INSTITUTUL DE MATEMATICA INSTITUTUL NATIONAL
PENTRU CREATIE
STIINTIFICA SI TEHNICA

ISSN 0250 3638

ON THE STRUCTURE OF CONTRACTION OPERATORS WITH DOMINATING SPECTRUM

by

B. PRUNARU

PREPRINT SERIES IN MATHEMATICS

No. 28/1988

Med 24823

ON THE STRUCTURE OF CONTRACTION OPERATORS WITH DOMINATING SPECTRUM

by

B. PRUNARU

June 1988

^{*)} Department of Mathematics, The National Institute for Scientific and Technical Creation, Bd. Pacii 220, 79622 Bucharest, Romania.

B. PRUNARU

INTRODUCTION

Let $\mathcal H$ be a separable, infinite dimensional, complex Hilbert space and let $\mathcal L(\mathcal H)$ denote the algebra of all bounded linear operators on $\mathcal H$.

In this paper we show that an absolutely continuous contraction in $\mathcal{L}(\{\})$ whose spectrum is dominating—for the unit circle belongs to the class $\mathbb{A}_1(r)$, for some r. In the last years various criteria for membership in the classes $\mathbb{A}_1(r)$ have been obtained (see [1], [2], [3], [4], [8], [10], [11], [15]). Unfortunately, the abstract criterion from [10] is not applicable in the present context. However, our proof relies heavily on the techniques appearing in [10]. The main idea is to apply these methods to some compressions of T corresponding to different parts of its spectrum. Combining the rank-one operators constructed at the first step we obtain another one close to the given element in the predual \mathbb{Q}_T of the dual algebra generated by T in $\mathcal{L}(\mathbb{R})$.

In the first section we recall some useful definitions and results from the theory of dual algebras. We also recall some facts concerning the minimal coisometric extension of a given contraction and list some tehnical lemmas from [10] for future use.

In the second part we begin by proving some lemmas, treating parts of the spectrum of T. The main intermediate result of this section is Lemma 2.5 which shows how to approximate elements in Ω_T by rank-one classes. After that, the proof of the main theorem becomes easier and it is very similar with that appearing in [10, Theorem 4.7].

1. NOTATIONS AND TERMINOLOGY

We recall some definitions and results from the theory of dual algebras (see [4] for basic of dual algebras) If ζ (ζ) denotes the space of trace-class operators on ζ then it is well-known that ζ (ζ)=(ζ (ζ))* via the bilinear map

A dual algebra is, by definition, a weak* closed subalgebra of $\mathcal{L}(\mathcal{H})$ that contains $1_{\mathcal{H}}$. If $\mathcal{L}(\mathcal{H})$ is a dual algebra and $0 = \zeta(\mathcal{H})/\frac{1}{2}\mathcal{L}$, where $\frac{1}{2}\mathcal{L}$ denotes the preannihilator of \mathcal{L} in $\mathcal{L}_{1}(\mathcal{H})$, then $\mathcal{L}_{1}(0,\mathcal{L})$ via the bilinear map

$$\langle T, [L] \rangle = tr(TL), T \in A, [L](Q_A)$$

(Here [L] denotes the coset in Q_A containing the trace-class operator L).

If $T\in\mathcal{I}(\mathcal{H})$ then \mathcal{A}_T denotes the dual algebra generated by T in $\mathcal{I}(\mathcal{H})$. If x and y are vectors from \mathcal{H} then the rank one operator defined by $(x\otimes y)z=(z,y)\times$, $z\in\mathcal{H}$ belongs to $\mathcal{C}_1(\mathcal{H})$ and satisfies $\mathrm{tr}(x\otimes y)=(x,y)$ and $(X\otimes y)=(X\otimes y)$ $(X\otimes y)=(X\otimes y)$ and $(X\otimes y)=(X\otimes y)$ $(X\otimes y)$ $(X\otimes y)=(X\otimes y)$ $(X\otimes y)$ $(X\otimes y)=(X\otimes y)$ $(X\otimes y)$ $(X\otimes$

A dual algebra \mathbb{A} ($\mathbb{Z}(\mathbb{H})$ is said to have property $(A_1(r))$, for some $r\geqslant 1$, if for each [L] in 0, and s > r, there exist vectors x and y in \mathbb{H} satisfying

$$[L] = [x \otimes y]$$

and

Let D denote the open unit disc in $\mathbb C$ and let $\mathbb T=\mathfrak D$ D. A set SCD is said to be dominating for $\mathbb T$ if almost every point of $\mathbb T$ is a nontangential limit of a sequence of points from S. As usual, $\mathbb H^\infty$ denotes the Banach algebra of all bounded analytic functions on $\mathbb D$. It is well-known that $\mathbb H^\infty=(\mathbb L^1/\mathbb H^1_0)^*$, where $\mathbb L^1$ and $\mathbb H^1$ are the Lebesque and Hardy spaces on $\mathbb T$ and $\mathbb H^1$ consists of all those $\mathbb T$ in $\mathbb T$ satisfying $\mathbb T$ and $\mathbb T$ and $\mathbb T$ satisfying $\mathbb T$ and $\mathbb T$ and $\mathbb T$ satisfying $\mathbb T$ and $\mathbb T$ and $\mathbb T$ satisfying $\mathbb T$ satisfyin

Suppose now that $T\in\mathcal{L}(\mathcal{H})$ is an absolutely continuous contraction (i.e. a contraction whose unitary summand is either absolutely continuous or acts on the space $\{0\}$). For such T, the Sz.-Nagy-Foias functional calculus

$$\Phi_T: H^\infty \to A_T$$

is a weak* continuous, algebra homomorphism such that $\| \bar{\mathbb{Q}}_T \| \le 1$ and $\| \mathbb{Q}_T \| \le 1$ and $\| \mathbb{Q}_T \| \le 1$ where z denotes the position function (see [7] and [14]),

The class $A=A(\mathcal{H})$ consists of all absolutely continuous contractions in $\mathcal{L}(\mathcal{H})$ for which Φ_T is an isometry. If $T\in A(\mathcal{H})$ then one knows $(cf \[\] 4 \]$, Theorem 4.1]) that Φ_T is a weak* homeomorphism between H^∞ and A_T and there exists an isometry Φ_T from Φ_T onto Φ_T onto that $\Phi_T = \Phi_T$. Let Φ_T denote the Poisson kernel

$$P_{\lambda}(e^{it}) = (1 - |\lambda|^2) |1 - \overline{\lambda}e^{it}|^{-2}$$
, $e^{it} \in T$.

