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ON THE STRUCTUPE OF CONTRACTION OPERATORS \VITH DOMINATING SPECTRUM
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B. PRUNARU
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INTRODUCT.] ON

Let ™ be a separable, infinite dimensionall compiex Hilbert space and
tet L (39 denote the algebra of all bounded linear operators o 40

In this paper we show that an absolutely continuous contraction in =L {9
vhose spectrum is dorinatirg for the unit circle belonas to the class Ml(r),
for some r, ln the last years various criteria for membership in the classes
A](r) have been obtained (see [}],[23,I}],Ib},{gx,[idi,[Jf},ljSE). Unfortunate-
ly, the abstract criterion from. 101 s not dpplicabie inSEhe presemt coﬁtext.
However, our proof relies heavily on the techniques appearing in [10]. The main
idea is to apply these methods to some compressions of T corresponding to diffe-
rent parts of its spectrum. Combining the rank-one operators constructed at the

, first step we obtain another one close to the aiven element in the predual 0o

of the dual algebra generated by T in 20

In the first section we recall some dseful definitiens and results from
‘the theory of dual algebras. We also.recall some facts concernina the minimal
cwoisometric extension of a aiven contraction and list some tehnical lemmas from

{10} for Future use.

In the second part we begin by provina some lemmas, treating paris of
the spectrum of T. The main intermediate result of thies section is Lemma
2.5 which shows how to approximate elements in OT by rank-one classes. Afites
that, the proof of the main theorem becomes easier and it is very similar wfth

that appearing in [ 10, Theorem N,7],



1. NCTATIONS AND TERMINCLOGY

We recall some definitions and results from the theory of dual alaesbras

() denotes the space of t race-class

wJ

(see [U] for basic of dual a‘.gebras}}ft’]

/ ! 2 7 [ ¢ NN T
operators on 3% then it is well-known that oL (a"f)=(f] @))" vias the bilinear map

LI b=tpln), Teigy, Ld;(}f)

A dual algebracis, by definition; a weakk closed subalgebra of I (3¢ that

contains .. IENCE( is a dual aloebra and Qf\=tl(3f)/¢d\ , where *h denotes

the preanhihilator of A inf] (9, then J\=(Qk)¥ via the bilinear map

Ci - i) Teh, fien

(Here [Ll denotes the coset in Qg containing the trace-class operator L)
Sl
/.

1f T€ L(#) then J\T denotes the dual alaebra ocenerated by T in L @9
x and y are vectors from ¥€ then the rank one operator defined by ( xgy)z=Hzy)x,

z¢ M belongs to f] (W) and satisfies tr{x @ y)=(x, y) andix ® yl =l{x ® AU

Ixd (y( . Moreover, if BEI(H), then B(x ©y)=Bx ® y.

A dual algebra D€ () is said to have property (/—\1(;")), for some rzl,

if for each [L7] in 0, and s>, there exist vectors xedmd v tn ¥ satisfying
(1) ‘ [(Ll=[x & yI

and

(2) WxlpynZ s b TLY



let D dgnote the open unit disc in € and letT=0D. & set Scb is §aid
to be dominatina for T if almost every point of T is a nontanaential limit of
a sequence of points from S, As usual, H” denotes the Banach algebra of all
lmunded'apalytic functions on D, It is well-known that Hﬂ:(L]/H;)*, where
and H] are the Lebescue and Hardy sﬁaces on k and H; consists of all those
fin ! satisfying Ssﬂi"(eit)dwoc

Suppose now that T€L(K) is an absolutely eont inusls eontraction Gie.
a contraction whose unitary summand is either absolutely continuous or acts

ofi the spaee 305, Forisuch: F, the Sz,—Nagy-Foia$'functiona] calculus

is a weak’ continuous, alaebra homomorphism such thath@Tﬁél andE?T(z):T,
where z denotes the position function (see f7} and [141),

