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A GEOMETRIC QUESTION CONCERNING THE STRONG

DUALruY OF NEMRAI, SUBSPACES

Aurei ian Gheondea

Introduetion

The inner product [ . ; ]  of a Krein space JL can be also considered as a dual i ty.

Since J{, has a natural strong topology, one can consider the duality of two different

subspaces of JC, regarded as Banach spaces. This is what we mean by strong duali tv; i f

no topology is taken into account, as in [3, I  10], then we refer to weak duali ty '

For the case of Pontryagin spaees' two neutral subspa ees JtL and $

cal led skew l inked (see t6l,  t2l ,  I  J) i f  they are in dual i ty (strong or weak' this is

same in this ease). In this situation one can deeompose the spaee Jdas fol lows

\=Jl.+\ +"/f ,

*rr".u t is a regular subspace of J(. This proved to be a useful instrument in the

analysis of operators. In the case of a Krein space, if J( ana ,'(/ are two neutral

subspaees in strong dual i ty then the above decomposit ion also holds (e.g.  th is was used

ln  tb l t .

A rspeeialt kind of the construction deseribed above is the situation when Jf

is a neutral subspace and o(= J,{ where J is a fundamental symmetry of X(beginning

with t?l  th is was intensively used in the t i terature).  In this paper we show that th is is

the typical ease, more precisely (see theorem 2.4), if Jtr and "(l 
are two neutral

subspaces in strong du'lity then there exists a fundamental symmetry J of J{ such that

,(t= ilf.

Our proof uses certain duality operators that we investigate in the second

section. Then we are interested in getting an explicite formula for the fundamental

are

the
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symmetry which mapsf onto lf, in terms of angurar operators. In order to do so, in the

third section we relate the duali ty operators with the angular operators of two maximal

non-negative subspaees ancl then, in the fourth seetion, we obtain such a formula for

the fundamantal symmetry obtained in the proof of theorem 2,4,

The problem we'considered in this paper is equivaient with sorving a certain

non-l inear operatorial equation. onee we obtained a solut ion for this .equation, in the

last section we can f ind a parametrization of al l  sorutions (see corol larv 5.2).

{ r .

In this section we f ix some terminoiogy and notat ion to be used in this paper,

Let (Jf,  [ ' , ' ] )  ue a (eomprex) Krein spaee. I f  J is a fundamental symmetry

(short ly f .s.) of JC and J = J+ - J- is i ts Jordan decomposit ion then X = X* + X- is t i re

conespondi ngl lnda m ental decomposit ion (short ly f .d.) of J{. The J-inner product

(x'YL = Ux,yl, x,y eN ,

determines the corresponding unitarv norm l l .Jf.

The strong lgpglgCy on X i .  determined by an arbitrarv unitary norm. A

subspace I of J{ is by definit ion a closed t inear manifold of d/.  tr 'e denote by

\ r r  (  . q t .  .  * p )
o C  = { x ( J t ; t x , y l = 0 ,  y ( o L J

the orthogonal companion of J. tne subspace X is ealed regurar i f  X* XL= J{notor.

Non-19g9.!ive subspaces, maximar non-negative subspaces or neutral subspaces are used

with the usual meaning.

Throughout this paper the involution ,r will be used only with respect to a

posit ive definte inner produet associated to a f.s. J which v,, i l l  be f ixed in advance or

will be clear from the context. Also, the term iinear contraction rvill be used only with

respect to some unitary norm.

We wil l  use the fol lowing fact, whieh ean be proved either by using a f.s. or

by observing that in the corresponding proposit ion in the Hilbert sDaee context the
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tive definiteness plays no role.

----JJ Proposition. Let Jl and a/be subspaces of the Krein spaee !{ . rnen Jl,+ "lf
is a subspace if ano 94y if o41"lf 

r 
i, u .rbrpr"u.

$2.

let J, ana f, be two subspaees of the Krein space (x, [.,.]). We fix on K a

unitary norm lf. ll and denote by G,.) the corresponding positive definite inner product.

