INSTITUTUL DE MATEMATICA INSTITUTUL NATIONAL PENTRU CREATIE STIINTIFICA SI TEHNICA

ISSN 0250 3638

DEFORMING VARIETIES OF k-PLANES OF
PROJECTIVE COMPLETE INTERSECTIONS
by
Ciprian BORCEA

PREPRINT SERIES IN MATHEMATICS
No.33/1988

Med 24834

DEFORMING VARIETIES OF k-PLANES OF PROJECTIVE COMPLETE INTERSECTIONS

by
CIPRIAN BORCEA*)

July 1988

*) Department of Mathematics, The National Institute for Scientific and Technical Creation, Bd. Păcii 220, 79622

Bucharest, Romania.

Deforming varieties of k-planes of projective complete intersections

by Ciprian Borcea

We consider the variety F of k-dimensional linear projective subspaces lying on a generic projective complete intersection S. Under general assumptions involving k, the multidegree and the dimension of S, we prove that F is connected, smooth, and its local deformations come from deformations of S.

Introduction. Linear varieties lying on a projective variety have been considered in several contexts.

A classical instance, going back to Cayley [6], is that of a smooth cubic surface. There are twenty-seven lines on such a surface, and, as observed later, the incidence preserving permutations of this set of lines form a group isomorphic to the Weyl group of a root system of type E_6 . It is also the monodromy group of the global family of smooth cubics and the Galois group of the corresponding enumerative problem (see [12]).

Similar results (involving the root system D_{2k+3}) hold for the k-planes contained in a smooth 2k-dimensional intersection of two quadrics ([14],[16]).

Beyond the enumerative level, and besides homogeneous-rational varieties such as Grassmannians or linear spaces lying on a smooth quadric, a first example should be the Fano surface of lines contained in a cubic threefold ([11]). The Abel-Jacobi map induces an isomorphism from the Albanese variety of the Fano surface to the intermediate Jacobian of the cubic threefold and one has a global Torelli theorem $(\lceil 7 \rceil, \lceil 19 \rceil)$.

With planes instead of lines, but generically this time, the analogous statements hold true for cubic fivefolds ([8], [10]).

Nor should be cubic fourfolds be neglected here: their varieties of lines are irreducible symplectic projective fourfolds ([3]) which play an important role in the proof of the global Torelli theorem ([20]).

We also mention the variety of k-planes contained in a smooth (2k+1)-dimensional intersection of two quadrics: it is an Abelian variety isomorphic with the intermediate Jacobian of the given intersection of quadrics ([9], [16]).

All these varieties may be realized as zero loci of sections of certain homogeneous vector bundles over Grassmannians ([1],[18]). This circumstance makes the Schubert calculus relevant, for instance, in computing Chern numbers; it also reduces questions about connectivity, regularity, etc., as well as deformations to questions about the cohomology of homogeneous vector bundles.

Our main concern will be to set up a general framework for a calculus with weights, such that the theorem of Bott [5] become expressive in this context - a perspective we initially used in [4].

Specific computations enabled Wehler to deal with small deformations of Fano surfaces: he showed, namely, that all of them are induced by deformations of the corresponding cubic threefolds ([21]). This result is here extended to a large class (Theorem 5.3). Similarly (Theorem 4.1), we extend (and give an alternative proof for) the connectedness result of Barth and Van de Ven concerning lines on hypersurfaces ([2]).

§1. Varieties of k-planes

We shall consider projective k-planes contained in a complete intersection $S = S_n(d)$ of dimension n and multidegree $d=(d_1,\ldots,d_r)$ in the projective space $P=P_{n+r}$ over the complex field C.

Let $\mathcal{O}_{\mathbf{P}}(\mathtt{m})$ denote the \mathtt{m}^{th} tensor power of the hyperplane line bundle on P and let S be given as the variety of zeroes Z(s)=S of a section $s\in H^0(P,E)$, where $E=\bigoplus_{t=1}^{\mathbf{r}}\mathcal{O}_{\mathbf{P}}(\mathtt{d}_t)$.