If $[C_{\lambda}] = G_{\lambda}^{-1}([P_{\lambda}])$, then it is easy to verify that

$$\langle f(T), \lceil C \rangle \rangle = f(\lambda)$$
 feh^{\infty}.

For each r,1, $A_1(r)$ denotes the class of all those T in A for which A_T has property $(A_1(r))$.

For any $T \in \mathcal{I}(\mathbb{K})$, $\sigma(T)$ denotes, as usual, the spectrum of T. Furthermore, let $\sigma_{\mathbf{e}}(T)$ denote the essential (Calkin) spectrum of T and let $\sigma_{\mathbf{e}}(T)$ denote the left essential spectrum of T. If H is a hole in $\sigma_{\mathbf{e}}(T)$ (i.e. a bounded component of $C \setminus \sigma_{\mathbf{e}}(T)$) then i(H) denotes the Fredholm index of H.

The following notations from [10] will be used frequently in the paper. If $T \in \mathcal{I}(\mathcal{H})$ then

Let also denote:

$$\sigma_{if}(T) = \{ \lambda_j \log(T) \setminus (\sigma_e(T) \cup \mathcal{F}_{-}(T)) ; i(T - \lambda) = 0 \}$$

It follows from spectral theory that for any TEL(10, NTNE1 we have

(3)
$$\sigma(T) \cap D = (\sigma_e(T) \cap D) \cup \overline{f}(T) \cup \overline{f}'_+(T) \cup \sigma_{if}(T)$$
.

In the following we shall review some useful facts about the minimal coisometric extension of a given contraction. Recall from [14] that if $T \in \hat{\mathcal{I}}(H)$ and $\|T\| \leq 1$, then there exist a Hilbert space K and a coisometry $B \in \hat{\mathcal{I}}(K)$ satisfying

and

We may suppose that B is minimal which means that

$$(7) \qquad \qquad \begin{array}{c} \swarrow = \bigvee_{n \geq 0} B^{*n} \mathcal{H} \end{array}$$

Since $B^* \in \mathcal{I}(\mathbb{K})$ is an isometry, there exists a decomposition

$$(8) B = S^* \oplus R$$

corresponding to decomposition

where, if $\S \neq 0$, $\S \in \mathcal{I}(\mathbb{R})$ is a unilateral shift and, if $\S \neq 0$, $\mathbb{R} \in \mathcal{I}(\mathbb{R})$ is a unitary operator. If T is absolutely continuous then R is also absolutely continuous (cf. [14, p.84]).

Suppose now that $T \in L(\mathcal{H})$, $\|T\| \leq 1$ and $\text{let}\mathcal{H}_1 \subset \mathcal{H}$ be a semi-invariant subspace for T (i.e. $\mathcal{H}_1 = \mathbb{M} \in \mathcal{L}$, where $L \in \mathcal{H}$ (Hare invariant subspaces for T). If we denote $T_{\mathcal{H}_1} = P_{\mathcal{H}_1} T_{\mathcal{H}_1}$, then $T_{\mathcal{H}_2}$ satisfies

(10)
$$(T_{\chi_1^n})^n = (T^n)_{\chi_1^n} \qquad n > 1$$

Moreover, if T is absolutely continuous, then $T_{\mathcal{H}}$ is also absolutely continuous. If $B\in\mathcal{I}(K)$ is the minimal coisometric extension of T and

$$(11) \qquad \qquad \forall_{1} = \bigvee_{n \neq 0} B^{*n} \mathcal{J}(_{1})$$

then $K_1 \subset K$ is a semi-invariant subspace for B and

$$B_1 = B_{\swarrow_1}$$

is a minimal coisometric extension for $T_{\mathcal{H}_1}$. Throughout the paper, given a contraction T in $\mathcal{L}(\mathcal{H})$ and a semi-invariant subspace $\mathcal{H}_1(\mathcal{H})$, we assume that the minimal coisometric extension $B_1(\mathcal{L}(\mathcal{H}_1))$ of $T_{\mathcal{H}_1}$ satisfies (11) and (12).

If TCA(R) and BCI(K) is its minimal coisometric extension, then the projection of Konto R will be

denoted by A.

The following three lemmas from [10] will be used in the sequel:

Lemma 1.1 ([10 , Lemma 3.5]).

Suppose TEA(K) and has minimal coisometric extension BEL(K). Then BEA(K), $\overrightarrow{TT} = \underbrace{B}_{B} \text{ is an isometry and weak}^* \text{ homomorphism from } B \text{ onto } T \text{ and } J = \underbrace{G}_{B} + G T$ is a linear isometry of Q_{T} onto Q_{B} . Moreover

$$j([c_{\lambda}]_{T})=[c_{\lambda}]_{B}$$
, $\lambda \in \mathbb{D}$

and

$$j([x \otimes y]_T) = [x \otimes y]_B, x, y \in \mathcal{H}$$

Lemma 1.2([10, Lemma 3.6]).

If TEA(K) and BEA(K) is its minimal coisometric extension, then for each $x,y\in K$ and $w,z\in K$

$$\| [x \otimes y]_T \| = \| [x \otimes y]_B \|$$

$$[x \otimes z]_B = [x \otimes P_{\mathcal{X}} z]_B$$

and

$$[w \otimes z]_B = [0w \otimes 0z]_B + [Aw \otimes Az]_B$$

Lemma 1.3 ([10, Lemma 3.7]).

If $T \in A(\mathbb{K})$ with minimal coisometric extension $B \in A(\mathbb{K})$ and (x_n) is a sequence in \mathbb{K} such that

$$\|[x_n \otimes z]_B\| \to 0 \qquad \forall z \in K$$

$$\|[x_n \otimes z]_B\| \to 0 \qquad \forall z \in K$$

and

. The following lemma will be used in the proof of Lemma 2.2.

