INSTITUTUL
DE
MATEMATICA

INSTITUTUL NATIONAL PENTRU CREATIE STIINTIFICA SI TEHNICA

ISSN 0250 3638

MULTI-ANALYTIC OPERATORS AND SOME
FACTORIZATION THEOREMS
by
Gelu POPESCU

PREPRINT SERIES IN MATHEMATICS
No. 21/1988

led 24822

MULTI-ANALYTIC OPERATORS AND SOME FACTORIZATION THEOREMS

by

Gelu POPESCU*

March 1988

^{*)} Department of Mathematics, The National Institute for Scientific and Technical Creation, Bd. Pacii 220, 79622 Bucharest, Romania.

MULTI-ANALYTIC OPERATORS AND SOME FACTORIZATION THEOREMS

Gelu POPESCU

Let $\mathcal{T}=\{\mathtt{T}_1,\mathtt{T}_2,\dots\}$ be a sequence of noncommuting operators on a Hilbert space \mathcal{K} such that the matrix $[\mathtt{T}_1,\mathtt{T}_2,\dots]$ is a contraction. An extension of the Sz.-Nagy-Foias commutant lifting theorem [10,4,6,7] shows that there is a close connection between the commutant of \mathcal{T} and the commutant of a sequence $\mathcal{T}=\{\mathtt{S}_1,\mathtt{S}_2,\dots\}$ of orthogonal shifts on a Hilbert space $\mathcal{K}\supset\mathcal{K}$ such that the operator matrix $[\mathtt{S}_1,\mathtt{S}_2,\dots]$ is nonunitary (see Section 2). The operators belonging to the commutant of \mathcal{T} will be called multi-analytic (or \mathcal{T} -analytic) operators.

The main aim of this paper is to provide some factorization theorems and to apply them to the study of $\mathcal Y$ -analytic operators and of the lattice of the invariant subspaces of $\mathcal Y$, i.e.

Lat $\mathcal{Y} = \{ \mathcal{M} \subset \mathcal{H} : S_n \mathcal{M} \subset \mathcal{M} \text{for any } n=1,2,\ldots \}$.

First, we present a universal model for sequences \mathcal{T} of noncommuting operators in terms of orthogonal shifts \mathcal{F} (see also [9,3,4,5,6,7]) and, in connection with this, we point out the role of the lattice Lat \mathcal{F} in the study of the invariant subspaces of \mathcal{T} .

Section 3 is devoted to an extension of the abstract
Beurling factorization problem [8, p.8] and to the application

of this fact for proving a version of the Beurling-Lax theorem [11,7,8] for \mathcal{F} . In other words, we shall show when an operator $T \in B(\mathcal{H})$ admits a factorization of type $T = AA^*$ for some \mathcal{F} -analytic operator $A \in B(\mathcal{H})$ and we shall give, as a consequence, a characterization of the elements of Lat \mathcal{F} .

The last section deals with the following extension of the abstract Szego factorization problem: when an operator $T \in B(\mathcal{X})$ has a factorization of type T=A*A for some \mathcal{Y} -analytic operator $A \in B(\mathcal{X})$. For this, it is easy to see that a necessary condition is that

$$S_n^*TS_n^{=T}$$
 for any $n=1,2,...$
 $S_n^*TS_m^{=0}$ for any $n\neq m$; $n,m=1,2,...$

Such an operator $T \in B(\mathcal{H})$ satisfying (\mathcal{I}') will be called \mathcal{I} -Toeplitz operator. We extend the abstract Szego factorization [8, p. 50] for obtaining a similar result for nonnegative \mathcal{I} -Toeplitz operators. By applying this theorem, we obtain an \mathcal{I} -inner-outer factorization of \mathcal{I} -analytic operators and a factorization for the nonnegative invertible \mathcal{I} -Toeplitz operator [8, p. 53].

In Section 2 we establish some results concerning the structure of the Υ -Toeplitz operators and, in particular, of Υ -analytic operators. As in the classical case, we shall associate to each Υ -Toeplitz operator a "symbol" which is an operator in our setting.

Let us remark that at this stage of our research the connections between the Υ -Toeplitz operators and their "symbols" is far from being well understood.

Concerning Υ -analytic operators, in a subsequent paper we shall give a parametrization of the set of all contractive

 \mathcal{Y} -analytic operators on a Hilbert space, in terms of the choice sequences [2].

I take this opportunity to thank Professor Gr. Arsene for the useful discussions on the subject of this paper.

1. UNIVERSAL MODEL

Throughout this paper Λ stands for the set $\{1,2,\ldots,k\}$ (keN) or the set N= $\{1,2,\ldots\}$. For every neN let F(n, Λ) be the set of all functions from the set $\{1,2,\ldots,n\}$ to Λ and

$$\mathcal{F} = \bigcup_{n=0}^{\infty} F(n,\Lambda)$$
, where $F(0,\Lambda) = \{0\}$.

A sequence $\mathcal{Y} = \{S_{\lambda}\}_{\lambda \in \Lambda}$ of unilateral shifts on a Hilbert space \mathcal{X} with orthogonal final spaces is called a Λ -orthogonal shift if the operator matrix $[S_1, S_2, \ldots]$ is nonunitary, i.e. $\mathcal{X} := \mathcal{X} \ominus (\bigoplus_{\lambda \in \Lambda} S_{\lambda} \mathcal{X}) \neq \{0\}$. This definition is essentially the same as

that from [6]. The dimension of \mathcal{X} is called the multiplicity of the Λ -orthogonal shift. One can show that a Λ -orthogonal shift is determined up to unitary equivalence by its multiplicity.

For our purpose we need an operator version of the Wold decomposition [11,8] for sequences of isometries with orthogonal final spaces [4,6].

THEOREM 1.1. Let $\mathcal{V}=\{V_{\lambda}\}_{\lambda\in\Lambda}$ be a sequence of isometries on a Hilbert space \mathcal{K} , with orthogonal final spaces. Then:

(i)
$$P_0:=I_{\mathcal{K}} - \sum_{\lambda \in \Lambda} V_{\lambda} V_{\lambda}^*$$
 is the projection of \mathcal{K} on $\mathcal{L}:=\mathcal{K} \ominus (\bigoplus_{\lambda \in \Lambda} V_{\lambda} \mathcal{K})$;

(ii)
$$\sum_{f \in F(n,\Lambda)} V_f V_f^* \rightarrow P$$
 (strongly) as $n \rightarrow \infty$, where P is a projec-

tion;

(iiii)
$$PK = \bigcap_{n=0}^{\infty} (\bigoplus_{f \in F(n,\Lambda)} V_f K);$$

(iv)
$$\sum_{n=0}^{k} \sum_{f \in F(n,\Lambda)} V_f P_o V_f^* \rightarrow Q := I_{\mathcal{K}} - P \text{ (strongly) as } k \rightarrow \infty;$$

(v)
$$QK = \left\{ k \in K; \lim_{n \to \infty} \sum_{f \in F(n, \Lambda)} \| V_f^* k \|^2 = 0 \right\};$$

(vi) PK and QK reduce each V_{λ} ($\lambda \in \Lambda$);

(vii)
$$(I_{\mathcal{K}} - \sum_{\lambda \in \Lambda} V_{\lambda} V_{\lambda}^{*}) |_{P_{\mathcal{K}}} = 0;$$

(viii)
$$\{V_{\lambda}|_{QK}\}_{\lambda \in \Lambda}$$
 is a Λ -orthogonal shift;

(ix)
$$I_{\mathcal{K}} = P + \sum_{f \in \mathcal{F}} V_f P_o V_f^*$$
, $\mathcal{K} = P \mathcal{K} \oplus (\bigoplus_{f \in \mathcal{F}} V_f P_o \mathcal{K})$, where for any

$$f \in F(n, \Lambda)$$
, V_f stands for the product $V_{f(1)}V_{f(2)}...V_{f(n)}$.

This version can be proved directly or can be deduced from [6, Theorem 1.3]. We omit the proof.

