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Deforming varieties of k-planes of

projective complete intersections

by Ciprian Borcea

We consider the variety F of k-dimensional linear
projective subspaces lying on a generic projective
'comblete intersection S. Under general assumptions
involving k, the multidegree and the dimension of
S, we prove that F is connected, smooth, and its

locel deformations come from deformations of S.

Introduction. Linear varieties lying on a projective variety
have been considered in several contexts.
A classical instance, going back to Cayley [6}, is - that of
a smooth cubic surface. There are twenty-seven lines on such
a surface;>énd, as observed later, the incidence preserving
permutations of this sét of lines form a group isomorphic to
the Weyl group of a root system of type E6' It is also the
monodromy group of the global femily of smooth cubics and the
Galois group of the corresponding enumerative problem (see [}2}).
Similar results (involving the root system D2k+3) hegld fer
the k-planes contained in a smooth 2k-dimensionsl intersection
of two quadrics ((14],[15]);
Beyond the enumerative level, and besides homogeneous-ratio-
nal varieties such as Grassmannians or linear spaces lying on
a smooth quadric, @ first example shoulg be the Fano surface
of lines contained in a cubic threefold ([lil). The Abel-Jacobi

map induces an isomorphism from the Albsnese variety of the
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Fano surface to the intermediste Jacobisn of the cubic threefold
and one has a global Torelli theorem ({f},[}é]).
With plenes instead of iines, but generically this time, the
analogous statements hold true for cubic fivefolds ([8],[10]).
Nor should be cubic fourfolds be neglected here: their varie-
ties of lines are irreducible symplectic projeciive fourfolds
([3]) which play an important role in the proof of the global
Torelli theorem ([20]).
‘ We also meﬁtionvthe variety of k-planes contained in a smooth
(2k+1)-dimensional intersection of two quadrics: it is an Abelian
variety isomorphic with the intermediate Jacobian of the given

intersection oquuadrics ([9],[16]).

All these varieties may be realized as zero loci of sections
of certain homogeneous vector bundles over Grassmanni ans ([1},(?3]).
This circumstance makes the Schubert calculus relevant, for instance,
in computing Chern numbers; it also reduces questions about con-
nectivity, regularity, etc., as well as deformations to questions
about the cohomology of homogeneous vector bundles.

Our main concern will be to set up a general framework for
8 calculus with weights, such that the theorem of Bott [5] become
-expressive in this context - a perspective we inmitially used in [4].

Specific computations ensbled Wehler to deal with small de-
formations of Fano surfaces: he showed, namely, that all of them
are induced by deformations of the corresponding cubic threefolds
([2{)). This result is here extended to a large class (Theorem 5.3).

Similarly (Theorem 4.1), we extend (and give an alternative proof

for) the connectedness result of Barth and Van de Ven concerning

lines on hypersurfaces-([Q]).
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§1. Varieties of k-planes

We shall consider projective k-planes contained in a
complete intersection S = S,(d) of dimension n and multi-
degree d=(d;,...,d.) in the projective space P = R in BUEr
the complex field C.

v tensor power of the hyperplane

Let C%(m) denote the m
line bundle on P and let S be given as the variety of zeroces

T
Z(s)=S of a section seHO(P,E), where E = @ wp(dt).
: t=1

Denote by G = G(k+l,n+r+l) the Grassmann variéty of
projective k-planes in P i.e. (k+l)-planes in g and
let ["c PxG be the subvariety defined by the incidence relation

= {(x{ﬁ)l XGSW}, with canonical projections:

rl
VAN
P G.
p represents [ as a G(k,n+r)-bundle over P and g reprecents 7

as a Pk-bundle over G. Accordingly, we have isomorphisms:

HO(P,B) = H?(I, p™E) > H® (G, q_p"E) .

—> Q0 denotes

k+1

— - If - 0 C=F n+r-k

-5 e s

the canonical exact sequence of vector bundles over the

Grassmannian G, we have a natural identification:

qxpxa%(m) = Sm(Zx) = the mt! symmetric tensor power of the

dual tautological bundle.
Rut E:z quXE .

Let @)be the isomorphism indicated above:

...3..



I‘
$: HO(p,E) = HYE, ’8) *1 HO(q t<'(;3‘

To s €H®(P,E), defining the veriety Z(s)=S, we thus associate

i

C}(S)GHO(G,Q), defining the variety of zeroes Z(@(s)) = B (8 B

which consists of all k-planes contained in SCP .