" 

"oortd"r 
the Hilbert spaces (Jr, ( . , .)) ,  i  = 1,2. For any x etrthe mapping

tpyr+9,* l

is a bounded l inear form on J, n"n"u the Riesz representation theorem implies the

existenee of, a bounded l inear operator f ,e t<f ,,Vrt such that

(2.1) [x,yi = (Trx,y), x €Jr., v €Xr.

Denote

(2.2) or(x) = llrrxff = 
.sy;' ltx,vll , *Lfr.

Y E'42
l lyl l l l

Then pl is a semi-norn',  on ff ,  and i f  the non-negative inner produet <.,.>, on Y, is

defined by

(2.3) (x,y), = (rfTrx,V), x,yQXt t

then p, is exactly the semi-norm associated with (.r.)r,  i .e,

j '  (2.4) pr(x) = (<x,x>r)i, *e Xt

Moreover,

(2 '5)  ker p,  = kerT,  = Yrnf , r !

Similalily, there exists a bounded linear operator TZ = Ti eXtd,trl such that

(2.6) [x,yJ = (x,Try), * (Xt, y etz,

and the non-negative inner produet on Y,
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(2.7i

gives r ise to a semi-norm .

(2.8) nr(x) = llrr- ll = 
;g1 I

l lvl lSt

which sa t isf ies

(2.9) ker p, = ker T, = Y ,n Xr.

From (2.2) and (2.8) i t  is clear that Ti are contraetions, or equivalently

(2.10) p i (x)Sl lx i l ,  x€Y,,  i=1,2,

in particular the topology induced by p. on Y. is weaker than the strong topology.

2.1 Proposition. The following statements are equivalent:

( i )  The semi-norm g; on { ,  is equivalent wi th the uni tary norm l l . l l  ,  i  = 1,2.

' ( i i )  
T '  (or equivslent lv,  f^ = f l )  is boundedlv invert ib le.

( ' i i )  Y lnY i=  o ,no  4 .Y ;=X.
(iv) f,rn Yi= o uno Xz- Xi=J{.

PROOF. ( i)?(i i )  Taking aceount of (2.10)

with the existenee of d ) 0 sueh that

af ix I lo , (x ) ,  xe f , ,  i=  r ,z .

(x,y), = 0irrx,y) =\ql*,v), x,y €Y2,

[x,fl|, x €.t,

eguivalent

Q.11)

Bu t  (2 .11 )

inequaiity

it follows that the statement (i) is

range while the same

range.

0 follows from (2.5).

for i = 1 means that T, is one-to-one and has closed

for i = 2 yields T, = Ti one-to-one, hence T, has dense

(i i) t( i i i )  I f  T, is boundedly invert ible trren /rnYf=

Let now z 1J{be arbitrari/. Considering the linear form

X r)vt4ly,zl

we .  , . 2get a vector t  t , {2 such thBt

lyd = (y,i, y€{r.
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Taking z, = rrlt e Y, by (2.1) it follows that

ly ,zJ=ly ,zr ) ,  y { .Xy

henee zz = t - 
"l 

e Xr. frrus we have proved if, - Y;= J{.

(iii)?(iv) If Yl n ff= O nofC, then, considering the orthogonal comptement,

it follows that the linear manifotd f,Z * f,ii. dense in{. From f,, - Xi=Xwe first

obtain f,, ft frt= o rno then by proposition 1.1 it follows that f,2 * Xii, closed, hence
v  w r '  . .' ( 2 + 4 1 = J t .

( iv)*( i)  Let P2 be the project ion of{onto f, ,  along Yrf ny urrurpt ion p, is

bounded hence for any x (X, we have

'  i l x t l=  s lp l tx ,v l l  I  ' ,g l t * ,v  J f  5 f l r r l l .o r (x ) .
llv|l !1 Y eXr'

11Yg 5l l rr l l

We have to remark now that by proving ( i i i )4( iv)  we proved also ( iv)?( j i i )  ( . f  t r terchange

the roles of  Y, and Yr).  fnrr  (2.11) holds with

,( = rninl 1/ np1[ ,

where P, denotes the project ion of { onto

X, = f,, = 0 should be treated separately).