COROLLARY 1.2. A sequence $\tilde{V}=\{V_{\lambda}\}_{\lambda\in\Lambda}$ of isometries on $\mathcal K$ with orthogonal final spaces is a Λ -orthogonal shift if and only if

$$\lim_{n\to\infty} \sum_{f\in F(n,\Lambda)} \| V_f^* k \|^2 = 0 \quad \text{for all } k\in\mathcal{K} .$$

Specializing the Wold decomposition to the case of a Λ -orthogonal shift, we obtain:

COROLLARY 1.3. If $\mathcal{I}=\{s_{\lambda}\}_{\lambda\in\Lambda}$ is a Λ -orthogonal shift on \mathcal{K}

and $\mathcal{L} = \mathcal{K} \ominus (\bigoplus_{\lambda \in \Lambda} S_{\lambda} \mathcal{K})$, then $\mathcal{K} = \bigoplus_{f \in \mathcal{F}} S_f \mathcal{L}$ and each $k \in \mathcal{K}$ has a unique representation $k = \sum_{f \in \mathcal{F}} S_f l_f$, $l_f \in \mathcal{L}$. Moreover $\|k\|^2 = \sum_{f \in \mathcal{F}} \|l_f\|^2$ and $l_f = P_0 S_f^* k$ (fex), where $P_0 := I_{\mathcal{K}} - \sum_{\lambda \in \Lambda} S_{\lambda} S_{\lambda}^*$ is the projection of \mathcal{K} on \mathcal{L} . Now one can easily prove the following characterization of the subspaces \mathcal{M} of \mathcal{K} which reduce each $S_{\lambda}(\lambda \in \Lambda)$, that is $\mathcal{M}_{\mathcal{E}}(\text{Lat}\mathcal{F}) \cap (\text{Lat}\mathcal{F}^*)$.

COROLLARY 1.4. A subspace $\mathcal M$ of $\mathcal K$ reduces each $S_{\pmb\lambda}$ (26A) if and only if

where \mathcal{U}_{o} is a subspace of $\mathcal{L} = \mathcal{K} \ominus (\bigoplus_{\lambda \in \Lambda} S_{\lambda} \mathcal{K})$.

Let us note that the Λ -orthogonal shifts $\mathcal{Y}=\left\{\mathbf{S}_{\lambda}\right\}_{\lambda\in\Lambda}$ can be thought as universal models for sequences $\mathcal{T}=\left\{\mathbf{T}_{\lambda}\right\}_{\lambda\in\Lambda}$ of noncommuting operators.

This fact has been proved in [6,7]. However we next give another proof generalizing the results from [9,3].

THEOREM 1.5. Let $\mathcal{T}=\left\{\mathbf{T}_{\lambda}\right\}_{\lambda\in\Lambda}$ be a sequence of operators on \mathcal{X} such that $\sum_{\lambda\in\Lambda}\mathbf{T}_{\lambda}^{\star}\mathbf{T}_{\lambda}\leq\mathbf{I}_{\mathcal{X}}$ and $\lim_{n\to\infty}\sum_{\mathbf{f}\in\mathbf{F}(n,\Lambda)}\|\mathbf{T}_{\mathbf{f}}^{h}\|^{2}=0$ for any $h\in\mathcal{X}$. Let $\mathcal{Y}=\left\{\mathbf{S}_{\lambda}\right\}_{\lambda\in\Lambda}$ be a Λ -orthogonal shift on a Hilbert space \mathcal{K} such that

$$\dim(\mathcal{K} \ominus (\bigoplus_{\lambda \in \Lambda} S_{\lambda} \mathcal{K})) \geqslant \dim((I_{\mathcal{H}} - \sum_{\lambda \in \Lambda} T_{\lambda}^{*} T_{\lambda}) \mathcal{H})^{-}$$

Then there exists an invariant subspace \mathcal{M} of each S^*_{λ} ($\lambda \in \Lambda$) such T is unitarily equivalent to $\left\{S^*_{\lambda}\right|_{\mathcal{M}}\right\}_{\lambda \in \Lambda}$ i.e., there exists a unitary operator U such that

$$UT_{\lambda} = (S_{\lambda}^* | \mathcal{U}) U$$
 for each $\lambda \in \Lambda$.

Proof. Denote $\mathcal{L}=\mathcal{K}\Theta$ ($\bigoplus_{\lambda\in\Lambda}$ S_k) and D=($\mathbb{I}_{\mathcal{H}}-\sum_{\lambda\in\Lambda}\mathbb{T}_{\lambda}^{*}\mathbb{T}_{\lambda}$) $^{1/2}$. Since dim $\overline{\mathbb{D}\mathbb{K}}$ dim \mathbb{L} we can define an isometry W from $\overline{\mathbb{D}\mathbb{K}}$ to \mathcal{L} , and an operator U from \mathbb{K} to \mathbb{K} by

$$Uh = \sum_{f \in \mathcal{F}} \widetilde{S}_{f} WDT_{f}h$$
, (helf)

where \widetilde{S}_f stands for the product $S_{f(n)}S_{f(n-1)}...S_{f(1)}$ when $f \in F(n, \Lambda)$. By Corollary 1.3, for any $h \in \mathcal{H}$ we get

$$\| \text{Uh} \|^2 = \sum_{f \in \mathcal{F}} \| \text{DT}_f h \|^2 = \lim_{n \to \infty} \sum_{k=0}^n \sum_{f \in F(k,\Lambda)} \langle \text{T}_f^* (\text{I}_{\lambda \in \Lambda} - \sum_{\lambda \in \Lambda} \text{T}_{\lambda}^* \text{T}_{\lambda}) \text{T}_f h, h \rangle = \lim_{n \to \infty} (\| h \|^2 - \sum_{f \in F(n+1,\Lambda)} \| \text{T}_f h \|^2) = \| h \|^2$$

Thus U is an unitary operator from $\mathcal H$ onto $\mathcal M:=$ U $\mathcal H.$ For any h $\in \mathcal H$ and $\lambda \in \Lambda$ we have

$$s_{\lambda}^{*}Uh = \sum_{f \in \mathcal{F}} s_{\lambda}^{*} \widetilde{s}_{f}^{WDT} f^{h=UT}_{\lambda} h$$
 .

It follows that \mathcal{M} is invariant for each S^*_{λ} ($\lambda \in \Lambda$) and \mathcal{T} is unitarily equivalent to $\left\{S^*_{\lambda} \middle|_{\mathcal{M}}\right\}_{\lambda \in \Lambda}$. The proof is complete.

COROLLARY 1.6. \mathcal{T} has a non-trivial invariant subspace if and only if $\mathcal{Y}^* = \left\{S_\lambda^*\right\}_{\lambda \in \Lambda}$ has an invariant subspace \mathcal{N} such that $\{0\} \subsetneq \mathcal{N} \subsetneq \mathcal{M}$.

REMARK 1.7. If $\mathcal{T} = \left\{ \mathbf{T}_{\lambda} \right\}_{\lambda \in \Lambda}$ does not satisfy the hypotheses of the theorem, then $\left\{ \mathbf{c}_{\lambda} \, \mathbf{T}_{\lambda} \right\}_{\lambda \in \Lambda}$ will satisfy the hypotheses for any scalars \mathbf{c}_{λ} , $0 < |\mathbf{c}_{\lambda}| \leqslant 1$ ($\lambda \in \Lambda$) such that

$$\sum_{\lambda \in \Lambda} |c_{\lambda}|^{2} T_{\lambda}^{*} T_{\lambda} \leqslant rI_{\mathcal{K}} \qquad \text{for some } r \in (0,1) .$$

In this case it is necessary to choose a Λ -orthogonal shift ${\mathcal F}$ whose multiplicity is dim ${\mathcal H}$ and as in the above theorem we find

$$UT_{\lambda} = (c_{\lambda}^{-1}S_{\lambda}^{*})U$$
 for any $\lambda \in \Lambda$

2. Y-TOEPLITZ OPERATORS

The commutant of a sequence $\mathcal{T}=\left\{\mathbf{T}_{\lambda}\right\}_{\lambda\in\Lambda}$ of operators on \mathcal{H} is the set

$$C(\mathcal{T}) = \{X \in B(\mathcal{H}) : XT_{\lambda} = T_{\lambda} X \text{ for all } \lambda \in \Lambda \}$$

The lifting theorem [10,4,6,7] characterizes $C(\mathcal{T})$ when \mathcal{T} is represented as in the universal model of Section 1. Let us recall it.

