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A GEOMETRIC QUESTION CONCERNING THE STRONG

DUALITY OF NEUTRAL SUBSPACES

Aurelian Gheondea

Introduction

The inner product [-,-] of a Krein space X can be also considered as a duality.
Since J{ has a natural strong topology, one can consider the duality of two different
subspaces of J{ , regarded as Banach spaces. This is what we mean by strong duality; if
no topology is taken into account, as in [3,1 10], then we refer to weak duality.

For the case of Pontryagin spaces, two neutral subspaces M and A are
called skew linked (see [6], [2], [ ) if they are in duality (strong or weak, this is the

same in this ease). In this situation one can decompose the spaée X as follows

A
=M+ +A°,
2 _
where J{ is a regular subspace of K. This proved to be a useful instrument in the

analysis of operators. In the case of a Krein space, if M and A" are two neutral
subspaces in strong duality then the above decomposition also holds (e.g. this was used
in [5)).

A "special" kind of the construction deseribed above is the situation when A
is a neutral subspace and M= JA where J is a fundamental symmetry of ¥ (beginning
with [7] this was intensively used in the literature). In this paper we show that this is
the typical case, more precisely (see theorem 9.4), if M and A" are two neutral
subspaces in strong duality then there exists a fundamental symmetry J of X such that
M= g

Our proof uses certain duality operators that we investigate in the second

section. Then we are interested in getting an explicite formula for the fundamental



symmetry which maps A onto JV’, in terms of angular operators. In order to do S0, in the
third section we relate the duality operators with the angular operators of two maximal
-non-negative subspaces and then, in the fourth section, we obtain such a formula for
the fundamantal symmetry obtained in the proof of theorem 2.4.

The problem we considered in this paper is equivalent with solving a certain
non-linear operatorial equation. Once we obtained a solution for this equation, in the

last section we can find a parametrization of all solutions (see corollary 5.2).

é1.

In this section we fix some terminology and notation to be used in this paper.

Let (X, [-,+)) be a (complex) Krein space. If J is a fundamental symmetry

(shortly f.s.) of J and J = J* - J” is its Jordan decomposition then X =X* + X~ is the

corresponding fundamental decomposition (shortly f.d.) of X. The J-inner product

(X,}Y)J = [JX;Y], X,y € j{ )

determines the corresponding unitary norm ||-J.

The strong topology on K is determined by an arbitrary unitary norm. A

subspace L of J{is by definition a elosed linear manifold of j{ We denote by
15
L= {xeX;txyi=0, yeL ]

it
the orthogonal companion of L. The subspace & is called regular if L+ L = j{holds.

Non-negative subspaces, maximal non-negative subspaces or neutral subspaces are used

with the usual meaning.
Throughout this paper the involution # will be used only with respect to a
positive definte inner product associated to a f.s. J which will be fixed in advance or

will be clear from the context. Also, the term linear contraction will be used only with

respect to some unitary norm.
We will use the following fact, which can be proved either by using a f.s. or

by observing that in the corresponding proposition in the Hilbert space context the



positi\}e definiteness plays no role.

-1.1 Proposition. Let AM and J/qbc subspaces of the Krein space j{ Then v«ﬂ/(/:
is a subspace if and only if M +c/(/’ is a subspace.

$2.

Let ‘;fl and ofz be two subspaces of the Krein space (K, [-,"]). We fix on K a

unitary norm [/« || and denote by (-,) the corresponding positive definite inner product.