2.2 Definition. The subspaees Y, anc X, are in strong duality with respect to

the inner product [ . ,- ] ,  or equivalently, d and f, ,  form a strongl:v duai pair,  i f  one

(henee atl)  of the statements from proposit ion 2,1 is (are) satisf ied.

Clearly, strong duality of subspaces does not depend on the partieular

unitary norm that we eonsidered, it depends only on the strong topology of {. A}so, if
I  . \ ,
dl and j(2 are two subspaees in strong duali ty then their dimensions (as l l i lbert

spaces) coincide. The subspaces Ir and X, rorr a strongiy duai pair if and only if Xl

and X, form a strongly duai pair.

If the subspaces X, ana X, ut" in strong duality then they are also in weak

duali ty. I f  X, and X, are either of f ini te dimension or of f ini te codimension then their

r  r  t lp t t l

\ 2  -  g , L ,  ^
o( 1 along o( 2 

(oI  eourse, the case

w
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strong duali ty is with their weak duali ty.

L e t X a subspace of JGT!-eI { is a regutar subspaee if and only if f, is in

strong duali ty with i tself . . In connection with this fact we note that i f  X= Yl= X2

then the operator T, defined at (2.1) is the Gram operator of the inner product space
(f , t- ,- l)  with respect to the posit ive definite inner product (. , .) .

2.3 Example. Let J be a f.s. of the Krein space J( ana ,t/ an arbitrary

subspace. Then lfand J,,(/ form a strongly dual pair of subspaces. Here we want to point

out that, in general, strongly dual pairs of subspaces are not of this kind.

If  I  is a maximal uniformly posit ive subspaee ofj(  and olf  is an arbitrary

maximal non-negative subspace then Jl nu(! O ana 
"l{*,t/t= 

y (e.g., by [1, Corol]ary

1.5'21). But if Jl is degenerate then sl(+ l,/ for any f.s. J of K, since J,/{ is a}ways

max imal  un i f  o rmly  pos i t i ve .

2-4 Theorem. Let Y, and Y, be two neutral subspaces of the Krein space{.

The fol lowing statements are equivalent:

(a) f,, anO f,, are in strong dualitv
/ .  r  \ ,  \ ,  , . -(b) o(1 + {Z (jl n_glggb.gtg_qgm ) is a regular subspaee.

(c) There exists a f.s. S of I{  such that 4 
= tX, (or, equivalently,

Y, = s Yrl.

PROOF. (a)=)(b) Assume that the neutral subspaces {,

dualitv. From proposition2.l we trave Xrfi Xi= Xrn Yrr= O ana

(2.r2) xr. x*= xr.Yi=g.
since dre{rf from (2.12) we set 4r+ Xf=!( nen"u

fol lows that Xr* X, is closed. On the other hand, from (Z.IZ) i t

equali ty

{r'=X, - XriX;t

and { ,  are in strong

by proposit ion 1.1 i t

is easy to derive the

(2 .13)

hence
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Q.r4) &r* Xr- XinX|= 1( ,

which shows that the subspace 1* X, is regular,

(b) =xa). o xt* x, ir u regurar subspaee then the representation (2.14) hords

and from here it foltows easily (2.13), trence frn )fi o rrorcr and using once more
- - r

(2.t4) we eet { 
+ X;=K i.e. J, and {rfor^ a strongly dual pair.

(b)+(e). Let the subspac 
" 

{ = Xt r Xrou regular. From above we know that

Y, 
"nc 

X, ut" in strong duality' in particular the operators T, and r, defined at (2.1)

and (2.6) are boundedly invertible. We define a linear operator C on f Uy

n r-1
I

T2- o

w.r.t .  J= {r* Xr.

