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ABSTRACT. wae mesh independent principle (M.I.P) for Newton's method in
the Galerkin type discretizations is studied in the hypothesis of the
convergence on the initial space and in the standard approximation property
on subspaces. On the line of Algower, Bohmer, Potra and Rheinboldt, [2],
and using the framework introduced in [1], we obtain that M.I.P. holds in the

"energy-norm" induced by Gram matrix of basis.

Key words: Newton's method, Galerkin discretization, mesh independence.

AMS (MOS): 65F30, 65F35, 65N30

1. Introduction. Let the following nonlinear equation in the separable, real

Hilbert space H:
(1.1) Flu)=10

where F: D&H~—7H, is Lipschitz continuous Frechet differentiable on the open'

domain D:
(1.2) | B - Bl oy u- ], e D

In the assumption that (1.1) has an unigue solution e D, which is simple,

i.e. there exists Fi(u®) ™ and is bounded,
| Rr(y® i B REE E
(1.3) I F™) " =

and the ball B* := B*(u*,r*)c D, where

‘ﬂ%‘

(1.4) = 3/3¢°%
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the following like local convergence result due to Rheinboldt holds: the Newton's
sequence, defined by:

a5 e ul mal el Ge00

: 0 N 5 S
converges for any u ¢ B™ and the iterates verifies:

G iy 00 &
2 (1- ¥ nud-uti)

‘This result and a class of discretizations what are stable, Lipschitz uniform,
bounded and consistent of order X (> 0), in the sense of [2],‘ was used for proving the
M.I.P.: for a prescribed error ¢ , same ‘number of iterations are necessary for
Newton's sequence (1.5) as well as for the corresponding Newton's sequences for the
discretizations of (1.1), with starting points uﬁ. The analysis presented in [2] is
tipically for finite diference schemas, covering another type of discretizations. In
this paper, using same line as in [2], and the "spectral" matrix representation on the
real Euclidean space of Galerkin type discretizations, presented in [1], we obtain that
M.L.P. holds in the "energy-norm" induced by Gramian. The example on Sobolev space
Hi, shows that our model is one natural.

Our finite dimension approximation subspaces S)c:H are Increasing with

I
h —> 0 and the following approximation properties hold:

(1.7) inff fu-vie=| u- Pouf <Cjjufy h y A0 hy

VE Sh

for any ue W\ H, where the norm on W majores the norm of H, and Ph is the
orthogonal projection operator corresponding of Sh' We suppose that WNH is
suficient of rich, for example, is dense in H.

Now, the h-approximation operators defined on D\ Sh’ are

(1.8) F 2= P FP -Fliu) =P ueD
1 n=h h

2y
| 15 (WP

1 h’

a Cor o 133 AR & A e
and for Uy, Ph X, Vi Ph\fc D, we have

= 7 =) i
T (UatVg) - Rt )= Fy (g 1 4 I FCUgrlg) = Feag) = F! (e g |




what ensures the existence of Fréchet derivative of Fh' Moreover, this is Lipschitz
continuous with same constant ¥ by: if “4 "2(3 5)‘: non
) J et = ¥ s - ;
N5~ Fe (TS f = 1Tl F'(5e)~ F'U) 1R Sa
¢ ¥ - I35 0

for any Shé 5, Hence, on 5, A D:

Lo F Gy - P g A ETERN

‘Some evaluations are needed for our aim. Firstly, by the approximation
subspaces choise, for h =% 0, || Fi](u*) -Pw*) | — 0. Then for every 611 G20
)

there exists h1 such that, for h < hl’

; By o op it :
| 7 ) - P T < £t
choosing 5 % such that @ E % £1/10, we obtain by the following trick:

Fia‘“*) = Plu*) - BT EW®) - F )

that

* *
J{-)~i ” L Wﬁv £, ﬂ..oi‘&b e

Zaf
“ ?‘p] (u o= i..- gbgé

-

S0

)u)

Now, if u*eB*n w, by (1.7)
o
a0 ) -’F;(ué‘*) - Fpw® | 2 Coliu R

d .
Hence, choosing h, such that for h< hys C, \(H]u"i C;h £1/10, we obtain by
same trick, that there exists Fi](u;;)*l, and,

IF, Y

WSS

ol a =Ry
(1.11) I FolUg) || € — Gl gl
A= 1E W) TF wh)- Tl

REMARK 1. Let h” MZ?ZS? fid and u*eB* N W. Then, there exists
o 55

& Sh(f; B*, and

i - B
bh(gh) hocey h




(1.12) “ ‘T:{'; (&;% \wi \\ 4 b= L{‘Q:)

i.e. the discretization is stable in the sense of [2], locally.