Lemma 1.4

Suppose TEA(K) and has B in A(W) for its minimal coisometric extension. If (z_n) is any sequence in P that converges weakly to zero, then

$$\|[y \otimes z_n]_B\| \longrightarrow 0$$
 $\forall y \in K$.

Proof

If S=0 then the result is trivial. If $S\neq 0$ then, for every y in $oldsymbol{arphi}$

$$\| [y \otimes z_n]_B \| = \sup_{f \in H^{\infty}} | (f(B)y, z_n)| = \| f(B)y, z_n \| = \| f(B$$

This last term tends to zero by [7, Lemma 4,4], since $S \in A(P) \cap C_0$.

Another result that will be needed is the following.

Lemma 1.5

Suppose TEA(80) and has minimal coisometric extension BEA(K). Let \mathcal{H}_1 be an invariant subspace for T^* and let $B_1 \in \mathcal{L}(K_1)$ be the minimal coisometric extension of $T_1 = T_1$. If xEH and yEK, then

$$[P_{y_i} \times \otimes y]_B = [x \otimes P_{y_i} y]_B$$

Proof.

Let $f \in \mathbb{H}^{\infty}$ and let $f(z) = \overline{f(\overline{z})}$, $z \in D$. Since $P_{\mathcal{H}_1} B_1^* = T_1^* P_{\mathcal{H}_1}$, we obtain

- 8 -

$$(f(B)P_{3\zeta_{1}}^{*} \times, y) = (f(B_{1})P_{3\zeta_{1}}^{*} \times, y) = (P_{3\zeta_{1}}^{*} \times, \widetilde{f}(B_{1}^{*})y) =$$

$$= (x, P_{3\zeta_{1}}^{*} \widetilde{f}(B_{1}^{*})y) = (x, \widetilde{f}(T_{1}^{*})P_{3\zeta_{1}}^{*} y) = (x, \widetilde{f}(T^{*})P_{3\zeta_{1}}^{*} y) =$$

$$= (f(T)x, P_{3\zeta_{1}}^{*} y) = (f(B)x, P_{3\zeta_{1}}^{*} y).$$

The following lemma will be an essential tool in proving Theorem 2.1.

Lemma 1.6

Suppose $T \in A(\mathbb{K})$ and has minimal coisometric extension $B \in \mathcal{L}(P \oplus \mathbb{R})$. Let $\mathcal{K}(\mathcal{K})$ be a semi-invariant subspace for T and let $B_1 \in \mathcal{L}(P_1 \oplus \mathbb{R}_1)$ be the minimal coisometric extension of $T_1 = T_{\mathcal{K}}$. Suppose that $B_1 \in A(P_1 \oplus \mathbb{R}_1)$. Suppose also that 0 < P(1, 870, 5)0, $a \in \mathcal{K}_1$, $w(P_1)$, $b \in \mathbb{R}_1$, $z \in P_1 \oplus \mathbb{R}_1$, $z \in P$ and $\mathcal{K}_1, \ldots, \mathcal{K}_N \in \mathbb{C}$ are given such that $\sum_{i=1}^N |\mathcal{K}_i| \leq \delta$. Let $\{x_i\}_{i=1}^\infty \in \mathcal{K}_1$. Is $i \in \mathbb{N}$ be given such that $\|x_i\| \leq 1$ and $\|x_i\| \leq 1$ and $\|x_i\| \leq 1$ and $\|x_i\| \leq 1$.

(13)
$$\lim_{n\to\infty} \|[x_n^i \otimes y]\| = 0$$
, $y \in \mathcal{H}$, $1 \le i \le N$

Then there exist a n-tuple $N_0 = (n_1^0, \dots, n_N^0)$, $a_1 \in \mathcal{H}_1$, $w_1 \in \mathcal{P}_1$ and $b_1 \in \mathcal{R}_1$ such that

$$(14) \| \sum_{i=1}^{n} \langle \sum_{i=1}^{n} x_{i}^{i} \otimes x_{i}^{i} \rangle \|_{B} + [a \otimes (w + b)] \|_{B} - [a_{1} \otimes (w_{1} + b_{1})] \|_{B} \| \leq \varepsilon$$

(17)
$$\|b_1\| \left(\frac{1}{e}(|b| + \frac{1}{2})\right)$$

(19)||[z, ⊗ (w,-w)]_B||∠ ?.

Proof.

Most of it is an easy adaptation of the proof of [10, Prop.4.6]. Only the following modifications are needed:

- i) The isometry $j = \varphi_B^{-1} \varphi_T$ must be replaced by $j_1 = \varphi_B^{-1} \varphi_T$.
- ii) Theorem 3.11 from $\lceil 10 \rceil$ can be made to work for an absolutely continuous contraction. Therefore, it can be applied in the setting T_1, B_1 .
 - iii) In this way one obtains (14) to (17)
- iv) To obtain (18) and (19) recall that $a_1 a = u_y + v$, where u_y is of the form $\sum_{i=1}^{N} x_{n_i}^i$, $v \in \mathcal{X}_1$ with $||Q_1 \times ||$ small enough and $||u_1 u|| = \sum_{i=1}^{N} x_{n_i}^i$. It follows from (13) and Lemma 1.4 that $|u_1 u|| = \sum_{i=1}^{N} x_{n_i}^i$. It follows and $||u_1 u|| = \sum_{i=1}^{N} x_{n_i}^i$.

Recall from [14, p.68] that

$$\|Q_{x}\|^{2} = \|x\|^{2} - \lim_{n} \|T^{n}x\|^{2}$$

and similarly for Q_1 and T_1 .

$$\| [v \otimes z]_B \| \le \| [Qv \otimes z]_B \| \le \| Qv \| \| z \| \le \frac{\varepsilon}{2}$$

and the proof of (18) is finished.

2. A SPECTRAL CRITERION FOR MEMBERSHIP IN A (r)

The central theorem of the paper is the following

Theorem 2.1

Let TeI(H) be any absolutely continuous contraction such that $\sigma(T)\cap D$ is dominating for T. Then TeA₁(r), for some r< 4^26^2 .

The proof of this theorem will be accomplished by proving a sequence of lemmas.