On Ywe consider a posi t ive def in i te inner product ( . , . )  def ined by

(2 .16)  (x ,  +  xr r  y1 *  V2)  = (*1,V1)1 *  <*r ,vr i r ,  x , ,v reY'  i=  1 ,2,

where the posit ive definite inner produets (,,.)., i  = 1,2 are defined at (2.g) and (2.?),

The correspondi ng norm is

s(x,  + xr)  = (or(xr)2 *  pzkr)2) ' ,  xreY, i= 7,2.

XranaXrare orthogonal with respeet to the inner product (. , .)  and the operator G is

continuous with respect to s, or equivalen y to Jl - f f  .

Let xl,y1€ X, and xr,!r€ X, Ue arbitrary. Then

(G(x, + x2), yl + v2> = <Trlx, * Tr1*2, y1 + yr) =

= <rr1"r,v1>r + <tflx'vr)2 = {rfrrrflx,vr) + (r}Trrllx'vr) =

= (Tfx'vr) + (r:|x'v2) = [x2,v1J + lx'yrl = [x, + x, y1 + v2J,

whieh means

(2.L?) (Gx,y) = [x,y], x,y €Y,

hence G is the Granr operator of the inner product space (S, [-,.]) with respect to (.r.).

(2 .15)  c  =
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In particular, G is a selfadjoint operator on the Hilbert space (Y,<.,.>).

.  With respect to the Hilbert spaces ({. . ,  (- ,-)),  i  = 1,2 we consider the left

polar decompositions

T i ' = U i  T . -  ,  i = 7 , 2 .

Then it is easy to seethat

0 ut

uz o

T^ '  0z

L 0
espee

[ ,
_l
I

L,

with r

. l c l

T -- 1

e Hiib'ert spaee (J,( . i . ) ) .  Denoteis the lef t  polar decomposit ion of  G

t 1

s =

Then, (2.17) ean be wri

<Sfc fx ,y>  =  [ x , y l ,  x , y€ f  ,

and since G, hence also lG L are boundedly invert ible on J i t  fol lows that S is a f .s. of

the Krein space (Y,[ ' , ' ] ) .  l i rso {r= S f, ,  anC S can be extended to a f.s. of X.

(c)=)(a) obvious.
gt.

Let \=Y- +JC- ne a f.d. of the Krein spa"e X anc /, and X, two

maximal non-negative subspaces of {. ive let K, and respectively I(Z denote the

angular operators of the subspaces Jt and X, with respect to this f .d..  Recall  that for

i  = 1,2, l{r€ X(i l*,J{ ) is the unique l inear contraction satisfying

X , = l * + K i x  l " C X - J .

recall also i

. ^ L  ,  L  ,
Y i = { u *  { v  I  v € { - } ,  i =  t , z .

t t o t h

-1  .
2 0

I I
z

tten

@l
@6t

(3 .1 )

Then,

(3 .2 )
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3.1 Lemma. The maximal non-negative subspaces J, and y, are in strong

duali ty i f  and only i f  the opelator I* - t<f N, t"r,  
"qri""t""t fy 

I_ _ Klt{;)

is invertibte in Y(lt-) (fe!p9g!y91y.|n X(3t )).

PROOF. Let us consider the l ineBr operator X €X({) defined bv

I . K ; l
I  a t  . '  t ) '  I \ r -

I w.r.t. J(= Jt + Jt .
Ir _ J
I

(3.3)  x =

I r
From (3.1)  and (3.2)  fo l low Yr0 X,  = tu" rX and J ,  *  yr "={ tx) ,  where J  is  the f .s .

assoeiated to the f.d. y,=X* + {- and Q(x) oenotes the range of X. Taking account of

Proposit ion 2.1 (i i i), from here we infer that /, and Y, are in strong duatity if and only

i f  X is invert ibte in I(.Ji).  But from the faetorization

t* - xfix, o

it follows that X n X(1{) tt and only if I+ - I{;I{1 is invertible in JtX*l.m

We consider now the operators T, and T, defined at (2.1) and (2.6) and we

want to calculate these operators in terms of the angular operators I{. ,  and I(o.

