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SHEAF PROPERTIES AND COHOMOLOGY IN STANDARD

H-CONES OF FUNCT!ONS

Abstract. In the firamework of the theery of H-cones of

functions on a set X, for every natural open subset U of X
we consider the cones HO(U), H(u), P(U) of the elements of
tharmonic type' and of “potential type" of S(U). Assuming

a local property for the initial cope S we lnyvestigate the

shieaf properties of the mappings
Ut QU U=tREU, = U= ()

We prove that the vector space R(U) of the elements
which are locally differences of super-harmonic functions
is an algebra. fhis allows us to find partition of urlty
in the sheaves U->R(U) and U*?QU) (ﬁ;beeing the sheaf associa-
ted to the presheaf U-P(U)-P(U)). Finally we compute the co-
homology groups for the sheaf of functions which are locally
differences of harmonic functions, We constat the pleasant
fact that some results from potential theory associated with
a harmonic space (see E71 .81 [91) can be generalised in our

framework,

For the general theory of standard H-cones of functions
on a set we refer to [2] and for the basic hotiens of sheafl
theory which are used to [1], Eal.

I want to express my gratitude to Prof, N.Boboe for his valuas

ble suggestions during the achievement of this work.

1. PRELIMINARIES

5

let (S, X) be s standard H=cone of fuhctiens on a selt

On X we consider the natural topology (i.e. the coarsest topo=
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logy on X which makes continucus the universally continuous
elements of S). All over in this paper '"open!' set or "closed!"
set means with respect to the natural topology.

We suppose that X is semisaturated (i.e. for every

HeSES the dual of S, 1=V, v H-neasiire on X it follows that u

is a H-measure on X) and that S satisfies the natura]rsheaf
property = (i.e. U=S(U), U opeh subset of X, is a sheaf).

S{U)is the localisation of S to U i e,

e

S(U)={f:U—>R+lf<oo on a dense subset of U and there exist

N
BX\U XSU

s,€S,5 <= such that (s - Sn)luﬁf}»B is the balayage on

the set X\U in the cone S, It is known that S(U) is a standard
H-cone of functions and that U is semisaturated with respect to
S(U)(see [31), 1t s also known that the natiursl cheat proper-
ty implies that the DO axlom iscvaliid fim (S, X) i fe. fop cve-

ry G4, G, open subsets of X such that GIL1G2=X it follows

: . U A
For an open set U X, seS(U), AC U we denote B the

A

balayage on A in the standard H-cone S(U) i.e. BS:A{tcS(U)ltz

2s on A} ("A" mean the infimum in the cone S(U))
Vx = theuset ‘of inje i ghbolinheods: of .

U, usy
s

carrys ={er[vasVX, Nl B # s}.

[}
We'll use .the following important remark: since S satis-
B

fies the DO axiom we have: UBU\V(SIU)=BX\VSIU on VV for all s&Ss
(see [4]) and hence:
X~
carrusz{er!Vngx, Vie lls B Vs#s}

Denoting by "L " the specific order in S(U) we define !
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the followlng conyex subcones of S(U):
HO(U): ={seS(U)|carrUs = §3}

P(U):={se$(U)lh;§s, heS(U),carrUh=ﬁ:¢h=0}

H(U):={seS(U) |lpeP(U), pL s=>p=0},

It is easy to see that fI(U) coincides with the band gene-

rated by HO(U) i.e,

H(u)={§ h Th el (U)}.

Fopp M i X, Wl iopen subsets iof X we deiflipne

rUV:HO(U)»HO(V); rUV(h)=h|V

Pyy PLUI=P (V)5 oy (p)=pl -y {heH (H) Ih S'».u({»{}) R 3

( "Y' means the specific supremum in the cone S(V)).

Remark. pUV(P) means [n fact the potential part of the
canonical decomposition of pr into the harmonic part and the
poit ential part,

We?ll prove that Pyy is well defined. Let heHo(U) and
xeV., Since carr . h=§, there exist WSVX such that xeWaWaV and

U
A
UBU\khxh. Since. S verifies the DO axiom:

VR o .
B (hlv)- B (h)|V~¢1lv hence caxrv(hlv) g

e hIVeHO(V)e

Now Fuy €8n be extended in an obvious manner to H(U) and this ex-

tension will be denoted again by Ve



2. SHEAF PROPERTIES

Proposition 1. i) (P(u), pUV)VﬁlU is a presheaf of con-

VeX  COnes:

EEGH AU )

o o)

is a sheaf of convex cones.
Vel

Proof. i) Obviously Pyy=!d-

Let WCVC U epeni subsets of X. Have to show that:

PywePuy=Puw
Let peP(U). Denote pUV(p)=p], Then on V:

p=p;+h, where h el (V).