Denote by G = G(k+1,n+r+1) the Grassmann variety of projective k-planes in P i.e. (k+1)-planes in C^{n+r+1} and let $\Gamma \subset PxG$ be the subvariety defined by the incidence relation $\Gamma = \{(x,\pi) \mid x \in \pi\}$, with canonical projections:

p represents Γ as a G(k,n+r)-bundle over P and q represents Γ as a P_k -bundle over G. Accordingly, we have isomorphisms:

$$H^{o}(P,E) \xrightarrow{\sim} H^{o}(\Gamma,p^{*}E) \xrightarrow{\sim} H^{o}(G,q_{*}p^{*}E)$$
.

If $0 \to \mathcal{C} = \mathcal{C}_{k+1} \to \operatorname{GxC}^{n+r+1} \to \operatorname{Q} = \operatorname{Q}_{n+r-k} \to 0$ denotes the canonical exact sequence of vector bundles over the Grassmannian G, we have a natural identification:

 $q_{\mathbf{x}}p^{\mathbf{x}}\mathcal{O}_{\mathbf{P}}(\mathbf{m})=\mathbf{S}^{\mathbf{m}}(\mathbf{Z}^{\mathbf{x}})=$ the mth symmetric tensor power of the dual tautological bundle.

Put
$$\mathcal{E} = q_{\mathbf{x}} p^{\mathbf{x}} E$$
.

Let Φ be the isomorphism indicated above:

$$\Phi: H^{o}(P,E) \xrightarrow{\sim} H^{o}(G,E) = \bigoplus_{t=1}^{r} H^{o}(G,S^{d_{t}}(Z^{*})).$$

To $s \in H^0(P,E)$, defining the variety Z(s)=S, we thus associate $\Phi(s) \in H^0(G,E)$, defining the variety of zeroes $Z(\Phi(s)) = F_k(S) = F$, which consists of all k-planes contained in $S \subset P$.

Remark 1.1. The rank of \mathcal{E} is $\sum_{t=1}^{\mathbf{r}} \binom{d_t+k}{k}$, and we expect F

to be non-empty for dimG - $rk\xi \geqslant 0$ i.e. for:

$$(k+1)(n+r-k) - \sum_{t=1}^{r} {dt+k \choose k} \geqslant 0 \qquad (A_0)$$

This will presently be seen to be true, provided S is not a quadric, in which case the assumption $n \geqslant 2k$ is needed. Note that, if S is neither a quadric, nor a linear space, condition (A_0) already implies $n \geqslant 2k$.

§2. Dimension and smoothness in the generic case

Let $V = H^{0}(P,E)$ and consider the subvariety $I \subset GxV$ defined by: $I = \{(s,\overline{n}) \mid s|_{\overline{n}} = 0\}$, with projections:

Confirming our remark 1.1, we have:

Proposition 2.1 If dimG - rk $E \geqslant 0$, β is onto, provided $n \geqslant 2k$ in the case of quadrics.

Proof: If we find a k-plane \mathcal{T} in S, with S smooth along \mathcal{T} , and such that the normal bundle $N_{\mathcal{T}/S}$ has $H^1(\mathcal{T},N_{\mathcal{T}/S})=0$, the proposition will follow from Kodaira's criterion for stability of compact submanifolds [15].

We consider the exact sequence:

$$0 \to N_{\pi/S} \to N_{\pi/P} \to N_{S/P} \Big|_{\overline{1}} \to 0$$
 (1)

We have:
$$N\pi/P = \bigoplus_{t=1}^{n+r-k} \mathcal{O}_{\pi}(1)$$
 and $N_{S/P}|_{\pi} = \bigoplus_{t=1}^{r} \mathcal{O}_{\pi}(d_{t})$.

Let π be given by $x_{k+1} = \dots = x_{n+r} = 0$, for homogeneous coordinates $(x_0: \dots : x_{n+r})$, so that $s \in H^0(P,E)$, $s \mid_{\pi} = 0$ will be given by r homogeneous polinomials (s_1, \dots, s_r) of the form:

$$s_t = \sum_{i=k+1}^{n+r} x_i \cdot p_t^{(i)} + r_t$$
 (2)

where:

$$p_{t}^{(i)} = \sum_{\mu} c_{t\mu}^{(i)} \cdot x^{\mu}$$

$$\mu = (\mu_{o}, \dots, \mu_{k}), \quad x^{\mu} = x_{o}^{\mu_{o}} \cdot x_{k}^{\mu_{k}}, \quad |\mu| = \mu_{o} + \dots + \mu_{k} = d_{t} - 1$$
(3)

and every monomial in r_t contains a product x_ix_j with $i \geqslant j > k$.