Proof. Observing that
b

p>.

% ) e ¥ ‘;’L 1 BT
¥ W~ Fo (56Y) & WP (36 U1 < w0

¥ ¥ ¥ 2 ;
and EXE =idoi ¥p 2/ = 4% Lot /s <4,

there exists Iri](ghfl, and (1.12) holds, by same trick. _

&

Second, for uzB*N W, uhéD, using the following estimation due to

Kantorowich ([ 4 ])

IF ()= Feug) - Flaptg-w | 2% flu-vg i*

we obtain. W Rpmio) - Bodgl & I Fou) = F gl
i 5
B | Foy - Fagpy b £ Woug fl + te Jlu-ued]

. , . .
where M is the constant of boundness of Frechet derivative. Hence,

o o
(1.13) W Flw = Fptug)y & Co (¥ i+t ) Wunt h
In same way, for u,vé& B*n W, UosVy, €D,
U .1 ! ol e ] \ ﬁ“’é
(1.14) WP (Fayy — Fptupdve ) 2 G (liul v+ r livil

REMARK 2. If Wull <C for any ueB*n W, then ([2]) the diseretization is
consistent of order o, with (1.13) and(1.14). This isn't possible always, and we remark

that in the proving of M.LP. in [2] it is suffice ~ that the consistence property to

NP R A S




hold only on the Newton sequence. So, we can define the special form of consistence

in the following manner:

of

! o J S ] i ~
hPhl (i) ='F (uy) h <C,h

h

= o

(rte), - P (Flo'yu® =~ ¥Fp Lug)y Ut || 2 L1

where (34 and C5 can depend only u’eB*n W, the starting point in the Newton's

sequence % W, = 0,1,2,...2- defined by (1.5).

2. M.LP. for h-approximations. In consens with [1], we separe the analysis of

the approximations on subspaces, of their matrix representation on Euclidean real

. . 5 . . s 3 5 =
spaces. This permits to work for approximations in B” and to transport the obtained

estimations on real Euclidean spaces for Galerkin discretizations. On S, we are

h

encountered with the existence of the solution for the approximation of (1.1):
(2.0) F(4)=0

and with the convergence of the Newton's sequence. The hypothesis of the theorem of
Rheinboldt enounced in section 1, and the approﬁcimation property (1.7) ensures this.

We will name this as standard hypothesis (S.H.) in the following sections.

LEMMA 1. If (S.H.) hold, and u*e B*N W is the solution of (1.1) then there

~ N -
exists h such that for h<h, (2.1) has an unique solution EE@B}](u;‘ml) and the
i )

O

. Newton's sequence with the starting point u :=
i h

45 R :
Phu i1s convergent to it,

quadratically, i.e. a similar relation as (1.5) holds.

Proof. Because u*e B*a w, [ u* - u;' e, Wu™E b Let h, such that

for h < 114, CO i hM <o’ e u;?eB* and we red¢fine h of the remark 1.,. as
SeAR $h.} . Then, there exists F‘h(uf{)_]', and
0<1<4
B £ 3 “1 :
(2.2) \\}T‘h(uh) “ N

Now, we can evaluate the cantity o it
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By (1.13) we have that,
' 24

o, g% e f
e AL eliEG T g
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Hence, there exists h. such that O(h< 1 for any h<h, where redefined his:

5

h= minw fn.% . By a classical theorem of Kantorowich, because hold (2.2) and (2.3)
1<i<5

there exists E; = Bh(u;, ), that is the unique solution of (2.1) in this ball where
oo Ve -Ae ! ¥4 3 '
%--T | Pt 7  Futg) | &
o L
L WCQ{\ P— CS f‘

—

We wish to have E;GB*; by

d o
0 E:“ W e e riututy ¢ Cgﬁ“+ GUUTIE 2= G f

~N
Hence, there exists hg such that for h<h= iy ihiﬁ ; 7\g}";eB"‘, and there exists
1<i<6