The class A=A(¥) consists of all absolutely continuous contractions in

ZL(8) for which is an isometry. |f TEAGfthen one knows (cf {4 | Theorem L
T Y " )

i\
: P * 2 : :
that Qﬁ is a weak” homeomorphism between B and f\T and there exists an iso-

metry LGT from QT onto{L]/Hg) such that @)T:ujk

£ Lo A& D and let B denote

N

the Poisson kernel

| f pr}:%;]<IP§:i)’ then it is easy to verify that
LF(T), Tex1y = F(N fehE,

For each 1, A}(r) denotes the class of all those T in A for which}\T
has property (Al(r))‘

For any T¢ Z(), <(T) denctes, as usual, the spectrum of T, Furthermore,

let(?é(T) denote the essential(Calkin) spectrum of T and let Oy (T) denote

the left essential spectrum of T, If H is a hole in Gé(T) (i.e., a bounded

©

component of C‘\C%(T)) then i(H) denotes the Fredholm index of H .
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The following notations from [10] will be used frequéntly in the paper. r

If TELH then

%{(T)-——-} H: Hco(T), H is a hole in CS;?(T)
and i ()< 0%

1 (T)={H; Hes(T); H s a hole in o (T)

and i(H)y O
Let also denote:
T (M= G MUE M) 1(T-R) = 0

It follows from spectral theory that for anv T(,—f(}@, WTUE D we have

In the following we shall review some useful facts about the minimal co-
isometric extension of a given contraction, Recall from U’%l ghat if Tl ()

and [ T4{£1, then there exist a Hilbert space 'L and a coisometry B& TH) satis-

fying
(1) W
(5) o BERC §X
and
(6) Bh = Th, A b e,

We may suppose that B is minimal which means that

(7) =V oeny n

a0




; # - 5 : ; G
Since B e J() is an isometry, there exists a decomposition

R

(92
A

(8) e

)
corresponding to™a “decomposition

(9) = R

where, if S #0, ¢ 1B 1o o gnilgteral shiftoone, if Q#0, Re LR) is a uni-
tary operator, If T is absolutely continuous then R is also absolutely conti-

nuous (cf. (14, p.84l).
Suppose now that Te LM, L T4 and 1etéf]<-&iﬁ be a semi-invariant subspa-

. A0 A <@ 3 Q %
cesfor T (I;G,\{\{]—'—'\;/‘.@c&v . where & C M are invariant subspaces for B

we denote T..=P., Tyv, , then T3, satisfies
& 7!.\] 3, e el G atisfie

(10) (T el )

: : ¢ : .
Moreover, if T is absolutey continuous, then T}g jici-alise absolutelv

contintious, i Iif BEJ (L) is the minimal coisometric extension of T and

(11) W, =N 8%

ny0

then \,/\]C\v’\ is a semi-invariant subspace for B and

(12) Bi= 8B,
1 3
1

is a minimal coisometric extension for Tg..f ; Throughout the paper, given

1
a contraction T in 4. (0 and a semi-invariant subspace/r}i]C}’(, we assume that

V4

~ the minimal coisometric extension Bl€f(1"\]) of TK| caticfiles (10) and (12)

1f TCAGR) and BEI() is its minimal coisometric extension, then the projec-

s e N I . e e R et e D S S T 2 S S e \z\r\n(‘(*n p\\mli” be




denoted by A.

The following three lemmas from UO.’\ will be used in the sequel:

Lemma 1.1 “ 0 , Lemma 3. 51) :

AT b AT R A

Suppose TEA(Y) and has minimal coisometric extension BEL(K) . Then BCAQKY,

;?;J*\‘—] 1 = 1 5 st / ARz % T = 1 - = } = _]’()
(XTQ’ el a0 sometry and weak™ homomorphism from N onto o oand =SS o

is a linear isometry of Q. onto Qp. Moreover
e p=feal g NE D

and

J((,X & \/11):}}( g \/] B ! X:YQQQ

Lemma 1,2__({10, Lemma 3.6}).