Denote: pvw(p])=p?. Then.piép2+h2 on W with h?eH(W)

pUW(p);p3° Then p=p3+h3 on W with hseH(W).

We obtain p=h1+h2+p2=h3+p3 on:Wiand by <the unicity of

the decomposition it follows Py=P3 isie.

Py (P)=pyy, (py)=py oy (p)

Fi)obe is ‘ellead that UwHO(U) is a presheaf. Let U=kujU;,
iel

U.c X open subsets and hiEHo(Ui) such that
= - s - = :
v U, hj!Uif}Uj for every ¢ such that Uif?Uj,ﬁ, Siince

U=8(lU) Js a sheat, thepe exist heS(U) such thot hiy=h, for
: i
every  ledl

Foir e emndiieilalet xan « lhere sexict %%Uy such that
U, in : i Ui%«.‘w

xewc5Wc:ui and 'B h:=h. on U,. Since 'B h. =

%\
UBU\W( UBU W(

h)!U. (by axiom DO) it follows h)whi on U, hence

“ W X :
UBU&L(h):h e Ll,e The = last ‘equality. implies carruhc:U% Ui

v iel hence carr Uh:ﬂ lives thO(U).



Denote P _(U)={peP(U)Ip continuous]

HC(U):{heH(U)Ih continououg}.

Now we intend to find an other description of the 1inka-
ge mappings Pyy: For that we need the speclfic multiplication
in S(U) and we briefly recall this operation.

For feB;(U) (measurabie bounded functions on U) and

peP(U) we define f¥p the specific multiplication of p and f in

S(U). (By theorem 3.4%.6 of [2] there exist a kernel Vo U:BE(U)»
~P(U) uniquely determined by the properties v U(l)=p and

9
carrUVfCZ?f>O} for every feBE(U). We define: flp:=V, U(f)).

+
b

on V, PEP(U). Then Duv(gﬁp)mo.

Lkemma 2. Let geB (U), Yo U, ¥, U open subsets of X qg=0

Rroofi: iLet eVl and Wch such that erCch:V, By axiom D

P e ]

uVBV\W(

) =3

U\W( o

aiply gip)=gfip on V.

(the last equality holds since: carru(gﬁp)c:suPpch\chxW hen-

UBU\W( >UBU\W

. * * — . @ K =0 i.c
ce: gUp)m‘ (gUp) giip. Hence: carrv((guplv) g i.e.

* =
Pyy (afip)=0.

e U Uy )
Proposition 3, pUV(p):(pu B )IV for every paPC(U),
Vics s, Y U emen sitbsets sof: X,
N -
Proof. We remark that carrV(UBL\xp)uﬁm Endeead:  let

T

xell iand Nell sueh that xelcWe V. It follows: (B p) =

/
X

>U Us WU

I~V j
B \BLﬁhézulb\V

B on U {since UsW s open, U UsY and 8
p F 5

— -
UBmw«\uBuwﬂmuBuw) (UgUnv

satisfies axlom DO imply

: U,UsV
=1 e ta L p=-_B
=ff, We obtain PupP X P B

H e ST
v T 1 s
P.e. carry p/

pon M.
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_ For the converse inequalijty it is enough to show that
U,UsV
(p=

Bl f ol
Letiiges () qﬁgp"UBU\Vb on ¥ with carr quﬁ‘ Then
q:p5~UBupr with pﬂg p (see [31): Since: carr‘vq=ﬂs for every

xeV there exist WEVX such that xeWeWe Vo and:

@

(because VNWDUNY and S satisfles axiom DO) we get:

5 o V\WP U\V> v V\WJU\V} U Usy
IERCes [

UBU\'Wp“UBU\Vp=p‘—UBU\Vp on V- hehece: UBwap’:p; on V,

Then: UBU\Wp’=p‘ on U e, carrU(p’)CU\V’ Sinee Bi p, ngﬁ(U)’

p"is contlinuous hence there exist a decreasing sequence of

open subsets of U, (Fn)n such that FﬁDU;V and/\yBrnp’zUBU\Vp°.

