dim D!&cflmdwm can define an isometry W from Dt to, and an ope-

rator U from 3‘5 to 76 by

Uh= ), S.WDT h ,  (hell)

fe¥F :

where g‘;f stands for the product Sf(n)s when

£(n=1)""""£(1)
feF(n,A). By Corollary 1.3, for any he¥ we get

| Uh || %= ZuDT | 2=1im Z 2. Land I—ZT*T )T h,h >=

n-o k=0 feF(k,A) H‘Aa\.
-tim (pha2- 2. pThit=yng?
n-»00 feF (n+1,A)

Thus U is an unitary operator fromd onto Ab:=UHH. For any hedl
and Ae/A we have

S*Uh= », S*§ _WDT _h=UT. h

A ¥ Y e f A

It follows that b is invariant for each S;‘* (reA) and Jis unitarily

equivalent to The proof is complete.

S* .
{ ?\{J/&}Aex\
COROLLARY 1.6. J has a non-trivial invariant subspace if

and only if y*= {S S has an invariant subspace 4’ such that

AE L
P 4 < b,

REMARK 1.7. If T={T E does not satisfy the hypotheses

AJAEN

of the theorem, then {ca TASA&A

0<{cyl ¢ 1 (AeA) such that

will satisfy the hypotheses for

any scalars. CA ;



Z ICAI ZT;TXérI}}{, : for some re(0,1)
Aen

In this case it is necessary to choose aA-—ort‘hogonal shift J° whose

multiplicity is dimdf and as in the above theorem we find

UT = (el

* = k
. Cy SAlJ,@)U for any A e A\

2. ¥ -TOEPLITZ OPERATORS

The commutant of a sequence 7={T?‘3 of operators on ¥ is

AEN.
the set

C(T)={XeB () : XL =T X tor all rend

The lifting theorem [10,4,6,7] characterizes C(J) when T
represented as in the universal model of Section 1. Let us recall it.

THEOREM 2.1. Let 30={SA’J be a/A-orthogonal shift on a

AELY
Hilbert space X, # be an invariant subspace for each S;:(Ae_(\) and

let

Q%
TA SA \'&6 (AeA)

If XeB(¥) satisfies
XTA :TAX Eorallexa i,

then there exists YeB(XK) with properties:

(i) Y¥c ¥ and X:YIK :
(ii) YSA*=S;Y et alilsAe N

(i) el = = Sl R



As we see, it is important to study the commutant of a

A-orthogonal shift 7’={SA& on a Hilbert space # and even a

AGA.
larger class of operators, that of theﬁf—Toeplitz operators, which
appear in connection with an extension of the abstract Szegd fac—
torization problem (see the introduction). For this, we need the

following definitions.

An operator TeB(X) is called

(i) ¥-Toeplitz if S)TS, =T for any e and S;TSH:O for
AFU; AsLen;
(ii) 3’~analytic if T%AZSAT for anyAen,
(iii) Y-inner if T is Y~analytic and partially isometric,

(iv) f-outer if T is flanalytic and T3 reduces each S. (xeA),

A
(v).f~constant JE R ands X arelf—analytic.

In genral, examples of ¥-Toeplitz operators are easily

constructed from f-analytic operators. If T TzeB(X) are T -ana-

‘] r
lytic, then the operators T,, T¥, T4T, are ¥ -Toeplitz.

Now, we give a theorem on ff—inner‘cperators. We omit the

proof which is an easy extension of [8, §1.7, Theorems A,B,C'].

THEOREM 2.2. Let TeB(¥) be Y -inner and éf=3€C)( @ SAMD.
AEA ‘
Then :

(i) The initial space of T reduces each S. (3eA) .,

A
(ii) The final space of T reduces each SA (rea) 1if and only
if T is ¥ -constant,
(ESEaERI) T is ¥-constant if and only if has the form
h= RS n i GEo s e
fe¥ fe¥

for some partial isometry ToeB(i).