If TEPE) and BLAGY) is its minimal coisometric extension, then for

each x,ye¥ and w,z eX

“ [X & Y] Tl‘ :!;.\g_'x (658} le“‘

LX @ Z-}B ':LX [029) P%&Z-_\B
and
(w® Z]B =£0.w ® 0zl B —![/\w & AZ]B

Lemma 1.3 ({10, Lemma 3.71).

e A e RS

)

If T¢ A(C) with minimal coisometric extension BLA(K) and (xn) is a sequen=

ce in ¥C such that

bl ol 20 Ny e




| [Xn ® z] B“ 20 '\\l z €Y

. (an ® 7"15&\ ol N 2 el
and

e oAl e o

,The_foHowing lemma will be used in the proof of Lémma e

Lemma 1;&

P —

[ (Zn) is any sequence in'v that converges weakly to zero, then

i [y & zn]B\\ =0 \ y &%,

Proof

5= e ther the Fooule s trivialc e SE 0 dhien, omevery ¥ T B

My ® 2 Jgl= sup Gy, ZnH"‘
FEH
IR =1

= sup '\(f(Sx)O_y,zn)\ﬁg{'_Qy © zn*_{q—x e
fe K= ' :
WFg =1

This last term tends to zero by [7, Lemma 4\;‘141 , since § CA(\)C‘CO

¢

Another result that will be needed is the followina.

IE emma IF )

B e ]

Suppose TEA() and has mxmma] consomctruc _extension BEAK). L ct@( be an
" invariant_subspace for 7 and let B Cl be Lhe mnmma] comomot: ic ex=

tension of Ty = Tg .« IE xR _and_,ycﬁ .t_he.r)

[ @ g =lx ©f A




Proof .
Lew feifs and 1et,?(z):?.(.:_{-), zeD, Since Py B*: ”IJPK , we obtain
1
(F(B)Pye x, y)=(f( )R¥3x§y1=(%{ % f L)
] ]
R S -
=(x, F%<]f(81)y) (%, f(1])!1£]y) G ){%(yy)

The following lemma will be an essential tool in proving Theorem 2.12‘

Lemma 1.6

O e —

Suppose TeA(Y) and has minimal coiscmetric extension BEL(VaR) . Let

2. sage ¢ : Shan ! 2 ) o el
%(](%,( beta semi = inve rj.lgq_n__t_wsubmspag_g o Tiang et 8] C,J\(gl @& \\]) be the mi r..A{ir}w_awl

N
>

coisometric extension of T]:_-T,é,( . Suppose that B]( A (y | ‘JQ]) Suppose also that

OL\?“ <7 0 Li\lo, ats‘( WC? bCR}, Z]( ?] Qrbﬁ’\)\}, 7265 and%ol],.,. ")I‘NZ‘C C ae _qif“
ven such that> ol . 119‘ Let%x ?c';(}‘f]', 14i4N be given such that {axl']‘\\./; 1 and
i= : '

(13) 1inllx ®yll= 0,  ye¥, 1¢ien

i
n-

z%

e £ - & (6] (6] 10 4D 3 Q(f\) =
Th.er] ‘.ther,e..eXl.St an tup](’ \)O (n] YageTe Q”N) 3 a}(v("’ \/J'IQ\] —]rlq b] LW SL»(:h

(114)\‘.2?0’-\i[xio ® xiOT . 4—'\‘_a @ (w + b)j B {a] & (w1’+b1.)] . 4 =

(16) \\ W]"W (\ 4%1/2
(17) ¢ b]'\i(%(q: b+ %‘/2)

(18) Ua]~a)® 218\! L%

R o ¥




(192, ® (wy-w)] JHLe,

Proof.