Since an U\V:)carru(p’> it follows: UB np’=P’nF0r corciny el

It follows: UBU\Vp’sp’ i.e. g=0 and hence: (p-UBU\Vp)IVeP(V)
pUV will be

and we are done, This description of the mappings

very dsefulil insithe ssiequel..

Exemple. Consider S the standard H cone associated to

n
the heat equation on X=Ran, n=2, Let Q= Z mﬁ§-~ §%~be the
i=1 ox;
heat operator, ] :
. ¥ (\ y\\\' e - % - 5 i % > e
Then: f - (U)=ls (U)IB s=s for every Y open, respectively

(0]

compact subset‘of U,Rﬂ:U}j={h]Qh:O},
Since the Doob property holds in this case H{U)=H (uy,

Formula (%) BX%Up!U=Y{h€H(U\ih pon U} for every open. subsct

\
U of X and every pePC(X) finite can be checked using the Per=

ron-Wienner-Brelot method for the solution of the Dirichlet

problem (see the results from [51),



Proposltion B (HEU .r ) is a sheaf of convex cones,

Rioofr, It 0= obvnous that it is a presheaf.

bet = }Z{U h e (U, ) siich that h. ’U er hlei{1Uj.For

Ui[\UJ%E.

Since S8 has the natural sheaf property, there exist
et
Let gqeP(U), q§h on U, We have to show that g=0. We have:
(h?)=ﬁ,

heS{U): such that h

£ hi on U But hi= 2 h? on UI with h?eS(Ui))carrU

neN ' i
koo

qIUi i

Let keN and denote t = I h' ilpes % h" hence OIU 41 Ty on Ui'

. n=1 "' n>k

By the Riesz decomposition theorem g =altglensll with gl et
K IUi i i i iy k
i s Y Ry 3
on U, qigu on U, carrUi(qh)g i=1carrUi(hi) fi.e. qie

Ho(Ui)C:H(Ui)° But qIU —h’lpUU (q) with h;cH(Ui). We obtain:

oo . . e
I]i?'qi on U. hence DUUi(q)é‘qiélik on U;. Since: lim u, 0o is

o0
0 S U 2 e
follows pUUi(q)“D Lo, = B n(q)(Ui. Let xell., there
I
: — Nl : U
exist WEVX such that erc:WC:Ui, then: UBU wq,U ZUBU Ulqiu =

i
UNW

g o B e g G U s oo B
1

g=q on U,

carrq e U‘nU iel; hence carqu=O° Since geP(U) we obtain qg=0.

Example: For the standard H cone associated to the heat

equation: U=H(U)={heS(U)IQh=0} is obviously a sheaf,

Propesition 5. pUd( ipl=f Vﬁpuv(p) for every pePC(U) and
feﬁg(b}
i.e. the following diagram is commutative
Rl
Palr = ap ()
et =%
puvi/ lfuv where o (pl=ifp

0‘\/ < ¥ .
PC(V -wﬂyPC(V)



Buoon. Shiee puv(fﬁp)zpuv(”\/ﬁp)*puv(“u vy P

=puv(ﬂvﬁp)=muv(flvé(1§p)) (we have used Lemma 2) and

pUV(p)EQUV(]VSP)+DUV(]U\Vﬁp)meV(]Vﬁp) in-the formula

we have to prove we may suppose that supp f CV and
carry piE N

By proposition 3 we have to prove that:

H S v ~ D - il 2 - ; .""mf" o 1 g
Since: IU\VSPCT(U) and caer(IU\Vﬁp)g(U%V}ﬁV g it re

sults 1 0,

oaDe=
U\VU

Ble), . el

+ & . _
For f°Bb(V) et filx)= B It is enough to
Mo \ ~
prove that f»(fﬁp«UBU V(fﬁp))lv has the properties of the spe-
cific multiplication in S(V) which corresponds to the poten-
tial (p~UBU\Vp)I ;
V
ot
For f=1; fz]v hence:
U,Usy Ul U U :
(]Vv'vp" B (lvz!cp)) I\l:(]U*pw B ( U}P))]V:(P"’ B ! V3
U U U ‘
e e s Sl a =
.calrv(fup B (fap))lvcumarlv(fup)Cﬂsupp i

and we are done,

3. THE ALGEBRA R (U)

Denote SC b(U)c{seS(U)!g continuous, bounded}.
: b

[S(U)1:=8S(U)-S(U) and:

R(U)={f:U=R continuous | for every xel there exist VéUy, Ve

such that fiveﬁS (W)13. |f we define for VCU open subsets

chb

it
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S 5 =¥ S ) o
gyt REU)=R (V) ol
it s iobwious that (RL): SUV) is a sheaf of vector spaces.
Now our aim is to show that (with the usual multiplica-
tion of functions) R(U) is an algebra such that every strictly
positive element of R(U) has its inverse in R(U).
We shall use the following results of [4]., The hypothe-

sis of them are obyiously fulfilled in our context.

Propositfonké

(S, X) has the natural sheaf bmmermféys‘has the axiom

D, and for every open subset U of X there exist pePU), pU,

Proposition L radoolis seni saturated dndiietict peP(X),

p>0; f:X>R_ lTower semi-continuous. Then feS(U)E3for every xeU,
for every open neighbourhood D of x (with respect to the natu-
ral topology on U denoted TO(U)) there exist a neighbourhood VW

in the sfine topology, of X such - that - WC D and:

UMW, U ool
€ Biee R =g (x),
; JEline e : oo : . = s
Denote Vx ={V|Vis a neighbourhood of x in the fine
topology on X}.
- N
Remarks: i) Here 58 Y is the balayed of . the Dipac nmea=

, : ? UAW, U XA\
silife & ~on the set USW In the cone SEH) and Ex\ ! meg\

since
X

the axiom DO ls satisfied.

<5

ii) By the caracterisation of Proposition 7 we can

call the functions: In Sl “superharmonic funetions'! on U,
N\ , ’

S(U)={f:U+R, upper semi-continuous|¥ xeU, ¥ Del_ | (x), there
o'l



Cii

e

there exist chilne, WC D such that L

The following properties are easy. to cheeck:
) SUU) s o colbion cone 6F Funotlon. on u.

2) Denoting r WAS( )=S (V) , VCU,‘?BV(F)wfrV then

o 25
)

s TUV/ Ve U

Vasd

30 F feS O et ihen M-feS(U) and hence fe[S(U)]

is a presheaf of convex cones,

(since f=M-(M-F)). (

L (fn)nES(U) is an increasing sequence, P el for
‘ e NS h
every neN then f %%’sup f cf S(U)J (sup Fn denotes the upper
n n
semi-continuous regularisation of sup fn).
n

Lemma 8. i ueS(V), veS(W), w0, %0 then ror every nx1

2 i o et et Ao,

vnu}hneS(V)‘

. n l=-n . : : o
Proof. Obviously v 'u IS Upper semi-continuous. Let

v_.&m—-w—.-m

xeV and Dth | Gl esinee eSO there oo WEVi'ne)W(:D such

(N
that ei W(V)Zu(x).

Using Holder inequality we obtain:

n o n Y R.gj, XNWyn
(x)=( €y, (v))'= ( e d - - g
U n
] yxu XNy n -1 vl o g
<(f ﬁTT )(fudgx ) S(f :F??dex Ju (x)
hence mﬁég(X)éf wyf] 5 W,.By proposition 7 we obtain vnujmng
u u

S,

Rropasition 9 I ueS), veS(M) are bounded and thera

7] i
exlstlco<l  such that U=v<oii- then Uf? el Sy %
2 n
D e Vv M}_, .Y. n:-'
Proof, W (14 u) = (u) ;



e

2m v2m+1
= s ] e = MyooWs . Since the series are unifor-
m=1 u mzl ; >

mely and absolutely convergent wieS(v), woeS (V) and

W u- % azmx "mﬂvng].Sim?}ar]y w

m2] 1ot

2 M

2 °
By the above property 3 we obtain that welS(V) 1, woelS(V)]
hence w -w,e[S(v)],