THEOREM 2.1. Let $\mathcal{Y} = \{S_{\lambda}\}_{\lambda \in \Lambda}$ be a Λ -orthogonal shift on a Hilbert space \mathcal{K} , \mathcal{H} be an invariant subspace for each $S_{\lambda}^{*}(\lambda \in \Lambda)$ and let

$$T_{\lambda} = S_{\lambda}^{*} |_{\mathcal{H}} \qquad (\lambda \in \Lambda)$$
.

If X∈B(H) satisfies

$$XT_{\lambda} = T_{\lambda} X$$
 for all $\lambda \in \Lambda$,

then there exists $Y \in B(K)$ with properties:

- (i) YHCH and X=Y|H;
- (ii) $YS_{\lambda}^* = S_{\lambda}^*Y$ for all $\lambda \in \Lambda$;
- (iii) $\|Y\| = \|X\|$.

As we see, it is important to study the commutant of a Λ -orthogonal shift $\mathcal{Y} = \{S_{\lambda}\}_{\lambda \in \Lambda}$ on a Hilbert space \mathcal{H} and even a larger class of operators, that of the \mathcal{Y} -Toeplitz operators, which appear in connection with an extension of the abstract Szegő factorization problem (see the introduction). For this, we need the following definitions.

An operator $T \in B(\mathcal{H})$ is called

- (i) \mathcal{Y} -Toeplitz if $S_{\lambda}^{*}TS_{\lambda} = T$ for any $\lambda \in \Lambda$ and $S_{\lambda}^{*}TS_{\mu} = 0$ for $\lambda \neq \mu$; $\lambda, \mu \in \Lambda$;
- (ii) \mathcal{G} -analytic if $TS_{\lambda} = S_{\lambda} T$ for any $\lambda \in \Lambda$,
- (iii) \mathcal{Y} -inner if T is \mathcal{Y} -analytic and partially isometric,
 - (iv) Y-outer if T is Y-analytic and TH reduces each S_{λ} ($\lambda \epsilon \Lambda$),
 - (v) \mathcal{S} -constant if T and T* are \mathcal{S} -analytic.

In genral, examples of \mathcal{Y} -Toeplitz operators are easily constructed from \mathcal{Y} -analytic operators. If $\mathbf{T}_1, \mathbf{T}_2 \in \mathbf{B}(\mathcal{X})$ are \mathcal{Y} -analytic, then the operators \mathbf{T}_1 , \mathbf{T}_2^* , $\mathbf{T}_2^*\mathbf{T}_1$ are \mathcal{Y} -Toeplitz.

Now, we give a theorem on \mathcal{Y} -inner operators. We omit the proof which is an easy extension of [8, §1.7, Theorems A,B,C].

THEOREM 2.2. Let $\text{T}\epsilon B(\mathcal{H})$ be \mathcal{Y} -inner and $\mathcal{L}=\mathcal{H}\ominus (\oplus S_{\lambda}\mathcal{H})$. Then

- (i) The initial space of T reduces each S_{λ} ($\lambda \in \Lambda$),
- (ii) The final space of T reduces each S_{λ} ($\lambda \in \Lambda$) if and only if T is \mathcal{Y} -constant,
- (iii) T is \mathcal{Y} -constant if and only if has the form

$$Th = \sum_{f \in \mathcal{F}} S_f T_o l_f \qquad (h = \sum_{f \in \mathcal{F}} S_f l_f , l_f \in \mathcal{L})$$

for some partial isometry $\mathbf{T}_{\mathbf{O}} \epsilon \mathbf{B}(\mathcal{L})$.

In what follows, to each $T \in B(\mathcal{H})$ we associate a matrix of operators in $B(\mathcal{L}): T \sim [A_f, q]_f, g \in \mathcal{F}$, where

$$A_{f,g} = P_0 S_f^* T S_g^P O | \mathcal{L}$$
 (f,geF)

and P is the orthogonal projection of \mathcal{H} on $\mathcal{L} = \mathcal{H} \ominus (\bigoplus_{\lambda \in \Lambda} S_{\lambda}\mathcal{H})$.

For any hell, h= $\sum_{q \in \mathcal{T}} S_q l_q$ (see Corollary 1.3) we have $Th = \sum_{f \in \mathcal{F}} S_f l_f', \text{ where } l_f' = \sum_{q \in \mathcal{F}} A_f, q l_q \text{. Indeed, by Corollary 1.3 it follows that } l_f' = P_o S_f^* T_D S_q l_q = \sum_{q \in \mathcal{F}} A_f, q l_q \text{ (f ϵ \mathcal{F}) where the sums are strongly convergent.}$

It is easy to see that the correspondence $T\sim [A_f,g]_f,g\in \mathcal{F}$ is linear and that $T^*\sim [B_f,g]_f,g\in \mathcal{F}$ where $B_f,g=A_g^*,f$ for all $f,g\in \mathcal{F}$.

PROPOSITION 2.3. If $T_1 \sim [A_{f,g}]_{f,g} \in \mathcal{F}$ and $T_2 \sim [B_{f,g}]_{f,g} \in \mathcal{F}$ then $T_1 T_2 \sim [C_{f,g}]_{f,g} \in \mathcal{F}$ where $C_{f,g} = \sum_{q \in \mathcal{F}} A_{f,q} = \sum_{q \in \mathcal{F}} A_{q,q} = \sum_{q \in \mathcal{F}} A_{$

<u>Proof.</u> By Theorem 1.1 we have $I_{\mathcal{H}} = \sum_{q \in \mathcal{F}} S_q P_0 S_q^*$. For any $f, g \in \mathcal{F}$

$$C_{f,g} = P_0 S_f^* T_1 T_2 S_g P_0 |_{\mathcal{X}} = P_0 S_f^* T_1 \left(\sum_{q \in \mathcal{F}} S_q P_0 S_q^* \right) T_2 S_g P_0 |_{\mathcal{X}} = \sum_{q \in \mathcal{F}} A_f, q^B q, g$$

with convergence in the strong operator topology.

In the sequel we shall need the following notation. When $f \in F(n,\Lambda)$, $g \in F(m,\Lambda)$, for means that $n \geqslant m$ and $g = f \mid \{1,2,\ldots,m\}$. In this case $f \backslash g$ stands for the function $h : \{1,2,\ldots,n-m\} \rightarrow \Lambda$ given by

h(1) = f(m+1), h(2) = f(m+2),..., h(n-m) = f(n) if n > m and

h=0 if n=m.

THEOREM 2.4. An operator $T \in B(\mathcal{H})$ is \mathcal{Y} -Toeplitz if and only if its matrix is of the form $\begin{bmatrix} A_f,g \end{bmatrix} f,g \in \mathcal{F}$ where for $f,g \in \mathcal{F}$

(2.1)
$$A_{f,g} = A_{f \setminus g}$$
; if fog $= \widetilde{A}_{g \setminus f}$; if gof $= 0$; otherwise

where $A_q \in B(\mathcal{Z})$ $(q \in \mathcal{F})$, $\widetilde{A}_q \in B(\mathcal{Z})$ $(q \in \mathcal{F} \setminus \{0\})$. In this case

(2.2)
$$A_q = P_0 S_q^* TP_0 | \mathcal{L}$$
 (qeF) and $\tilde{A}_q = P_0 TS_q P_0 | \mathcal{L}$ (qeF\{0\}).

<u>Proof.</u> If T is \mathcal{Y} -Toeplitz with matrix $[A_f,g]_{f,g}\in\mathcal{F}$ then

$$A_{f,g} = P_0 S_f^* T S_g P_0 |_{\mathcal{L}} = P_0 S_f^* g^{TP}_0 |_{\mathcal{L}}$$
 if for $= P_0 T S_g f^P_0 |_{\mathcal{L}}$ if gof otherwise

Thus the matrix of T is given by (2.1) where the entries A_q (qeF); \widetilde{A}_q (qeF\{0}) are defined by (2.2).