Our program is the following. Using (3) we cut the spectrum of T into three parts, each of them having different signs in the spectral picture of T (see [12] for the terminology). To each part we associate a set of elements in Q_T that are norm limits of rank-one operators satisfying some vanishing conditions. Once we have established these facts, we use the dominancy of G(T) together with Lemma 1.6 from above to obtain a certain rank-one operator close to a given element in Q_T (see Lemma 2.5 below). As mentioned in the introduction, this will be the crucial step in the proof of Theorem 2.1.

If S is a subset of D then NTL(S) will denote the set of all nontangential limit points of S. Let Γ be a Borel subset of T such that $m(\Gamma) > 0$ (here m denotes the normalized Lebesgue measure on T). Then we denote by $\widetilde{\chi}_{\Gamma} = \widetilde{\chi}_{\Gamma}/(m(\Gamma))$ the normalized characteristic function of Γ and let $\Gamma = \widetilde{\chi}_{\Gamma}$ be its image in the quotient space $\Gamma = \widetilde{\chi}_{\Gamma}/(H_0)$. We also denote $\Gamma = \widetilde{\chi}_{\Gamma}/(H_0)$.

The following lemma shows that if Γ (NTL(\circlearrowleft_{if} (T)) and m(Γ)>0, then $[\mathcal{K}_{if}]_T$ belongs $E_0^{\ell}(A_T)$ (in the terminology of [10]).

Lemma 2.2

Let T in $A(\mathbb{R})$ with minimal coisometric extension $B\in\mathcal{I}(P\oplus\mathbb{R})$. Suppose that $m(NTL(\nabla if(T)))$ 0. For any Borel subset T of $NTL(\nabla if(T))$ there exists an orthogonal sequence $\{x_n\}$ in the unit ball of $\mathbb{R}\cap\mathbb{R}$ such that

$$(20) \| \widetilde{\mathcal{I}}_{T}^{T} - [\times_{n} \otimes \times_{n}]_{T}^{V} \rightarrow 0$$

and

Proof.

Let $M = V \text{Ker}(T - \lambda)$. Since $R = B_{R}$ is unitary one sees that $M \in \mathbb{R}$. Let $\lambda \in \mathbb{R}_{+}(T)$

TC NTL $(\bigcirc_{if} (T))$ and $\[\] ?$ it follows from the proof of $\[\] 5$, Lemma 1.2 $\]$ that there exist: $\{\lambda_i\}_{i=1}^N$ $(\] C$ and $\{\alpha_i\}_{i=1}^N$ \in R such that

Thus

$$\|[\widetilde{\mathcal{X}}_{7}]_{T} - \sum_{i=1}^{N} \alpha_{i} [c_{\lambda_{i}}]_{T} \| < \epsilon$$

With [15, Theorem 2.2] one gets $x_1 \in \bigvee_{i=1}^{N} \text{Ker}(T-\lambda_i)$ satisfying $[x_1 \otimes x_1]_T = \sum_{i=1}^{N} \lambda_i [C\lambda_i]_T$. Therefore $\|x_1\|^2 = \lambda_i \leq 1$ and

Let $\mathcal{N} = \mathcal{N} \in \mathcal{N}$ Ker $(T - \lambda_i)$. Then \mathcal{N} is semi-invariant for T and ∇ if $(T) \setminus \{\lambda_1, \ldots, \lambda_N\}$ Coif(T). By repeating the above argument one gets $\{\lambda_1, \ldots, \lambda_N\}$ and $\{\lambda_1, \ldots, \lambda_N\}$ and

$$\| \left[\widetilde{\Xi}_{\Gamma} \right] \right]_{T} - \left[\times_{2} \otimes \times_{2} \right] \| \langle \frac{\xi}{2} |.$$

Using this procedure, we construct, by induction, an orthogonal sequence

 $\{x_n\}$ in the unit ball of $\{x_n\}$ satisfying (20). Since $\{x_n\}$ converges weakly to 0 it follows from Lemma 1.4 that $\|[y \otimes x_n]_T\| > 0$ for each $y \in \mathbb{R}$. The proof is finished.

The following lemma deals with the "positive part" of the spectrum.

Lemma 2.3

Suppose TeA(K) and let B=S* \oplus R \in $\mathbb{Z}(P \oplus \mathbb{R})$ be its minimal coisometric extension. If $\mu \in \mathcal{T}(T) \cup (\mathcal{T}(T) \cap \mathbb{D})$ then there exists a sequence $\{z_n\}$ in the unit ball of P such that

(22)
$$\| [c_{\mu}]_{T} - [P_{3\ell}z_{n} \otimes P_{3\ell}z_{n}]_{T} \| \rightarrow 0$$

and

$$(23) \parallel [\times \otimes P_{\mathcal{H}} z_{n}]_{T} \parallel \rightarrow 0 \qquad \forall \times \in \mathcal{H}$$

Proof

If $\mathcal{A} \in \mathcal{D}_e(T)$ then it follows from [12, Prop.2.15] that there exists an orthonormal sequence $\{x_n^2 \text{ in } \mathcal{H} \text{ such that }$

(24)
$$\| (T-\mu) \times_{n} \| \to 0$$

It is well-known (cf. [9, Theorem 3.1]) that such a sequence satisfies

$$\| \left[C_{n} \right]_{T} - \left[\times_{n} \otimes \times_{n} \right]_{T} \| \rightarrow 0$$

and

$$\|[\times \otimes \times]_T\| \to 0$$
 $\times \in \mathcal{H}$

$$\|Qx_n - x_n\| \rightarrow 0$$

and hence $\|P_{1}(0x_{n}-x_{n})\| \rightarrow 0$. With $z_{n}=0x_{n}$ (22) and (23) are satisfied.

If f(T) then it follows from elementary Fredhlom theory combined with [9, Lemma 2.3] and [10, Lemma 5.2] that there exists an orthonormal sequence $(x_n) \in V$ Ker $(T-\mu)^n \in P$ satisfying (25) and (26).