Since we may suppose $n \geqslant 2k$, the condition that S be smooth along π is satisfied for generic s.(For example, the following

matrix of partial derivatives $(\frac{s_t}{x_i}(x))_i \geqslant k+1$, $x \in \mathbb{N}$ may be produced:

We represent a global section of N η/P by a matrix $A = (a_{i,j})_0 \leqslant j \leqslant k \leqslant i \leqslant n+r \text{, so that the map } H^0(N\eta/P) \xrightarrow{\sigma} H^0(N_S/P|\eta)$ induced from (1) is described by:

$$A \longrightarrow \left(\sum_{j \leq k < i} a_{ij} \cdot p_{t}^{(i)} \cdot x_{j} \right)_{1 \leq t \leq r} \in H^{0}\left(\bigoplus_{t=1}^{r} \mathcal{O}_{\Pi}(d_{t}) \right) \tag{4}.$$

Looking at monomial coefficients in (4) and using (3), one obtaines that σ is a surjection if and only if the linear system (with indeterminates $a_{i,j}$):

$$\sum_{j \leqslant k < i} a_{ij} \cdot c_{t, \mathcal{V}(j)}^{(i)} = 0 \qquad t = 1, \dots, r$$

$$\forall = (\mathcal{V}_0, \dots, \mathcal{V}_k)$$

$$|\mathcal{V}| = d_t$$
where:
$$\mathcal{V}(j) = \mathcal{V} - (0, \dots, 1, 0, \dots, 0) \qquad \text{and} \qquad c_{t, \mathcal{V}(j)}^{(i)} = 0 \text{ for}$$

j , γ(j)

V(j) improper; has maximal rank, namely $\sum_{t=1}^{r} {d_{t}+k \choose k} = rk\mathcal{E} = R$.

For generic s, this is actually the case. To see it, choose, for each t, an enumeration μ 1, μ 2, μ 3,... of the multiindices μ with $|\mu|=d_t-1$ and consider the RxR matrix whose determinant produces the monomial with the following description:

- for each t, $c_{t,\mu l}^{(k+1)}$ occurs at the highest possible power (i.e. k+1); next, $c_{t,\mu 2}^{(k+1)}$ occurs at the highest possible power (which now depends on the chosen enumeration); and so on. The coefficient of this monomial will be 1 or -1, and the corresponding determinant is not the zero polinomial.

Thus, for generic s, S is smooth along $\overline{\Pi}$ and $H^1(\overline{\Pi}, N_{\overline{\Pi}/S}) = 0$.

Corollary 2.2. The projective k-planes contained in a generic complete intersection $S_n(d)$ of dimension n and multidegree $d=(d_1,\ldots,d_r)$ in P_{n+r} define a smooth subvariety $F_k(S_n(d))$ of G(k+1,n+r+1) of codimension $\sum_{t=1}^r \binom{d}{t}_k^{+k}$, provided that $(k+1)(n+r-k) \geqslant \sum_{t=1}^r \binom{d}{t}_k^{+k}$ and $S_n(d)$ is not a quadric, in which last case $n \geqslant 2k$ is required.

Remark 2.3. The variety of lines $F_1(S_n(3))$ of a cubic hypersurface $S_n(3) \subset P_{n+1}$ is smooth if the cubic is smooth, but in general, the smoothness of $S_n(d)$ does not imply that of $F_k(S_n(d))$. (cf.[12],[18]).

§3. Weights

In what follows, we take $\dim G \geqslant \operatorname{rk} \mathcal{E}$ (and $n \geqslant 2k$ for quadrics), and assume the complete intersection $S = S_n(d)$ to be such that the codimension of $F = F_k(S)$ in G = G(k+1,n+r+1) be precisely $\operatorname{rk} \mathcal{E}$. Generically, this is the case (Corollary 2.2).

