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Abstract. The equilibrium equationéﬁn?alﬁaquomUneaﬂy
elastic rod immersed in a heavy incompressible fluid are
derived. The bifurcation of solutions of these eguations

is analysed and results concerning the eqguality of the
buckling loads for the heavy immersed rod and for a certain
heavy rod in Void, associated to dit, gre studied.

In the case of variable.cross section with egual moments of
inertia the reduced componential form of the governing

equations 1s given.

1. INTRODUCTION

The first model for an elastic beam was given by the Bernoul-
lis and it is the so-called elastica. The analysis of the planar
egquililrium configurations of the elastica subjected only to end

forces lead Euler (1744) to a problem which is eguivalent with

f“fé&fq determining the functions [0,1135—»(x(S), y(S), e(s)), which

satisfy the equations:

[B(S)e’ (S)1" +Asin 6(s) =0, (1.1)

i= Ol x'(8)=cos@(S), y'(S)=sin @(s), e

-

supplemented with a suitable set of boundary conditions.
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In the preceding formulas S re?resents a scaled arc length
parameter, (x(S), y(S)) give the plane configuration of the elas-
tiéa, ®(S) is the angle the tangent to the curve (x, y) at S
makes with the x’s axis. The other notations A énd B(S) represent
respectively the magnitude of the terminal force and the bending
stiffness of the reod qt S (see E%J for further -histerical com-
ments) .

For the case in which B=const., Euler gave a classification
wof all seolutions of (},}) and studied the process of buckling.
In the case of non-constant B, Krasnoselskif([Z], chapter 1IV)
used his bifurcation theorem to show that non-trivial solutions

eE St Lal) s L2 and
# 7
e’ (0) =o' (1) = 0, (i

bifurcate from the eigenvalues of the problem liniarized about
the trivial solution 8. .= g.

In [3] Antman showed how té apply for problems like (%.})—
(%.3) the globai bifurcation theory developed by Rabinowitz in
[4].

A theory able to account for the large deflection of rods in
space was established by Kirchhoff in 1859 (see [51).

The problem of buckling of an elastic rod under its own
weight was studied by Gre@nhill(ﬂ%i6jlamiinEimudjnwrefﬁmeﬁﬂ_fnmmwoﬂv
by Antman and Xenney in [7], They considered a nonlinearly elas-
tic rod modeled as an one dimensional Cosserat continuum. The
equations given by this model can also be obtained from the three-
dimensional theory of elasticity using the projection method. The
three-dimensional approach can be used to take into account for-
ces acting on the lateral surface of the rod (see [8], chapter ]).

However, as far as we know, in the framework of Antman’s theo-
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ry of rods there are no published resultscdncerning the buckling

-problem in which forces acting on the lateral surface are invol-

ved,
A problem of this kind was studied by VAlcovici in [9]. He

considered a heavy rod immersed in a f£luid. Using a one dimensio-

‘nal approach, essentially the linearized equations of the elasti-

ca and several appxoximationsf Valcovici obtained the following

equivalence result:

Theorem_#. The elastic line and the buckliﬁg condition of a
heavy rod immersed in a fluid are the same as the elastic line
and the buckling condition for a similar rod in Void, if we repla-
ce its specific weight YO with YQ*Yl , where Yl‘is the specific
weight of the fluid, anduthe othér Zonditions ;re the same.

The aim of tHis paper is to extend this result for a nonli-
nearly elastic rod, modeled as in Antmén’s theory. We shall com-
pare our equations for the immersed rod with those given in [7]

for the heavy rod in yoid in order to test the validity of VAl-

covici’s result for wvarious particular cases.
2., KINEMATICAL CONSTRAINTS AND CONSTITUTIVE ASSUMPTIONS

There are three ways of modelling rods in order to derive
rod theories f(cf. [8] and [%Q]): (i) one dimensional Cosserat
continua, (ii) constrained three dimensional bodies, (iii) very
thin three dimensional bodies, for which various asymbtotic exbanm
sions are used in deriving the governing equations.

