INSTITUTUL DE MATEMATICA

INSTITUTUL NATIONAL PENTRU CREATIE STIINTIFICA SI TEHNICA

ISSN 0250 3638

A NOTE ON THE CLASS A_{1,80} by B. PRUNARU

PREPRINT SERIES IN MATHEMATICS

No. 29/1988

med 24830

A NOTE ON THE CLASS A_{1,}%_o by B. PRUNARU

June 1988

^{*)} Department of Mathematics, The National Institute for Scientific and Technical Creation, Bd. Pacii 220, 79622 Bucharest, Romania.

A NOTE ON THE CLASS A1, %o .

B. Prunaru

Abstract. The solvability of certain systems of simultaneous equations in the predual of a dual operator algebra is studied. The main result is a geometric criterion for membership in the class A_1, K_0 which improves a similar one from $\begin{bmatrix} 3 \end{bmatrix}$. The proof is based on the techniques introduced in $\begin{bmatrix} 3 \end{bmatrix}$ and $\begin{bmatrix} 4 \end{bmatrix}$.

Let $\mathcal H$ denote a separable, infinite dimensional complex Hilbert space and let $L(\mathcal H)$ denote the algebra of all bounded liner operators on $\mathcal H$. A dual algebra is by definition a weak * closed unital subalgebra of $L(\mathcal H)$; the paper [1] contains an excellent account of the theory of dual algebras and a comprehensive bibliography until 1985.

In this note we are concerned with several classes of contractions appearing in the theory of dual algebras. To be more explicity, recall that if Λ is a dual algebra and m,n are cardinal numbers, $1 \leqslant m, n \leqslant \aleph_0$, then Λ is said to have property $(\Lambda_{m,n})$ if each system of simultaneous equations

$$[L_{ij}] = [x_i \otimes y_j]$$
, $0 \le i \le m$, $0 \le j \le n$

in the predual Q_A of A has a solution $\{x_i; 0 \le i \le m\}$, $\{y_j; 0 \le j \le n\}$, where x_i and y_j are vectors from H. (Here $[x \otimes y]$ denotes the class in O_A of the rank-one operator defined by $(x \otimes y)(z) = (z, y)x$, $z \in H$).

If $\rho > 0$ then A has property $A_{m,\,n}\left(\rho\right)$ if for each $s>\rho$, vectors x_{i} and y_{j} can be chosen to satisfy the above equations and moreover

- 2 -

$$\|x_i\| \le (s \sum_{0 \le j \le n} \|[L_{ij}]\|)^{1/2}, \quad 0 \le i \le m$$

and

$$\|y_{j}\| < (s \sum_{0 \le i \le m} \|[L_{ij}]\|)^{1/2}, \quad 0 \le j \le n$$

If $T \in L(H)$ then A_T denotes the dual algebra generated by T in L(H) and Q_T denotes the predual Q_T of Q_T . As usually, Q_T denotes the class of all absolutely continuous contractions (i.e. for which the unitary summand is absolutely continuous) for which the Q_T -Nagy-Foias functional calculus is an isometry. If Q_T -Nagy are cardinal numbers, Q_T -Nagy, then

 $A_{m,n} = \{T \in A; A_T \text{ has property } (A_{m,n})\}$ and similarly for

A_{m,n} ().

If m=n, then one usually denotes $A_n = A_n$, n and $A_n \, (\rho) = A_n \, , n \, (\rho)$.

In [3], B.Chevreau and C.Pearcy have given a certain sufficient condition for membership in the class $A_1(f)$ (cf. [3], Theorem 4.4).

The purpose of this note is to show that this condition is sufficiently strong to ensure the membership in the class $A_1, \kappa_o(\beta)$. Before giving the main result we recall some notions introduced in [3].

Let $ACL(\{\{\}\})$ be a dual algebra and let $b\in [0,1)$. Then $E_b^r(A)$ denotes the set of all those [L] in C_A such that there exist sequences $\{x_n\}$ and $\{y_n\}$ in the unit ball of $\{\{\}\}$ satisfying:

- a) $\overline{\lim} \| [L] [x_n \otimes y_n] \| \leq \theta$
- b) $\lim \| [x_n \otimes z] \| = 0$ $\forall z \in \mathbb{H}$ and
- c) $\{y_n\}$ converges weakly to zero.