3.2. Propositio". LS! Xf N XZ be two maximal non-negative subspaees of

X qg I(r and respectively I(2 their angurar operators. An operator ir€xtJ{l  i ,  an

extension of the operator Tre X(yr, Yz) gcL!rc!_gl (2.1) if and only if it has the

fol lowing block- matrix representation

(r* + K*11r1-r,r+ - r{;r(1) - lrxr 11

t<2$+ + K;Kz)-l{i* _ r<grr) _ lrx, fi

Kt

. 
-,1

I+ K; 
I
I

O  I . l

is  invert ib le i

I+

where qL€ N(X-,I-)elg fzC X(X-) are arbitrary.
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PRooF. Let T1€ It{ l  u" an extension of T' i .e. Ttl Yl = T' This means

(3.6) TrxreY,

and

(3 .?)  ( i rx ,y)  =  [x ,y ] ,  x  eY 1,  y  QY2,

where G,.) denotes the positive definite inner product eorresponding to the f.d.

{ =K *X-. Let us consider the block-matrix representation of f,

" f : : l
From (3.6) we get

where

3.4.

' l  o n d  T  o r a' 1 * " " ' 2  * ' , "

extension of

t r a  \ a +  N r -
w . r . t .  . l r t =  {  + { .

c+  DK l  =  K r (A  +  n6 r )

and then from (3,7) it fol lows

(3.9) (A + BKl) = ( l*  *  x lxz)-t{r*  -  xf  r<r),

hence denot ing 11 = B und l ,  = D we obtain the formula (3,5).

3.3. Corol lary. l^7ith the notat ion from proposit ion 3.2, the operator

i. z t-o rqr t' l ' ,  e X(J{)  is an extension of  the opcrator To def ined at (2.6) i f  and only i f  i t  has the

fol lowing block- matr ix representat ion

( r*  + N*6r; -1 i t+ -  KiK2) -  l rx , a 1

, ,  r ,  , , , * r ,  r - l n  , , * t tK1(r+ + r{ iK1) ' ( r+ -  r( i r {2) -  arx '  a2

A 1 € X(lt-,J{*) and d z€ X (X-) are arbitrary.

M

Remark. Let us consider the notat ion

related by the identi ty Ti = 
"t ,  

ro i ,

T, such that its adjoint is an

from proposition 3.2. The operatols

is natural to ask if there exists anv

extension of Tr. A straight-
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forward caleulat ion shows that i f  Tt€ X(J{) is represented by (3.5) tnen Tf ;s an

extension of T,., if and only if

(3 . i1 ) f  ,  = (I* - I{ ;Kl)o+ + xixr l- lr i  - nt 2 '

3.5, Remark. Assume that the maximal non-negative subspaces J, anO X,

are in strong duali ty. Then, from proposit ion 2.1 ( i i )  we l<now that T, is invert ible. Let

T, bu un extension of T, and assume that T, is also invert ibf e t in X tXl l .  fnen T, 1 is an

extension of the operator Tl ' .

In order to prove this let K, and K, be the angular operators of {, and

respectively Xr. Fror lemmg 3.1 we know that i* -  Xf x, is invert ible in XtX+1. f f  i ,

is represented by (3.8) then from (3.g) i t  fottows that T, Xt= Yz nence f l1 is an
- 1

extension of Tr-.

{4 .

Let X, and X2 be two neutral subspaees of the Krein space 3{. Assuming

that f , ,  and X, are in strong duati ty then, i t  fol lows from the theorem 2.4(b) that

Xt* YZ is a legular subspace, hence we can suppose, without restr ict ing the

genera l i t y ,  tha t  f  ,  
*  X  z=X.  Then,  i t  i s  easv  to  see th&t  f , "=  J , ,  i  =  1 ,2 ,  i .e .  X ,  ,no

X2 uru hypermaximal neutral subspaces or J{(cr. tsi) .  Ir  3{= X* * X- is a f ixec f.d. and

K, and I{,  denote the anpJular operators of X, and respectively X, u' i th respeet to this

f .d . ,  then K1 and K2 are  un i ta ry  opera tors ,  in  the  sense K i *X i  =  I+ ,  K ,x f  =  I - ,  i=  l ,Z ,

Also, from lemma 3.1 we know that the operators I+ - I{ i l {2, I+ - I( ;K1€ X(X*) unC

t  , , , , *  r  , ,  ' , 8  / .  \ r ' l l l - \l_ - K1r(;,  1_ - r(zr{ i  (  {(4-) are al l  invert ible.