There is a straightforward correspondence between aﬁbroaches
(i) and (ii) (see [8], chapter II). We adopt interpretation (ii)
as it can be relied with the approach (i), used in [7] for the

heavy rod in void and it takes into account forces acting on the
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lateral surface (cf. [8], chapter I and [}Q], §§3-4) ,
Let BCE (three dimensional euclidean space) be the reference

configuration of the rod. We denote by (X,¥,S) or by (X,¥,T) the

r\/3

corresponding unit base vectors relative to a frame with the 8 axis

lCartesian coordinates in E of a point from Bandby €1, €5, &, the
=

in the direction of.the gravitational field The set B is supposed to be

bounded. It follows thét the sets
21 i
A(S):&(XFY)GR l (XrYfS) E’B} 7 V(S)={(X,Y,T} EBI T‘?S} ’

are also bounded. The set A(S) is called the cross section at S.
We assume that in the reference configuration the density

of mass is constant and the sections A(S) obev the conditions:

Xdxdy yaxdy =0, [, oyXvaxday = 0. 2sld

A(S) =0 Ja(s)

These hypothesis are satisfied if 0S is the axis of centroids
of the ¢ross sections and 00X, 0Y are the principal laxes of iner-
tia of 2(8). The origine 0 of the coordinate system will be taken
in the centroid of the lower cross section supposed fixed in the
problems we shall tackle.

Without loss of generality we can suppose that the length of the

rod is one. Let

r(X,¥,8)=x(X,¥,8)e *y (X,Y,S)g,*+s (X,Y,S) g5, : )
;ﬁ 50
(X, ¥, T)=x(X,Y,T) e, +y (X,¥,T) e,+t (X,¥,T)€E,,

7

be the position vector in the deformed state of the material point
having coordinates (X,Y,S) or (X,Y,T) in the reference configura-

tion,
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We impose the following kinematical constraints:

a) There are the smooth vector Ffunctions Eor B1r 8y [g,;}¢R3
1 =

such that
X (X,Y08)=r_ (S)+Xa) (5)+¥a, (5), _ (2.3)
L :
for any (X,Y,S)eB, where
(s) =E(S)g% +n(S)g, + TS)e, s (2.4)
and E,H;Csb2[9,%].

b) The vectors l(S) and 2, (S) are orthonormal and if we de-

..'

note by rthe derlvatlon with respect to S
Eé(s)=g%(s)}{§2(s)zg3(8) (2.5)

(Kirchhoff'’s hypothesis).
Assumption a) implies that the configuration of the rod is

completely determined by giving the vector functions o ,al,a as

s gives the position of the line of centroids and aqs a2, determi-
= = /.

ne the cross-section at S,
Since 217 s 83 1s an orthonormal baxis, there exists a

e

vector function u: [9,}]~4R3 such that

T i=1,2,3. S ee)
The vector function u is the deformation field of this theo-
ry'

Let 1§(S), -g}s) be the contact force and the contact couple



..6...
exerted on v(S)=£(V(S)) (the image of V(S) in the deformed confi-

guration) by the rest of the deformed beam,

A
The constitutive assumption is that there is a function M:

guch that

u(s) = fiea(s), s). (2.7)

We shall suppose that the symmetrical part of the matrix
A
%%XEO, S) is positive definite for all Sel0,1] and for any vector
PDERB. This hypothesis is related with the Legendre-Hadamard strong
elipcity condition of the three dimensional'elasticity ([}Q]).
Using a topological degree argument (cf., [11], chapter IV and [71)
it can be proved that the above assumption implies that the func-

A ,
tion M supports a global implicit function theorem, so that there

exists a function ﬁ}R3X[Q,}}-—9R3 such that

u(s) = u(u(s), s), (2.8)

The rod model presented above is the same with the one used
by Buzano, Geymonat and Poston in [12] excepting the fact that we
do not necessarily consider hyperelastic rods.