Before proving the next lemmas, we introduce some notations. If T(F(K)) and $B\in A(K)$ is its minimal coisometric extension, where $K=P\in R$ and $B=S^*+R$, then we denote

(26)
$$\mathcal{H}_{1} = \mathcal{H}_{1}(T) = \bigvee_{n \neq 0} \operatorname{Ker}(T^{*} - \chi)^{n}$$

$$\lambda \in \Lambda_{1}$$

and

(27)
$$\mathcal{H}_2 = \mathcal{H}_2(T) = \{P_{\mathcal{H}} w; w \in 3\overline{3}\}$$

(Here $P_{\mathcal{K}}$ denotes the orthogonal projection of \mathcal{K} onto \mathcal{K}). Since $T^*P_{\mathcal{K}}w=P_{\mathcal{K}}B^*w$, we \mathbb{R} , it follows that both \mathcal{K}_1 and \mathcal{K}_2 are invariant subspaces for T^* . We denote

(28)
$$T_1 = T_{\mathcal{H}_1}$$
 and $T_2 = T^*_{1}\mathcal{H}_2$

Let also $B' \in \mathcal{J}(K')$ denote the minimal coisometric extension of T^* and let $B' = S'^* \oplus R'$ be the canonical decomposition of B', where $S' \in \mathcal{I}(G')$ and $R' \in \mathcal{I}(K')$. We also denote by $B_i \in \mathcal{I}(K_i)$, i = 1, 2 the minimal coisometric extensions of T_i . The spaces P_i , R_i and the projections A', O', A_i, O_i , i = 1, 2 are defined appropriately.

Since $T^*K_2(K_2)$ one easily sees that $B^*K_2(K_2)$, therefore K_2 reduces B^* .

Recall that $C_0:=C_0$, $(\mathcal{H})=\{T\in\mathcal{L}(\mathcal{H}), \|T\|\leq 1 \text{ and } \|T^nx\| \to 0, x\in\mathcal{H}\}$ and that $C_0:=(C_0)^*$. It is easy to see (cf[9, Prop.2.8]) that $if\mathcal{H}_1 \neq \{0\}^*$, then $T_1\in C_0$ hence $S_1 \neq \{0\}^*$. Since $S_1^*\in\mathcal{A}(S_1)$ is a part of B_1 , it follows that $B_1\in\mathcal{A}(\mathcal{H}_1)$. Similarly, one sees that $T_2=T^*|_{\mathcal{H}_2}$ is completely nonunitary hence $B_2\in\mathcal{A}(\mathcal{H}_2)$ iff $\mathcal{H}_2\neq \{0\}^*$.

We treat now the "negative part" of $\sigma(T)$.

Lemma 2.4.

Suppose TEA(K) and let $\mu\in\mathcal{F}_{-}(T)\cup\{\sigma_{e}(T)\setminus\sigma_{e}(T)\}$. Then there exists an orthonormal sequence (x_n) in \mathcal{K}_{1} such that

(29)
$$[c_{\mu}]_T = [x_n \otimes x_n]_T$$
, $n \in \mathbb{N}$

and

(30)
$$\|[x_n \otimes z]_T\| \to 0$$
 $\forall z \in \mathcal{X}$

Proof

If $\mu \in \mathcal{F}_{-}(T)$ then it follows from [9, Lemmas 2.2 and 2.3] and [10, Lemma 5.2] that there exists an orthonormal sequence $\{x_n\} \in \mathbb{C}$ Ker $(T^*-\mu)^n$ satisfying (29) and (30). On the other hand, if $\mu \in \mathbb{C}(T) \setminus \mathbb{C}(T)$ then by virtue of [12, Prop. 2.15] we have dim Ker $(T^*-\mu)=\mathcal{F}_{\mathcal{C}}$ and accordingly to [13, Corollary 3.5 and Lemma 3.6] each orthonormal sequence $\{x_n\}$ in Ker $(T^*-\mu)$ satisfies (29) and (30). Recall from [4, Prop. 4.6] that every absolutely continuous contraction $T \in \mathcal{I}(\mathcal{H})$ with $\Leftrightarrow (T) \cap \mathbb{D}$ dominating for \mathbb{T} belongs to $\mathbb{A}(\mathcal{H})$.

We are now prepared to link up all the above results. The main idea is to apply Lemma 1.6 to the compression of T to the subspace \mathcal{H}_1 and to the restriction of T^* to \mathcal{H}_2 . The sequences of rank one operators appearing in the statement of Lemma 1.6 are furnished by the above three lemmas. Using (18) and (19) we shall see that the cross-terms can be made sufficiently small. This in turn

implies that a rank-one operator can be constructed to satisfy (32) to (35).

Lemma 2.5

Suppose T is an absolutely continuous contraction in $\mathcal{I}(\mathcal{R})$ such that $\mathfrak{O}(T)\cap \mathfrak{O}$ is dominating for \mathbb{T} . Suppose also that $0 \leq f \leq 1$, $[L1 \in \mathbb{Q}_T]$, $a \in \mathcal{H}_1$, $w \in \mathbb{P}_2$, $b' \in$

$$(31) \, \| \, [L]_{T} \, - [(a \, + \, P_{\mathcal{K}}(w' + b')) \otimes (a' \, + \, P_{\mathcal{K}_{1}}(w + b))]_{T} \| \, (\Delta \otimes w' + \, P_{\mathcal{K}_{1}}(w + b)) \| \, (A' + \, P_{\mathcal{K}_{1}}(w + b)) \| \,$$

Then there exist $a_1 \in \mathcal{R}_1$, $w_1 \in \mathcal{P}_1$, $b_1 \in \mathcal{R}_1$, $a_1' \in \mathcal{R}_2$ and $b_1' \in \mathcal{R}_2$ such that

$$(32)([L]_{T} - [(a_{1} + P_{K}(w_{1}'+b_{1}'))\otimes(a_{1}' + P_{K_{1}}(w_{1}+b_{1}))]_{T}) < \epsilon$$

and

(35)
$$\|b_{1}\| \left(\frac{1}{\rho}(\|b\| + \delta^{1/2}), \|b_{1}\| \right) = \frac{1}{\rho}(\|b\| + \delta^{1/2})$$

Proof

Let

(36)
$$[L_1]_T = [L]_T - [(a+P_*(w'+b'))\otimes(a'+P_*(w+b))]_T$$

and set $d=N[L_1]N_T$ so $0 \le d \le \delta$.