Consider the Hilbert spaces (Ii, (-,*)), i=1,2. For any x Efl the mapping
Roz Iy =2 ily.xl

is a bounded linear form on orz hence the Riesz representation theorem implies the

existence of a bounded linear operator Tle;&;fl,&f’z) such that

(2.1) [x,y] = (Tyx,y), x €L,y €L,
Denote
(2.2) px)=lIT.x[[= sup |Ix,y]], x€ ol .
1 .1 yexg 1
lIyli<1

Then Py is a semi-norm on xl and if the non-negative inner product <-,->1 on Jfl is

defined by

(2.3) <X,y>, = (Tr X,y), X,y& afl )

then Py is exactly the semi-norm associated with <-,~>1, i.e.
@ pW=xop’, xed,

Moreover,

(2.5) ker Py = ker"l“1 = o?,al f} ;2"2'1-

Similarily, there exists a bounded linear operator T2 = T; = g ,i’l) such that
(2.6) [x,y] = (x,Toy), x€d;, vedy,

and the non-negative inner produet on xg



(2.7) Ky, = (TyToxy) = (1 TTxy), %y €L,
gives rise to a semi-norm -

(2.8) D0 = lITx || = sup |Ixy1], x€X,, ' _ |
yedy
[yl

which satisfies

(2.9) ker p, = ker T, = & , Ml L

From (2.2) and (2.8) it is clear that Ti are contractions, or equivalently
(2.10) pix) <fix|l, xedi, i=1,2,

in particular the topology induced by p, on xi is weaker than the strong topology.

2.1 Proposition. The following statements are equivalent:

(i) The semi-norm p; on &fi is equivalent with the unitary norm [[ff, i=1,2.

(i) T, (or equivalently, T, = T-) is boundedly invertible.

*
2 1
1

(iii) a‘f’ln :é’;= 0 and £ + &, .
() £, X7 =0and L, + L) =X.

PROOF. (i)=(ii) Taking account of (2.10) it follows that the statement (i) is

equivalent with the existence of € > 0 such that
(2.11) o llx i < p,(x), xe;f’i, =5l ok

But (2.11) for i =1 means that 'T1 is one-to-one and has closed range while the same

inequality for i = 2 yields T, = TT one-to-one, hence Tl has dense range.

2
A 5
(i)=(iii) If T, is boundedly invertible then o N3, = 0 follows from (2.5).

Let now z¢& X be arbitrary. Considering the linear form

we get a vector t € J:Z such that

[y,z] = (y,1), yﬁ?fz.



Taking z, = TIlt Gofl by (2.1) it follows that
[y,Z] = [Y’Zl]s y€°r ’

8 i
hence Zg =% =7 ES{'.’Z. Thus we have proved ofl 5 R’z = 3{'
(iii)=(v) If 2’1 n ;Zaz = 0 holds then, considering the orthogonal complement,
i it
it follows that the linear manifold “5‘92 + Q’l is dense in K. From Il + o'loz =3 we first
1 : it
obtain &”20 S{Ol =0 and then by proposition 1.1 it follows that "\(2 + Rpl is closed, hence
I
Lo+l =K.
(iv)=() Let P, be the projection of J{ onto ‘292 along fl. By assumption P, is

bounded hence for any x &Il we have

Ixil = sup|[x,y]] < sup | [x,y ]IS[IPZ][-pl(x).
iyl <1 vy ez
yn <Hp,l

We have to remark now that by proving (iii)=(iv) we proved also (iv)= (iii) (fnterchange

the roles of I&"l and &”2). Thus (2.11) holds with
G‘C — 1
mmg 1/ HPIB Sl HP2H} ;

. Ik
where P1 denotes the projection of X onto 0201 along ’:fz (of course, the case

;fl = fz = 0 should be treated separately).

2.2 Definition. The subspaces ‘fl and f2 are in strong duality with respect to

the inner product [+,:], or equivalently, °201 and fz form a strongly dual pair, if one

(hence all) of the statements from proposition 2.1 is (are) satisfied.

Clearly, strong duality of subspaces does not depend on the particular
unitary norm that we considered, it depends only on the strong topology of X. Also, if
il and ;\fz are two subspaces in strong duality then théir dimensions (as Hilbert
spaces) coincide. The subspaces crl and fz form a strongly dual pair if and only if Xl
and :fz form a strongly dual pair.