By using (2.3), (2.5) and (2.6) we obtain that the Jacobian

of the transformation (X,Y,S)w—zg(X,Y,S) is

T, 8) = 1-Xu, (S) + Yu, (), (2.9)
: 7
with
ui(s) =u.a; (S), i-—-j},2,3 : (2,};;9)
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We-shall use this expression for J in order to take into

account hydrostatic forces,
3. FORMULATION OF THE GOVERNING EQUATION S

Letry(%),(y(%) be the total contact force respectively the
contact couple exerted from the exterior on a(l), where

a(s)=t (a(S)), 0¢s41,, . (3.1)
represents the image set of A(S) in the deformed configuration of
the rod,

We shall suppose that the rod is clamped at the lower end
S=g_and completely immersed'i.e. all the boundary of the deformed
confiqurationiexcepting a(g) and a set of zero area is in contact
with the fluid. The last part of the above assumption allows us
to study the case where at the u?per end conéentrated forces and
couples are acting.

Letpgg(S),/EhKS) be the resultants of gravitational, respec—
tively hydrostatic forces acting on v(S) and gq(s), yh(S) the
resulting moments about 0 of the same systems of forces. We deno-
te byg1 and{gi the concentrated contact force, respectively‘the

~ P
concentrated contact couple exerted on a(%). The differences
}ﬂ%}ié 5 g{%)jgé, represent the action of the hydrostatic forces
acting on a(l).

The requirement that the resultant torque about 0 on the ma-

terial of v(S) vanish, yields the equations:

e pe(S) e b (S)y (3.2)

N
= i 2
M(S)+x (S)Xﬁ(s)‘M%+§fl)xﬂ%+ﬂg(5)ﬁﬂh(5)- (3.8)
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The end concentrated force and couple Nl and Ml are supposed

to satisfy the relations:

Ny=-reg, M =ug, ge{g3, ag(;)ﬁf o (3

where A%g and PeR are fixed (see [7] for the interpretation
of these boundary conditions),
it ¥ and Y, are the specific weight of the rod respecti-

vely of the fluid, we have:
rEg(S) =-Y?F(S)§3 (3.5}
where F(S) is the volume of V(S) and

F, (S)== | (p_-y;t)nda+ [ (p -y,t)nda, (3.6)
0 BV{S) o '} i a(s) O } “

where Pq is the hydrestatic pressnre - in 0, t is defined by

(2.2), n is the outer unit normal, da is the surface element

and 9v(S) is the boundary of v(S). Henceforward we suppose

that Yq is constant too,
S

By appling Stokes’ theorem, the change of variables for-

mula and (2.%), (2,3); we obtain:

“aé(s)(prYét)gda = t%F(SLgB (8.7)

The second term of (3.6) can be written

J (Pg“f;tleda :[PQ"Y%Q(S)]F’(S)r

’(S)} (3=8)
~ O
a(S) =. =

where-F’ (S) is equal with the area of A(S), in the hypothesis




that F is smooth,

Using relations (3.6)—(3.8) it follows that

lgh(S)?YlF(SL93+[?QfY%§(SiXF’(S)f (s) (3.9)

F
i

The equilibrium equation (3.2) becomes

rg(S)fﬁl—(YQ"Y%)F}S)93+[pO—YlE(S)]F’(S)gé(S) (3.10)
:It = 7 = / =
If we admit that all the functions appearing in (3.%@) are

smooth enough, we obtain the following differential form of the

equilibrium equation (3°i9):

Er (S)="('YO"Y1)F' (S)s3+fpo-¥lg(s) 17! (S),\:E(I;(S)-F
o 5+ - S =+
1SSV IF" (S)x) (S) =Y, T" (SIE’ (S)z{ (S)

~0
7 e #

(3581
7r.7l-
[:EO

We shall now give a suitable form of the relation (3.3).