F! %\ 1 :
h(§ )77, with
Lt n
(2.4) | Fe (507" = ’f’g‘ S }
Now, by Rheinboldt's theorem, the Newton's sequence, for (2.1) -

I+ 3 sy : s
(2:5) e oL~ F) ey e

Ty

converges for any Sﬁé B;(g ;, T\:), where

¥ ¥
(2.6) n = 2/5% G

and the iterates verifies: < i e

Moy, sl
(2.7) V5 R le mc&,@:‘h’\\’g\f‘—?l\)
' |




Ou: interest for M.I.P. is that the starting point in (2.5) be uﬁ = Phuo, i.e.

Gk 0
we need that u €B  we can z=eeva1uate°u§,

¥ 9l &= NFL ) h Uy~ ?;i; )

et - 7
7 %7 || Fe lug )
i~ 4 E}Xﬁ{,
% 6% fx

by same trick for gv; and (1.12). By
° & 3
Bug=5 1 & tug-ug W+,

with [[u®- u*[\ <qr¥,q< 4, if

++“{‘ S 1= 4 £ Tre,

(2.8) 6% (vf&”f

> ~
then, there exist h,, such that for h < h:= aww {h ko eB 2 Izh) i= B
i 1<i<7 h’

THEOREM 1. (M.I.P. for h-approximation). In the following assumptions:
(S.H.) hold, with u*e W0 B*
Starting point u%& Wn B:; := Blu¥,qr*), g < % ;

Newton's sequence %ul, j= 1,2,...75C WnB*, and is bounded in the norm of
3 ~
W:| Wii<c,, C, 1= C(uo), then there exists h such that for h < h, the M.L.P. in the
=960

sense of [2], holds, when the starting point of Newton's sequence of h-approximation

(2.1) is Phuo = uﬁ; i.e.:

3 a 2
an W =hu e ed)
. . : d
) Rl - ?ﬁlud) RO
3 ~ :
(2.11) Sﬁ_~§f==7k(uﬂ_u*)-+06ﬁ“ leea

and in the stronger version: forcany. £ 0 ’

(2.12) \ wlv\{vx),% ho'— u® \\<£§mmh§1;o W3 - 3¢‘“<£i\




~
Proof. The last h ensures that the Newton's sequence for h-discretizations

with h <h converges to the unique solution g h of (2.1), with starting point Phuo

:1 Now, the estimations for

15, % u'l 1R Ce)-FFwhil, | (te-% V- Ry lu-uhy |

what lies in B

and (2.12) follows by the Theorem 2 and Corollary 1 of [2], via Lemma 2, see below,

and Remark 2; in fact, this estimations make the object of [2].
B

~
LEMMA 2. In the hypotheses of the theorem 1, there exists h such that, for

h < h, for every u’e wn B**, qr*), the h-approximations are Lipschitz uniform

(2.13) b Fowgy- Fhovgy I« ¥ lug-Ve il
stable

(2.14) ! Fé ()t &©

bounded

(2.15) S Hule Qul

and consistent of order
&
(2.16) W B R - Fp || « Cioh

(2.17) Il B (Fluv)— T“e‘kuﬁ)\lf, | £ Cy :

" on the set of Newton iterates defined by u® and (1.5), where ClO’ C11 are constants

what depend only g Moreover, (2.15) holds for every ueD, (2.13) holds for every

%
U,V € DN Sh . (2.14? holds for every u € Sh(\ B

Proof. Because Py is orthogonal projection, (2.15) holds. (2.13) is (1.9) and
(2.16), (2.17) are obtained by (1.13), (1.14) using the boundness of the Newton

sequence in the norm of W. Now, by

TEASLL DN RO AR S



= 9 i
Llug-gp I+ N, vl < g% ang + G ot g

L ﬁn, +C42f\0<

e

there exists h, such that for h <h:= 0w {h ¥ the Newton sequence S{g" % lies in
: 1<i<8 I
B*. Hence (2.14) hold on this. Moreover, by

. : ¥’
\\ ué‘— u*“ e Ua—u;“ ol ug__ u*‘“ 0 u.\- u-‘(—“+ “uﬂwu,y“

L4 u’-u¥ )+ Lug-ut

of
L gt o catit

; _ .