Most of it is an easy adaptation of the proof of £]O, PrOp.h.G}. Only
the following modifications are needed:

i) The isometry j=

= nus t D ace e “-:]
\{‘BOLPT must be replaced by _j]-»((, o((.r -

o
ii) Theorem 3.11 from [101 can be made to work for an absolutely continuous
contraction, Therefore, it can be applied in the setting T],B].

iii) In this way one obtains (14) to (17)

iv) To obtain (18) and (19) recall that a,-a=u + v, where u, is of the

N v N
S e b

form 2 Vol Xy vq}] withl Q]xﬂ small enouch and w]~w=.>ﬂgkix; . 1t follows
i=1 i : =] i

I3

from (13) and Lemma 1.4 that n. can be chosen so as to satlefy (4] to (17) and

{l tu . ® z:( B‘L% and\ [Z] QZ‘,(\-J] = w)] B\\/\

ro

Recall from (14, p.68 ) that

2L
b =i - 1m0
n

and similarly for Ql and T,.
Since%{l is a semi-invariant for T, it follows that\lT?VQéVTnvﬁ for
each:n7l, therefore ﬁQv“é“O]vV . Since v can be chesen to satisfy\\nlvui'

£Q1zy +1) and z€F we get
“ [ v ® Z') \!L!fr < '1 | £y itz IL %._
A NB;leML@z_BMNQMAh_l >

and the proof of (18) is finished,



= =

2. A SPECTRAL CRITERION FOR MEMBERSHIP IN A, (r)
The central theorem of the paper is the following

Theorem‘2:]

Let TeX@) be any absolutely continuous contraction such that <(T) D

e st e T e e

is dominating for T . Then TeA, (r), for some r< K267,

The proof .of this theorem will be accomplished by proving a sequence
of lemmas.

Our program is the following, Using (3) we cut the spectrum of T into
three parts, each of them having different sians in the spectral picture of
T (seg []2} for the terminology). To each part we associate a set of elements
in QT that are norm limits of rank-one ééerators satisfying some vanishina con-
. ditions. Once we have established these facts: we use the dominancy of o(T) to-
gether with Lemma 1.6 from above to obtain a certain rank-one oberator close
to a given element in Qr (see Lemma 2,5 below); As mentioned in the introduction,
this will be the crucial step in the proof of Theorem 2;1.

f S is a subset of D then NTE(S) will denoté the set of all nontanaen-
tial limit points of S. Let U be a Borel subset of T such that m(V)}O (here
m denotes the normalized Lebesgue measure on’f); Then we denote by?ir=X¥(m (M)
the normalized characteristic function of i and Jet [E;T]_be its image in the£’
quotignt space L]/H; . We also denote jﬁ%YHT=$}](Ei%D -

~ The following 1emma shows that if [ C NTL((jEf(T)) and m(V))G; then[j{S]Th.

belongs Eéwq) (in the terminology of {10]).

Lemma-2,2
let & LQRWQK) with minimal coisometric extension peL(TeR). Suppose that
m(NTL @7 £(T)))0. For any Borel subset { of NTL(Qif(T)) there exists an ortho-

gonal sequence gxnk in the uhit ball of SO € cuch that

(20)\\.(?&9}T - ® XALT"\\ - 0




and
1) [z <l ol i el

Proof.
S TP T

Letg‘/\,=\,(Ker(T =), Since R=B\@\ is unitary one sees e N et

>\{(in (T)

G ITE (o A and =g 00 it fol lows fron the proof of [5, Lemma 1.2] that
there existfg_{x.l?; ?:](‘Oi—fﬁ) and %d;@?le R+ such that
N

3( ‘, Py ! ](c( and ?o{iél

Thus

- N
i '?;%LCA}T“ o

N

With DS Theorem 2. 21 one gets X, Q\\/ Ker(T )\ ) satisfying (XI & x]__(T—
e . i

A, [C)\']T . Therefore \\x1\{2= oZi £1 and

Let = Me\/ Ker (T-h;). o 3 is serii-inuariant for T and SUIR(TE Wi
' i=1 : »
S Nz‘ CO""if('l:N). By repeatmg the above argument one gets§>\i,e.,/\&,%<03f(T)\
N!