The moment of the gravitational forces is

(8) == [ L x yite dxdydt

v(S) -

M

~g
where y is the specific weight of the deformed rod and depends on
-x,y,t. Applying (2.3)-(2.,6), change of variables formula and Fu-

bini’s theorem it follows that

~E(T)e,]ar. | (B510)

(S)= ¥ fEF’ (T)In(T)e, 1

.7:'

The moment of hydrostatic forces is given by the relation

M (S)=- [ rx(p -y t) nda+ [ rx(p ~y t)nda, (3.13)
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By using Kelvin'’s transformation, change of variables formula,

Fubini’s theorem and relations (2.3)-(2.6), the first term

from the
right side of (3,;3) becomes
- f rx(p Ylt)nda —yle‘ T)[n(T)gl §(T)e 1Jam &
BV(,S) # # g o=
k ;L I T L =T (T T 0 dT -+ .14
¥ /3Ty (Ta A5y (T)gy (T)-Ty ( 1oy (Th )1@# (3.14)
& * ¥

1
+y%f§[IX(T)a%X(T)32(T)vIY(T)azx(Tlg;(T)JSZdT,

where
I, (s)= { x%axay, I (s} = [ v2axay,
A(S) A(S)
8, (T)=a IX(T)era Y(T)e2+aiS(T)e3, i=1,2,3

The second term from the right side of (3.%}) satisfies the

relation:

a{s)g X (gg-Yl )nda= Egumt%C(S)JF'(8[38(8)§5é(8) +
(B
=+

% Iy(S)a, (S )5;(8)—IX(S}als(ng2(s)].
o T

Using relations (3¢%3)—(3.#5), the equilibrium condition (3.3)

becomes

M(S)+r (S)xN(s)=M, +r_ (l)x +
o
IS (T)[n(T) g o E(T),gzjdfr +
;
+ylj [Ty (T)a (T)E%(T ~Iy(Tay, (T)u, (T) le dm+ (3.16)

= f
+Y1f-§[IX(T %X{T)(QZ(T)—IY(T)aZX(T)Bl(T)]ssz +
I8 ) F

~

l

+[po~T%§(S)]F’(SL{O(S)%£5(5)+Y1[IY(S).2 (S)a EHMIXGHalS“Q§2&ﬂ]
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The smoothness assumption for the function from the above

relation and equation (3.%%) allows us to derive the local form

of (3,16):
*

(1:4/’ (SH,%(S) X,\l‘f(-s) = Yl[r$1(8)+32(8)] (3.,:&7)
where
P (s)=[I.(8)a, (BYu. (S)=T (5)a.,. (B)u. (8)le-+
2 %Y ¥ Y g: i
+[Iy(8)a2 (S)u%(S)—IX(S)a (SLE &D]e2+
+1 (S)azS(S)a (S)+I (5)a (S)a’(S I (s)a g S)a (5= ( k;@lgé&ﬂ

& A i
T, (8)=T] (8)a,y5(S) gy (S)-T/ (S)ayg (8)3,(5).

1

"ﬁ;

The projection of T

1 on the basismal,(gg,’g3 yields
T =
;gl(s)=(_1x{s}-IYgS)[u3(S)als (S)jl(Sﬁg(S)azs(s)Ez(SH
7 SR
¥

and equation (3{%7) becomes:

A.I\}’(SHE(’)(S) XN(SJ =Y (T ( S)D”B{S)als )Nl(S)'u3(S)azs(S)$2(S)+
= 5’" &6 F
+(u,(8)a (s) (a8 ). S (3.18)
- o -
I (s)a 15(5),32(5”

+Yl(I (s)aZS(S) (s)
7&

For rods with constant cross-section which satisfy the sym-

metry condition I =I_, the last equatian can be written

£ Lt = 3.19
,ﬂ (s) +($9(S) X{E(S) 0 ( fl)
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The relations (3t}£)f (3,%9) are identical with the diffe-
; i 5 P
rential form of the equilibrium eguation for a heavy rod of spe-

cific weight Yo~Yy in void (efs [V1). TE:follows-that Valeooyvicils

theorem holds in this particular case for nonlinearly elastic

rods, too,

4, BIFURCATION ANALYSIS OF THE EQUILIBRIUM
EQUATIONS

In this section we state the necessary general results from
bifurcation theory and show how to aﬁply them for our problem.