From now oniwe make the following additional assumption.,

o

s

(%) |for every xeX there exist hOcSC(X) bounded such that ho(x)>0f
Remark, The hypothesis (%) is equivalent with:

- .
(%) for every xeX there exist haSC(X)fESC(X) bounded such

thiat hilx) >0,
Indeed if we take ho like in (%) then we’l] showvthat Rho
(the reduite of hO i S} satbsiies [an)

o X
Let );EX,DGV_r | (x), WEVflne(X), WeD such that Ei ”(ho)z
o'V

=h (%) ol w0 S tzRh on X\W. Then for every yeW there exist

e , NV Sy
W’er[“C(y), WieW such that My)Zei w(t)zaé u(ho)?hO(y) hence

=Rk o % it Rollows: BE RECOSRR (0 e RS A
--—:o P T 3 \o O £ " O C sc A %

. . 5 A k {:o"ff
Proposition 10, If ueS(V) then for every f,geR(V)>wGﬁsK\v):

Rroof. ‘Lot oielW and Well  such that chdQEV/fHJ:31~S?)
=t -t Al . 3 q Al e = i 3 c

gy =tymt, with S]’Sz*t]9t2€“c,b(h)’ Denote o mdx(swp Sy

sup s, , B=max{sup t,. sup t.). Take h given by hypothesis
W e -
§ 34

(%) and construct

sl s SR o e )
v aho e W p ol <




=

Then: f[w:\‘/zmv],,(Mq]‘\W,:;wz-*\/‘\!.j and

f,g . vliwi-s‘v?:.wz V]W,“-‘V W

u e u

~S N

But vieSc’b(W), wieSc b(W)g Viz0, w20,

b
Applying Lemma 8 (with n=2) it follows:

N W, (v]+wj)2 ~
.......G.... A .LT B .._.h,,w.va.s,-.;._m e Sc,b(w)q[sc b(\,\f)], ]=‘I,Z_-

s

¥y i (vi+w ) V% w2

""'J'"“"“ i 5 -*mlr--"”"““" T *"-J iz J]E[g ’[ (W)]
i : : f.g

Then: u'EESc,b(”” oo — RO,

Theorem 11, If condition (%) is fulfilled then
i e bRy o 0ion. b imply: iﬁgeR(U)

ii) R(U) is an algebra of functions and FeRiU)E.  £-0 fn-

ply %{:R(U)w

Proof, ii) is obvious from i) isince ileS

B

i) Let xel and VeUx~such tilhakt hiv:u]~u2 with

1 2 :
Ugs uzeSC’b(V)w ew - = ?UJ(X)+ ?UZ(X) and visA=u, , us=u, =X,
) 1 2 :
We remark that v(x)= §h(x)>0, u(x)= ﬁh(x)>0, Consider

%<a<] such that v(x)<au(x). By the continuity of v and u there

exist Wer silich sthatt vl on W, >0 e W and v<au on W,
2
(2 V4 0 .
sUu T 5 ~ S (W at ~ i ) -WMUA“" sy W
But vtwgS(W); U!WCS(W) and(prop@sthon ]q/u+vC[“c$b( )}



S

Since u+v=u1~u?ch on W we obtain

2
g g e u ] : : e
> e e e s on W and once again by proposition 10

iﬁ&eR(W)

Hence: iﬁgER(U),

L, COHOMOLOGY FUR STANDARD H-CONES OF‘FUNCTIDNS

P —

fe[S(X)1, f continuous such that f>0 on U and £=0 on U,

Proof, Bydlemna 3.1.2 of [ 2] Forvevery ocllithicre exijcn

px,qxes, continuous, bounded such that Opr—qXSI, px(x)=
=qx(x)+l and p =q, on XM, Let M=max(sup P sui qx), Repla-
X
. Px ; 9%
cing p, and q by e pespectively J~ We may suppose: pxﬁl,

q,s1. (condition P, (x)=q (x)+1 becomes p (x)i=g (Gt b b

is all we ineed):!

Let me{px—qx>0}, Then Uc k/GX and hence there exist

x el
oo X such that Wel/c
n’n X5
n
Let G :{py =4y =01 Definer i X Lﬁ Do Q% q
n i r neli 2 Anomn1 2 4

and it is easy to see that f verifies the $equest of the lemma.