In what follows, to each TeB(¥) we associate a matrix of

operators in B(X) :'I‘N[Af g]f e where
4 7 2

A =P S*TS P

f;g o f g le (quﬁ'?;)

and Pk 4s the orthocronal projection of Hond =He (@ S}ﬁ
AEN

For any hed, h=§: S 1 (see Corollary 1.3) we have
qer 1 9

, Where l'“ZA

Th= > S
f
qe¥

fe¥

Indeed, by Corolilary 1.3 it fels

f f 5 q

lows that li=P _SXTh=P s*T >, S 1 ZA (feF) where the sums
g A Srleld q
ge¥F ge¥

are strongly converdgent.

It is easy to see that the correspondence Tm[Af q] Fooed is
L4

i 5 - % —A* :
linear and that T M[Bfrg]f,ge? where Bf,g Ag,f Corrall f,ge .

PROPOSITION 2.3. If Ty~ [Ag )¢ go5 and Tyv[Be gle g e

then 1 w[c where C ;“

(f,g9e P with-con=
£, cr]f,ge? £.9 &5 z

f,qurg

vergence of the sums in the strong operator topology.

Proof. By Theorem 1.1 we have I, 2 SqPOS* . For any f,ge¥F
qe?‘

G =P SET.T S.P Z,SPS”’

o o o i Darer O\P o 5 qe ¥ g o 2 q O 51Afrqurg

L qer
with convergence in the strong operator topology.

In the sequel we shall need the following notation. When

feF (n,A), geF(m,A), fog means that nym and g;:fH1 5 ny In
r F IR LR |
this case f\g stands for the function h:{1,2,...,n—m3wajx given

by



hid)=£met), h{2)=£m+2) ;... hin-m)=£(n) = Efn>n
and

h=0 41if n=m.

THEOREM 2.4. An operator TeB(¥) is :fHToeplitz if and only

if its matrix is of the form [Af élf geg.where for g e T
I !

(2..7) Af,g:Af\g; if < Exg
:Ag\f7 ki S e
=0; otherwise

where Aqu(i) (geF ), quB(f)(qe F\{0})

In this case

(2.2) Aq=POSC*JTPOli (ge¥) and A "PoTS¢Po) ¢ (qe IN[0})

proof. If T is ¥ -Toeplitz with matrix [Af’ ]f,geﬁf then

= o +* g =
Af,g 12 TS Polf POSf\gTP lf HUSE 20 i Yo
= 1
POTSg\fPle b
=0 otherwise

Thus the matrix of T is given by (2.1) where the entries

Aq'(qe?); Xq (quK{oﬁ) arcidefined by (222).

Conversely, if the matrix of TeB () has the form (2.1),

for some Aqu(I) (ge¥) , EqéBhf) (ge FN{0}) then T, SETS, (rea)

have'the same matrix and for )\ ,ueA, A £l S;TSM=O° Hence T is

Y -Toeplitz.
P




COROLLARY 2.5. An operator TeB (¥) is f-analytic if and only

if dte matrix is of the storm [Af g-lf gek where for ffgeg-'
¥ .. T

[ 8 Af,Q‘ZAf\g if ng

(2.3) (Aqu( , ged)

=0 otherwise

In this case for any qeg_ Aq P S’”.I‘PO\z Moreovexr, T is
S —constant if and only if quo Foreall qu\SLO’}] i.e. the matrix

of T has the form
diag {AO,AO,... 3 :

In what follows we need the following notations and defini=

tions:
(2.4) 12(3,0)=( @s0 @ ® ( ®sH, where F=F0};
fe F* Ee
13(‘}",21”):( ® S i ® 0@ 0;
feF®

12(F0)=00L @ ( ©sK) .
feF*

We J_dentﬂfy'é{iquth 1 (F,L) and 1% (¥,#) with 1%(2—?,1’) @ 13(3‘,£).