If d=0, just set $a_1=a$, $a_1'=a'$, $w_1=w$, $w_1'=w'$, $b_1=b$ and $b_1'=b'$. Those we may suppose that d > 0. Let us recall from (24) and (25) that $\int_T = \int_T (T)U(\nabla_e(T) \setminus \nabla_e(T))$ and $\int_T = \int_T (T)U(\nabla_e(T) \setminus \nabla_e(T))$. Since $\nabla(T)\cap D$ is dominating for T it follows (cf [4, Prop. 1.21]) that

$$\overline{aco} \{ \{ [c_{\lambda^{1}_{T}}; \lambda \in \Lambda_{1} \cup \Lambda_{2}) \cup ([\widetilde{\chi}_{1}^{1}]_{T}; \forall (NTL(\mathcal{O}_{1}^{-}(T))) \} \}$$

equals the closed unit ball in Ω_T . Therefore there exist $\{\lambda_i^2\}_{i=1}^{N_1}\subset \Lambda_1$, $\{\lambda_i^2\}_{i=N_1+1}^{N_2^2}\subset \Lambda_2 \text{ and } \Gamma_i\subset \text{NTL}(\bigcirc_{i,f}(T)), \text{ N}_2^2 \subset \Lambda_2 \text{ and complex numbers} \{\lambda_i^2\}_{i=1}^{N_2} \text{ such that } \sum_{i=1}^{N_2}\{A_i \in A_i \text{ and } I_i \text{ and } I_i \in A_i \text{ and } I_i \text{ an$

$$(37) \sqrt{\left[L_{1}\right]_{T} - \sum_{i=1}^{N_{2}^{2}} 2 \left[C_{\lambda_{i}}\right] - \sum_{i=N_{2}^{2}+1}^{N_{2}} 2 \left[\widehat{\mathcal{X}}_{\Gamma_{i}}\right] - \frac{\varepsilon}{2}}$$

Thus from Lemmas 2.2, 2.3 and 2.4 there exist sequences $\{x_n^i\}_{n=1}^\infty$, $1^{\le i \le N} = 1$ in the unit ball of $\mathbb H$ such that

(38)
$$(x_n^i) \in \mathcal{H}_1, \quad [c_{\lambda_i}]_T = [x_n^i \otimes x_n^i]_T$$
, $n \geqslant 1$

and $(\forall t \in \mathcal{R}, \| [x_n^i \otimes t]_T \| \rightarrow 0, 15 \in \mathbb{N}_T$

(39)
$$(x_n^i) \subset \mathcal{H}_2$$
, $\mathbb{I}[C_{\lambda_i}]_T - [x_n^i \otimes x_n^i]_T \mathbb{I} \rightarrow 0$ as $n \rightarrow \infty$

and (\(\)) t(\(\), \(\[\[\]\) \\ x_n^i\]_T\(\)
$$\to 0$$
 , \(\)N_1 \(\]\(i \)N_2

(39)
$$(x_n^i)$$
CZ, $\|[x_{r_i}]\|_T + [x_n^i \otimes x_n^i]_T\| > 0$ as $n \to \infty$

and
$$\forall t \in \mathcal{F}_{N}[t \otimes x_{n}^{i}] \mid N_{2} \neq i \leq N_{2}$$

It follows that there exists $n \in \mathbb{N}$ such that for any N_2 -tuple = (n_1, \dots, n_{N_2}) with $n_1 \ge n_0$, $1 \le i \le N_2$, we have

$$(40) \| [L_1]_T - \sum_{i=1}^{N_2} (x_{n_i}^i \otimes x_{n_i}^i) \| X_{n_i}^i \| \|$$

Choose $w_0 \in \mathbb{R}$ so that

(41)
$$\| a^{\circ} - P_{\mathcal{H}} w_{0} \| \ge \frac{\xi}{2^{4} \cdot 38^{1/2}}$$

Using Lemma 1.6 in the setting (\mathcal{H}_1, T_{f_1}) one gets $a_1 \in \mathcal{H}_1$ $w_1 \in \mathcal{H}_1$, $b_1 \in \mathcal{H}_1$, and a N_1 -tuple $Y_0 = (n_1^0, \dots, n_{N_1}^0)$ such that

$$(42) \| \sum_{i=1}^{N_1} \angle_i [x_i^i \otimes x_i^i]_B + [(a+P_{X_i}^i P_{X_i}^i (w'+b')) \otimes (w+b)]_B - [(a+a_1+P_{X_i}^i P_{X_i}^i (w'+b')) \otimes (w_1 + b_1)]_B \| \angle \frac{\varepsilon}{8}$$

(45)
$$\|b\|_{1} < \frac{1}{e} (\|b\| + \delta^{1/2})$$

and

From (41) and (46), we get:

Another application of Lemma 1.6 in the setting $(\mathcal{H}_2, T^*|_{\mathcal{H}_2})$ yields vectors $a_1' \in \mathcal{H}_2$, $w_1' \in \mathcal{H}_2$, $b_1' \in \mathcal{H}_2$ and $a_1' \in \mathcal{H}_2$ and $a_2' \in \mathcal{H}_2$, $w_1' \in \mathcal{H}_2$, and $a_1' \in \mathcal{H}_2$, $w_1' \in \mathcal{H}_2$, and $w_1' \in \mathcal{H}_2$, w_1

$$(48) \| \sum_{\substack{N_1 \le i \le N_2}} (x_i) | [x_i^i] \otimes x_i^i]_{B_i} + [a' \otimes (w' + b')]_{B_i} - [a'_i] \otimes (w'_i + b'_i)]_{B_i} \| x_i^{\xi} \|_{\mathcal{B}}$$

Juea 24828

(51)
$$\|b\|^{2} \leq \frac{1}{9} (\|b\|^{2} + 8^{1/2})$$

(52)
$$\| [(a_1^2 - a_1^2) \otimes (a + a_1^2)] \|_{B^1} \| \langle \frac{\xi}{16} \|_{B^1} \| \langle \frac{\xi}{16} \|_{B^1} \|_{$$

and

Since B'K2CK2, from (53) one gets

or using Lemma 1.2 and passing to ${\mathfrak C}_{\mathbb T}$

Let us denote $a_1 = a + a_1$. Since $T^*\mathcal{H}_1 \subset \mathcal{H}_1$, from Lemma 1.5 we obtain