Conversely, if the matrix of TeB(H) has the form (2.1), for some $A_q \in B(\mathcal{I})$ (qeF), $\widetilde{A}_q \in B(\mathcal{I})$ (qeF) then T, S*TS, ($\lambda \in \Lambda$) have the same matrix and for λ , $\mu \in \Lambda$, $\lambda \neq \mu$, S*TS, $\mu = 0$. Hence T is Y-Toeplitz.

COROLLARY 2.5. An operator $T \in B(X)$ is Y-analytic if and only if its matrix is of the form $[A_f,g]_{f,g} \in \mathcal{F}$ where for $f,g \in \mathcal{F}$

(2.3)
$$A_{f,g} = A_{f,g}$$
 if fog
(2.3) $(A_{q} \in B(\mathcal{X}), q \in \mathcal{T})$
=0 otherwise

In this case for any qeF, $A_q=P_0S^*TP_0$ \(\mathbb{Z}\). Moreover, T is \mathcal{Y} -constant if and only if $A_q=0$ for all qeF\\\ 0\\ \} i.e. the matrix of T has the form

diag
$$\{A_0, A_0, \dots \}$$
.

In what follows we need the following notations and definitions:

(2.4)
$$1^{2}(\mathcal{F},\mathcal{L}) = (\bigoplus_{f \in \mathcal{F}^{*}} S_{f}\mathcal{L}) \oplus \mathcal{L} \oplus (\bigoplus_{f \in \mathcal{F}^{*}} S_{f}\mathcal{L}), \text{ where } \mathcal{F}^{*} = \mathcal{F} \setminus \{0\};$$

$$1^{2}_{-}(\mathcal{F},\mathcal{L}) = (\bigoplus_{f \in \mathcal{F}^{*}} S_{f}\mathcal{L}) \oplus 0 \oplus 0;$$

$$1^{2}_{+}(\mathcal{F},\mathcal{L}) = 0 \oplus \mathcal{L} \oplus (\bigoplus_{f \in \mathcal{F}^{*}} S_{f}\mathcal{L}).$$

$$f \in \mathcal{F}^{*}$$

We identify \mathcal{H} with $1_+^2(\mathcal{F},\mathcal{L})$ and $1_-^2(\mathcal{F},\mathcal{L})$ with $1_-^2(\mathcal{F},\mathcal{L}) \oplus 1_+^2(\mathcal{F},\mathcal{L})$. For each $\lambda \in \Lambda$ let us define $U_{\lambda} \in \beta(1_-^2(\mathcal{F},\mathcal{L}))$ by setting

$$U_{\lambda}(1_{-}) = (S_{\lambda}^{-}) * 1_{-}$$
, for $1_{-} \in 1_{-}^{2}(\mathcal{F}, \mathcal{L})$;
 $U_{\lambda}(1_{+}) = S_{\lambda}^{+} 1_{+}$, for $1_{+} \in 1_{+}^{2}(\mathcal{F}, \mathcal{L})$,

where $\{S_{\lambda}^-\}_{\lambda \in \Lambda}$ (resp. $\{S_{\lambda}^+\}_{\lambda \in \Lambda}$) is the Λ -orthogonal shift acting on $1_-^2(\mathcal{F},\mathcal{I}) \oplus \mathcal{I}$ (resp. $1_+^2(\mathcal{F},\mathcal{I})$).

Obviously U_{λ} is a coupling of S_{λ}^{-} and S_{λ}^{+} (see [1]), that is $U_{\lambda} \setminus I_{+}^{2}(\mathfrak{F}, \mathfrak{L}) = S_{\lambda}^{+}$ and $U_{\lambda}^{*} \setminus I_{-}^{2}(\mathfrak{F}, \mathfrak{L}) \oplus \mathfrak{L}^{-} = S_{\lambda}^{-}$. We also remark that if Λ has

a single element then we find again the bilateral shift on $1^2(\mathbb{Z},\mathcal{L})$.

Now, to each Y-Toeplitz operator $T \in B(\mathcal{H})$ we associate an operator $\theta: \mathcal{X} \to 1^2(\mathcal{F},\mathcal{L})$ defined with respect to decomposition (2.4) by the operator matrix

$$\theta = \begin{bmatrix} \begin{bmatrix} \tilde{A}_{q} \end{bmatrix}_{q \in \mathfrak{F}^{*}} \\ [A_{q}]_{q \in \mathfrak{F}} \end{bmatrix},$$

2

where \tilde{A}_q , A_q are defined by (2.2). Thus θ is uniquely determined by T and we write $T=T_\theta$. Note that for lex

$$\theta_1 = \sum_{f \in \mathcal{F}^*} U_f^* \widetilde{A}_{f}^1 + \sum_{f \in \mathcal{F}} U_f^A A_f^1$$

THEOREM 2.6. The following statements are equivalent:

- (i) $T_{\theta} \in B(l_{+}^{2}(\mathcal{F},\mathcal{I}))$ is \mathcal{I} -Toeplitz,
- (ii) There exists $A_{\theta} \in B(l^2(\mathcal{F},\mathcal{I}))$ uniquely determined with the properties:

1.
$$A_{\theta}|_{\mathcal{L}} = \theta$$

(2.5)
$$2 \cdot {}^{A}\theta^{U}\lambda | 1_{+}^{2}(\mathcal{F},\mathcal{L}) = {}^{U}\lambda^{A}\theta | 1_{+}^{2}(\mathcal{F},\mathcal{L}) ;$$

$${}^{A}\theta^{U}\lambda | 1_{-}^{2}(\mathcal{F},\mathcal{L}) \oplus \mathcal{L} = {}^{U}\lambda^{A}\theta | 1_{-}^{2}(\mathcal{F},\mathcal{L}) \oplus \mathcal{L} \text{ for any } \lambda \in \Lambda .$$

3. $T_{\theta} = P_{+}^{A} \theta \left(1_{+}^{2} (\mathcal{F}, \mathcal{L}) \right)$, where P_{+} is the orthogonal projection of $1^{2} (\mathcal{F}, \mathcal{L})$ on $1_{+}^{2} (\mathcal{F}, \mathcal{L})$.

In this case

$$(2.6) \quad A_{\theta} \left(\sum_{f \in \mathcal{F}^*} U_f^* l_f^! + \sum_{f \in \mathcal{F}} U_f l_f \right) = \sum_{f \in \mathcal{F}^*} U_f^* \theta l_f^! + \sum_{f \in \mathcal{F}} U_f \theta l_f \quad (l_f^!, l_f \in \mathcal{I})$$

and

(2.7)
$$T_{\theta} \left(\sum_{f \in \mathcal{F}} U_{f} l_{f} \right) = P_{+} \left(\sum_{f \in \mathcal{F}} U_{f} \theta l_{f} \right) .$$

<u>Proof.</u> (i) \Longrightarrow (ii) An operator $A_{\theta} \in B(1^2(\mathcal{F},\mathcal{L}))$ which satisfies (2.5) is uniquely determined by $A_{\theta} | \mathcal{L} = \theta$. This follows because for every $f \in \mathcal{F}^*$, $1 \in \mathcal{L}$ we have

(2.8)
$$A_{\theta}U_{f}^{1=U_{f}}\theta 1$$
, $A_{\theta}U_{f}^{*}^{1=U_{f}^{*}}\theta 1$

and

$$1^{2}(\mathcal{F},\mathcal{L}) = (\bigoplus_{\mathbf{f} \in \mathfrak{F}^{*}} \mathbf{U}_{\mathbf{f}}^{*}\mathcal{L}) \oplus (\bigoplus_{\mathbf{f} \in \mathcal{F}} \mathbf{U}_{\mathbf{f}}\mathcal{L}).$$

Taking into account the matrix form of T_{θ} (see Thm. 2.4) and the definitions of U_{λ} ($\lambda \in \Lambda$) and θ , it is easy to see that for any $f,g\in \mathcal{F}$, $1,1'\in \mathcal{L}$ we have

$$\langle P_+ A_{\theta} U_{g} 1, U_{f} 1' \rangle = \langle T_{\theta} U_{g} 1, U_{f} 1' \rangle$$
.