2

For each Aea let us define U?\E-E)(l (7,¥)) by setting

U, (1_)=(s5)%L_ , for el

+ 2

where {S B ) is the A-orthogonal shift acting

e {5;:}}‘«:-,&

D
on l_(f,‘cf) @ X (resp. 1+(§v’-,;f)).
Obviously U?\ is’ a coupling of S; and S; (Sccliil) . that s

+ - ]
= =S r -k that if /. has
UA\12 Ty S) and U).\l (F.£) @F S)l We also remaxr hat 1



a single element then we find ‘again the bilateral shift on lz(zﬁx).

Now, to each f—Toeplitz operator TeB(¥#€) we associate an ope-

rator @ :I-ﬁ.lz(?gﬁ) defined with respect to decomposition (2.4)

by the operator matrix

[Aq]QG?*
[Aé]qe?

where Kq, Aq are defined by (2.2). Thus B is unigquely determined

by T and we write T=T,. Note Ehatitom-lic L

Bl- 7, U%Kfl o 05 2L
feF* feF

THEOREM 2.6. The following statements are equivalent:

(1) T,eB(1%(F,X)) is P-Toeplitz,

6
(ii) There exists AeeB(lz(?,I)) uniquely determined with the
properties:
1 Bgly = 4
5 A = i h
(22> 2 B ha @l 50

AeUfllf(?t‘,i) @z Btliti g oL N den

T9:P+A9|li(?ri) , where By is the orthogonal
projection of 1% (3,%£) on li(?ﬁi).

In this case

(Z.6) A (5 UELEsD U 1= DLurglis g u gl (i el
B D EE Tt e




and

‘ :
2.7 B Uil =R Yy A
(2 .7) a(f%ff) _F(f,;;,; 01,)

Proof. (i)==)(ii) An operator AeeB(lz(F,Jf)) which satisfies

(2.5) is uniquely determined by AG-l;fi:G' This follows because

for every fe¥*, leL we have

(2.8) AULL=U0L , A UXL=U201
and
12 (F0=(® vt @ ( @ UL
feT* fe¥F

Taking into account the matrix form of TQ (see Thm. 2.4) and the

definitions of U)\ (heA) land B , it dis easy te see Ethat for any

£f,9¢¥F, 1,1'e X we have
(P+A9Ugl,Ufl'}:(TeUgl, Ufl') :

Since 12('3'-,0.‘5): @ U_.&L it follows that

: fe¥ :
Belol 1230

Conversely, if AeeB (12

9=A8_\;€ ; then the operator TG‘:?*'AGIli(}':JC) is JD—Toeplltz.

(F,£)) is such that (2.5) holds and

2

Indeed, for any A ,ped, h,k li(gf,ag.) we have

(SzTGSAh,k}=(Aeh,U;Uuk)z{P+A hodyss L ife A=p

=0 e s

The last statement of the theorem is immediately. The proof

is complete.




In geﬁeral if @ is a bounded operator from £ to 12{Zf,af,)
(i.e.@eB(éf;lZ(Qf,f))), then AG- defined by (2.8) is an unbounded

operator. Note that TgeB(lf(?,fj)) is 30——anal_ytic if and only if

QeB(a‘f,li(?F,;f)). In this case we have

(2.9) Ml s h)is e (1.e%)
0 fe?ff fe?'f £ £

THEOREM 2.7. Let TBeB(lf(?,s{)) be an Y-analytic operator.

In order that TG be:

(i) \f—inner,
(ii) :)o—outer,
(iii) ffconstant,
it is necessary and sufficient that the following conditions hold,

respectively

(i) @ is a partial isometry with 0L an wandering subspace

for 2, e, Sfe.i’_l.sgegf for any £,9e3, £#q.
(410) \/S‘_Q-I=12('3:,D%) for some subspace Lt
f + (o}
fe¥ :
(iii) B eB(X).
We omit the proof of this theorem which is easily to deduce

from the results up to now.

The following theorem gives explicit forms for the commu—

tants of all ﬁa—analytic operators.