: T, (a,+k |
Remark 1.1. The rank of & is S ( t ) , and we expect F
t=1 k

to be non-empty for dimG - rkf >0 i.e. for:

; 3 ;
Gl Mmirib) = (‘%”‘);o (A )
: t=1 k o

This will presently be seen to be true, provided S is not a
quadric, in which case the assumption n > 2k is needed. Kote
that, if S is neither a quadric, nor a linear spece, condition

(A)) already implies n > 2k.
2. Dimension and smoothness in the generic case

et s V= HO(P,E) and consider the subvariety I C GxV

defined by:r I-= {(sfﬁ)\ S‘W:O}" with projections:

T
G vV

ol represents I as a sub-vector-bundle of GxV—>G, which shows
that I is smooth, while ﬁ is proper and the fibre over seV is
precisely Z(@(s)).

Confirming our remark 1.1, we have:

Proposition 2.1 If dimG - rkﬁa;(L {3'is onto, provided

n 2 2k in the case of quadrics.
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Proof: If we find a k-plane 71 in S, with S smooth along 7 ,

and such thet the normal bundle Ny/gq has Hl(W}qus)zo, the
proposition will follow from Kodaira's criterion for stability
of compact submanifolds[ié].

We consider the exact sequence:

O N e = N2 0 (1)
n+r-k - iy
We have: Nmp = @ 07(1) and NS/P‘F'E D C%jdt)
] !
=i

Let JI be given by Xp41= +»- =X =0 , for homogeneous

n+r

coordinates (xO: os iXpin), 8o that séiHO(p’E), S\TT:O will

be given by r homogeneous polinomials (sl, sl ’Sr) of the

form: n+r (1) :

e igk:ll jePy |t Ty )
where: G G .

pt1 = Z: Fx (%)

}L
/“"’(/“o» oo M), xH = x ...xk \)u& Poterotfm 422
and every monomial in ft contains a product X X5 with
Lok
Since we may suppose n> 2k, the condition that S be smooth
elong T is satisfied for generic s.(For example, the following -

: s
matrix of partial derivatives (—%(x)).

% i3k+l o x€ell may be
produced: 6
d,-1 d- -1
1 s
: Xo ::.‘.,:‘ XK O O " o000 ¢ o
- A=l d,-1
O on ¢ o0 a0 0 Xk:2 O""’ °
d._ -1 1
Qoo —e a0 G-
O e Xk ¢ o0 ).



We represent a global section of Nq/p by a matrix
A= (8;.:)n,: that th HO (N ) ~—HO (N )
e e bl anip g B0 0B e 1eD /P S/P|T

induced from (1) is described by:

. T

Lo o o en’(® (Ja,)) i)
jek<i 9'n T lgtgr ot (
Looking at monomial coefficients in (4) and using (3), one

obtaines that o is a surjection if and only if the linear system

(with indeterminates aij):

@) . ‘ '
= e -
- ' Vel . )

Vl= a,

wheres M) =9 (0 . 1.0 ... 0) and ¢
' J

Gl
t,V(j)"O for

V(J) improper;

: r =
has maximal rank, namely 2. (it+k) = pkf =R,
t=1 k

For generic s, this is actuslly the cese. To see it, choose,
for each t, an enumeration pl,yZ,FB,.;. of the multiindices P
with Ull= de=1 and consider the ExR matrix whose determinant
produces the monomial with the following description::

- for each t, cék;%) occurs at the highest possible power
b

: : + ¢ ;
(1oe. k+l) s next, cékyé) occurs at the highest possible power
3 3
(which now depends on the chosen enumeration); and so on. The .
coefficient of this monomial will be 1 or -1, and the cor-

responding determinant is not the zero polinomial.

Thus, for generic s, S is smooth along M and Hl(ﬁ,Nﬂyg):o.

&
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Corollsry 2.2. The projective k-planes contained in a generic

complete intersection S,(d) of dimension n and multidegree

d=(dy,...,d,) in P, .. define a smooth subvariety B (8,0d))

5 - :
of G(k+l,n+r+l) of codimension gz:(ét+k) , provided that
: i . =1\ &k

: Eola : . :
(ett)tusr-k) > % and S _(d} is net a gquadrie, in
= n ;

which last case n >2k is required.

"Remark 2.%. The variety of lines Fl(Sn(S)) of a cubic hyper-
surface Sn(5)C;Pn+l is smeoth if the cubic is smooth, but in
general, the smoothness of Sn(d) does not imply that of
E s ey, tee [0l el

§3. Weights

In what follows, we take dimG 3 rkC (and B> 2k for gusdpies),

end assume the complete intersection S = Sn(d) to be such that
the codimension of F = F, (S) in G = G(k+l,n+r+1) be precisely
rk& . Generically, this is the case (Corolléry 2o

Let JF denote the sheaf of ideals defining F on G.