If $0 < \emptyset < y$ then a dual algebra A is said to have property E_{\emptyset}^r , y if the closed absolutely convex hull of the set $E_{\emptyset}^r(A)$ contains the closed ball in 0_A centered at 0 with radius y.

Let also recall that if $T\in A(H)$ and if $B\in L(K)$ denotes the minimal coisometric extension of T, then $B\in A(K)$ and $B=S^*\oplus R$, where $S\in L(P)$ is a unilateral shift and $R\in L(R)$ is an absolutely continuous unitary operator. Let also denote by $\mathbb Q$ and A the orthogonal projections of K onto P and R, respectively. It follows from [3], Proposition [3], Proposition [3], that if $[R\not=0]$, then [A] contains a reducing subspace [A] for [A] so that [A] is unitarily equivalent with the multiplication operator [A] on [A] on [A] and such that the subspace [A] of [A] corresponding to the closure of polynomials in [A] is contained in [A].

If TEA(H), then there exists a canonical isometry $\varphi: Q_T \longrightarrow Q_B$ such that

$$(f(T), [L]) = (f(B), \varphi([L])), [L] \in Q_T$$

It follows that $\Psi([x \otimes y]) = [x \otimes y]_B$, for all x and y in H and since BHCH, we also have $[x \otimes z]_B = [x \otimes P_H z]_B$, $\forall x \in H$ and $\forall z \in K$.

The main result of the paper is the following

Theorem 1

Suppose TEA(H) and for some 02845, AT has

property $E_{0,\gamma}^{r}$. Then $T\in A_{1,\kappa_{0}}(r)$, for some r>0.

After this paper was completed, the author learned that B. Chevreau, G. Exner and C.Pearcy have also proved Theorem I seemingly with different methods. Moreover, they showed that all c.n.u., contractions T such that A_T has property E_G^r , are reflexive. Their results were announced in [2].

Let A_o denote the orthogonal projection of K onto R_o and let $z \to \{z\}$ denote the isomorphism from R_o onto $L^2(\sigma(R))$. The following lemma is proved in [3].

Lemma 1. ([3 , Theorem 3.11]). Suppose $T \in A(H) \text{ and for some } 0 < C < \int A_T \text{ has property } E_C^r, \gamma \text{ . Suppose also that } [L] \in Q_B, \quad 0 < \beta < 1, \quad \xi > 0, \quad \delta > 0, \quad a \in H, \quad w \in P, \quad b \in R_0, \quad \{d_s\}_{s=1}^t \subset K \text{ and } \{z_k\}_{k=1}^r \subset P \text{ are given so that } \{d_s\}_{s=1}^t \subset K \text{ and } \{z_k\}_{k=1}^r \subset P \text{ are given so that } \{d_s\}_{s=1}^t \subset K \text{ and } \{z_k\}_{k=1}^r \subset P \text{ are given so that } \{d_s\}_{s=1}^r \subset R$

Then there exist a'-H, u-H, w'-EP, b'-ER $_{\rm O}$ such that

We are now prepared to prove the main result.

follows the main ideas from [4, Lemma 5]

. Its proof

and [3, Theorem 4.7].

Proof of Theorem 1. Let $\{[L_j]\}_{j=1}^{\infty} \subset \mathbb{Q}_T$, and let also $[L_j]_{\mathcal{B}} = \mathcal{C}(\{[L_j]_T)$ for $j \neq 1$.

Let 0,70 such that $\sum_{j=1}^{3/2}$ is finite. Without loss of generality, we may assume that $\|[L_j]\|/\|(\delta_j)\|$ for each j.

Let us denote $\mathcal{E}_{jk} = \delta_j (\frac{\hat{0}}{y})^k$ for all $j \geqslant 1$ and $k \geqslant 0$.

Let $\{s_n\}$ be a sequence of positive numbers strictly decreasing to $\frac{1}{2}$ such that $s_1=1$ and let $n=\frac{s_n+1}{s_n}$, $n \ge 1$.

Let B:N x N:->N be a bijection such that j $\langle j' \rangle$ and k $\langle k' \rangle$ implies

 $B(j, k) \leq B(j', k')$.

Let $w_{j,0}=0$ in P and $b_{j,0}^n=0$ in R_0 , for all $j\geqslant 1$ and all $n\geqslant 1$.