Since $l_+^2(\mathcal{F},\mathcal{L}) = \bigoplus_{f \in \mathcal{F}} U_f \mathcal{L}$ it follows that

$$P_+^A \theta \mid 1_+^2 (\mathcal{F}, \mathcal{L})^{=T} \theta$$

Conversely, if $A_{\theta} \in B(1^2(\mathcal{F},\mathcal{I}))$ is such that (2.5) holds and $\theta = A_{\theta} | \mathcal{I}$, then the operator $T_{\theta} = P_{+} A_{\theta} | 1_{+}^{2}(\mathcal{F},\mathcal{I})$ is \mathcal{F} -Toeplitz.

Indeed, for any $\lambda, \mu \in \Lambda$, h,k $l_{+}^{2}(\mathcal{F},\mathcal{L})$ we have

$$\langle S_{\mu}^{*}T_{\theta}S_{\lambda}h,k\rangle = \langle A_{\theta}h,U_{\lambda}^{*}U_{\mu}k\rangle = \langle P_{+}A_{\theta}h,k\rangle; \quad \text{if } \lambda = \mu$$

$$= 0 \qquad ; \quad \text{if } \lambda \neq \mu .$$

The last statement of the theorem is immediately. The proof is complete.

In general if θ is a bounded operator from \mathcal{L} to $1^2(\mathcal{F},\mathcal{L})$ (i.e. $\theta \in B(\mathcal{L},1^2(\mathcal{F},\mathcal{L}))$), then A_{θ} defined by (2.8) is an unbounded operator. Note that $T_{\theta} \in B(1^2_+(\mathcal{F},\mathcal{L}))$ is \mathcal{F} -analytic if and only if $\theta \in B(\mathcal{L},1^2_+(\mathcal{F},\mathcal{L}))$. In this case we have

(2.9)
$$T_{\theta} \left(\sum_{f \in \mathcal{F}} s_f 1_f \right) = \sum_{f \in \mathcal{F}} s_f \theta 1_f \qquad (1_f \in \mathcal{L})$$

THEOREM 2.7. Let $T_{\theta} \in B(1^2_+(\mathcal{F},\mathcal{L}))$ be an \mathcal{G} -analytic operator. In order that T_{θ} be:

- (i) Y-inner,
- (ii) Y-outer,
- (iii) \mathcal{Y} -constant,

it is necessary and sufficient that the following conditions hold, respectively

- (i) θ is a partial isometry with $\theta \mathcal{L}$ an wandering subspace for \mathcal{Y} , i.e. $S_f\theta \mathcal{L} \bot S_g\theta \mathcal{L}$ for any f,ge \mathfrak{F} , f \neq g.
- (ii) $\bigvee_{f \in \mathcal{F}} S_f \theta \mathcal{L} = l_+^2(\mathcal{F}, \mathcal{L})$ for some subspace $\mathcal{L} \subset \mathcal{L}$
- (iii) θ ∈B(L).

We omit the proof of this theorem which is easily to deduce from the results up to now.

The following theorem gives explicit forms for the commutants of all Υ -analytic operators.

THEOREM 2.8. An operator $X \in B(1^2_+(\mathcal{F},\mathcal{L}))$ commutes with all \mathcal{Y} -analytic operators if and only if its matrix has the form (2.3), where each entry is a scalar multiple of the identity on \mathcal{L} .

<u>Proof.</u> If $X \in B(1^2_+(\mathcal{F},\mathcal{I}))$ commutes with all \mathcal{F} -analytic operators on $1^2_+(\mathcal{F},\mathcal{L})$ then X is \mathcal{F} -analytic. Its matrix is given by (2.3) and must commute in particular with diag(Y,Y,...) for every $Y \in B(\mathcal{I})$. Therefore the entries of (2.3) commute with all operators in $B(\mathcal{I})$. It follows that each entry of (2.3) is a scalar multiple of the identity on \mathcal{L} . Conversely is straightforward.

At the end of this Section we give a concrete realization of a Λ -orthogonal shift $\mathcal F$ and we provide explicit forms for the $\mathcal F$ -analytic operators. For sake of simplicity we only consider the case when $\Lambda = \{1,2\}$ and $\mathcal F = \{S_1,S_2\}$.

Let $f(\mathcal{X})$ be the Fock space defined by

$$\mathcal{F}(\mathcal{U}) = \bigoplus_{n=1}^{\infty} H^2(\mathbb{D}^n, \mathcal{U}),$$

where $H^2(\mathbb{D}^n,\mathcal{H})$ is the Hardy space of all analytic functions in the unit polydisc \mathbb{D}^n with values in a Hilbert space \mathcal{H} . To be more precise $f_n(\lambda_1,\lambda_2,\ldots,\lambda_n)$ belongs to $H^2(\mathbb{D}^n,\mathcal{H})$ if f_n has a power series expansion of the form

$$f_n(\lambda_1, \lambda_2, \dots, \lambda_n) = \sum_{i_1, \dots, i_n \geqslant 0} f_n(i_1, \dots, i_n) \lambda_1^{i_1} \lambda_2^{i_2} \dots \lambda_n^{i_n}$$

and

$$\| f_n \|_{\dot{H}^2(\mathbb{D}^n,\mathcal{H})}^2 = \sum_{i_1,\dots,i_n \geqslant 0} \| f_n(i_1,\dots,i_n) \|_{\mathcal{H}}^2$$

For any fe $\mathcal{F}(\mathcal{K})$, f=f₁(λ_1) \oplus f₂(λ_1 , λ_2) \oplus f₃(λ_1 , λ_2 , λ_3) \oplus ... we define

$$\begin{split} \mathbf{S}_{1}\mathbf{f} &= \lambda_{1}\mathbf{f}_{1}(\lambda_{1}) \oplus \lambda_{1}\mathbf{f}_{2}(\lambda_{1},\lambda_{2}) \oplus \lambda_{1}\mathbf{f}_{3}(\lambda_{1},\lambda_{2},\lambda_{3}) \oplus \dots \\ \mathbf{S}_{2}\mathbf{f} &= \mathbf{0} \oplus \mathbf{f}_{1}(\lambda_{2}) \oplus \mathbf{f}_{2}(\lambda_{2},\lambda_{3}) \oplus \mathbf{f}_{3}(\lambda_{2},\lambda_{3},\lambda_{4}) \oplus \dots \end{split}$$

It is easy to see that S_1 , S_2 are orthogonal shifts on $\mathcal{F}(\mathcal{H})$ and $[S_1,S_2]$ is nonunitary. Moreover $\mathcal{H}=(I-S_1S_1^*-S_2S_2^*)\mathcal{F}(\mathcal{H})$ and the multiplicity of $\mathcal{Y}=\{S_1,S_2\}$ is equal to dim \mathcal{H} .

Let us consider the scalar case when $\mathcal{H}=\mathbb{C}$. If $T_{\mathcal{E}}B(\mathfrak{F}(\mathbb{C}))$ is an \mathcal{Y} -analytic operator then one can easily show that

(2.10)
$$\text{Tf=T}_{\{\varphi\}} \text{f=} \{\varphi\} \text{f for any } f \in \mathfrak{F}(\mathbb{C})$$
 where
$$\Psi = \Psi_1(\lambda_1) \oplus \Psi_2(\lambda_1, \lambda_2) \oplus \Psi_3(\lambda_1, \lambda_2, \lambda_3) \oplus \dots$$

stands for T(1) and [Y] stands for the matrix of functions

It is easy to see that if ${}^T \text{[Y]}$, ${}^T \text{[N]}$ are $\text{$\mathcal{Y}$-analytic operators}$ then

$$T[Y]^{+T}[\eta]^{=T}[Y]^{+}[\eta]$$

$$T_{\lambda[Y]}^{-\lambda T}[Y]$$

$$T[Y]^{T}[\eta]^{=T}[Y][\eta]$$

Now if $\gamma \in \mathcal{F}(\mathbb{C})$ such that $[\gamma] f \in \mathcal{F}(\mathbb{C})$ for any $f \in \mathcal{F}(\mathbb{C})$ and the

operator $T_{[Y]}$ defined by (2.10) is bounded then $T_{[Y]}$ is an Y-analytic operator on F(C).