Consider now the operator G defined a1 (2.15) and denote F = G-l,  i .e,

, ,2

.l

D -

Tz

0

0

T1

w.r.t . I= Xr* X,
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in part icular F is an extension of both T1 and To. Taking aceount of proposit ion 3.2 and
! ,  L

corol lary 3.3, i t  foi lows by simple calculat ions that, representing F as in (3.5), we must

have

[ ,  = -]txi * x;1, f z= -r-,

henee

I ,+

+ I  C a n  o e

in (3.4))  but

re ader.

consider the

-$wi . xit
(4 .1 )  F  = w.r.t. X= J{o * K-.

f,<xr* xr't -r_

Now the block-matrix representation of G with respect to the f.C. f l= f l*

cateulated quite easy (e.g. using a factorization of F similar to that used

since the formula is a bit  longer and we wil l  not use i t ,  we leave this to the

Further, according to the proof of the theorem 2.4, we have to

posit ive definite inner product ( ' , ' ) .

(x,y) = (JFx,y), x,V€X,

where J is the f.s. corresponding to the f.d. J{= X* * X- and ( ' , .)  is the posit ive definite

inner product determined by J. The polar decomposit ion of G with respect to the

I- l i lbert space ({,<., .>) wi i l  produee a f.s. S such that Sfr =XZ. But, doing so, we

encounter the obstruction of calculating a square-root. Ilowever, we ean find an

explicite formula for S, using a geometric reasoning as follows.

The bloek-matrix representation of the f.s, S is

I
t r  t>* rz \ -  T

I
, r *  r ,  , ,  t t * t -  a-n  ( r  -  r \ r \  /

(4.2) s = w.r.t. {=J{r + J{-,
.  - - !  l

I ( ( I ,  -  I { *K ) ' z  - ( I  -  KK* ) - z

(e.g,  see [4,  Proposi t ion 4.5)) ,  where I t  is the angular operator of  the maximal uni formly

positive subspace SJt-. On the other hand' the f.s. S is also produced by the polar

decornposi t ion of  F with respect to. the Hi lbert  space ({ , ( ' , ' ) ) .  Sinee, f rom (4.1) '  the

geometric interpretation of F is that it changes the coordinatet J{ =X" + {- into the
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zlxr- xrl-1 -txf + Nirf xi - n;l-t

coordinates \= ,]tr,l/t*, where o(= G(K) with

I
( 4 . 8 )  K  = ; ( K r  +  K o ) ,

L ] . L

-  . .  ^ r r ' f  t rthis suggests that S{ =4. Insert ing K given at (4,3) in (4.4), and taking account of

(4 .4 )  i+  -  K*K =* , " i  -  K ; ) (K1-  x r )  = |0*  -  K tK lXr+  -  r i x r l  =

= {ti* 
- Kir{zxr+ - r<;Kr),

_ and si m ilarly
^a --- -

|  ^  . \  ,  r , r , *  -  I  r v  t z  \ r t z *
\ { . c . ,  r _  -  l 1 l l  =  

4 ( K l  
-  K 2 ) ( K l

t )
- 

";)  
= + (r_ - K2Ki)0_ - KlK;) =

= tr a_- Klr{;Xr- - xzr{i),
we get

(4.6) s = w.r . t .  X=f  *X-

( x 1 +  K z ) l n ,  -  n r l - t  .  - l r i  -  x r . l - t

Before start ing to prove that the operator S given at (4.6) is indeed the f.s.