We shall construct, by induction (on the range of B) sequences $\{x_n\}^{CH}$, $\{w_j,k\}_{j,k\geqslant 1}$ in P and for $n\geqslant 1$, finite sequences $\{b_j^n,k\}_{B(j,k)\leqslant n}$ in R such that:

1)
$$[L_j]_B - [\times_n \otimes (w_{j,k} + b_{j,k}^n, k)] B^{1/2}$$

2)
$$\|x_n - x_{n-1}\| \le \frac{1}{2}, k-1$$
, for $n=B(j,k)$

3)
$$\|w_{j,k}^{-} - w_{j,k-1} \| \langle \mathcal{E}_{j,k-1}^{1/2} (\forall) j, k \rangle \|$$

4)
$$\|b_{j,k}^{k}\| \le \frac{1}{p_{n}} \|b_{j,k}^{n-1}\| \text{ if } n \ge (j,k)$$

and

5)
$$\|b_{j,k}^{n}\| \ge \frac{1}{c} \{\|b_{j,k-1}^{n+1}\| + \xi_{j,k-1}^{n+2}\}$$
 if $n=B(j,k)$.

For n=1=B(1,1), we apply Lemma 1, with $L=[L_1^*], \delta=\delta_1, \rho=\rho_1, a=0, b=0, w=0, d=0, z=0, to find x_1\in H, w_1\in P, b_1^1\in R_0 so that$

and

$$\|b_{11}^{1}\| < \frac{\lambda}{\rho_{1}} \delta_{1}^{1/2}$$

Suppose now that vectors $\{x_1,\dots,x_n\}$ in H, $\{w_j,k\}$ B(j,k) in P and $\{b_{jk}^n\}$ B(j,k) in R have been chosen so that 1) - 5) are satisfied.

Let
$$n + 1 = B(p, q)$$
.

Apply Lemma 1 with
$$[L] = [L'_p]$$
, $a=x_n$, $w=w_{p,q-1}$, $b=b_{p,q-1}^n$, $f=f_{n+1}$, $b=f_{p,q-1}$,

and \$70 sufficiently small (to be determined later) to obtain

$$x_{n+1} \in H$$
, $w_{p,q} \in P$, $b_{p,q}^{n+1} \in R$ and $u_{n+1} \in H$ such that
$$\| [L_p]_B - [x_{n+1}] \otimes (w_{p,q} + b_{p,q}^{n+1})] \| (\mathcal{L}_p)_q \|_{R}^{q}$$

$$\|x_{n+1}-x_n\| \le 3\varepsilon_{p,q-1}^{1/2}$$

$$\| w_{p,q} - w_{p,q-1} \| \angle \xi_{p,q-1} \|$$

$$\begin{split} \|b_{p,q}^{n+1}\| & \langle \frac{1}{p_{n+1}} \} \|b_{p,q-1}^{n}\| + \xi_{p,q-1}^{1/2} \\ \|\{A_{o} \times_{n+1} \} (e^{it})\| \rangle p_{n+1} \|\{A_{o} (\times_{n} + u_{n+1}) (e^{it}) \}\| \\ \|\|(\times_{n+1} - \times_{n}) \otimes w_{jk}\| \| \leq \xi \quad \text{for } B(j,k) \leq n \end{split}$$

and .

$$\|[u_{n+1} \otimes b_{j,k}^n]\| \angle \mathcal{E}$$
 for $B(j,k) \leq n$

Let us define for each (j, k), with $B(j,k) \le n$

$$\frac{\{b_{j,k}^{n+1}\}(e^{it}) = \frac{\{A_{o}(x_{n}+u_{n+1})\}(e^{it})}{\{A_{o}(x_{n+1})\}(e^{it})} \cdot b_{j,k}^{n}(e^{it})}$$

$$if \{A_{o}(x_{n+1})(e^{it})\} \neq 0$$

and

$$\begin{cases} b_{j,k}^{n+1} \zeta(e^{it}) = 0 \\ if \begin{cases} A_0(x_{n+1})(e^{it}) \zeta = 0 \end{cases}$$

If follows that

$$b_{j,k}^{n+1} \in R_{o}$$
 $||b_{j,k}^{n+1}|| ||C_{n+1}^{n}|| ||b_{j,k}^{n}||$

and

$$\left[x_{n+1} \otimes b_{j,k}^{n+1}\right]_{B} = \left[\left(x_{n} + u_{n+1}\right) \otimes b_{j,k}^{n}\right]_{B}$$

for all (j,k) such that

 $B(j, k) \leq n$

For $\{70 \text{ sufficiently small, we have}$

$$\|[L_j^2]_B - [x_{n+1} \otimes (w_{jk} + b_{jk}^{n+1})]_B \| \langle \xi_{jk} \rangle$$

if B(j,k) < n+1.