Let \boldsymbol{J}_{F} denote the sheaf of ideals defining \boldsymbol{F} on \boldsymbol{G}_{\bullet}

The Koszul complex of (the section of $\mathcal{E} = q_{\mathbf{x}} p^{\mathbf{x}} \mathbf{E}$ defining) $J_{\mathbf{F}}$ gives, for any holomorphic vector bundle M on G, spectral sequences:

$$H^{p}(G, \mathbb{M} \otimes \bigwedge^{q} \mathcal{E}^{\times}) \Longrightarrow H^{p-q}(F, \mathbb{M}|_{F})$$

$$H^{p}(G, \mathbb{M} \otimes \bigwedge^{q+1} \mathcal{E}^{\times}) \Longrightarrow H^{p-q}(G, \mathbb{M} \otimes J_{F}) , q \geqslant 0.$$
(6)

If M is a homogeneous vector bundle, we may use the theorem

of Bott [5,Th.IV] for dealing with the groups on the left. To this purpose, we use the following description of the Grassmann manifold: G(k+1,n+r+1):

SL(n+r+1,C), which is the universal cover of $Aut(P_{n+r}) = PGL(n+r+1,C)$, has Lie algebra $sl(n+r+1,C) = \{A = (a_{ij}) \mid trA=0\}$. Take as Cartan subalgebra $h = \{A \mid a_{ij}=0 \text{ for } i\neq j\}$. This gives root spaces $L_{ij} = C.E_{ij}$ ($i\neq j$) where E_{ij} has zeroes everywhere except the (i,j) entry.

The Killing form identifies the corresponding roots A_{ij} with $E_{ii}-E_{jj}$ ($i\neq j$) so that the root system A_{n+r} may be viewed as embedded in a euclidean space with orthonormal basis $e_i = E_{ii}$, $i=1,\ldots,n+r+1$; the roots being represented by vectors α orthogonal to $e_1+\ldots+e_{n+r+1}$ and of square-norm (α',α')=2 (cf. [13, p.64]).

Put $\propto_s = \propto_{s+1,s} = e_{s+1} - e_s$. $\left\{ \propto_s \mid s=1,...,n+r \right\}$ gives a basis of the root system A_{n+r} .

If U_{k+1} denotes the subgroup of SL(n+r+1,C) consisting of transformations which preserve the linear space $\left\{x_{k+2}=\ldots=x_{n+r+1}=0\right\}$ CC^{n+r+1} with coordinates (x_1,\ldots,x_{n+r+1}) , the Lie algebra u_{k+1} of U_{k+1} will contain h, all the negative roots $(\alpha'_{ij},i< j)$ and all positive roots not involving α'_{k+1} when expressed in terms of the given basis.

We have: $G(k+l,n+r+l) = SL(n+r+l,C)/U_{k+l}$, which is the description we shall use.

Let us now investigate the weights associated to various homogeneous vector bundles over G = G(k+1,n+r+1).

Such a bundle is defined by a holomorphic representation $: U_{k+1} \to \operatorname{GL}(N,C) \text{ and the weights are taken with respect to h.}$

(a) Consider first the tautological bundle \overline{c} over G. It corresponds to the natural representation of U_{k+1} on the invariant subspace $\{x_{k+2}=\ldots=x_{n+r+1}=0\}$.

Let β_s denote the weight characterized by:

$$(\beta_s, \alpha_t) = 0$$
 for $t \neq s$ and $(\beta_s, \alpha_s) = \frac{1}{2}(\alpha_s, \alpha_s) = 1$.

An elementary computation then gives the weights of \mathcal{C}_{k+1} : $t_1 = -\beta_1, \quad t_2 = \beta_1 - \beta_2, \quad \dots, \quad t_{k+1} = \beta_k - \beta_{k+1}.$

- (b) The line bundle $\det(\mathcal{C}_{k+1}^{\frac{N}{k}})$, which gives the Plücker embedding of G(k+1,n+r+1), has therefore associated weight: β_{k+1} .
- (c) The tangent bundle of G: Θ_G is given by the adjoint representation of U_{k+1} on $sl(n+r+1,C)/u_{k+1}$. Consequently, its weights are precisely the positive roots involving α_{k+1} in their expression, namely: α_{ij} , $i > k+1 \geqslant j$.
- (d) $\mathcal{E}^{*} = \bigoplus_{m=1}^{r} S^{d_m} (\mathcal{I}_{k+1}^{*})^{*}$ and (a) immediately gives that its weights are of the form:

$$\sum_{i=1}^{k+1} a_i t_i = (a_2 - a_1) \beta_1 + (a_3 - a_2) \beta_2 + \dots + (a_{k+1} - a_k) \beta_k - a_{k+1} \beta_{k+1}$$

with
$$a_i \in \mathbb{N}$$
, $\sum_{i=1}^{k+1} a_i = d_m$ for some $m \le r$.