THEOREM 2.8. An operator XeB(lE(?,Eﬁ)) commutes with all
]o-analytic operators if and only if its matrix has the form (2.3),

where each entry is a scalar multiple of the identity on R



PIoof.  TF XeB(lE(?gﬁ)) commutes with all Jp—analytic opera-
tors on lf(?}xﬁ then X is ¥-analytic. Its matrix is given by (2.3)
and .must commute in particular with diag(¥Y,Y¥,...) for every Y¢B(X).
Therefore the entries of (2.3) commute with all operators in B(X).
It follows that each entry of (2.3) is a scalar multiple of the

identity oh X . Conversely is straightforward.

At the end of this Section we give a concrete realization of
a A\ -orthogonal shift ¥ and we provide explicit forms for the .
:f~analytic operators. For sake of simplicity we only consider
the case when!&={1,2} and:f=§s1,82§.

Let F(3#€) be the Fock space defined by

Fa - ® 12 ", %),
n=1

where HZ(DH;M) is the Hardy space of all analytic functions in the
unit polydisc D" with values in a Hilbert space .. To be more
precise fn(A1,32,...,An) belongs to Hz(Dn,%) if £ has a power

series expansion of the form

SLS i

= : : [ n
£ Ay iA e A )= Z ; Ofm(:t,1,...,ln);\1 T
11,- "’ln>/
and
e ; 2 : 24y
f = = BBl oo
I %a 1 (0% ,%) Logemsiud 30 | 2 ‘e.e,
For any feF(), £=£,(2;) ® £,(A,,A) @ £.(A,, A, %) ® ... we

define




sholios

S @A E . D) O e e

It is easy to see that S S2 are orthogonal shifts on (3¢ and

-‘if
[81,82] is nonunitary. Moreover?ﬁz(I-S1S?—828§)?%H3 and the multi-
plicity of ?P={s1 ,32} is equal to dim¥.

Let us consider the scalar case when #=€. If TeB(¥(C)) is

an Sg—analytic operator then one can easilv show that

(2.10) Tf:TW]f= (el for any feJ(C)

where ‘eztf’.] (A1) @?2(}1,?\2) @ ‘83 (?\117\2f]\3) @k
stands for T(1) and [¥] stands for the matrix of functions
€, ) 0 0 0

(A, ,) 1Y () 0 0

.

It is eas tb seecothat 1if-T ek are j’—analytic operators
- ¥l © I3
then
Tt el
[¥] “[v3 te1+Cyd
>V (Ae )

Tarel M re

"re1 o) Lol I

Now if yeF(€) such that [¢]feF(€) for any fed(C) and the

i




operator T defined by (2.10) is bounded then T is an ¥ -ana-
R _ Lyl

lytic operator on F(C).

Example 2.9. Let \fﬂﬁ 6 ‘62 (&P @‘f’m® 0® ... where mell,

‘{DkeHm(Dk) for any k=1,2,...,m. Then TC‘(’] is an \f—analytic opera-

tor on ?:(C).

If dim}e:n, we can consider 3{=03n. The form of the \f—ana—
lytic operators on Te™=Fc) ® " can be easily deduce from the

scalar case using the tensor product.

3. BEURLING-TYPE FACTORIZATIONS AND LAT J

Throughout section 'f'—“{S is a A -orthogonal shift on a

R‘])\EA
Hilbert space ¥ and we keep the definitions from the beginning of

Section 2. For T¢eB(¥) we denote

D=T- 5.5, Ts* and X-=-¥0 (® s X)
A ren A

The following theorem is a version of [8, Theorem 1.9] in

our setting.

THEOREM 3.1. If TeB(¥), then the following are equivalent:

(i) T=AA* for some ‘f—analytic operator AeB () ;
(ii) D=W*W for some operator W from Hto X ;

(iii) D0 and dim D& dim L

Proof. () ==slEi) S f (@) -helds, then D:APOA*=W*W, where

Pl Z,S).S;‘: and W=P_A* is an operator from & to £.
AELS. ;

o

'




Miii). If (ii) holds, then D=W*W>0. Let W=VQ the

(i1)==)
)1/2

polar decomposition of W. Therefore Q= (W*W and V is a partial

“~igometry from ¥ to X, with initial space Q%. It is easy to see

that D¥eQ#®. Since V acts isometrically on Q# it follows that

dim DigdimdL .