If the subspaces ‘YI and 0\402 are in strong duality then they are also in weak

duality. If 2’1 and xz are either of finite dimension or of finite codimension then their



strong duality is ecjuivalg_n_jc with their weak duality.
Let £ a subspace of J{-Then i is a regular subspace if and only if L is in
strong duality with itself. In connection with this fact we note that if ;f= QZ'; = Xz

then the operator T1 defined at (2.1) is the Gram operator of the inner product space

(e ,[-,*)) with respect to the positive definite inner product (-,).

2.3 Example. Let J be a f.s. of the Krein space J and A an arbitrary
subspace. Then o 'and I/ form a strongly dual pair of subspaces. Here we want to point

out that, in general, strongly dual pairs of subspaces are not of this kind.

If # is a maximal uniformly positive subspace of J{ and o/ is an arbitrary

it L
maximal non-negative subspace then o N=0 and M+ =X (e.g., by [1, Corollary
1.5.2]). But if A is degenerate then oM# I for any f.s. J of K, since J4 is always

maximal uniformly positive.

2.4 Theorem. Let ;z’l and :fz be two neutral subspaces of the Krein spacel{.

The following statements are equivalent:

(a) '«fl and f? are in strong duality.

(b) 'Yl + 3{’2 (the algebraic sum) is a regular subspace.
(c) There exists a f.s. S of K such that fz = S;fl (or, equivalently,
L1 =8L,).

PROOF. (a)=y(b) Assume that the neutral subspaces ‘fl and o'{"-z are in strong

it it
duality. From proposition2.1 we have R’lﬂ 952 = c‘fzﬂ ‘fl =0 and
L 2l
(2.12) L=+ =%
1 2 2 1
; L Loy : 73 3
Since J'lg_ 10 from (2.12) we get 'fl + fz =¥, hence by proposition 1.1 it
follows that fl + ZZ is closed. On the other hand, from (2.12) it is easy to derive the
equality
o 3 15 "8
(2.13) L=+ XX,

hence



: P L
(2.14) e oe e
which shows that the subspace 02; + o‘fz is regular.

(b)=r(a). If 0201 + JC’Z is a regular subspace then the representation (2.14) holds

. e
and from here it follows easily (2.13), hence X’Zno‘f = 0 holds and using once more

1
L
(2.14) we get :Zol + sz = e ‘fl and 02"2 form a strongly dual pair.
(b)=(c). Let the subspace L = ‘fl - ‘202 be regular. From above we know that
‘2’1 and 'fz are in strong duality, in particular the operators T, and T, defined at (2.1)

and (2.6) are boundedly invertible. We define a linear operator G on ,\f by

(2.15) G= wort, f = oZ’I + 2”2

On Iwe consider a positive definite inner product <-,-> defined by
(2.16) <x1 T Xy Yy t Yor= <x1,yl>1 + <x2,y2$2, X4V E;’fi, i=1,2,
where the positive definite inner products <-,->i, i=1,2 are defined at (2.3) and (2.7).

The corresponding norm is

)}

2 9 :
S(X]_ + x2) = (pl(xl) + Pz(xz) y X e‘fi’ i=1,2.

Il and ‘;62 are orthogonal with respect to the inner product <-,-> and the operator G is

continuous with respect to s, or equivalently to ” -” .

Let x,,y, € ‘\’fl and X,,Y, e;fz be arbitrary. Then

— el = 5
<G(x1 *+ %), Vgt = <ok T Xy Y1 ¥ ¥o> =
B -1 o fm 2
=Ty Xp¥y21 ¥ Ty Xqa¥p2 = (Ty Ty Ty Xp99) + (T3 TyTy 'xp,¥p) =

= (foz,yl) + (Tgxl,yz_) = [xg,y,] + [Xl’yz] =[x + %o, ¥+ Yols
which means
(2.19 <Gx,y> = [x,y], x,y6€d,

hence G is the Gram operator of the inner product space (&, [-,-]) with respect to <-,->.