We now draw up a table of scalar products of positive roots and various weights, which will be relevant in estimating indices of weights.

 δ is half the sum of all positive roots.

 $\omega = \sum_{i=1}^{k+1} a_i t_i$, $a_i \in \mathbb{Z}$ (motivated by (d) above and the spectral sequences (6)).

 $1 \le m \le k$.

	Conditions	8	ω	∝n+r+1,m		$\alpha_{n+r+1,k+1}$				
≪ _p	p≠m-1, m	1	^a p+l ^{-a} p	`	p < k	0				
	p≤k			The second secon	p=k	-1				
∝ _{m-l}	rainna Maine ja finalahistopistinen nangapitusionen in en en 1740 jainti jakondusen usetus s	1	a _m -a _{m-1}	www.hannellengendukkerwayayayhhanpahannellengendukkerwake	-1		0			
≪ _m		1	a _{m+l} -a _m	1		m < k	0			
					proming and the designation of the contract of the	m=k	-1			
$\ll_{ m q}$	k+2 ≤q ≤n+r	1	0	q <n+r< td=""><td>0</td><td></td><td>0</td></n+r<>	0		0			
				q=n+r	1		1			
	t > k+l	t-k-l	-a _{k+1}	t <n+r+l< td=""><td>0</td><td>The second secon</td><td>1</td></n+r+l<>	0	The second secon	1			
$\propto_{t,k+1}$				t=n+r+l	1		2			
∝ _{t,m}	t > k+1	t-m	-a _m	t < n+r+1	1		0			
				t=n+r+l	2		1			
$\propto_{\mathrm{t,p}}$	t > k+l > p	+ m	-a _p	t < n+r+l	0		0			
	p≠m	t-p		t=n+r+1	1	and the second s	1			
THE PARTY OF THE P	e para Billion de reconstruire monte a porton resemblemento en escala populações de participa capa de se consequencia de la consequencia della della consequencia de la consequencia della consequencia del	A CANADA MARIA MARIA SANGAR MARIA	·							

Table 1.

We anticipate here on the type of reasoning to be used in the sequel. Given a homogeneous vector bundle over G, defined by a representation $U_{k+1} \longrightarrow GL(N,C)$, we first produce a filtration with consecutive quotients corresponding to irreducible representations of U_{k+1} . Such an irreducible representation determines a highest weight, say β . This β has to be one of the weights of the original representation and further satisfy $(\beta,\alpha_s) \geqslant 0$ for all $s \neq k+1$.

In our computations f will be either of type ω or $\omega+\alpha_{n+r+1,m}$ (m \leq k+1).

In order to obtain the vanishing of $H^{\mathbf{S}}(G, \mathbf{p})$, it will suffice either to ascertain the singularity of the weight $\mathbf{p} + \mathbf{S}$ or to prove: $\mathbf{s} < \mathrm{index}(\mathbf{p} + \mathbf{S})$.

In this context, the main feature of our table of products is that $(\alpha_{t,m}, \beta + \delta)$ increases by 1 when t increases by 1, except the last step for $\beta = \omega + \alpha_{n+r+1,m}$ $(m \le k+1)$.

Note also that for $1 \le p \le k+1$, $(\alpha'_{k+2,p}, \beta+\delta) < (\alpha'_{k+2,p-1}, \beta+\delta)$ since $(\alpha'_{p-1}, \beta) \ge 0$.

§4. Connectedness

Suppose: $\dim F = \dim G - \operatorname{rk} \mathcal{E} \geqslant 1$. (A) F is connected if and only if $H^0(\mathcal{O}_F) = C$.

We have: $H^S(G, \bigwedge^S E^*) = H^O(\mathcal{O}_F)$, therefore the vanishing of $H^S(G, \bigwedge^S E^*)$ for s > 0 will imply the connectedness of F.