(56)
$$[(a+P_{\mathcal{H}_1}P_{\mathcal{K}_1}(w'+b'))\otimes(w+b)]_{B}=[(a+P_{\mathcal{K}_1}(w'+b'))\otimes P_{\mathcal{H}_1}(w+b)]_{B}$$

and similarly for a₁, w₁ and b₁,

From (42) and the above identities we get by passing to O_T :

$$(57) \| \sum_{i=1}^{N_{1}} \angle_{i} [x_{0}^{i} \otimes x_{0}^{i}]_{T} + [(a+P_{2}(w'+b')) \otimes P_{2}(w+b)]_{T} - (a_{1}+P_{2}(w'+b')) \otimes P_{2}(w+b')]_{T} \| \angle_{8} \frac{\hat{e}}{8}$$

Using Lemma 1.2 and passing to 0.7* we get from (48):

Therefore

(58)
$$V \sum_{N_1 \leq i \leq N_2} \propto i \left[x_i^i \otimes x_i^i \right]_T + \left[P_{\mathcal{F}}(w'+b') \otimes a' \right]_T - \left[P_{\mathcal{F}}(w'_1 + b'_1) \otimes a'_1 \right]_T \left[\frac{\xi}{16} \right]$$

$$\text{Let} \left[L_2 \right]_T = \left[L \right]_T - \left[\left(a_1 + P_{\mathcal{K}}(w_1^* + b_1^*) \right) \otimes \left(a_1^* + P_{\mathcal{K}_1}(w_1 + b_1^*) \right) \right]_T$$

We estimate the norm of $[L_2]_T$. We have $(|L_2]_T || \le ||L_1]_T - [(a + P_{\chi}(w'+b')) \otimes (a' + P_{\chi_1}(w+b))]_T - \sum_{i=1}^{N_2} \angle_i [x_i | \otimes x_i | X_i |$

It follows from (36) and (40) that $A \neq \frac{c}{2}$. From (57) and (58) we get $B + C \neq \frac{c}{4}$. Let us estimate now the last terms D and E. From (47) and (52) we obtain

$$D = \|[a_1 \otimes a_1^*]_T - [a \otimes a_1^*]_T \| \le \|[(a_1 - a) \otimes a_1^*]_T \| + \|[a_1 \otimes (a_1^* - a_1^*)]_T \| \le \frac{\varepsilon}{16} + \frac{\varepsilon}{16} = \frac{\varepsilon}{8}.$$

$$(59) \left[P_{\mathcal{S}}(b_1^* - b^*) \otimes P_{\mathcal{F}}(w_1 + b_1) \right]_{\mathsf{T}} = 0$$

Indeed, for each $f \in H^{\infty}$, we have:

Since
$$\mathcal{H}_1 \subset V$$
 Ker $(T^* - \overline{\lambda})^n \subset \mathbb{P}^1$ and bi-b' $\in \mathbb{R}^1$ $\subset \mathbb{R}^1$ $\in \mathbb{R}^1$

it follows that $b_1'-b'$ is orthogonal onto \mathcal{H}_1 . Finally, from (55) and (59) one obtains

Therefore

Proof of Theorem 2.1

Fix $[L]_{T} \in \mathbb{Q}_{T}$ such that $0 \neq \|[L]_{K} = \frac{1}{4}$. Let $\{s_{n}\}_{n=1}^{\infty}$ be a sequence of positive numbers strictly decreasing to 1/2 such that $s_{1}=1$ and define $f_{0}=1$ and $f_{n}=1$ and f_{n}

$$(60)_{k} \| [L]_{T} - [(a_{k} + P_{K}(w_{k}^{\prime} + b_{k}^{\prime})) \otimes (a_{k}^{\prime} + P_{H}(w_{k} + b_{k}))]_{T} \| \leq \delta^{k}$$

(61)
$$\frac{k-1}{k} = \frac{k-1}{k-1} = \frac{k-1}{2}$$
, $\frac{k-1}{2} = \frac{k-1}{2} = \frac{k-1}{2}$

$$(62)_{k} \| w_{k} - w_{k-1} \| (62)_{k} \| w_{k} - w_{k-1} \| w_{k} - w_{k} \| w_{k} \| w_{k} - w_{k} \| w_{k} - w_{k} \| w_{$$

$$(63)_{k} \| b_{k} \| \left(\frac{1}{p_{k-1}} \| + \frac{1}{p_{k-1}} \| + \frac{k-1}{2} \right), \| b_{k} \| \left(\frac{1}{p_{k-1}} \| b_{k-1} \| + \frac{k-1}{2} \right)$$

Then applying Lemma 2.5, we deduce the existence of vectors $\mathbf{a}_{n+1} \in \mathcal{H}_1$, $\mathbf{b}_{n+1} \in \mathcal{H}_1$, $\mathbf{a}'_{n+1} \in \mathcal{H}_2$, $\mathbf{w}'_{n+1} \in \mathcal{H}_2$ and $\mathbf{b}'_{n+1} \in \mathcal{H}_2$ such that inequalities $(60)_{n+1}$ to $(63)_{n+1}$ are fulfilled for k=n+1. Therefore, by induction, one can construct the sequences $(\mathbf{a}_n) \in \mathcal{H}_1$, $(\mathbf{w}_n) \in \mathcal{H}_1$, $(\mathbf{b}_n) \in \mathcal{H}_1$, $(\mathbf{a}'_n) \in \mathcal{H}_2$, $(\mathbf{w}'_n) \in \mathcal{H}_2$ and $(\mathbf{b}'_k) \in \mathcal{H}_2$ satisfying $(60)_n$ to $(63)_n$ for all $n \geqslant 1$. It is clear from (1) and (62) that (\mathbf{a}_n) , (\mathbf{w}_n) , (\mathbf{a}'_n) and (\mathbf{w}'_n) are Cauchy sequences. Define

$$\mathbf{a} = \lim_{n \to \infty} \mathbf{a}_n, \ \mathbf{a'} = \lim_{n \to \infty} \mathbf{a}_n', \ \mathbf{w} = \lim_{n \to \infty} \mathbf{w}_n' = \lim_{n \to \infty} \mathbf{w}_n'$$

Using (61) and (62) one easily sees that

$$\|a\| \leq \frac{3}{1-8^{1/2}}, \|a'\| \leq \frac{3}{1-8^{1/2}}, \|w\| \leq \frac{1}{1-8^{1/2}}, \|w'\| \leq \frac{1}{1-8^{1/2}}$$

Furthermore, by iterating (63)_n we obtain

$$\frac{1}{2} \| b_n \| \langle s_n \| b_n \| | \sum_{k=1}^{n-1} s_k \rangle^{k/2} \leq \sum_{k=1}^{\infty} k/2$$

and therefore

$$\|b_n\| \leq \frac{2}{1-\delta^{1/2}}, \|b_n'\| \leq \frac{2}{1-\delta^{1/2}}$$

Without loss of generality we may suppose that (b_n) converges weakly to b and (b_n') converges weakly to b^* .