Let W be a real Banach spaCe: We shall denote by K(W) the
space of linear com?act o?erators from W into W endowed with the
usual norm of bounded linear operators.

Let D be an open subset of R and L:D—K(W) a family of
compact linear operators de?ending in a continuously differen-
tiable manner on veD i.e, LEC%(D; K(W)).

Let G:D x W—9W be completely continuous and satisfying the
requirement

lim  G(v, v)/ivll = 0
ltvij—-0 =

uniformely for v in bounded subsets of D.

We shall cast our problem in the oﬁeratorial form:
v = L(v)v + G(v,Vv) (4.%)

with L and G satisfying the above reguirements,
The existence of buckled states for our problem will fol-
low as a consequence of the existence of bifurcation points for

the equation (4.1), i.e. (v, 0)eD x W such that in any neibourg-



- T g
hood of this point there is a nontrivial solution of the prece-
ding equation.

Bifurcation problems of this kind were studied by Rabi-

nowitz ([41), Magnus ([%}]), Esquinas and Lépez—Gémez (Eﬁd]} for

veR and by Alexander and Antman (E%SJ) for veR",
It is a well-known fact (e.g. [21, cha@ter IV, 52) that
if (v, 0) is a bifurcation point of (4.1), then the linear equa-

-7}.

tion
v = L(v)v, (4.2)

admits nontrivial solutions, This observation restricts the get

of bifurcation points. We shall use the following result (cf [7])z

Theorem 2. IE v is an eigenﬁalue of the problem (4.2) with
odd multiplicity then from (v » 0) there bifurcates a branch of
nontrivial solutions of (4.%} satisfying one of_the following
conditions:

a) It is not confined to any closed and bounded subset of

b) Its closure contains a point (o gg where p is an eigen-
value of (4.2) distinct from v,

We shall now show how to cast our problem in the form
(4.1),

Broms (205)5 (2.6 T(2,8), (3.10), (3.4) and (3.18) it fol-

lows that:

(8) = |7 aj(mdr, . (4.3)




e
+ F@(M('T),T)xgimdqv, (4.4)

[A+ (v =Y )F (T)i(\a}3 (T)xe, (T)dT-
S = .

41 JHTT! @ay g @-3 Mayg
fg ‘ =2

¥ , +
~u3 (D) ayg (T3, (1) +Luy (D agg (T}—ul(T)als (T) I3, far

A

(ngﬁﬂﬁf—

where M(l) is given by
~F

M(1)=M,~ [ [Xa;(l)+Ya (l}]x[p =y (@ (1) Xta, o (L) Y+T (1) 11'(1) axdy=
~ F 7][ a(_%) N-’_]: F1 w2 % _}ES-fm 2S % ?L—
=fiety LI, (1)a o (Iyas (1) -T - (1)a, (L)ag (193 (4.6)
~ :’-;]: X ;7; ?:‘L:S =+ N2 == Ve ;f(‘ 28 -7',_-: /V:F :/":.

These relations, excepting the last term from (4.5) are
Similar with the one obtained by Antman and Kenney in [7] and their
methods hold in this case too.

The above equations rebresent a system of fifteen scalar

integral equations for the fifteen dimensional vector

X =Jr :
{59’ il ﬂl

It is easy to check that this system admits the trivial

solution

i = A Ve e
A (k'u’Yo'Yl):\fo’Ei’l\Lk
where

; b L
IE(S)=5e; . 33(8)=e;,



S = debts

(3;‘;(5)=co 6(S)e#+sj_n&(s)(§2 e R (4.8)
% (5)=-sin6(s) e, +c0s6 (5) &y 1 Mic,, (4.9)
7{_

withs
6(8)= ju3(M ,T)aT

for all the wvalues of Ehe parameters'hgu;fo,§l.

Let now W = Cg([g,%])%s be the Banac; gééce obtained by
taking the direct sum of fifteen coéies of the Banach space of
continuous real functions defined on [E,il.