According to our method, described at the end of §3, we examine $H^S(G, \beta)$, with β an irreducible representation of U_{k+1} with highest weight (again denoted β) among the weights of $\bigwedge^S \mathcal{E}^{\times} \cdot \text{Thus } \beta = \omega = \sum_{i=1}^{k+1} a_i t_i \text{ and we know (see Table 1):}$

- 1) $a_{k+1} \ge a_k \ge \dots \ge a_1 \ge 0$;
- 2) $\beta + \delta$ is either singular or of index u(n+r-k), $1 \le u \le k$; (u=k+1 is excluded because $rk \in C$ dimG).

Suppose therefore s = u(n+r-k).

For $\beta+\delta$ to have index s, we must have $(\alpha_{t,p}, \beta+\delta)>0$ for $p=1,\ldots,k+l-u;$ in particular: $a_{k+l-u}\leq u$.

Now remember that ρ is a weight of $\bigwedge^{s} \xi^{*}$, thus a sum of s weights of ξ^{*} , each weight counted at most as many times as the dimension of its eigenspace. There are (multiplicities in-

cluded)
$$\sum_{m=1}^{r} {d_m + u - 1 \choose u - 1}$$
 weights involving only t_i , $i > k+1-u$.

Adding any other weight increase some a_j , $j \leq k+l-u$, thus we must not add more than u(k+l-u) such weights. This will be clearly impossible if n satisfies the following conditions:

$$\sum_{m=1}^{r} {d_{m}+u-1 \choose u-1} + u(k+1-u) < u(n+r-k) = s$$
 (C_u)

with u running from 1 to k.

Now, use (repeatedly) the formula:

$$\frac{1}{q+1} \binom{d_m+q}{q} - \frac{1}{q} \binom{d_m+q-1}{q-1} = \frac{d_m-1}{q(q+1)} \binom{d_m+q-1}{q-1}$$
(7)

to show that if some $d_m \geqslant 3$, or at least two degrees in d are $\geqslant 2$, then (C_u) , $1 \leqslant u \leqslant k$, is a consequence of our assumption (A_1) . Note that (C_1) reads: $n \geqslant 2k$.

We have therefore:

Theorem 4.1. Let $S = S_n(d_1, ..., d_r)$ be a complete intersection in P_{n+r} and $F = F_k(S)$ its variety of projective k-planes.

Suppose dimF = $(k+1)(n+r-k) - \sum_{m=1}^{r} \binom{d_m+k}{k} \geqslant 1$, or, in case S is a quadric, suppose n > 2k.

Then F is connected.

Remark 4.2. For a smooth quadric $S = S_{2k}(2)$, $F_k(S)$ consists of two isomorphic (hermitian symmetric) connected components.

This should rather be viewed as the exception which confirms the rule: $S_{2k}(2)$ is a homogeneous (hermitian symmetric) space (of rank one) in its own right, and the generating k-planes of the two families in $F_k(S)$ correspond to Schubert cycles which are not homologically equivalent.

Remark 4.3. There is a simple formula for the canonical bundle of $F = F_k(S_n(d))$, when smooth.

Let $\mathcal{O}_{\mathrm{G}}(1)$ denote the positive generator of Pic(G), restricting to $\mathcal{O}_{\mathrm{F}}(1)$ on F.

Set:
$$K = \sum_{m=1}^{r} {d_m + k \choose k+1} - (n+r+1)$$
.

Then:
$$K_F = \mathcal{O}_F(K)$$
.

§5. Deformations

In this section we assume that $F = F_k(S_n(d))$ has the 'right' codimension and dimension at least two:

$$\dim F = \dim G - rk \mathcal{E} \geqslant 2$$
. (A₂)

Our purpose is to produce conditions on (n,d,k) which ensure the completeness of the natural deformation of F, parametrized by a neighbourhood of the section $\Phi(s) \in H^0(G,E)$ defining F. Notice that the family of complete intersections to which $S_n(d)$ belongs (parametrized by a neighbourhood of $s \in H^0(P,E) \cong H^0(G,E)$, i.e. the 'same' base) is itself complete (see [4],[17],[21]).