It remains to show that

$$\left\{ \left[\left(a_{n} + P_{\mathcal{H}}(w_{n}' + b_{n}') \right) \otimes \left(a_{n}' + P_{\mathcal{H}_{1}}(w_{n} + b_{n}) \right) \right] \right\} \right\} \xrightarrow{\infty} n = 1$$

For each $f \in H^{\infty}$, we have

$$\begin{split} & | \langle f(T), [a_n \otimes P_{H_1}(w_n + b_n)]_{T^{-}} [a \otimes P_{H_1}(w + b)] | | \langle f(T), [a_n - a] | | P_{H_1}(w_n + b_n) | | | f | | + \\ & + | (f(T)a, P_{H_1}(w_n + b_n - w - b)) | \longrightarrow 0 \quad \text{as } n \longrightarrow \infty. \end{split}$$

Similarly

converges to 0 as n -> do.

Finally, we show that

$$\left\{ \left[P_{\mathcal{K}}(w_{n}'+b_{n}') \otimes P_{\mathcal{K}_{1}}(w_{n}+b_{n}) \right] \right\} \stackrel{\sim}{\underset{n=1}{\sim}}$$

converges weakly to

Indeed, as we have remarked in the proof of Lemma 2.5

Therefore

$$\begin{split} | & \langle f(T), [P_{3e}(w_{n}'+b_{n}') \otimes P_{3e_{1}}(w_{n}+b_{n})]_{T} - \\ & - [P_{3e}(w'+b') \otimes P_{3e_{1}}(w+b)]_{T} \rangle | = \\ & + \{(T), [P_{3e}(w_{n}') \otimes P_{3e_{1}}(w_{n}+b_{n})]_{T} - \\ & - [P_{3e}(w') \otimes P_{3e_{1}}(w+b)]_{T} \rangle | \end{split}$$

Since $\|w_n'-w\| \to 0$ and $\{w_n + b_n\}$ is bounded, the last term converges to zero.

It follows that

$$[L]_{T} = [(a + P_{K}(w, +p,)) \otimes (a, +b)]$$

with

$$\|a + P_{3}(w'+b')\|\|a'+P_{3}(w+b)\| \leq \frac{6^{2}}{(1-5^{1/2})^{2}} \leq 4^{2}6^{2}$$

Therefore $T \in A_1(r)$, with $1 \le r \le 4^2 6^2$

After this paper was completed, I learned that H.Bercovici and B.Chevreau independently proved that $A=A_1(r)$ (Bercovici gets the best value r=1). a fact which implies our main result (Theorem 2.1). On the way of proving $A=A_1(r)$ our result seems to be a natural one to check, and we hope that our proof shows a small part of the difficulty of this (now solved) problem.

Acknowledgements

I would like to express my gratitudie to Professor Carl M.Pearcy and Professor Bernard Chevreau for helpful discussions on this subject. Thanks are due to the referre of an earlier version of this paper whose valuable suggestions entirely changed the presentation of the paper.

References

- 1. C.Apostol, H.Bercovici, C.Foias and C.Pearcy Invariant subspaces, dilation theory and the structure of the predual of a dual operator algebra.

 I.J.Funct. Anal.63(1985), 369-404.
- C.Apostol, H.Bercovici, C.Foiaş and C.Pearcy, Invariant subspaces, dilation theory and the structure of the predual of a dual operator algebra,
 II, Indiana J.Math., 34(1985), 845-854.
- 3. H.Bercovici, C.Foiaș and C.Pearcy, Dilation theory and systems of simultaneous equations in the predual of an operator algebra. I.Michigan Math. I., 30(1983), 335-354.
- 4. H.Bercovici, C.Foiaș and C.Pearcy, Dual algebras with applications to invariant subspaces and dilation theory. CBMS. Regional Conference Series in Math. No.56, A.M.S., Providence, 1985.
- 5. H.Bercovici, C.Foias, C.Pearcy and B.Sz.-Nagy, Functional models and extended spectral dominance, Acta Sci. Math., (Szeged) 43(1981), 243-254.
- 6. S.Brown, Some invariant subspaces for subnormal operators, Integral Equations operator Theory, 1(1978), 310-333.
- 7. S.Brown, B.Chevreau and C.Pearcy, Contractions with rich spectrum have invariant subspaces, J.Operator Theory 1(1979), 123-136.
- 8. S.Brown, B.Chevreau and C.Pearcy, On the structure of contraction operators II, preprint.
- 9. B.Chevreau and C.Pearcy, On the structure of contraction operators with applications to invariant subspaces J.Funct. Anal. 67(1986), 360-379.
- 10. B.Chevreau and C.Pearcy, On the structure of contraction operators. I, preprint.
- 11. B.Chevreau and C.Pearcy, On Sheung's theorem in the theory of dual operator algebras, Proceedings of the XIth Annual Conference in Operator Theory, Bucharest, 1986.

Notes No. 36 A.M.S. Providence, 1978.

- 13. G.Robel, On the structure of (BCP) operators and related algebras 1. Operator theory, 125(1984), 23-45.
- 14. B.Sz.-Nagy and C.Foias, Harmonic analysis of operators on Hilbert space, North-Holland, Amsterdam, 1970.
- 15. D.Westwood, On C_{00} contractions with dominating spectreum, J.Funct. Anal. 66(1986), 96-104.

BEBE PRUNAPU

Department of Mathematics INCREST Bd.Păcii 220, 79622 Bucharest ROMANIA.