In particular, G is a selfadjoint operator on the Hilbert space (5f,<=,*>).
With respect to the Hilbert spaces (in, <=,=>), i=1,2 we consider the left

polar decompositions

Then it is easy to see that

G

= - =1 -

0 U1 'I‘2

S = |Gl =

U2 0 0 T

b -

Then, (2.17) can be written

<SG xy> = [xyl, xyed,

and since G,‘hence also |G|, are boundedly invertible on of it follows that S is a f.s. of

the Krein space (,[+,-]). Also a’fz = Sf] and S can be extended to a f.s. of X.

(e)=>(a) Obvious. &l

¢3.
Let l{=3{++3{" be a f.d. of the Krein space J{ and ;"’01 and afz two

maximal non-negative subspaces ofj{. We let Kl and respectively K2 denote the

angular operators of the subspaces ‘;fl and :,fz with respect to this f.d.. Recall that for

=12, I{ié‘f(ﬁ{Jr,J{_) is the unique linear contraction satisfying

+
(3.1) Yos {nt R il
Then, recall also

7
L RE,
Lo X faeulivelll



3.1 Lemma. The maximal non-negative subspaces ‘;fl and xz are in strong

duality if and only if the operator 1= K; K] (or, equivalently, the operator I - Kll{;)

is invertible in Sf{jf) (respectively, in J(J)).

PROOT. Let us consider the linear operator X ¢ (X) defined by

p- -

e
I+ K2

(3.3) Xi= woet, K=K+ X,
K

1 = R
s L L

From (3.1) and (3.2) follow & N1 &, = Jker X and L+ Ly =R (X), where J is the f.s.

associated to the f.d. j( = 3{4_ +X "~ and R(X) denotes the range of X. Taking account of

Proposition 2.1 (iii), from here we infer that ‘:fl and ‘202 are in strong duality if and only

if X is invertible in J(X). But from the factorization

e - re - - —

% £
K Lkl 00 I

(3.4) %

0 I 0 I 0 |

5 J E d L ,
it follows that X is invertible in (3{) if and only if i K;Kl is invertible in Qp(j{Jr)-ffﬁ

We consider now the operators T, and T, defined at (2.1) and (2.6) and we

want to calculate these operators in terms of the anguldr operators K] and KZ'

3.2. Proposition. Let X. and ). be two maximal non-negative subspaces of
1 2 £

X eand K, and respectively K, their angular operators. An operator %1635(3{} is an

extension of the operator Tlé i(o\fl, o\fz) defined at (2.1) if and only if it has the

following block-matrix representation

% =1 4
(I + KoKp) (I, -KyK,)- YK, I

*# =1
Kol + KGK,) M, - KyK)) - TyK, Iy

where [1€ L, and [,€ LX) are arbitrary.



....10....

rt 5 5 ~r
PROOF. Let T, € L(X) be an extension of T,, i.e. TI] Qfl = T,. This means

(3.6) T, £, ¢ &,
and_
(3.7) Ty =xy), xedy, yed,

where (-,-) denotes the positive definite inner product corresponding to the f.d.

; o 3
X=X +X ™. Let us consider the block-matrix representation of l’i“ll

A B

: et A

R
1

From (3.6) we get
Et DKl o K'Z(A + BKI)
and then from (3.7) it follows

o * -1 ok
(3.9) (A + BKl) =(1, + KZKZ) (1, r<21<1),

hence denoting Pl = B and f‘z =D we obtain the formula (3.5).

3.3. Corollary. With the notation from proposition 3.2, the operator

”T’Z(:B"f(j{) is an extension of the operator T2 defined at (2.6) if and only if it has the

following block-matrix representation

% -1 *
(I+ + Kl Kl) (I+ - 1(11{2) - AIKZ Al

Ko+ kiR

£
; 154 =K K)—A2K2 A

4 52

; be
where [31 ¢ ;ﬁ(j{_,J{+) and A 26 L (X7 are arbitrary.