We recall now:

Definition 13, A sheaf F on a paracompact space X is cal-

led "“fine sheaf' [t for every locally finite covering of X the-

re exist a partition of unmity ih F subordinated to the cover.



ST

WARNING. The exbression fine sheaf'' have nothfng in
common with the fine topology of the standard H cone S. This
terminology Is used in Sheaf Theory and here it is not danger
of cénfusioh sfnce the only topology on (S, X)we are dealing
with {s the natural one,

vihece for S the space X s metrisable (in the natiursl oo
pology) hence paracompact it makes sense to ésk if the sheaf
(R(U), SUV>VCU fs "fine'. Fortunately the answer is affirma-

tive,

Theorem 1h, The sheaf (R(U), SUV)VCU s 'Sfihetl,

Bregf . Lew (U )

[a s e

a lioeslly finite covering af X.

Let (Vi)is! g liccalily £ itie covenr imge ol X silich that T:CUi,

For every iel denote by fi the function corresponding to Vi
given by Lemma 12,
Letifi= X fieR (el sum 1s Tocal by Finlce) Obviously
iel . . -f;
f is continuous and >0 on X. By Theorem JJ:gi:: ?“ER and

obvious I gii—:la g;=0 on X§v;;>X"\Ui.

iel
Now, the partition of unity subordonated to (Ui)igl is
given by:
def
e SDLED : . e -
)\ﬁ)\;, )\‘is){'R ‘\l" }\‘isx(fx)a (gif)x

(f, denotes the germe of f in xeX).
X o

DUV)VCU' We extend Pyy 1N

Consiider the presheaf (7 (U),;
c
an obvious manner to [PC(U)] and denote again by Pyy this ex-
tension.

eV
Denote by P the sheaf associated to the presheaf

(['PC(U)L pU\/)\/cu‘
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/’f\ e
lThieonem 15, Thetahegf P i« Hisiinel!

Pirootl. Lot (Ui_)igl a locally finite covering of X,
Lot (Vi)iel a locally finite covering of X such that VECU2CU1,

Let E,=V. \kjv . Deflne:
J\I

\ & =P (U Vo ) R #
()Ei)U R0 =P (1) (}Ei'U(P)” . aud e

and extend (X ) to [PU) T,

By Pf0P0°lthﬂ 5 (k U)is an endomorphism of the
u

\
presheaf ([PC(U)], DUV)VCuQ
Denoting Px el fiber in xeX of P and pUx:P(U)%Px the

canonical map and defining

N s
SPh D)
(KEi)x'Ix Tx

(KEi)x(a):pUx((in)U(p)) where a:pug(p)

with pelP(U)]
- N
then KE, is well defined, is an endomorphism of the sheaf P
i
and it is readely seen that glves the partition of unt ty suboi=

dinated to the cover (U}) - ol

iel
For U open subset of X we construct the sheaf of functions

which are locally differences of continuous, bounded, harmonic

functions, namely:

H(U)={f:U>R continuous

¥ xel, 4 VeV , VcU such that

f \/E[Hc,b(v)]}' 2

Forel, sy .AH(U)~H(V) i ] Obviously

UV( v’

N
He= (U) ruviyey 18 @ sheaf of vector spaces,
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iy

of sheaves;

o~ A
Proposition 16. 0—3H-3R -3P-30 is an exact sequence

of sheaves,

Proof. Flrst of all we. have to define A
For feR and xeV there exist VsVX SUcih tham en g

Let hi=y{taH(V) It:é Si[ on V} i=1,2, Define

vV
(8F) s=py, ((sy=h )= (s,h,))

Then it is easy to verify that A is well defiined, s o siirjec

tive morphism of sheaves and that, Ker.Anﬁfhence the sequence

ks ‘exact,

The above results allows us to compute the cohomology

groups. for i,

Bropos it ion Tl F condition ) s FulRi il o

"o Vs o
HY(X, M) =0 for 22 and H! (X, M)er(x,P)/ar(x.7) .

Proof. We use the exact sequence of proposition 16, we

write the cohomology long sequence assoclated £6 & Snd take
£ q
into account that since P and P sre “"fine sheaves', HY(X,R)=0
o

)20 9=  ahid we are dope.

3

gzl and HY(0%



)

>0

)

]

£2]

s

[473

[6]

71

[8]

£91
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