the projection of the Newton's sequence (1.5) lies in B*. Then, (2.14) holds, for h < h.
' B

n

3. M.L.P. for matrix representations. Let R N be the Euclidean real space
with same dimension as Sh, where Sh is spanned by the linear independent family
§ cb b i=1,n g There exists an unique representation for every She 8. in R that
is the vector §1 with the entries the components of Eh for the basis icbhz Let

5,~e i=1n %be the canonical basis of R h; we define the linear operator

e i(R h S, ) by 7 e —(?h i=1,n, and let J_be the adjoint of this

L <Jh§h’7h>Rn = <Jh§h’?’h s 3"2&

Then, the h-discretization of F is

= h
(8:2) F = JhFhJ

and the h-diseretization of the Fréchet derivative is
o
63 T = E G

~n A 5 ~
where gh :Jhgh. We note that if A =[H], then the h-discretization Ah has the
matrix representation i'n canonical basis the Galerkin matrix ([1]) because his entries

are




— el

£ 10 =
o0 ~ : t o J
e Cheipei Sl a o o0 By
We identify the operators on Rnh with their matrix representation in canonical basis.
By this observations, for ghe I ’\lgi](gh) represents the Galerkin matrix
representation of the Frechet derivative FY( Eh)e [H].

n
Now, let G & [R N} be defined by
f
(3.4) G Je I

what has the Gram matrix of ilp;} as matrix representation, and let the Choleski

factorization
L*
(3.5) G i \_.ﬁ‘ 3

where L, is a low-triangular matrix.

h
A n A n

Defining 3"€ L(® 1, S, ) being the adjoint of J € L(s & M,
) -1

@a e ey

n
and the mapping A LE I([Sh], [R M) by
A -4 ~ iy 2

A
A
(3:7) Aﬂ (Ae‘\:: 'S% A = \_e\ Ae Lf,
we have the following theorem of spectral matrix representation ([1D):

THEOREM 2.Ah is an isomorfism of operator algebras which preserves the

spectrum, norm and condition number, i.e. for Ahe‘ [Sh],

G‘(Aa(Ae_» = 0 ( Ae\)
b AL (A T,= T sl

L g ChQY) = Y CAe)s= A I AL |l
if Ah is invertib}e.

N Ay 3
Proof. Schetching, we observe that Jhl:Jh. Then Ah is a similarity

application. Because we have




C 'AJ{»\S% e = 1% N

the our affirmations can easy proved. .,
We use in the following this representation theorem to transfer our resulls
of h-approximations on Rnh.
A ~ A
e % ny : .
Let ?gh =] Sh =] Ehesh’ where g‘h =L, S RER .By j\_h, thg matrix

representation of the derivative Fréchet is
.» Al .,\ . - ( ’ <A ~e =
@9 B AR = A LR = Ly F UG L,

Then, the Newton's sequence corresponding of the h-approximation by ‘Ah is

A:S*ﬁ ,\J i

\ A N - A A Ao A
(310) gfi‘ ::_Ec\ = Fé\(’%f\) L ‘:’e‘(\ge\) 5 E% = It\‘gg . ‘)T:O‘»‘i,z,...

and the Newton's sequence for Galerkin discretization is

“’:H»\ ~ 4 ~og

o~ o ~ ~ © =t 0
(3.11) &,e\ =§e\ - Fe‘(“gf‘)‘}:ﬁ (gﬁ\ )3& =.S'€. Eg‘ >

J 30'“7/‘)-;4

which is that of the practical interest.

Now, because ,
- ~ ~ - ~ % Yy e ~
fke [(Fat vh) - Rl F o) e )
% R A Aot Ay A
e B Bl

oy 2 ’ /\ A 7 .

- ; - : g £ e : ; :

Fh(gh) is derivative Frechet iff l*h( Sh) is derivative Frechet, iff Fh(s h) is
/

derivative Frechet, the our model is consistent and because by an above observation,

the matrix representation of F‘h(Sh) is the Galerkin matrix of F‘(f h)’ this model is

natural.