N3Apreee XN?S and x,& \-/lKer T )x ) such that { xz\\él and

o~

[3 g el ¢
\\ ‘_/Er]l T I__xz S X?_l \t.( 5

Using this orocedure, we construct, by induction, an orthogonal seguence




- 12 -

,‘ S(XH'Z( in the unit ball of © O¥ satisfying (20), Since %xn?( converges wcgakly
to 0 it follows from Lemma 1.4 thatl |y & xnt‘\ Al for eael yEK The proof s

finished,

The following lemma deals with the '"positive part' of the spectrum,

Suppose Tﬁ%(%ﬂvand let B=5* @ RQ;[(§N@Q<) be its minimal coisometric ex-
tension. if/u fo&T)&](?Z(T)CWD) then there exists a sequence §z % in the unit
ball of'?jsuch that

(22) { l__C/ﬂT '[Pazn Ri-Poe iz IT\{ —> 0

¥ “n
and

(23) [ x ® Bree W =0 ¥ x e

Proof

I e ﬁE%T) then it follows from [12; Prop.2.15 | that there exists an
; e :

orthonormal sequence5§x4§in K such that
(24) 0 (T—/a) xnu -> 0
It is well-known (cf. [9, Theorem 3.]1) that such a sequence sat{sfies
{ Y_C/J_T % @ xl 450
and
fIx & x 100 XGK

From (24) one easily gets




R

and hence %(an-xnﬂc’ﬂ. With.z =0x_ (22) and (23) are satisfied,

lf/&é?i(T) then it follows from elementary Fredhlom theory combined

wi th £9 , Lemma 2.33 and (10, Lemma 5,21 that there exists '. an orthonormal
)N 2 : : b
sequence x )€ N Ker| € W satistying: (25) and (726}, e
n7sl ' . '
Before proving the next lemmas, we introduce some . notations, If

TGNK) and Be AM) is its minimal coisometric extension, where X=T&Q and

B:Sx + R, then we denote

(24) A MF DU S M s

(25) N o= M= (MU d oMok
(26) 3{4—6{ Ker(TX:X)n
n70
NEA

and
Q7)¥%4§(ﬁ=%&y;w€%%

(He:e P4 denotes the orthogonal projection of}Q‘onto'ki) Since T’ RKW—

;EKB w, w&\, it follows that both%(,‘ and3<? are invariant subspaces for T

We denote

(28) T]=T/M] and T 4 M

Let also B’¢ d (W) denote the minimal coisometric extension of T andiled
B=5'% @ R* be the canonical decomposition of B’, where $'€£(V?) and RrEL(R).
We also denote by Biﬁl(ﬁi), i=1,2 the minimal coisometric extensions of T.. The

spages'?i,ﬂki and the projections A’,0',A.,0:, i=1,2 are defined appropiately.




i

Since Tﬁ%é(@Cz one easily sees that B’V?C§4Z S therefore\% reduces B’.

4

Recall that C_. =C_ 0= TELEO |, (TVA T and 8 T xU=0, x €3G and

that C’O-—-(Co_f)‘ke It is easy to see (cf [9, Prop.2.8}) that ifﬁfl ¢—%d§ .

thenﬂV}Qﬁﬁo hence’?] # 50% . Since S?Cf%(%ﬂ) is a part of By, it follows that
BFJX(¥\ ). Similarly, one sees that T2=T%H<2 is completely nonunitary hence

BEA,) ifF3C# f0%.

We treat now the 'negative part" of &(T).