If we put X ={ro, ais Mls W, the above system of integral
f\l_: s, ~

equations can be written

X = H(X,Au, YorYy) -
= ¥
It is easy to see that H is a Fréchet differentiable ope-
rator and using Arzela-Ascoli theorem it follows that it is a
completely continuous oﬁerator acting on W X R4,
Let Y be the difference between X and the trivial solution

3
X% It follows that ¥ satisfies the equation:

Y :HX (X (A«fu_,'YO;’Yl) ,A» r Hy O’Yl) Y+

_ I , :
+iﬂ(>\;§(MU«:YOFYIH'V,K,lL,YO;Yl)-'H(XS‘(?\.,u, 'YO, '\’1),7&,],1., YO’ Yl)- (4 }1;92
"‘HX(X‘ (A1 Yorﬁrl)rlrur 'Yor"fl) VJ:
— -7L — 7—;_-

where H,, (X (A, u,yo,y]) Ay ;Yl)v is the Fréchet differential of

.7K
SH R u,yo,yl) at X in the direction Y.

7L
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3
Equation (4,9) has the form (4.1) with w:(c:?[p,%))%*’ and:
Tt e N e ; ;
L (?‘"rﬂr"\!?r"ﬁ'l)mHX (X* (A, YO’Y;L) P AU r'YOrpL'l) r (4 p?]_;J;Q
=i i e e
G A1y, y e YI=H(X oy Yo ry I HY A,y oY) - (4-711;2)
= ,7?:_ g ; - 5F .:J 7:
o * .
~H (X (Y gry) s A, YorYi) Hy (X (Mumon’l),A,u,xfonfl)v.
—_ 7":‘ : — 7_'. == ?‘; = 75

In order to apply theorem 2 it is enough to prove that L and
G defined by (4.%1) and (4,;2} are compact, The compactness of L
follows from the fact that the Fréchet differeﬁtial of a compact
operator is still compact (cf,[2], chapter IT, §4). The compact-
ness of G is a consequence of the complete continuity of H, L and
of the relation (4,}2}.

Thus the deteimination of the global behaviour of continua
of solutions of the equations (4,3)-(4.5) is based on the study
of the eigensurfaces of the linear comﬁact operator - wvalued
function D)

In the rest of this section we shall study the case of a
rod with constant cross section but not necessarily with equal mo-
ments. of inertia,

Firét, let us notice that the system (4.3)-(4.5) differs
from the equilibrium equations for a heavy rod of specific weight

Yoy (¢£.,07]) in void only by the term

=i
=y, JET, (T)AT =-y, (I -T_) [$lu,(T)a, (T)a, (T)w
V1§~ Vit wiig e a8ty
e 7 = 7
~u3 (T)ay ¢ (T)ay (T)+ (u, (T)a,  (T) —u, (T)a, 4 (T)) ay (T)IAT
~nS : 7{;,_ :._._

This term has no influence on the bifurcation at odd multi-~
plicity eigenvalue (defined in [13] or £$4]); more precisely the

following nonlinear counterpart of Valcovici'’s result holds:
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Theorem 3. If v is an odd multiplicity eigenvalue for the
liniarized problem corres?ondinq to a rod of sbecific weight
Tort in yoid, then (v, Q}is a bifurcation @oint for the equili-
S

brium equations of a rod of specific weight y irmersed in a fluid

of specific weight v, if/ﬂl%) andrﬁ(%) satisfy the same conditions

and both rods are clamﬁed at the lower end,

Proof. We have only to ﬁrove that the linearizations near
the common trivial soiution of both problems are the same. Then
by applying theorem 2 the conclusion follows in a straightforward
way .

Tn order to do this it is enough to prove that the lineari-
zation Of,gl(S) is identically zero, For its first term, we have

A =
lim u(eM(S), )Fe3%€a (5)leaj; [eq+eq (5)1 g #=
B P

=lim u eM(S} S)a (S)el e
&0 e

if we suppose that the rod is unstressed in its reference confi-
guration. In a similar way it follows that the liniarization of

the other terms fromfg%(s) is zero.
5. A COMPONENTIAL FORM OF THE EQUILIBRiTM EQUATIONS

Tn this section we study the case of a rod which is trans-

; N Eaal
versely tsotropic i.e., the constitutive function E,satlsfles the

relation
A A
u(QM,S) = Qu(M, S), 04541, (5.0
AL A POPYANY = j 7‘—

for each constant orthogonal mats 1xw1ﬂ1ar@ononts with lespect tosthe
A
T (O R 1 Ko 1T [



Selnes

basisjil,iznéékare:

R TR e
=
in Qo 2

e
_;b.