/3%{ gdimo’f . There-

142

(i) FE (1] o holds, thenidem oD

fore there exists an isometry V from DUzaﬁ to L. Setting W=VD

we find that W*W=D, that is T- ZSATsif:W*!Q. An easy computation

AEN
shows that
n
e SfTSj{::Z > S W*WS*  for any n=0,1,2,...
feF(n+1,4) k=0 fePF{k A)
Hence we obtain that
R
(3= 18) (Thy /hyp - :2 : {8,;Tsth, ,h, 5 =
feF (n+1,A)
n n
= NN
i SawEsh. , >0 B S WS

k=0 feF (k,N)

for any h hze'}f andeEn =000y 2

17
n
Define AeB (@) by setting A*=1lim 2 2 S _WSx (stromnglylic
= EaaE
n-w k=0 feF (k,a)

It is easy to see that AS?\:S A for anypeAand letting n-eo in (3.1)

A

we obtain

¢Th,, b5 = €Athy, B for any h,,h,e3 .

1

Therefore T=AA* where A is fﬁ-analytic. The proof is complete;

In the sequel, by the support of an f—analytic operator
T¢B(}#) we understand the smallest reducing subspace supp(T)< &

for each S)\ (AcA) containing T*¥. Taking into account Corollary




1.3 one can easily show that

suppc ()= @ S P T*3e.,
Fe £ ©

where PO is the orthogonal projection of X OnLk v

T ¢B(¥) are ¥-analytic, then

THEGREM 3.2. If T1, 2

* = *
(32 T1T,1 T2T2

if and enly if T22T1C, where C is an 39~constant inner operator
with initial spagce supp (Tz) and final space supp (Tq).

Moreover, in this case C is unique and T1=T2C*.

proof. Setting P_=I - >, 5. 5%, by (3.2) we get
S e A
“POT#h||=;\POT§h“ for any he¥, which implies that there exists

a unigue partial isometry COeB(ﬁ) with initial space P_T%3{
and final space ﬁgﬁfii. We, extend CO to an y’wconstant inner
operator C on 3 (see Theorem 2.2) with initial space supp (Tz)
and final space supp (T1). Now.it is easy to see that T2:T1C.
Moreover C is unique since C* is unique determined on T#Eﬂ.

The fact that T1:T2C* is immediately.

We apply the results up to now for proving a version of

the Beurling-Lax theorem [11, s 8] for a /N —orthogonal shift

Yz{s?\gmzx onil

THEOREM 3.3. A subspacenAéofgﬁ is invariant for each

SA {(xeA)- ifand only i f




Ab=M 3.

for some Y-inner operator MeB(d{) . Moreover, this representation

is essentially unique.

Proof. An implication is obviously.

Conversely, letJhc¥be an invariant subspa .ce for each

S, (Ae) and let ,){9 be the projection of ¥ on db. Then,
P:=P, - ZS P,Sx is the projection of ¥ on e ( @ SJé

Let us show that dim P¥¢dim& , where as usual
3€= o (@ S 4¢). The case when £ is infinite dimensional is
AEA
clicar]y. et dim‘&" is finite and fe;}; ., is an orthonormal basis

for ., .then S_Sf'e.l: el fe?ﬁ is an orthonormal basis for Jf

and we have:

dim PE{—Z ? <PS e, Sfei>:

ieI fe¥F
N

Siiime DT Z (P —Zs Al & S by
n-om iel k=0 fe ,A)< A - l>
=1lim Z S e s e

nsw iel feF A)/\‘M’ L £ l>%-_ (
¢uin S S Us.e %2 Ney (2=dind

noos iel feP(n,A) ieT

By Theorem 3.1 it follows that %:MM* for some f—analytic
operator MeB(¥). Méreover, M is ¥ -inner since PJJ is a projec-
v