Lemma 2.4,

St

Suppose TEA(K) and ]etki(qr(T J © (T)\C{(T)) . Then there exists an’

orthonormal sequence (x_ ) in 3(1 such that
(29) LC/‘AT [x ® x 1o , neiN
and
GOl ol o0 §2edt

Proo(

oy e

If}}éy% (T) then it follows from (9, Lemmas 2.2 and 2.3) and [ 10, Lemma

5 2] that there exists an orthonormal sequence %x € \ Ker(T ;#)n satisfying
n71 :

(29) and (30). Cn the other hand, lfLA<\V (T)\fﬁ (T) then by virtue of (12

2

/
Prop,2°151 we have dim Ker(Tﬁj}0=§4 and accondlnﬂ]y to LlB, Corollary 3.5

and Lemma 3,6 | each orthonormal sequence %xé@ in Ker(ijEO satisfies (29) and (30).

Recall from [Q,Prop,h.6} that every absolutely continuous contraction
TETE) with S{(T)IOD dominating for 1 belonas to A .

We are now prepared to link up all the above results. The main idea is
to apply Lemma 1.6 to the compression of T to the subspace34a and to.the recs
triction of 7 to?fz. The sequences of rank cne operators appearina in the sta-

tement of Lemma 1.6 are furnished by the above three lemmas. Using (18) and (19)

we shall see that the cross-terms can be made sufficiently small, This in tufn




=15 5

implies that a rank-one operator can be constructed to satisfy (32) to (35).

Lemma 2.5

oo ‘__»«y e

Suppose T is an absolutely continuous contraction ind () such that S{T)OD

/

is dominating for { . Suppose also that OU?L] , D_](QT : aC}Q] ’ wee el

12 e
a’dfz, w’é'-??, b’G@Z ,%5? 0 and¢? 0 are civen such that

fL] a+ P (w+b’)) & (a’ + B, (w+b) ] \\45
R &,

sy it = o % s 18 1P 3,9 e e
Then there exist a](K], W]L/\)l’ bl(&], a](_}2 - w]e)z and b]C\z such that

(G2l - [a; + B Gwrsbiiglat + B (wy+b ))] 4 4 €

63) tay-ane 3872, par < are3B!
Gh) A w@’? vy = Wt el
and

(35) \\b]\mé(\:b\.\ +6!7%), wbne ? rl + 072
oy
let

(36) [t,17 =[L]y -[ ah (w'40") e (a’4p (ws5) )]

2 ,

== C
and set d=\’-\LL]HT so lddea,

If d=0, just set a,=a, a;-—-a", W EW, w1=w’ ; b]xb and bir-b‘; Those ‘we may suppose

that d 20, Let us recall from (.2j+) and (25) that/\ —~‘ ')“‘(('SE'H)\Q"Q—()(T)) and
A=

o= Mmuls (')OKD). Since S{T)DOD is dominating for T it follows (cf [, Prop.

1.21]) that

i



= i

acoy[ ClsAeA U, U <;f"‘;?;'i\}T-)\z(Nm,<<;;i-fmm

equals the closed unit ball in QT' liherefore thicke cxis.t 7g C/\ :
NZ N

hil — i s o N )
SZ)\i{\i=N}HC/\2 and | iC N1L(Jif(T)), széHz and complex ﬂUlleer’S’\g?J\i)ji:] such

. i .
that ‘2\:2 (ol 1¢d. and
=l

13
r\‘2

_ - ¢
7)(\\ &L}‘[T I/\_, SN ,L ,\I‘l |§ A (>\ "3\(]] L Z

Thus from Lemmas 2,2, 2.3 and 2.4 there exist sequences%xé%‘”’ . ]-‘iiéN?

in the upit ball of &€ such that

t.v-\
TN

(38] ( . e I‘T —Lx 0 ].,., : , 7

and A€l [x) & il 0, 140,
(39) C}ﬂ.’z 3 \ C)\—I (rl] ®X'21T\\ 20 as n— <

o I o
and () t(¥ it @x I =0, N Ll

N o

G5 Gllae | e -

n

\\ =0 as nN-—>ob
i€ 3Cu0 > AN
and \Stﬁd,\‘{t ® x X T \—>0, Nzé & Nz

It follows that there exists noéd\' such that for any Nz—tuple =(n],”.