¥

The Koszul complex of (the section of & = ¢ p E defining)
i

“%
JF gives, for any holomorphic vector bundle M on G, spectral

seguences:

’ q B
HP(G,u @ AE®) =) uP79(F,m{ )
BPa N AE )= a G @dy) @ 0.

If M is a homogeneous vector bundle, we may use the theorem

N



’mrvﬂ:z‘g‘-"

ey St o S % ¥ . A . 3 . s
o = o}c,gn T+l yith coordinates (Xl"“”xn4r+1)’ the Lie slgebrs

of Bott [E,Th.lv:] for dealing with the groups on the left.
To this purpose, we use the following description of the
Qrassmann manifold: G(k+1,n+r+l):

Joo e

SL(n+r+1,C), which is the universal cover of Aut(Pn+r

= PGL(n+r+l,C), hes Lie algebra sl(ntr+l,C) = &A = (aij)k trA=Ok.

Take as Cartan subslgebra h = {A\ aijro for i#j} . This gives

root spsces L::. = C.E

iy (i#j) where E. .

j has zeroes everywhere.

1J
except the (i,j) entry.
The Killing form identifies the corresponding rootSfC¥;3

with E;;-E (i#j) so that the root system 4 . ey be

JJ n+

viewed as embedded in a euclidean space with orthonormal basis

Q= 5
1 I‘::ll

y 1=1l,...,n+r+l; the roots being represented by vectors
o« orthogonal to eyt...te
(Cf.[13’p.64 ').,

Put O(S:

n+r+1 @and of square-norm (¥,X)=2

o(s+l,s:e‘cs+l—es >
{O(Sz s:l,.;.,n+r}' gives a basis of the root system Ao
1f U 4 denotes the subgroup of SL(n+r+l,C) consisting of

=X =

transformations which preserve the 11near space { i

X-K,f.?-:a LIy

Uy .y of Up,q will contain h, all the negative roots (“%j, )

(3

and all positive roots not J'Lnvolvingc>(K‘,__1 when expressed 1in
terms of the given basis.
We have:r G(k+l,n+r+l) = SL(n+r+1,U)/Uk+1 , which is the

description we shall use.

Let us now investigate the weights' associated to various

homogeneous vector bundles over G = G(k+1l,n+r+l).



Such a bundle is defined by a holomorpnic representation

y: Uk+1f—>GL(N,C) and the weights are taken with respect to h.

. (2) Consider first the tautological bundle 6 over G. It cor-

responds to the naturel representation of Ugsp on the invariant
subspace {Xk+2z"':xn+r+lzo}‘
Let ﬁs denote the weight characterized by:
o ] -— l Y =
(F)s’olt) = 0 for t#s and ([53,0(8) = —2(0/8,0(8)'— i

An elementary computation then gives the weights of Z%*l:

£

P 1 =0
tl"‘Fl’ torP-for e tk+l“(5k: Pen -
(b) The line bundle det(5§+l), which gives the Plicker embedding

of G(k+l,n+r+l), has therefore associated welght: ﬁk+l‘

(c) The tangent bundle of G: EBG is given by the adjoint repre-
sentation of Uy, on sl(n+r+l,C)/u, ,y . Consequently, its weights
are precisely the positive roots involving CYK+1 in their ex-
~ pression, namely:o(ij solSlEl S i,
% 2t dp X % : e ; :
(dpE s =y (6p47)" and (a) immediately gives that its
- m=1
weights ere of the form:

k+]. %
Z altl = (82"81)?1 + (85"‘82)\32 + il (9K+l~ak)\l{ £ aK“‘”l K'*’l‘

k+1
with e.eN , . > ggis d, for sStme M.
1=1

We now drew up a table of scalar products of positive roots
and verious weights, which will be relevant in estimating

indices of weights.



! S is half the sum of all positive roots.

kil
= 3 g&;t; , 2;€2Z (motivated by (d) above and the spectral
iz} 5

sequences (6)).

l$1n§k:.
condlt;ons g w * L-Q<h¢r+1,m Czn+r+1,k+l
#m-1, m J <k 0
°<p P ’ i 84178 | gt
‘ B oA : Gk
a0 L Phnenag =1 0
m <Kk (Glava
X s e a8 1 oAy
g<n+r | 0O 0
of k+2 {q {n+r 1 0 | ,
- i o gsgmme - AR 1
t<nir+l | 0 ! 1t !
5'¢ g t-k-1 -a TR R &
Uil . 0% S t=ntndl 1 2
tlmpml il 9
Xt m | t > kbl t-m e , ‘
i 4 | P T Lenapd] Fn LI
‘ = L
s . LSndvel [ COE N u
e e %p |
p#m t=n+r+l i 1
Table 1.