3.4. Remark. Let us consider the notation from proposition 3.2. The operators
’I‘1 and T2 are related by the identity 'I‘;c = Tl, so it is natural to ask if there exists any

extension of Tl such that its adjoint is an extension of TZ’ A straight-



-1 1=

forward calculation shows that if :f‘lE L () is represented by (3.5) then ?])“;‘ is an
extension of T2 if and only if

Elgt eptap

(3.11) P1=(I+-K2K)(I +P’1K | o Tge

1

3.5. Remark. Assume that the maximal non-negative subspaces II and IZ
are in strong duality. Then, from proposition 2.1 (ii) we know that Tl is invertible. Let

is also invertible (in X (J)). Then F1 is an

and assume that "‘f 1

%1 be an extension of T1

extension of the operator Til

1

In order to prove this let KI and K2 be the angular oper'ators of ;fl and
respectively :62' From lemma 3.1 we know that I, K2K1 is invertible in (X", If "TII

is represented by (3.8) then from (3.9) it follows that Tl Qfl = ,202 hence ﬂ’fil is an

extension of TI]'.

4.
Let Qf’l and Sf'z be two neutral subspaces of the Krein space J{. Assuming
that fl and &”2 are in strong duality then, it follows from the theorem 2.4(b) that

f1+$€2 is a regular subspace, hence we can suppose, without restricting the

A
generality, that fl 5 ;\’02 =3{. Then, it is easy to see that ‘fi = ‘xi’ 1=1,2, ie. ;{01 and

Iz are hypermaximal neutral subspaces of H(ef. [3)). If X = SR is a fixed f.d. and

Kl and 1{2 denote the angular operators of ofl and respectively ‘Z,Z’ with respect to this

f.d., then Kl and K, are unitary operators, in the sense K.*K. =1, K.K.* =1, 1=1,2,
Also, from lemma 3.1 we know that the operators I, K1 g 1 K€ L) and
L Kle,

Consider now the operator G defined at (2.15) and denote F = g_l, i.e.

KZKI € 2L(3) are all invertible.

F= | w.r.t. X= Jf’1+.>f,
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in particular F is an extension of both T, and Tz. Taking account of proposition 3.2 and

1

corollary 3.3, it follows by simple calculations that, representing F as in (3.5), we must

have
Sl % i
B e ) = o1
hence
% %
L, S+ K
(4.1) F = wrt. X=X+ K.
1
F g Ky L.

Now the block-matrix representation of G with respect to the f.d. = K+ K~ can be

calculated quite easy (e.g. using a factorization of F similar to that used in (3.4)) but

since the formula is a bit longer and we will not use it, we leave this to the reader.
Further, according to the proof of the theorem 2.4, we have to consider the

positive definite inner product <<;>

<x,y> = (JFx,y), x,y€X,

where J is the f.s. corresponding to the f.d. W= K" + K™ and (-,7) is the positive definite
inner product determined by J. The polar decomposition of G with respect to the
Hilbert space (J{,<-,»>) will produce a f.s. S such that SIl =o\f2. But, doing so, we
encounter the obstruction of calculating a square-root. However, we can find an
explicite formula for S, using a geometric reasoning as follows.

The bloek-matrix representation of the f.s. S is

_1 Y, 3 o—‘
(I, - K*R)* -K*(1_ - KK*)™*
(4.2) Si= Cwarnt. J{= j{+ + 17,

al At
K, - B ) ° -(I_ - KK*) °
L ‘ !