Therefore, relations 1)-5) are fulfilled for n+1. It also follows from 2) and 3) that $\{x_n\}$ and $\{w_j k\}_{k=1}^\infty$ are Cauchy sequences, for all $j\geqslant 1$ and from 4) and 5) that the sequences $\{b_j k\}_{k=1}^\infty$ are bounded for all $j\geqslant 1$, where $b_j k = b_j k$ for all $j,k\geqslant 1$. Without loss of generality, we may suppose that $\{b_j k\}_{k=1}^\infty$ converges weakly to some $b_j \in R_0$. Let also denote x=1 im x_n and $w_j=1$ im $w_j k$, for each $j\geqslant 1$. Then it follows easily that

$$[L_j] = [x \otimes P_H(w_j + b_j)]$$

for all j7,1.

It follows from (1) that

$$\| \times \| \langle 3 \sum_{j=1}^{\infty} \sum_{k=0}^{\infty} \xi_{j,k}^{1/2} = 3 \sum_{j=1}^{\infty} \sum_{k=0}^{\infty} \delta_{j}^{1/2} (\frac{\emptyset}{V})^{k/2} = \frac{3}{1 - (\emptyset/V)} \sum_{j=1}^{1/2} \delta_{j}^{1/2} (\frac{\emptyset/V})^{k/2} = \frac{3}{1 - (\emptyset/V)} \sum_{j=1}^{1/$$

Similarly, we obtain:

$$||w_j|| \le \frac{\int_{j}^{1/2}}{1 - (\theta / \frac{1}{2})} \quad \text{for all } j \ge 1.$$

From (4) and (5) we infer that

$$s_{n+1} \| b_{j}, k \| s_{B}(j, k+1) + 1 \| b_{j}, k-1 \| + \mathcal{E}_{j}^{1/2}, k-1 \| s_{B}(j, 1) + 1 \| b_{j}, 1 \| + \sum_{\ell=1}^{k-1} \mathcal{E}_{j}^{1/2}, \ell$$

$$\leq s_{B}(j, 1) + 1 \| b_{j}, 1 \| + \sum_{\ell=1}^{k-1} \mathcal{E}_{j}^{1/2}, \ell$$

$$\leq \sum_{\ell=0}^{k-1} \mathcal{E}_{j}^{1/2}, \ell = \sum_{\ell=0}^{k-1} \mathcal{E}_{j}^{1/2}$$

and therefore that

$$||b_{j,k}|| \leq \frac{2 \int_{j}^{1/2}}{1 - (0/y')^{1/2}} \qquad \text{for all } j > 1$$
and $k > 0$

It follows that

$$\|b_{j}\| \leq \frac{2\delta_{j}^{1/2}}{1 - (\theta(j))} \qquad (\forall) j > 1$$

From the above relations, we obtain that $T(A_1, \mathcal{H}_o(\rho), \text{ where } \rho \in \frac{3}{1-(\theta/\gamma)} \text{ . The proof is complete.}$

REFERENÇES

- 1. H.Bercovici, C.Foiaş and C.Pearcy. Dual algebras with applications to invariant subspaces and dilation theory. CBMS Regional Conference Series in Math. No.56, A.M.S. Providence, 1985.
- 2. B.Chevreau, G.Exner and C.Pearcy. Sur la réflexivité des contractions de l'espace hilbertien.C.R.Acad. Sci., Paris (to appear).
- 3. B.Chevreau and C.Pearcy. On the structure of contraction operators I.J.Funct.Anal. (to appear).
- 4. R.Olin and J.Thomson. Algebras of subnormal operators. J.Funct.Anal.37(1980), p.271-301.

Bebe Prunaru

Department of Mathematics
INCREST

Bd.Păcii 220, 79622

Bucharest, ROMANIA.