We anticipate here on the type of reasoning to be used in the
sequel. Given a homogeneous vector bundle over G, defined by a
representation Uy, —>GL(N,C), we first produce a filtration with
conéecutive quotients corresponding to irreducible representations

of Uk+1' Such en irreducible representation determines a highest

]

weight, say j’° Fhis jj has to be one of the weights of the origi-

nal representation and further satisfy (fﬁig)g()ibr all s#k+l.
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In our computations f will be either of type & or a)+mh+r+1 -
L

Sl )

In order to obtain the vanishing of HS(G,f), it will suffice
elther to ascertain the singularity of the welght ?'*S or to
prove: s £ index( f+g).

In this context, the main feature of our table of products

is that (WE m,j>+8 ) increases by 1 when t increases by 1, except
b

the last step for §>= W+ X (m {k+1).

mdpeil m

Note also that for 1&pg<ktl, <q/k+2,p’ f*g )<(Q/k+2,p—-1’ f*g')

since (q/p-l’ f Y >0,
§4. Connectedness

Suppose: dimF = dimG - rk& Dl (AI)
F is connected if and only if HO(U%) =500

S
We have: H°(G, AE®) =) H°(]) | therefore the vanishing

8 ;
of HS(G,,A\EF) for 8> O:will imply the connectedness of F.
According to our method, described at the end of §3%, we
examine HS(G,f), with fJ an irreducible representation of Uk+1

R

with highest weight (again denoted‘f) among the weights of

s k+1 :
/\Efq. Thus \f = ()= Egi a5ty and we know (see Table 1):

1) 8k+12,8k>/o.n>/8120 ;
2) ‘f~F§ is eiiher singular or of index u(ntr-k), 1Sugk ;
( u=sk+1l is excluded because rk€'<,dimG).

Suppose therefore s = u(n+r-k).

For S’+g to have index s, we must have (“; p’j)+g )0
Wl

for p.o= l,..., ktli-u; in perticuler: =

K+l—ufiu

°

T L




S
‘ . s = *® e : i
Now remember that ? i8 a. weight of AT , thus a sum of
S welghts of EX , each welght counted at most 2s meanyv times as

the dimension of its eigenspace. There are (maltimilsicities in-

: L d _+u~-1 e : ; s
elluded) . S =n welghts invelving only t: , i >k+l-u.

m=1 u-1 -

Adding any other weight increase some aj y J<ktl-u, thus we must
not add more than u(k+l-u) such weights. This will be clearly

impossible if n satisfies the following conditions:

>

r ‘ .
= Q%n+u‘1> + u(k+l-u) £ uln+r-k) = s (€. )

m=1 u-1

with U .running freom 1 to k.

Now, use (repeatedly) the formula:

' g
2 {2 2tre) L L fo,n0)
q+l\ q oS F e algtl} \ ig=1
to show that if some dmf>3, or at least two degrees in d are

22% then (Cu),jlstlg}c, is a consequence of our assumption (%}w
Note that (Cl) reads: n D 2k.

We heve therefore:

Theorem 4.1. Let S = Sy (dy,...,d.) be a complete intersection

H

in Pn* and F FK(S) its variety of projective k-planes.

73

1t

i A
Suppose dinf (k+1) (n+r-k) - Z:}(fm;k) 2,1 s O iR cade S

m=1
is a quadric, suppose n> 2k.

Then F is connected.

o

Remark 4.2. For a smooth quadric 8 = S?K(2), ¥, .(8) consists of

two isomorphic (hermitian symmetric) connected components.

-] D



This should rather be viewed as the exception which

confirms the rule: Sop(2) is a homogeneous (hermitian sym-

metric) space (of rank one) in its own right, and the gene-

‘rating k-planes of the two families in F, (5) correspond to

Schubert cycles which are not hemologically equivalent.

Remark 4.3. There is a simple formula for the canonical
bundle of F = Fi.(S,(d)), when smooth.

Let C%(l) denote the positive generator of Pic(G),
Jrestricting to 02(1) on F.

r :
Set: K= >0 (dmﬂC) =L el )
i . m=1\ k+1

Then.: KF = c%(K).