tlon,. “Thus wairlij=M3€. The uniqueness follows by Theorem 3.2.
b

4. SZEGO-TYPE FACTORIZATIONS AND Y- INNER-OUTER

FACTORIZATIONS FOR }f‘*ANALYTIC OPERATORS

Let us consider ‘30={S 2 a A-orthogonal shift on 3

Alnea




&L= He ( ® Sl}’j) and let TeB(H) be a nonnegative )Q—Toeplitz
AeA

operator. For each AeA we define the Lowdenslager's isometry
12

S on ?ﬁ”T: =T

: . A/ e ,
TN 3¢ by setting ST,?‘(‘I I)i= S?‘h, (hedf) . It

is easy to see that EOT:= {STO\EAGA 1S a sequence of isometries

with orthogonal final spaces.

After these preliminaries we can state the following theo-

rem which is a version of [8, Theorem 3.4] in cur setting.

THEOREM 4.1. If TeB(¥) is a nonnegative T-Toeplitz opera-

tor then the following are equivalent:

(i) T=A*A for some ff)—analytic operator AeB (30 ;

e

o s alA-orthogonal shift on ZK”T;

(iii) There is a dense subset ' of ¥ such that for any

l‘e aﬁl

lim (Sup{ Z [¢T1Y, th>|2; hed, [\T1/2hll =1}):o

n- e feF (n,A)

In this case there is an f—outer operator A€B(d) such that

T=A*A and AO:mPOAPoR},O, where PO is the projection of ¥ on X .

Proof. (i)==)(iii). If (i) holds and lef, heI with

ol enilicn then. > KT1,8.h31%= 2. |¢seal,any|®y
£

feF (n,A) €F (n, )
< Z I SEAL | 2 o any. n=0,15,2 .5 . Sinee ft s aA-ovtio-
fer(n,A) 5
gonalishitft, SbyCorollary 4.2, Jim: S IStALl (| “=0 and hence

n-w feF (n,A)

(iii) Holds.

I o L S

e

e

S S ey




(iii)==3(ii). If (iii) holds then for every l'ed! and

N=OT 2 e e

—
(4.1) Z. s Looa e
feF (n,A) R

:sup{ > an /Sh>|% i hel, iz 2n | =1} '
feF (n,A)

where ST stnds for the product ST,f(1)ST,f(2)"'S

(I o ()

Indeed, we have :E: \(Tl',sfh>‘2=
feF (n,A)

=fe; A) \<S?I¢',fT1 /21" ’T1/2h>]2 and since the set {T1/2h: "T1/21'1”2‘1} ‘
Lel\n, ;

is dense in the unit sphere of?{r , (4.1) follows. Therefore (a8

implies

1i/-2 2

(4.2) lim jjEsx = (1detie)

n->e fel (n,A) T, f

On the ether hand for l'ez' and geR(m,A), m=1,2,..., we

have

A (4.2)
vin o D s e o >0 e pHRWE L
n=0 fel'(n.A) ¢ g - n-m geF (n-m,.A) ! ‘
An approximation argument shows that

2 =
. o 0
lim E: nST’fkif =0+ . for afiy ke&% :

n-e fel (n,A)

Now (ii) follows from Corollary 1.2.

(1i)=3(i) Assume that (ii) holds. By the definition of Sj
I

(AeA) we infer that for each A€A




1/2 2

S h=S;~;T1/"h for any he;}{’T.