The transverse isotropy condition (5.1) ensures that the
?l:
moments of inertia about all axes passing through the centroid
of the cross section are equal (i1f we accept the assumption that

the cross section has the same mroperties as the constitutive func-

tion , stated in R%Z}), in particular

I.(8)=I_(s)=1I(s), Qe8dl (5.2)
¥ = =
- A
A e : : oS
Let m, and u, be the components of M respectively u with
1 L U A
respect to the ba51s(3},g2533, 1=%;2,3. Another consequence of

= .
the econdition (5.1} i that 33 depends only on:
-:!l_—;

% ’ AS[ m3 I (503)

and that

where % depends onlyv on the arguments from (5.3) (cf.[7]1). The
constitutive assumption (5%%) and its consequences allow us to
use the method develo?ed by Antman and Kenney in the preceding
quoted paper, in order to obtain a more tractable form of the

equilibrum equation ).

(T
f-\
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Taking into account (3.4), (3.}0) and (5.2), equation

(3.19) becomes

Mr(s) =LA (YO“YI)F(S)]E3(S)X$3:
= F : (
=y I’ () Layg (B)ay (8) -2 (8)a,(s)1,

(971
Ul

The basis 31F32h33 is related to the fixed basis $§L§2{33

f‘ . by the Eulerian angles ©, ®, ¢ through the relations:

a,=(=singpsiny+cospcosbcosB)e, + (005@cos$—sin@sin¢cos®)e,_
Nf-;]- ol ‘ AT
= 7':

- —cosysinBe,;
s

a2=(usinwcos¢—005@sin¢cos®)e + (cospcosy-sinosinfcos®)e,+
v L 9

+5ln¢5an%3 ¢

= cosysin®e, + sinpsin@e,+tcosBe., . (562
Al o e

23
%,

The above equations and (2.6) imply that the components

of u with respect to Slsgor g ArE

-p'sin® cosy + ©fsiny ,

Sl
uﬁz— — ([ﬁ’ sin® SinliJ +@FCOS(!J ? (5.7)
U Y’ + ¢’ cos®

In the following, we shall use the basis D,,D,,D, defined
4 I\/‘l (\'/2 /\/3

- o
(E%:cosygl_sinyizr ‘Ezzsin@§}+cosyﬁz, 23§%3 (5.8)
ya 7, : 7;
If we dot (5.5) with e, it follows that
(5.9)

A = C}zgfla,',fx,-g | /IE(S) sf‘le/3=£lj‘[/(.3;.) ./%3:a=con$to
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By taking the scalar product of (5.5) with a; we obtain

ﬁzggh e my(s) = my(l) = B = const., . (5%%2)

7L

since (5.4) implies that

Let us denote by U. , M. the components of U and M
1 1 ¢ s P

with respect to the basis-{gi}.

From (5.7) and (5.8) it follows that

Ul=—m'sin®', U, =Q', U3=u3=¢' ¥®’cos® : (S;i%)
i
Relations (5.6)., «(5:8); (5:9) and (5.%9) imply that
-a=M(S).e3=M(S) [—sin@(S)Dl(S)+cos®(S)D3(S)]

2 e e ag (5.22]
=~Ml(S)sin®(S)+Bcos@(3), 0<S ¢l ., - 7
Taking in the above relations S=0 it follows that

F

since the rod is clamped at the lower end. Relations (5,12) and

(5.13) imply that
:f'..