A sufficient condition for completeness is the vanishing of $\mathrm{H}^1(G,\mathbb{E}\otimes \mathbb{J}_F)$ and $\mathrm{H}^1(F,\Theta_{G}|_F)$. This is a general result for varieties defined by sections in a vector bundle (see [21]).

We look therefore at the spectral sequences (6) abutting to the above two groups.

(5.1) Take first $H^{S}(G, \mathcal{E} \otimes \bigwedge^{S} \mathcal{E}^{*})$, $s \geqslant 1$.

We obtain vanishing conditions for these groups as we did for $H^S(G, \bigwedge E^X)$ in §4.

Let $D = \max_{1 \leq m \leq r} (d_m)$. Filtering and taking highest weights will produce as above weights $\beta = \omega = \sum_{i=1}^{k+1} a_i t_i$, with $(\alpha_p, \beta) \geqslant 0$ for $p \leq k$.

Since β is the sum of a weight ω' of ξ and a weight ω'' of ξ^* , adding ω' to $\omega'' = \sum_{i=1}^{k+1} a_i' t_i$ decreases some of its coefficients a_i' , diminishing their sum by at most D.

This means that our sufficient conditions (C_u) , $1 \leqslant u \leqslant k$, for the vanishing of $H^S(G, \bigwedge^S \xi^*)$, $s \geqslant 1$, become, by the same type of reasoning, sufficient conditions (C_u^D) , $1 \leqslant u \leqslant k$, for the vanishing of $H^S(G, \mathcal{E} \otimes \bigwedge^S \mathcal{E}^*)$, once we add D to the left hand side of each inequality:

$$\sum_{m=1}^{r} {d_{m} + u - 1 \choose u - 1} + u(k+1-u) + D < u(n+r-k)$$
 (C_u)

(5.2) Consider now $H^{s+1}(G, \Theta_G \otimes \bigwedge^s \mathcal{E}^*)$, $s \geqslant 0$.

For s = 0, we have $H^1(G, \Theta_G) = 0$, because G is rigid [5]. Suppose $s \ge 1$.

Again, using a filtration (actually, the representations we are dealing with are all completely reducible) and successive

quotients corresponding to irreducible representations of U_{K+1} , we find that the highest weight β associated to such a representation is necessarily of the form $\beta = \omega + \alpha_{t,m}$, with

$$\omega = \sum_{i=1}^{k+l} a_i t_i$$
 a weight of $\bigwedge^s \xi^*$, $t > k+l > m$ (cf.§3(c)), and

further conditions: $(f, \propto_q) \geqslant 0$ for all $q \neq k+1$, which imply in particular t = n+r+1.

Take therefore $\int = \omega + \alpha_{n+r+1,m}$ (m \leq k+1) and consider the series of integers: ($\int + \delta$, $\alpha_{t,p}$) with p \leq k+1 fixed and t increasing from k+2 to n+r+1. If $\int + \delta$ is non-singular, this series of non-zero integers will keep the same sign, except possibly at the last step t = n+r+1, when it might 'jump' precisely over zero (see Table 1).

Now let p decrease from k+l to l and notice the relations of the starting values in each series:

$$(\beta + \delta, \alpha_{k+2, k+1}) < (\beta + \delta, \alpha_{k+2, k}) < \dots < (\beta + \delta, \alpha_{k+2, 1})$$
.

This means that we might encounter non-vanishing cohomology $H^{s+1}(G,\beta) \text{ at most for s+l or s a multiple of n+r-k, say } u(n+r-k)$ (u<k+l by our assumption rk $\xi \leq \dim G - 2$).

For the coefficients a_i in $\omega = \sum_{i=1}^{k+1} a_i t_i$, we have either:

- 1) $a_{k+1} > a_k \ge \cdots \ge a_1$ for m=k+1, or
- 2) $a_{k+1} \ge \cdots \ge a_{m+1}$; $a_{m+1} + 1 \ge a_m \ge a_{m-1} \ge \cdots \ge a_1$ for $m \le k$. Since ω is a weight of $\bigwedge^s \mathcal{E}^{\mathbb{X}}$, it appears that (C_u^2) above is a sufficient condition for the vanishing of $H^{s+1}(G, f)$. Summing-up, we obtain:

Theorem 5.3. Let $S = S_n(d_1, ..., d_r)$ be a complete intersection in P_{n+r} and suppose that its variety of k-planes $F = F_k(S)$ satisfies: $\dim F = (k+1)(n+r-k) - \sum_{m=1}^r \binom{d_m+k}{k} \geqslant 2$ (A₂).