(e.g. see [4, Proposition 4.5]), where K is the angular operator of the maximal uniformly

positive subspace SJ{+. On the other hand, the f.s. S is also produced by the polar
decomposition of F with respect to -the Hilbert space (J}{,<-,->). Since, from (4.1), the

geometric interpretation of F is that it changes the coordinates 3{=J{+ + 3} " into the



-1 3~

L
coordinates X = A+ . where = G(K) with
(4.3) K==(K, +K

5 A 5 5 v .
this suggests that SK =4 Inserting K given at (4.3) in (4.4), and taking account of

Sl st e S sl -
(4.4) I = KoK= Z(Kl KZ){Kl - KZ) = E(I‘{' - K5 KI)(I“" £ K’{‘KZ) =
1 % %
and similarly
i
ke Sl R 'f . B ¥. sy _
(4.5) 1 - KK =2(K; = KK - K )= 70 - KK M -KK)=
- SRR R K
e e e e
we get
=i o % S il
. 2’1{1 - Kzl (Rl + KZ)[Kl K2
(4.6) S= w.r.t. 3{:3{++j{-
i = = = hreina w1 =1
O O N e b o]

Before starting to prove that the operator S given at (4.6) is indeed the f.s.
produced by the polar decomposition of F, let us recall the well-known "defect

relations"

1
2z

1 : 1 ul N
K@, - K*K)* = (I_- KK*)*K, K*(I_- KK*)* = (1 - kK*K)*K*,

which in our case yield, via (4.4) and (4.5), the following identities

; £ =k s

(4.7) (K, 4 1{2)[K1 K,| ™ = |K1 KZI (K, + K,),
R oo sl = es _ -1, %

ey e rhlic - ke i [Pl e,

Now, S is isometric with respect to the inner product <-,-> if and only if
(4.9) SEJES = JF.

Since S is a symmetry in the Krein spacej{, ileads Ji= S_1 = S it follows that (4.9) is

equivalent with

(4.10) 'S = SF.



] -

Making use of (4.7) and (4.8) the proof of (4.10) is immediate. Also, in order to prove
that SF is positive with respect to the inner product <-,»> we must prove that JFSF is

positive with respect to (+,»). But, a direct calculation gives

'2[1{14{2' -IK1~K2‘(K; + w{;) i
JFSF= : wat. K =X+ X,
-|K’1"~K;’|(K1+K2) 2[1{’1"4{;‘

hence, the positivity of JFSF is equivalent with the positivity of the following operator
* _ x| _ 1 B 4 =1 4 # oy
9 lKl Kzl : |K1 K> | (Ky + Ky) | By K| [E ke )
z * * 1 ; ; 5
= 2|k} - w3l - 30, + Ry * 4 K3 =5 |k} - k3| 3%
which is clear.

From what we have proved above and from the proof of the implication

(b)=)(c) in theorem 2.4 we conclude that the f.s. S given at (4.6) satisfies S:fl = ,\,fg.

§5.

In this section we continue to keep the notation and the assumptions
considered during section four . It is easy to see that the f.s. S given in the block

representation (4.2) satisfies S Il = Zz if and only if the following identity holds

£ "'11_' . % = ES “% :
(5.1) Kz(f+ ~ K" K) (I+ SR = (I_ - KK™) *(K - Kl).

1

Thus, the problem of finding the f.s. which maps o\fl onto o ., is equivalent with the

2
problem of solving the operatorial non-linear equation (5.1), where the solutions
KGf(J{Jr,J{“) are required to be uniform contractions, i.e. K < 1. In the course of
the preceeding section we found a solution of the equation (5.1), this is the arithmetic
mean of the unitary operators Kl and K2 (see (4.3)), provided that the hypermaximal
subspaces Q’fl and ;fz are in strong duality.

We are now interested in finding all the solutions of the equation (5.1), or

equivalently in deseribing all the f.s. S which maps Sfl onto 21‘_72. From theorem 2.4 it

follows that we can choose the f.s. J, which was fixed at the beginning of section four,
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such that J;?flzfz. Assuming this it follows K. = ~K,. Denoting U=K., = -K

1 2 1 22
ve L (j(+,3{") unitary operator, the equation (5.1) becomes

1=l . ol ;
(5.2) U, - K*K)73(K* - UMU = (I_ - kKK*)7*(K - V).
In the following, we use the convention: if A,B e LX), ¥ Hilbert space, then

we write A > B if A > B and A - B is invertible in &{(&).