Ml=*B(l—cos®)/sin® e (5.l4)wm

or equivalently



Al B

Ml =mBsin®/(#l+ cos®) : (5.#5)

7‘:

for all S@[E,#] where sin®(S) does not vanish,

By using (5.6) and (5.8) the equilibrium equation (5.5)

becomes:
MY (S)+LA+(y =y, JF (8) -y, T' (8) Isin®(5) D, (S)=0 (5.%/&6)
e
Azasconseguencedof (2,610, (3.4). (5.6), (Sz%ﬁg we obtain
that the relation
’ =M Nl i 2
.ﬂ .22 M, + oB”sin® /(?&+ cos®) “, (5.%7)

is valid where sin® does not vanish.

By dotting (5.#6) with 22 and using (5.%7) we obtain

Mé+[85%ﬁ(l+cés®)2+A+(y -Y,)F=y.I"Jsin®=0 . (5.18)
+ ol at =

From (5.,4), (5.11) and (5.#3) it follows -that:
¥ F =

o' = ‘oM (5.19)
2 s : .::/:

o’ =35[(%+cos@ ) s ' (5.22)

P! = G3~SBcos®/(l+cos®), (5:21)

~ o

/

N~
where o depends on Ml=~Bsin®[(l+cos®), My, M3=B and the last

relations (5.19)-(5.21) are valid only where sin® does not

75

vanish.
In [7] it is shown that either the solution of the system

(4,3)=(4.5) dgt trivial or relations (5.%5), (5.06), (5.%8), (5.}9);
o ‘:/: b 2= ‘.
(5.20) and (5,2&) hold for each se[0,1], By using the fact that

!/
the rod is clamped at the lower end and relations (4.6) we obtain



»

s

the boundary conditions:

@(__9) = g, M2(7J£)=a © o+ YlIsin@(}) (5.22)
when the alternativé(%§§3($) holds: in (3.4

By comparing the above relation with the reduced componen-
tial form of the governing equations for a heavy rod of specific
weight vy _Yl (c£L7]) we notice that the only difference occurs
Aot lé; whlch contains the term —YlI sin®, not appearing in
the corresponding equation for the heavy rod. By linearization
at the trivial solution ©=0 this term becomes -YI'® which is not
identically zero, unless the cross section is constant. We con-
clude that Valcovici’s result doesn’t hold for nonlinearlv elas-
tic rods with variable cross-section. However, equation (5:%8)
is of the same kind with the corresponding equation for thékrod
in void so that for I’ (s) given, one can state equivalence theo-
rems.of Vdlcovici type for immersed rods,

From (5.,20) it follows that if B=gfi.e. the rod is not tor-
sioned at the u;éer end, we have ¢@=const., which means that the
solutions are planar. The planar Problem for rods subjected to
forces and couples acting only at its extremities was studied
by Antman and RosenfeldkﬂlG]) in the framework of a model which
doesn’t use Kirchhoff’s hypothesis. In [i?], Tucsnak used the
above hypothesis in modelling the @lanég version of the situa-
tien considered .in the present paper and shoyed that the lineas
rization of the system (S.if) and (5.}?) with the boundary
conditions (5.22) represen%s a Sturm-Liouville problem, having
only simple eigenvalues, so that in this case the hypothesis of
theorem 2 are fulfilled.

The results of this section show that the methods develo-

ped by Antman and Kennev for the heavy rod in void are entirely
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applicable for immersed rods.

6. CONCLUDING REMARKS

The equivalence result of Valcovici stated in theorem 1
rests valid for nonlinearly elastic rods if the cross section
of the rod is constant and has equal princiﬁal moments of inertia
in the reference configuration. If the princiﬁal moments of iner-
tia are different but' the cross section is still constant the
result holds in the sense of theorem 3. :

For rods with variable cross section but with equal s prifs-
cipal moments of inertia,'the reduced combonential form of the i
governing equations, obtained in section 5, has the same form
with the one obtained by Antman and Kenney for the heavy rod in
void, This sﬁows.that for particular functions I(s) the problem
of de£ermining the critical loads for an immersed rod can be

reduced to a buckling problem for a heavy rod in wvoid.
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