Example 2.9. Let $Y=Y_1 \oplus Y_2 \oplus \ldots \oplus Y_m \oplus 0 \oplus \ldots$ where meN, $Y_k \in H^\infty(\mathbb{D}^k)$ for any $k=1,2,\ldots,m$. Then $T_{(Y)}$ is an Y-analytic operator on Y(C).

If dim $\mathcal{H}=n$, we can consider $\mathcal{H}=\mathbb{C}^n$. The form of the \mathcal{Y} -analytic operators on $\mathcal{F}(\mathbb{C}^n)=\mathcal{F}(\mathbb{C})\otimes\mathbb{C}^n$ can be easily deduce from the scalar case using the tensor product.

3. BEURLING-TYPE FACTORIZATIONS AND LAT $\mathcal Y$

Throughout section $\Upsilon=\{S_{\lambda}\}_{\lambda\in\Lambda}$ is a Λ -orthogonal shift on a Hilbert space $\mathcal H$ and we keep the definitions from the beginning of Section 2. For $T\in B(\mathcal H)$ we denote

$$D=T-\sum_{\lambda\in\Lambda}S_{\lambda}TS_{\lambda}^{*}\quad\text{and}\quad\mathcal{L}=\mathcal{H}\ominus\quad(\bigoplus_{\lambda\in\Lambda}S_{\lambda}\mathcal{H}).$$

The following theorem is a version of [8, Theorem 1.9] in our setting.

THEOREM 3.1. If $T \in B(\mathcal{H})$, then the following are equivalent:

- (i) T=AA* for some Y-analytic operator $A \in B(\mathcal{H})$;
- (ii) D=W*W for some operator W from $\mathcal X$ to $\mathcal X$;
- (iii) D \geqslant 0 and dim $\overline{DR}\leqslant$ dim $\mathcal L$.

(ii) \Longrightarrow (iii). If (ii) holds, then D=W*W>0. Let W=VQ the polar decomposition of W. Therefore Q=(W*W) $^{1/2}$ and V is a partial isometry from $\mathcal H$ to $\mathcal L$, with initial space $\overline{\mathbb Q}\mathcal H$. It is easy to see that $\overline{\mathbb D}\mathcal H$ Since V acts isometrically on $\overline{\mathbb Q}\mathcal H$ it follows that $\overline{\mathbb D}\mathcal H$ dim $\overline{\mathbb D}\mathcal H$ dim $\mathcal L$.

(iii) \Longrightarrow (i). If (iii) holds, then $\dim \overline{D^{1/2}} \leqslant \dim \mathcal{L}$. Therefore there exists an isometry V from $\overline{D^{1/2}} \Re$ to \mathcal{L} . Setting W=VD^{1/2} we find that W*W=D, that is $T - \sum_{\lambda \in \Lambda} S_{\lambda} TS_{\lambda}^* = W*W$. An easy computation shows that

$$T-\sum_{f\in F(n+1,\Lambda)} s_f T s_f^* = \sum_{k=0}^n \sum_{f\in F(k,\Lambda)} s_f w^* w s_f^* \quad \text{for any } n=0,1,2,\dots$$

Hence we obtain that

$$(3.1) \qquad \langle Th_{1}, h_{2} \rangle - \sum_{f \in F(n+1,\Lambda)} \langle S_{f}TS_{f}^{*}h_{1}, h_{2} \rangle =$$

$$= \langle \sum_{k=0}^{n} \sum_{f \in F(k,\Lambda)} S_{f}WS_{f}^{*}h_{1}, \sum_{k=0}^{n} \sum_{f \in F(k,\Lambda)} S_{f}WS_{f}^{*}h_{2} \rangle$$

for any $h_1, h_2 \in \mathcal{H}$ and n=0,1,2,....

Define $A \in B(\mathcal{U})$ by setting $A^* = \lim_{n \to \infty} \sum_{k=0}^{n} \sum_{f \in F(k,\Lambda)} S_f W S_f^*$ (strongly). It is easy to see that $AS_{\lambda} = S_{\lambda} A$ for any $\lambda \in \Lambda$ and letting $n \to \infty$ in (3.1) we obtain

$$\langle Th_1, h_2 \rangle = \langle A*h_1, A*h_2 \rangle$$
 for any $h_1, h_2 \in \mathcal{H}$.

Therefore T=AA* where A is $\mathcal Y$ -analytic. The proof is complete.

In the sequel, by the support of an \mathcal{Y} -analytic operator $T\in B(\mathcal{H})$ we understand the smallest reducing subspace supp $(T)\subset \mathcal{H}$ for each S_{λ} ($\lambda\in\Lambda$) containing $T^*\mathcal{H}$. Taking into account Corollary

1.3 one can easily show that

supp
$$(T) = \bigoplus_{f \in \mathcal{F}} S_f \overline{P_0 T^* \mathcal{H}}$$
,

where P_{o} is the orthogonal projection of \mathcal{H} on \mathcal{L} .

THEOREM 3.2. If $T_1, T_2 \in B(\mathcal{H})$ are \mathcal{Y} -analytic, then

$$(3.2)$$
 $T_1 T_1^* = T_2 T_2^*$

if and only if $T_2=T_1C$, where C is an \mathscr{G} -constant inner operator with initial space supp (T_2) and final space supp (T_1) .

Moreover, in this case C is unique and $T_1 = T_2 C^*$.

Proof. Setting $P_0 = \mathbb{I}_{\mathcal{X}} - \sum_{\lambda \in \Lambda} S_{\lambda}^*$, by (3.2) we get $\|P_0 T_1^*h\| = \|P_0 T_2^*h\|$ for any helf, which implies that there exists a unique partial isometry $C_0 \in B(\mathcal{X})$ with initial space $\overline{P_0 T_2^*\mathcal{X}}$ and final space $\overline{P_0 T_1^*\mathcal{X}}$. We extend C_0 to an \mathcal{Y} -constant inner operator C on \mathcal{X} (see Theorem 2.2) with initial space supp (T_2) and final space supp (T_1) . Now it is easy to see that $T_2 = T_1 C$. Moreover C is unique since C^* is unique determined on $T_1^*\mathcal{X}$. The fact that $T_1 = T_2 C^*$ is immediately.

We apply the results up to now for proving a version of the Beurling-Lax theorem [11, 7, 8] for a Λ -orthogonal shift $\mathcal{Y} = \{S_{\lambda}\}_{\lambda \in \Lambda} \text{ on } \mathcal{H}.$

THEOREM 3.3. A subspace \mathcal{M} of \mathcal{H} is invariant for each s_{λ} ($\lambda \epsilon \Lambda$) if and only if

M=M ze

for some \mathcal{Y} -inner operator M&B(\mathcal{H}). Moreover, this representation is essentially unique.

Proof. An implication is obviously.