5.1. Proposition. Let U EQ’(J{+,J{_) be unitary operator. Then, the identity

(5.3) K=AU

establishes a bijective correspondence between the class of all solutions of equation

(5.2).and the class of operators A € J(XK ) such that -1 <A <1 .,

PROOF. Let K € XX (X",H), || & H < 1 be a solution of (5.2). Using the defect

relations for K it follows that

WA b - 4 S
(5.4) U - K¥R) *(K* + UM)U = (1 - KK*)"*(K + U)
also holds. Subtracting (5.3) from (5.4) we get
oy Rt ciin
(5.5) UM, - K*K) " =(_- KK")'U
and using this in (5.2) we obtain
(5.6) gt =ku®
Let us denote A = KU™¢ LK), equivalently K = AU. Using this in (5.6) it follows
A =A™ and since K is uniform contraction it follows that A is a uniform ‘contraction,
henee -1 <A <1..

Conversely, let A €L (X)) be such that -I < A <I_and set K= AU. Then K is

a uniform contraction and

: a 1
(5.7) @ EE e S,
; 3 2.3
(5.8) (== A
Using these identities it follows immediately that K is a solution of (5.2). &
be in

7
5.2. Corollary. Let the hypermaximal neutral subspaces J{’] and o~ 2 ——
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duality and, via theorem 2.4, assume the f.s, J satisfies J;{"l :;(f'z. Considering the f.d.

+ -
j{zj{ + K associated to this f.s. let U be the angular operator of ;{1' Then, the

formula

= -

1 1
uSiE s AT T A A
(5.9) S = wr.t. X=X+ X~

1

1 Sl
A0 - AY%U 1 - A%

establishes a bijective correspondence between the class of all f.s. S mapping fl onto

;fz‘and the class of operators A € (XK ) such that -I_< A< .

PROOF. This is a consequence of (4.2), proposition 5.1 and the identities (5.7)

and (5.8). 2]

5.3 Remark. Clearly, an equivalent parametrization of the solutions of (5.2) is

obtained by means of the formula

K = UB,

+ :
where B€ £(X'), satisfies -1, <B<I,.

5.4. Remark. Let us come back to the original setting (i.e. we do not assume
J;‘fl = 0\32). In this case we still can describe a rich set of solutions for the equation
(5.1), but, in general, this is not the set of all solutions. In order to do this, let us
assume { =K =K (since K and X~ are unitary equivalent this is no restriction).
Then the anguler operators K, KZEI(}U are unitary and K, - K, is invertible. It is
easy to verify that for any A €L (@), such that 0 < A <I and AKi = KiA’ i=1,2 the

operator
(5.10) K=AK, +({I-AK,

is a solution of (5.1). From what was proved in section four it follows that the f.s.

obtained in the proof of theorem 2.4 corresponds to the choice A = zl.



[1]

(2]

[4]

[5]

—-17-

REFERENCES

Ando, T.: Linear operators in Krein spaces, Lecture Notes, Hokkaido
University 1979.

Azizov, T. Ia.; lokhvidov, L.5.: Foundations of the theory of linear operators in

spaces with indefinite metric (Russian), Nauka, Moskow 1986.

Bognar, J.: Indefinite inner product spaces, Springer Verlag 1974

Gheondea, A.: Canonical forms of urbounded unitary operators in Krein
spaces, Publ. RIMS, 24 (1988).
Gheondea, A.; Jonas, P.: A characterization of spectral functions of

definitizable operators, J. Operator Theory, 17(1987), 99-119.

Iokvidow, 1.S.; Krein, M.G.; Langer, H.: Introduction to the spectral theory of

operators in spaces with an indefinite metric, Akademie-Verlag, Berlin 1982.

Langer, H.: Spektraltheorie linearer Operatoren in J-Raumen und einige

2

Anwendungen auf die Schar L( )= “I+ B+ C, Habilitationsschrift,

Dresden 1965.

AL i S Dl R s e e RS