SN ) with n,zn_, 1£i€N,, we have :

2
t
i e
(B W [L1; - ;:__.Tk'[xni ® X ij &5

Choose woé'? so that




el

| e
(41) Il a "P} (WO\‘, L w—m~7/
: 3&3

Using Lemma 1.6 in the setting (i, T, ) one gets 31(1(1 W‘QTP b]ff’\?\,

\/] U(]/

: 0 ,
and a I‘H%Upl@\?g-‘(ﬂl,.”,nﬁl) such that
N]
<\
(2) | i>‘=’f\““ - 13 [(ath 1}3‘%1(w’+b’)) x(wb)] -

i 0

-L(a+a]4P o (w’+b’ ))& (w

> ©

@) oy - e’
(45) b]\\L — (1 bll s %)
and

e >
(.’46)“\{La] ® w] pht =

From (41) and (46), we get:

(1*7)\[.8 )al \\ La ®(@’- ng] {4 (a %D W(;IB| E

*

Another application of Lemma 1.6 in the setting e, T 1{7) yields vec=

S s -5 s : o syles (0] O
tors a €3G, W]‘\\?Z’ b’EQ»Z and a (NZ—N])--Lup]e 3}0~(nN o ) such that

‘ pEag
(g \ o, [ri ® ><i g +{a’ ® (w' + b’ )—( =
’ NZ/( l"\d i ‘no > ‘;no:\ B’ L B
=y i i :

(49) {2 = .

o\
1/2 hw LY

T’
&f

(50) \ wh = TS




(51) 1 b7us (b C
%)
T
(52) [ [(a’=a’) & (a+ et
L ') @ a, ]B {,b
and
(530 [p P w +b)@ (w =w)l 2 g
e e L e B
Since B'JLCK, , from (53) one gets
(5“) W + b ) & (w? - w’)."{ \\A .Cf_
Ese e gl 8

it

or using Lemma 1.2 and passing to QT

(55) {} [P,é((w{ -w) Q@ P’é(’ (w1 + bl)’ T\\Z.,,%;_
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Using Lemma 1,2 and passing to 0.x we get from (L8):



< ,
\ >_,C>(l\>' O@ x' | x+la’ @ Pki(\J’ | 3)’)}1?\ -
oAb

Therefore

T - i - -
Ealig o b sk o phie (bt aarl. -
ARVAESI n n. &
: L I 1
B ’ 3 ) L
[Pl & B @ atd e -

Let [LZFXT :[L]T o ‘(a 4P}((W’ bl )) ( ; ate R&(‘ ] ]))JT

We estimate the norm of [L :\ . Ve havel | Edi Lwﬂ -[(a + P (w+b'))&

1
N, . N, o
’ el gl ]
®la’+ Pﬂ&{l (V’er))}T = 2 O\iL?\ o ]l' > ‘i Ly ® x oJ T
i=] n, n® r] ne n

(w-bﬂ f(a +P. (w’+b’))@f?,| (w]w‘«b])] \+

+[(a-l-Pg{(w’~l-b’))® p o K,

.3\]

+\Z el \x ®x'] +(PéW4b’ @a].--—

N]LJLN n.
i o

\,—.I

'[F>}€(\vi+b’) @ a

] +1{a & a 11 --La] % ai']-r‘:? 3

4—\\'1:P,15<(\AJ’+b’-wi~bi)@R&{.] (w] & bl)]T\“ = A+B+C+D+E

It. follows from (36) and (40) that A< % . From (57) and (58) we get
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Without loss of generality we may sUDpPOSE that (bn) converges weakly to b

and (b;) converges weakly to b',
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After this paper was completed, | learned that H.Bercovici and B,Chevreau in-

dependently proved that A=A](r) (Bercovici gets the best valie r=1) afact whileh
implies our main result (Theorem 2.1). On the way of proving A =A}(r) our result
ceems to be a natural one to check, and we hope that our proof shows a small part

of the difficulty of this (now solved) brob1em;
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