Conversely, let \mathcal{M} che an invariant subspace for each S_{λ} ($\lambda \in \Lambda$) and let $P_{\mathcal{M}}$ be the projection of \mathcal{H} on \mathcal{M} . Then, $P := P_{\mathcal{M}} - \sum_{\lambda \in \Lambda} S_{\lambda} P_{\lambda} S_{\lambda}^{*} \text{ is the projection of } \mathcal{H} \text{ on } \mathcal{M} \oplus (\bigoplus_{\lambda \in \Lambda} S_{\lambda} \mathcal{M}).$

Let us show that dim PH \leqslant dim \mathcal{L} , where as usual $\mathcal{L}=\mathcal{H}\ominus(\oplus_{\lambda\in\Lambda}^{}S_{\lambda}\mathcal{H})$. The case when \mathcal{L} is infinite dimensional is clearly. If dim \mathcal{L} is finite and $\{e_i\}_{i\in I}$ is an orthonormal basis for \mathcal{L} , then $\{S_fe_i\colon i\in I,\ f\in\mathcal{T}\}$ is an orthonormal basis for \mathcal{H} and we have:

$$\begin{split} & \dim \, \mathbb{P} \mathcal{H} = \sum_{\mathbf{i} \in \mathbf{I}} \sum_{\mathbf{f} \in \mathbf{F}} \left\langle \mathbb{P} \mathbf{S}_{\mathbf{f}} \mathbf{e}_{\mathbf{i}}, \, \mathbf{S}_{\mathbf{f}} \mathbf{e}_{\mathbf{i}} \right\rangle = \\ & = \lim_{n \to \infty} \sum_{\mathbf{i} \in \mathbf{I}} \sum_{\mathbf{k} = 0} \sum_{\mathbf{f} \in \mathbf{F}(\mathbf{k}, \Lambda)} \left\langle (\mathbb{P}_{\mathcal{M}} - \sum_{\lambda \in \Lambda} \mathbf{S}_{\lambda} \mathbb{P}_{\mathcal{M}} \mathbf{S}_{\lambda}^{*}) \mathbf{S}_{\mathbf{f}} \mathbf{e}_{\mathbf{i}}, \, \mathbf{S}_{\mathbf{f}} \mathbf{e}_{\mathbf{i}} \right\rangle = \\ & = \lim_{n \to \infty} \sum_{\mathbf{i} \in \mathbf{I}} \sum_{\mathbf{f} \in \mathbf{F}(\mathbf{n}, \Lambda)} \left\langle \mathbb{P}_{\mathcal{M}} \mathbf{S}_{\mathbf{f}} \mathbf{e}_{\mathbf{i}}, \, \mathbf{S}_{\mathbf{f}} \mathbf{e}_{\mathbf{i}} \right\rangle \leq \\ & \leq \lim_{n \to \infty} \sum_{\mathbf{i} \in \mathbf{I}} \sum_{\mathbf{f} \in \mathbf{F}(\mathbf{n}, \Lambda)} \left\| \mathbf{S}_{\mathbf{f}} \mathbf{e}_{\mathbf{i}} \right\|^{2} \leq \sum_{\mathbf{i} \in \mathbf{I}} \left\| \mathbf{e}_{\mathbf{i}} \right\|^{2} = \dim \mathcal{K} \end{split}$$

By Theorem 3.1 it follows that $P_{\mathcal{H}}=MM^*$ for some \mathcal{S} -analytic operator $M\in B(\mathcal{H})$. Moreover, M is \mathcal{S} -inner since $P_{\mathcal{H}}$ is a projection. Thus $\mathcal{L}=P_{\mathcal{H}}\mathcal{K}=M\mathcal{K}$. The uniqueness follows by Theorem 3.2.

4. SZEGO-TYPE FACTORIZATIONS AND \mathcal{G} -INNER-OUTER FACTORIZATIONS FOR \mathcal{G} -ANALYTIC OPERATORS

Let us consider $\mathcal{Y} = \{S_{\lambda}\}_{\lambda \in \Lambda}$ a Λ -orthogonal shift on \mathcal{H} ,

 $\mathcal{L}=\mathcal{H}\oplus$ (\oplus $S_{\lambda}\mathcal{H}$) and let $T\in B(\mathcal{H})$ be a nonnegative \mathcal{Y} -Toeplitz $\lambda\in\Lambda$ operator. For each $\lambda\in\Lambda$ we define the Lowdenslager's isometry $S_{T,\lambda}$ on $\mathcal{H}_T:=T^{1/2}\mathcal{H}$ by setting $S_{T,\lambda}(T^{1/2}h)=T^{1/2}S_{\lambda}h$, (held). It is easy to see that $\mathcal{H}_T:=\{S_{T,\lambda}\}_{\lambda\in\Lambda}$ is a sequence of isometries with orthogonal final spaces.

After these preliminaries we can state the following theorem which is a version of $\begin{bmatrix} 8 & 1 \\ 1 & 1 \end{bmatrix}$ in our setting.

THEOREM 4.1. If $T \in B(\mathcal{H})$ is a nonnegative \mathcal{Y} -Toeplitz operator then the following are equivalent:

- (i) T=A*A for some \mathcal{Y} -analytic operator $A \in B(\mathcal{H})$;
- (ii) \mathcal{Y}_{T} is a Λ -orthogonal shift on $\mathcal{H}_{\mathrm{T}};$
- (iii) There is a dense subset \mathcal{L}' of \mathcal{L} such that for any $l' \varepsilon \; \mathcal{L}'$

$$\lim_{n\to\infty} \left(\sup \left\{ \sum_{\mathbf{f}\in \mathbf{F}(n,\Lambda)} \left| \langle \mathbf{Tl'}, \mathbf{S}_{\mathbf{f}} \mathbf{h} \rangle \right|^2; \ \mathbf{h} \in \mathcal{H}, \ \|\mathbf{T}^{1/2} \mathbf{h}\| = 1 \right\} \right) = 0 \ .$$

In this case there is an \mathcal{Y} -outer operator $A \in B(\mathcal{H})$ such that T=A*A and $A:=P_OAP_O(\mathcal{L})0$, where P_O is the projection of \mathcal{H} on \mathcal{L} .

(iii) \Longrightarrow (iii). If (iii) holds then for every $l' \in \mathcal{L}'$ and $n=0,1,2,\ldots$

(4.1)
$$\sum_{f \in F(n,\Lambda)} \|S_{T,f}^{*}T^{1/2}l'\|^{2} =$$

$$= \sup \left\{ \sum_{f \in F(n,\Lambda)} |\langle Tl', S_{f}h \rangle|^{2}; h \in \mathcal{H}, \|T^{1/2}h\| = 1 \right\},$$

where $S_{T,f}$ stnds for the product $S_{T,f(1)}S_{T,f(2)}...S_{T,f(n)}$.

Indeed, we have
$$\sum_{f \in F(n,\Lambda)} |\langle Tl', S_f h \rangle|^2 =$$

 $= \sum_{\mathbf{f} \in \mathbf{F} \, (\mathbf{n}, \Lambda)} \left| \left\langle \mathbf{S}_{\mathbf{T}, \mathbf{f}}^{\star} \mathbf{T}^{1/2} \mathbf{1}^{\mathsf{T}, \mathbf{T}^{1/2}} \mathbf{h} \right\rangle \right|^2 \text{ and since the set } \left\{ \mathbf{T}^{1/2} \mathbf{h} : \|\mathbf{T}^{1/2} \mathbf{h}\| = 1 \right\}$ is dense in the unit sphere of $\mathcal{H}_{\mathbf{T}}$, (4.1) follows. Therefore (iii)

(4.2)
$$\lim_{n\to\infty} \sum_{f\in F(n,\Lambda)} \|s_{T,f}^*T^{1/2}l'\|^2 = 0 \qquad (l'\in\mathcal{L}')$$

On the other hand for l'e \mathcal{L}' and geF(m, Λ), m=1,2,..., we have

$$\lim_{n\to\infty} \sum_{f\in F(n,\Lambda)} \|s_{T,f}^{\star}T^{1/2}s_{g}^{l}\|^{2} = \lim_{n\to\infty} \sum_{q\in F(n-m,\Lambda)} \|s_{T,q}^{\star}T^{1/2}l\|^{2} = 0.$$

An approximation argument shows that

implies

$$\lim_{n\to\infty} \sum_{f\in F(n,\Lambda)} \|s_{T,f}^{\star}k\|^2 = 0 \quad \text{for any } k\in \mathcal{H}_{T}.$$

Now (ii) follows from Corollary 1.2.

(ii) \Longrightarrow (i) Assume that (ii) holds. By the definition of $S_{T,\lambda}$ ($\lambda \in \Lambda$) we infer that for each $\lambda \in \Lambda$

(4.3)
$$T^{1/2}S_{T,\lambda}^{*}h=S_{\lambda}^{*}T^{1/2}h \quad \text{for any } h \in \mathcal{H}_{T}.$$

Hence, the operator X=T^{1/2} $|\mathcal{X}_T|$ maps $\mathcal{X}_T = \mathcal{X}_T \ominus (\bigoplus_{\lambda \in \Lambda} S_{T,\lambda} \mathcal{X}_T)$ into \mathcal{X} .