§5. Deformations

In this section we assume that F = Fk(Sn(d)) has the
'right' codimension and dimension at least two:

dinF = dimG - rk& 2 . (h,)

Our purpose is to produce conditions on (n,d,k) which
ensure the completeness of the natural deformation of F,
parametrized by armeiighbourhoosd of the section <§(S)€EHO(G,6)
defining F. Notice that the family of complete intersections

to which Sn(d) belongs (pearametrized by a neighbourhood of

sSEH(P.E) = H°(G,%), i.e. the 'same’ base) is itself com-

plete (see [{],[if],[él])c

,13“'.




A sufficient condition for completeness is the vanishing
of Hl(G,Ei@)JF) and Hl(Fng{F)o This is a general result for
varieties defined by sections-in a vector bundle (see [21]).

We look therefore at the spectral seqguences (6) abutting

to the asbove two groups.

)
(9elyy  Heke fillmeit HS(G,E@) NETL, 82 .

We obtain venishing conditions for these groups as we did
FopiHB(a. AET) dn B4,

Let D = maxlsrngxxd ) « Filtering and taking highest

m
k+1
weights will produce as above weights =) = ;Z% PR
1=

; wiU1(a%,f)>()fbr pail.

: s 4 / : i
Since j3 is the sum of a weight @ of & and a welght @

S /i k"l J
of AE® , adding @ to W= 2{% alft, decreases some of its
Hie=

coefficients aff , diminishing their sum by at most D.

This means that our sufficient conditions (C,), 1Sugk ,
: S _
for the vanishing of H®(G, ae s>l , become, by the same

SR Ten

type of reasoning, sufficient conditions (Cg), lEci
s
the vanishing of HS(G,E:@>/\E?), once we add D to the left hand

side of each inequality:

e iy
> C%ﬁu'l + u(k+l-u) + D < uln+r-k) (CB)
m=1 u-1

: B
(5.2) Consider now HSH'(G,(“)G@ /\EX), 820,

o e 1 _ '
For s = O, we have H (G:Ch) = 0, because G is rigid {5].
Suppose” i8> Li :

Again, using a filtration (actually, the representations

we are dealing with are all completely reducible) and successive

=



[

quotients corresponding to irreducible representations of Um+l’
we find that the highest weight 53 associated to such a repre-

sentation is necessarily of the form ‘? = &)&C%t e with
b

k+1 B ,
W= 30 a;t; aweight of AL , t D ktls m - (efisdBiie) )i and
i=1

further conditions: (fﬁ¥d)2.0 for all q # k+1, which imply
in pertieculer  + = nbrtl.

Take therefore \P =h6) + (m £k+1l) and consider the

ntp+l  m

series of integers: (f'+%’o%,p) with p<£ktl Ffizxed and t in-
b

creasing from k+2 te n#r+l. 1T §>+g is non-singular, this series
of non-zero integers will keep the same sign, except possibly at
the last step t = n+r+l, when it might 'Jjump' precisely over
zero (see Table 1).

Now let p decrease from k+l to 1 and notice the relations of

the starting valuesin each series:
: / 3
(f f*% ’&k+2,k+l) < (‘?‘*‘% ,0/11{_**2,1{:) b < ( 5)*% y k"}“2,l) o
This mesns that we might encounter non-vanishing cohomology
HS+1(G,f) at most for s+l or s a multiple of n+r-k, say u(ntr-k)
(u<k+l by our assumption rkglg dimG - 2).
i+ .
For the coefficients a; in @ = = a;t;, we have either:
i=1
L) g > 8 2oan 28y - fop mekdl, om

2) B2 eee2epyy 5 Opatl2epd e .. 2 fop <k .

S ;
S . o5 a B : D _
Since W 1s a welght of A\EK, it appears that (Lu) above
: s Sy . . ol
is a sufficient condition for the vanishing of H ((;,33)e

1

Summing~up, we obtain:

w-]lbe



Theorem 5.%. Let S = Sn(dl"“fdr) be a complete intersection

in P ... and suppose that its variety of k-planes ¥ = F,.(S)

A : . L [a_+k

satisfies: dimF = (k+1)(ntr-k) - > |\ m = |22 (As).
m=1 k

The following conditions (Cg), 1L ugk, ensure that any small

deformation eof F is induced by a deformation of S:

T
5 (ém*u“l> + u(k+l-u) + D < u(n+r-k) \ (CB)
mel N u-l :
where D = maxlgfm<§r(dm)'

Tf oo dmequals 1, these conditions are already implied by

(A,), as soon as d avoids the following list:

G2k W 20 (2 2020, 68 2,5 ) Gd), - end S el

The last statement is easily derived, using e.g. the identity

(1) in 84, Actumlly, if the pivenh list is excepted snd k> 2,

; D : ; D
(A,) (CD)=y...(C]), while n>2k+D is (C]).

~] 6
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