,  produced by' ihe polar decomposit ion of F, Iet us reeal l  the well-known "defect

relations"

t f - 1  . 1
K 0 +  -  K * K ) ' =  ( I _  -  K I ( " ) ' K ,  I { * ( I _  -  I ( K * ) z  =  { I *  -  I { * K ) " K * ,

whieh in our case yield, via (4.4) and (a.S), the fol lowing identi t ies

,  u  -  u  |  - 1  =  l x *  _  r < *  l - 1( 4 . 7 )  ( K 1  +  K 2 ) 1 . , 1  , , 2 1  t . . 1  - . 2 t  ( K l  +  l ( 2 ) '

o (+.s)  t r i  + x l l ln i  -  n; [ -1= [xr  -  xr l - l rx i  *  N[r .

^ Now, S is isometric with respeet to the inner produet <.,.> i f  and oniv i f

(4 .9 )  S*JFS =  JF.

Since S is a symmetry in the l{rein ,pace {, i .e. JS*J = S-1 = S i t  fol lows that (4.9) is

equivalent with

(4.10) FS = SF.



Making use of (4.7) and (4.8) the proof of (4,10) is immediate. Also, in order to prove

that SF is posit ive with respeet to the inner product (-, .)  we must prove that JFSF is

posit ive with respect to (. ,").  But, a direct calculat ion gives

JFSF=

henee,

zlNr-xr l  - lx,  -  xr l t r<l-  x l l  

I- l * i - " i l ( I { 1 + K 2 )  r l K i - K ; l . }
w . r . t . ! = X + + J t - ,

the posit ivi ty of JFSF is equivalent with the posit ivi ty of the fol lowing operator

z lx i  -  x j  |  -  i  l^ i  
-  K;  I  (K1 + Kz) l r {1 -  nr f  t  l  Kl  -  Kzl . (Ki  + x i )  =

=  z ln i  -  K ; i r r_  -41(K1+ K2XK1*  +  x l r :  =*  l * i  
-  * ; l t , r ,

which is c lear.

From what we have proved above and from the proof of  the impl ieat ion

(b)=Xe) in thcorem 2.4 we concludu i tut  thn f .s.  S given at (4.6) sat isf ies SX, = X2.

fs .
In this sect ion we cont inue to keep the notat ion and the assumptions

considered dur ing sect ion four I t  is easy to see that the f .s.  S given in the block

representat ion (4.2) sat isf ies S{ l= XZ i f  and only i f  the fol lowing ident i ty holds

( s .1 )  K^ ( r ,  -  Kn  K) -  i ( r ,  -  x *  x .  )  =  ( r  -  l <x * ) -  * (K  -  K .  ) .
z a  r  I  -  r

Thus, the problem of f  inci ing the f .s.  which maps Y, onto Y, ,  
is equivalent ra, i th the

pfoblem of solv ing the operator ial  non- l inear equat ion (5.1),  where the solut ions

K€f(X*,3(-)  are required to be uni form contract ions, i .e.  K < 1.  In the eourse of

the preeeeding sect ion we found a solut ion of  the equat ion (5.1),  th is is the ar i thmetic

rnean of the uni tarv operators K, and I( ,  (see (4.3)) ,  provided that the hypermaximal

subspaces X, anC .f, are in strong duality.

We are now interested in f inding al l  the solut ions of the equation (5.1), or

equivalently in describing al l  the f.s, S which maps Y, onto Xr. Frorr theorem 2.4 i t

follows that we can choose the f.s. J, which was fixed at the beginning of section four,
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sueh that JYt= XZ. Assunring this i t  lol lows K, = -I(r.  Denoting U = K, = -Krr

,-  -  ' .e . . t i  . ,- 'U€ J ({ ,-( )  unitary operator, the equation (5.1) becomes

$,2) u(r+ -  K*K)- ' (K* -  u*)u = (r -  -  xr<*)- l (K -  rJ) .