(4.3) i T

Hence, the operator X:T1/2l;f maps f,l;-:;TfT &) R D) S Eﬁr) into .
T Ae 8

As in [8, Thm. 3.4] the polar decomposition of X* gives ¥*=W*Q,

)1/2@.

where Q= (XX* B(X) and W mapping ‘;fT into £ is an isometry. We

extend W to an isometry V from XET to K such that

(4.4) \V£S S.V (Aen)

T,;\: ;}‘

as follows. Since joT is A -orthogonal shift on & by Corollary

TJ‘

1.3, each ke '}ET has a unique representation

patea - Sl e )
for Gl EaTaE e

We now set

Vk= Z Sfka
feT

Let AeB(¥) be defined by

1572

e (he¥) .

Paking into: aceount (4.3), (4.4) 1t is easy to verify that T=A*R

and AS}\=S_AA for each AeA , i.e. (il) holds.

Finally, let us show that A is jowouter and Ac;':PoAPol"’ j?,O.

&y

Setting b =W:{’T we find A¥= ® SfJJu and by Corollary 1.4 it

fe¥F
follows that A% reduces each S_}\ (hen) i.e. A is f —outer.
T-E legf, then Aol:POVT1/2l=IﬁPx T1/21=WX*1=Q1, where 1507 is
I'II ("\,IT

. 0 = ~ 0
the projection of B‘LT on ;CT

Therefore AO:Q;;,O and the proof is complete.




We are now ready to use the above theorem for obtaining

; ; ; (: :
%hinner—outer factorizations for .F—analytlc operators.

THEOREM 4.2. Let TeB(¥) be an ¥ -analytic operator. Then

T = BA

where RAeB () isff~outer and BeB () is Y _inner with initial
space AR.

Moreover, there is a féctorization of'this type so that
the diagonal entry AO in. the natris of A satishiles AO;O. In

this case the factors A and B are unique.

Proof. Applying Thoerem 4.1 to the operator X=T*T we get

an ¥ -outer operator AeB(¥) such that

(4.5) T*T=A*A
and B =P PP |0

By (4.5) there is a unique partial isometry BeB (&) with
initialsspace A% sucht that T=BA. Let us show that for each
Aedy, SEBZBSK 3

Obviously 5,B and BS. coincide on A¥® On the other hand,
since A is Y-outer, A% is a reducing subspace for each S%
(Ae¢/A) , which together with BI(C%@LZO implies that SAB and BSH

: Dby
are zero on (AMUL . Therefore B is ¥ —inner.
W

For uniqueness let T:B1A=B2C be with the required proper-
ties of theorem. Then, A*A=C*C where A, @ areff~outer and AO;O,
COzO. similar arguments as above show thdt there is an :F—cons—
tant inner operator B with initial space C# and final space

A3¢ such that A=BC. By Proposition 2.3 we infer that Ao:BoCo



whence Agécg. Interchanging the roles of A and C we obtain

A2=C2 and hence A =C .
(@ (e) O O

Since Ao:BoCo v B coincides with the identity operator

e B

on Coif- On the other hand C6E=POC&%POCEQ and since C is:?"outer,
C¥#. reduces each 54 (AEN) .

Now by Corollary 1.4 one easily show that

= ® s.(CPD
Fer e

X = L,
Thus, each heC¥ has the form h= A Sflf , where 1_€C £ . By
f(::g’- £ @)

Theorem 2.2 we have

- SfBolf=Z Selg=h (heC®)
fe¥F = flet :

since A=BC it follows that A=C.

The fact that B1=B2 is immediately. The proof is complete.

Finally, we adapt [8, Theorem 3.1} to our setting,
PHEOREM 4.3. If TeB@) is a nonnegative f?~Toeplitz

operator such that Tng%{ for some r>»0, then T=A*A for some

Y -analytic operator AeB(X) .

Proof. Since T is invertible, Eﬁr=?% and for cach Ae/

i
ST,)‘_T S?\T
Thus
Lin >, I!ijf?‘huzqim >, s h 20

n-reo f&F (N ) n-s00 feF (n )

for any hedt.




By Gowvollary 1.2, ¥.={5, j‘}%ﬁ is a A-orthogonal shift

on ¥. Applying Theorem 4.1 the result follows.

ks

10.
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