As in [8, Thm. 3.4] the polar decomposition of X* gives $X^*=W^*Q$, where $Q=(XX^*)^{1/2}\in B(X)$ and W mapping \mathcal{L}_T into \mathcal{L} is an isometry. We extend W to an isometry V from \mathcal{H}_T to \mathcal{H} such that

$$(4.4) \qquad VS_{T,\lambda} = S_{\lambda}V \qquad (\lambda \in \Lambda)$$

as follows. Since $\mathcal{Y}_{\rm T}$ is Λ -orthogonal shift on $\mathcal{K}_{\rm T}$, by Corollary 1.3, each ke $\mathcal{H}_{\rm T}$ has a unique representation

$$k = \sum_{f \in \mathcal{T}} S_{T, f} k_f$$
 ($k_f \in \mathcal{L}_T$)

We now set

$$Vk = \sum_{f \in \mathcal{F}} S_f Wk_f$$
.

Let A∈B(H) be defined by

$$Ah=VT^{1/2}h$$
, (hell).

Taking into account (4.3), (4.4) it is easy to verify that T=A*A and $AS_{\lambda}=S_{\lambda}A$ for each $\lambda\in\Lambda$, i.e. (ii) holds.

Finally, let us show that A is \mathcal{Y} -outer and $A := P_0 A P_0 |_{\mathcal{Z}} \geqslant 0$. Setting $\mathcal{M} = W \mathcal{L}_T$ we find $\overline{A} \mathcal{H} = \bigoplus_{f \in \mathcal{F}} S_f \mathcal{M}$ and by Corollary 1.4 it

follows that \overline{AR} reduces each S_{λ} ($\lambda \in \Lambda$) i.e. A is \mathcal{I} -outer.

If lex, then Aol=PoVT $^{1/2}$ l=WPx $_T^{-1/2}$ l=WX*l=Ql, where Px is the projection of \mathcal{H}_T on \mathcal{L}_T .

Therefore $A_0=0>0$ and the proof is complete.

We are now ready to use the above theorem for obtaining \mathcal{Y} -inner-outer factorizations for \mathcal{Y} -analytic operators.

THEOREM 4.2. Let $T \in B(\mathbb{X})$ be an \mathcal{Y} -analytic operator. Then T = BA

where $A \in B(\mathcal{K})$ is \mathcal{Y} -outer and $B \in B(\mathcal{K})$ is \mathcal{Y} -inner with initial space $\overline{A}\mathcal{K}$.

Moreover, there is a factorization of this type so that the diagonal entry A_0 in the matrix of A satisfies $A_0 > 0$. In this case the factors A and B are unique.

<u>Proof.</u> Applying Theerem 4.1 to the operator X=T*T we get an \mathcal{Y} -outer operator A \in B(\mathcal{H}) such that

(4.5) T*T=A*A

and $A_0 = P_0 A P_0 | \chi > 0$.

By (4.5) there is a unique partial isometry BeB(\Re) with initial space $\overline{A}\Re$ sucht that T=BA. Let us show that for each $\lambda \in \Lambda$, $S_{\lambda}^{B=BS_{\lambda}}$.

Obviously $S_{\lambda}B$ and BS_{λ} coincide on AM. On the other hand, since A is Y-outer, \overline{AH} is a reducing subspace for each S_{λ} (AEA), which together with B_{λ} (CM) = 0 implies that $S_{\lambda}B$ and BS_{λ} are zero on (AM). Therefore B is Y-inner.

For uniqueness let $T=B_1A=B_2C$ be with the required properties of theorem. Then, A*A=C*C where A, C are Y-outer and $A_0>0$, $C_0>0$. Similar arguments as above show that there is an Y-constant inner operator B with initial space C*C and final space A*C such that A=BC. By Proposition 2.3 we infer that $A_0=B_0C_0$

whence $A_0^2 < C_0^2$. Interchanging the roles of A and C we obtain $A_0^2 = C_0^2$ and hence $A_0 = C_0$.

Since $A_0=B_0C_0$, B_0 coincides with the identity operator on $\overline{C_0\mathcal{L}}$. On the other hand $\overline{C_0\mathcal{L}}=P_0C\mathcal{L}=P_0C\mathcal{H}$ and since C is Y-outer, $\overline{C}\mathcal{L}$ reduces each S_{λ} (λ \in Λ).

Now by Corollary 1.4 one easily show that

$$\overline{C} \mathcal{H} = \bigoplus_{f \in \mathcal{F}} S_f(\overline{C_0 \mathcal{I}})$$
.

Thus, each held has the form $h = \sum_{f \in \mathcal{F}} s_f l_f$, where $l_f \in C_0 \mathcal{I}$. By Theorem 2.2 we have

$$Bh = \sum_{f \in \mathcal{F}} S_f B_0 l_f = \sum_{f \in \mathcal{F}} S_f l_f = h , \quad (h \in CK)$$

Since A=BC it follows that A=C.

The fact that $B_1=B_2$ is immediately. The proof is complete.

Finally, we adapt [8, Theorem 3.7] to our setting.

THEOREM 4.3. If $T \in B(\mathcal{H})$ is a nonnegative \mathcal{Y} -Toeplitz operator such that $T \geqslant rI_{\mathcal{H}}$ for some r > 0, then $T = A \times A$ for some \mathcal{Y} -analytic operator $A \in B(\mathcal{H})$.

<u>Proof.</u> Since T is invertible, $\mathcal{H}_T = \mathcal{H}$ and for each $\lambda \in \Lambda$

$$S_{T,\lambda} = T^{1/2} S_{\lambda} T^{-1/2}$$

Thus

$$\lim_{n\to\infty} \sum_{f\in F(n,\Lambda)} ||s_{T,\lambda}^{\star}h||^2 = \lim_{n\to\infty} \sum_{f\in F(n,\Lambda)} ||r^{-1/2}s_{f}^{\star}r^{1/2}h||^2 = 0$$

for any hex.

By Corollary 1.2, $Y_T = \{S_{T,\lambda}\}_{\lambda \in \Lambda}$ is a Λ -orthogonal shift on \mathcal{H} . Applying Theorem 4.1 the result follows.

REFERENCES

- 1. R. AROCENA, A Theorem of Naimark, Linear Systems, and Scattering Operators, J. Funct. Anal. 69 (1986), 281-288.
- ZOIA CEAUSESCU; C. FOIAS, On intertwining dilations. V,
 Acta Sci. Math. (Szeged) 40 (1978), 9-32.
- 3. C. FOIAS, A remark on the universal model for contractions of G.C. Rota, Comm. Acad. R.P. Romane, 13 (1963), 349-352.
- 4. A.E. FRAZHO, Complements to Models for Noncommuting Operators, J. Funct. Anal. 59 (1984), 445-461.
- 5. G. POPESCU, Models for infinite sequences of noncommuting operators, Acta Sci. Math. (Szeged), to appear.
- 6. G. POPESCU, Isometric dilations for infinite sequences of noncommuting operators, INCREST preprint, no. 1/1987.
- 7. G. POPESCU, Characteristic functions for infinite sequences of noncommuting operators, INCREST preprint, no.10/1987.
- 8. M. ROSENBLUM; J. ROVNYAK, "Hardy Classes and Operator Theory", Oxford University Press-New York, Clarendon Press-Oxford, 1985.
- 9. G.C. ROTA, On models for linear operators, Comm. Pure Appl. Math. 13 (1960), 469-472.
- 10. B.Sz.-NAGY; C. FOIAS, Dilation des commutants, C.R. Acad. Sci. Paris Ser A 266 (1968), 201-212.

11. B.Sz.-NAGY; C. FOIAS, "Harmonic Analysis on Operators on Hilbert space", North-Holland, Amsterdam, 1970.

Department of Mathematics, I N C R E S T Bd. Pacii 220, 79622 Bucharest Romania.