In the fol lowing, we use the convention: i f  A,B € X(2f ),  J{ Hi lbert space, then

we write A > B i f  A ) B and A - B is invert ible in X(X),

5.1. Proposit ion" Let U € tr(.X*,X-) bc unitarlr operetor. Then, the identit l '

(s.3) I( = AU

?.'  
establ ishes a bi jeet ive eorrespondenee between the elass of  al l  soiut ions of  equat ion

(5,2).and the elass of operators A € tr(X-) sueh that - l_ <A < I_.

PRooF. t,et I( €X(X*,I-1, l lN l l  < 1 be a solution of (s.z). using the <lefect

relat ions for K i t  fo l iows that

I

(5 .4)  u( r  -  x*K)-z(K*  + u*)u = 11 -  66* ; -216 + u;

also l io lds.  Subtract ing (5,3) f rom (5.4) we get

. ,  X  ' , r -  i
\ c . J , /  u \ r ,  - t l  r \ l  = ( l  -  K K * ) - Z U

and using this in (5.2) v, ,e obtain

(b .6)  uK* = KU*.

Let us denote A = KU*€ Y(J{-) ,  equivalent ly K = AU. Using this in (5.6) i t  fo l lows

A = A" and since K is uni lorm contract ion i t  fo l lows that A is a uni form contraet ion,

hence - I_(A (  I_.

Conversely,  tet  A€X(K) be sueh that - I - (  A ( i -  and set K = AU. Then K is

a uni form contract ion and

- l  . - l
( 5 . ? )  ( l +  -  K * K ) ' =  u " ( l _  -  A ' ) ' u ,

'  
- l  d - l

(5.8) (I  -  xK*)n = (r - Az)2.

Using these identi t ies i t  fol lows immediately that K is a solut ion of (5.2). f f i

5-2. Corollary" Let the hypermaximal neutral subspaces X1 anc X2 Oe in



dual i ty and, v ia theorem

. y t  
" r r+_K = .r( + Jt assoclated
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2.4, assume the f,s, J setisfig! JXt= X Z.Consirlering the f.d.

to this f .s.  let  I l  be the ansulor ooerator of f , .  Then,  the
l -

for mula

(5.e)

-u"  A( I  -  A ' ) -  '

-0  -  A") - '

s =

r r : $ / r  ^  L \ -  2  1 1
U  \ I  

- 4 , /  U

6 - l
^ t 1  ^ a \ 2 r r

,a\\l - 11 / (,

. t r  t , t  , t -

w . r . t . { = {  t J t

establ islres a bi ject ive correspondenee between the elass of al l  f .s. S"mapping X1 onto

{o and t lre class of operators A €X(1.-) such that -1- < A < I-.

PROOF, This is a eonsequence of (4.2), proposit ion 5.1 and the identi t ies (5.7)

ano (s.a). ff i

5.3 Remark. Clear ly,  an equivalent parametr izat ion of  the solut ions of  (5.2) is

obtained by means of the formula

K = U B ,

where B € X(X+),  sat isf ies - I+ < B < I+.

5.4.  Remarl<.  Let us come back to the or iginal  sett ing ( i .e.  we do not assume

JX, =Xr).  In this case we st i11 can descr ibe a r ich set of  solut ions for the equat ion

(5.1),  but,  in general ,  th is is not the set of  al l  solut ions. In order to do this '  let  us

assume 7{ = J{+ = X- (s ince X{- and .(  
-  

are uni tary equivalent th is is no restr ict ion).

Then the angular operatofs K1, \<Z€X (X) are uni tary and I{1 -  I ( ,  is invert ib le '  i t  is

easy to veri fy that for an5' A€X(&), sueh that 0 < A < I and AK. = I{.Ar i  = 1'2 the

operator

( s . 1 0 )  x = A K r + ( I - A ) K z

is a solution of (5,1). From wlrat was proved in section four it fotlows that the f 's'

obtainecl in the proof of tl.reorem 2.4 eorresponds to the ehoice A = iI.
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