The following conditions (c_u^D) , $1 \le u \le k$, ensure that any small deformation of F is induced by a deformation of S:

$$\sum_{m=1}^{r} {d_m + u - 1 \choose u - 1} + u(k+1-u) + D < u(n+r-k)$$
 (C^D_u)

where $D = \max_{1 \leq m \leq r} (d_m)$.

If no d_m equals 1, these conditions are already implied by (A_2) , as soon as d avoids the following list:

$$(2)$$
, $(2,2)$, $(2,2,2)$, (3) , $(2,3)$, (4) , and $n > 2k+D$.

The last statement is easily derived, using e.g. the identity (7) in §4. Actually, if the given list is excepted and $k \geqslant 2$, $(A_2) \Rightarrow (C_k^D) \Rightarrow \dots \Rightarrow (C_2^D), \text{ while } n > 2k+D \text{ is } (C_1^D).$

References

[1]	Altman,	A.B.	and	Kleiman,	S	- Found	lations	of	the	theory
		of Fa	no s	schemes.	Compo	sitio	Math.34	1(19	77)3	5-47.

- [2] Barth, W. and Van de Ven, A. Fano varieties of lines on hypersurfaces. Archiv der Math.31(1978)96-104.
- [3] Beauville, A. and Donagi, R. The variety of lines of a cubic fourfold. C.R.Acad.Sci.Paris, Ser.1,301 (1985)703-706.
- [4] Borcea, C. Smooth global complete intersections in certain compact homogeneous complex manifolds.

 J. reine u. angewandte Math. 344(1983)65-70.
- [5] Bott, R. Homogeneous vector bundles. Ann. of Math.66 (1957)203-248.
- [6] Cayley, A. A memoir on cubic surfaces. Phil. Trans.
 Royal Soc. London.CLIX(1869)231-326.
- [7] Clemens, H. and Griffiths, Ph. The intermediate Jacobian of the cubic threefold. Ann. of Math.95(1972)281-356.
- [8] Collino, A. The Abel-Jacobi isomorphism for cubic fivefolds.

 Pacific J. Math. 122(1986) 43-56.
- Donagi, R. Group law on the intersection of two quadrics.

 Annali Sc.N.Sup. Pisa.7(1980)217-239.
- [10] Donagi, R. Generic Torelli for projective hypersurfaces.

 Compositio Math.50(1983)325-353.
- [11] Fano, G. Sul sistema ∞² di rette contenuto in una varietà cubica generale dello spazio a quattro dimensioni.

 Atti Reale Accad. Sci. Torino.39(1904)778-792.
- [12] Harris, J. Galois groups of enumerative problems. Duke
 Math. J.46(1979)685-724.

[14] Knörer, H. - Isolierte Singularitäten von Durchschnitten zweier Quadriken. Bonner Math. Schriften.117(1980).

[15] Kodaira, K. - On stability of compact submanifolds of complex manifolds. American J. Math. 85(1963)79-94.

[16] Reid, M. - Cambridge Thesis, June 1972.

[17] Sernesi, E. - Small deformations of global complete intersections. Boll. Un. Mat. ltal.(4)12(1975)138-146.

[18] Tennison, B.R. - On the quartic threefold. Proc. London Math. Soc.29(1974)714-734.

[19] Tjurin, A.N. - The geometry of the Fano surface of a non-singular cubic FCP₄ and Torelli theorems for Fano surfaces and cubics. Izv. Akad. Nauk SSSR. Ser.Nath. 35(1971)458-529 = Math. USSR Izv.5(1971)517-546.

[20] Voisin, C. - Théorème de Torelli pour les cubiques de P₅.

Invent. Math.86(1986)577-601.

[21] Wehler, J. Deformation of varieties defined by sections of homogeneous vector bundles. Math. Ann. 268(1984)519-532.

National Institute for Scientific and Technical Creation Bd.Păcii 220, 79622 Bucharest Romania