Defining the following "energy"-inner product induced by the Gram matrix

(3.11) Lo ”7.%7@&‘“'(@7@%,%'7?‘

we give the following result:
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THEOREM 3. (M.L.P. for Galerkin discretizations). In the hypotheses of

theorem 1, with same h, M.L.P. holds for matrix representation of h-approximation,

h <D, in the norm induced by Gramian. In the stronger formulation, for any &> 0,

2 t

< \’ : J '*'g‘ . i % * - «"\’;. - "i" : > A
(3.12) | Wiyt - W e £~ meudyyoqd §>ré“ 3o U “88] 24
41 1 ]e’

Proof. By theorem 2, the Newton's method for h-approximation of (1.1) with

starting point P e converges for h < ho and M.L.P. holds. Now by theorem §,,

h h
- . . . n
all estimations on Sh are automatically transfered with same constants on R h for

(3.10); hence :
" A w ) 5 *{K’
(3.13). l§€1 5»1% ﬂ.ﬁ = (%= %

and (3.12) holds in Euclidean norm for §§‘§} é -

Now, because
A "';& b
o o ih S =10

o
o
the Newton's method for Galerkin discretization converge to S%‘f and M.L.P. holds in
the Gh-norm. a
4. An example on H(];., We wish to apply our model for P.D.E. equations. Let
the following problem

L
(:ji(u);:: -(—Dw(:i — X (x, b, =0 NG JL = (0 4)

(4.1) Q. x % )
U.CO) = L{(‘i) =0
whose variational formulation is in H := Hé(g“),), the Sobolev space equipped with the
inner product involving only first derivative.

Assume that [ is such tlat (4.1) verifies the Rheimboldt's hypotheses and 0
is the unique solution fou it. Then the variational formuiation as well as the operator

equation defined by this -~n H ( fl, ), has the same solutic: u* ¢ Hzﬂ H(l) . Moreover, we

assume that f is such i at this operater equétion, (1.1), verifies the Rheimboldt's

hypotheses, eventually ''ith modified constants. The following remark, that isn't
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e i

3
N : : s
complicted to prove, is the support of our suppositions, and ensures that the Newton's

sequence for (4.1) is same for variational formulation as well as for operator equation

on Hl.
0

1

REMARK 3. In the stated hypothesis of initial problem, holds in "Ho (W2 )

the "commutativiy" between the Newton's process and the variational formulation:
1
both ordering of their conducts at same equations in H o W) .
@ Qo v O s — : :

For u e H(J1), u(0) =u (1) = 0, the Newton's iterates of (4.1} are the

unique solutions of the linear problems:
oSk e ‘3... Tewly

- e

o 144 - -
oy uMtd =0 i= o,
Then, they are the unique solutions of the variational formulations associated to (4.2),
and ule B4(0) QH(l)(Jz.).
Let W = H(Zm_) f H(l)(il). We have,

3 e o
> Gu 0 a
= Bu'h g1,y 000 P

§ % : Yz
b =l ﬁ{llc\ﬁ,)

z

4 e “R’},cw)

‘ 5,
(10 + 0 Feh | L"cu’z))

Hence, if U fu“l'{,;z(dl) < C in the ball of convergence of Newton's method for o , and

because J is so, then the suplimentary hypothesis of theorem 1 are satisfied, for

every u’e wn B*(a.x*,qr*) with the constant C independent of i

9

Now, let S, be sppanned by the linear piecewise family of functions

h

corresponding to the uniform diseretization of the domain ., of the mesh

hin+1) =1, $.Gh) =", i,j=1,...,n. For this polinomial basis of functions, the
b J ]], bJ 7 3 .

approximation propcrty verifies (£3)):

» ) e % st g Ve TN ) 4,{
L4 it ¢ N 4Gl : WeE / Ry
j( ‘ LWy ! ey : >
V& S-(,”
i.e. & =1 in (1.7); 2.7l the Gramian coincides with tiie diseretization of the Laplace

operator:



S
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with );nin(Gll) = 2= ceos )/ = h'ﬁz&‘}h, where €, > 1, h -7 0. Notting that the

N

1
i G B o . gl 4
norm on R is weighted by h”° for the equivalence with L?—-norm, we have:

(UL) L “ g’ﬁ. n %‘fo QU‘L)

~

flopsh sufficiently small. Then, the M.LLP holds in the Rn—-norm, for Galerkin

discretization, because:

i
§
i
i
{

We remark that this model ean easily be extended to nonlinear equations

with the linear part an elliptic P.D.E operator on multidimensional domain.
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