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In this paper we propose & connection between the negative
definite functions and the pseudo-differential operators. The section
1 presents the notations and terminology which we shall use in this
paper. In section 2 we shall prove that a continuous negative defi-
nite function can not be a symbol of order :> 2. We shall give
conditions in which a femily of pseud0mdifferential operators is a
Feller semi.group - on B and we shall characterise the semigroups
which commute With the transletions. The result from the end of
section (Proposition 2.4) contains conditions in which a pseudo-
differential operator whose symbol depends not on X is the infinite-
simal generator for a Feller semigroup on R®. This fact corresponds,
for a differential operator, to the case of "constant coefficients".
Tn the section % we shall use Proposition 2.4 for the deduction of
the main result of this paper, the Theorem %,1 (the case of
wyariable coefficients"). In the Theorem 3.1 we shall give conditions
in which a pseudo~differential operator is the infinitegimal gene-
rator for a Feller semigroup oﬁ RY snd we shall present en explicit
formula for the construction of a such gemigroup. We shall prove
that this result can be considered &s an extension of Rothﬁs paper
£4], while the methods of proof are different. They are depending
on & series of theorems due t0O Chernoff[B}@ :

T went to thank to prof. dre. doc. N. Boboe and dr. Gh. Bucur
for their suggestions end their interest in the problems of this

paper.




e o

l. Definitions and Preliminaries

In this section we present the definitions and some basic
results concerning the negative definite functions, the Feller
semigroups and the pseudo-differential operators. For details see

2], (5], [5]-

Definition l.l. A function %J:IRn«mﬁmﬁjis;called heg&tive

definite if for all natural numbers p and all n-tuples (uy, ee., u_ )
' p

of elements framiﬁn
p p o
E:; zz:' [hy(ui) + WJ(uJ) - <+J(ui« uj) } Cicj ';; 0

i=l =1

for any n-tuple (cl, Coy eooy cp) & cP.

A function %>:E¥xw » ¢ is celled positive definite if for

all naturel numbers p and all n~tuples (ul, Ugy oeey up) of elements

from'mﬂ
p f?L
EZ: o O (u, = u.) c.o. 0
= 1l >

for any n-tuple (cly Cos eeey cp) . cP,

Proposition. 1l.l. 4 function %J:]Rn e O G négative definite
if and only if the following two éoﬁdition& are satisfied:
(i) Yo) e .
ﬂ (ii) The function emt%is positive definite for all t = 0
i Lei p.be a bounded positive measure on R-. We define the
Fourier ﬁrénsformation of p, denoted ﬁ, by the formuls
@ pgr =) ot B ED Ly, fenr”
where <y, Ej) is the scalsr product from R". ﬁ is a contiuous
positive definité function and teke place the following result:

e i n
Proposition 1l.2. Let & be a bounded positive measure on R .

+ : % Tk - =
If the Fourier transformation i belongs to L' (R '), then the measure

p has e continuous density g given by

/o:o
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: iy -1 e N n |
) g(x) = (2n) 50 5T pE)de e el |
Definition 1.2. A convolution semigroup on R is a family |
(yt) of positive bounded measures on R with the properties:
120

) gl e 1 Foret >0
(i) Pi £ Py = Poas for 4y 8 > 0D
(il ) 1im Be o = %'o vaguely.
t+0
There is a one-to-one correspondence between convolution semim

' n : : TR :
groups (Pt) on R~ and continuous negative definite functions

t >0
Onﬂf%

Theorem 1.1,

a) Let (Pt) be a convolution semigroup on R".
| Lo : . : .
Then there exists a uniquely determined continuous negative

definite function Y on R* such that
Pt =e ¥ for .t 7.0 snd - o) =a@.
b) Conversely, if Y is a continuous, negative definite function
%’on'ﬁn such that (o) = O, then there exists a uniquely determined

convolution semigroup (Pt) such that
t> 0

ot
fL=0 it for t "> 0.
A continuous, negative definite function on B is described
by the Lévy-Khinchin formulea.

Theorem l.2. Let “V : R®——> @ be a continuous negative

definite function. There emist:

(i) a constant ¢ >0
n

(ii) - a continuous linear form 1 : R"——— R
l(%):%{; e B, ke R
(iii) a continuous, positive quadratic fbrm gt R Ry
q(@)xgj, fjjl 8 5 £ %f:?’;‘j, aijg’; ]Randaijxaji i

/e«ce
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(iv) @& positive,bounded messure W on i N {O}ﬁ such that for

Eer"
y ”i <&€a $ (o
(5) Y(8) =c + Il(E) + qlE) A l - @ y> “"-—?l—w fi/’i« av(y)
1+fv !y{

Rﬁ ok
vmw@§y1:1:<y;y>

Conversely, if (¢, 1, g,+¥) is a quadruple as specified above,
then (%) defines a continuous negative definite function.

Dwﬁlnltlon 1.3. Let (E,|| || ) be a complex Banach space.

A strongly continuous contraction semigroup on E is a family (Pt)

t >0
of linear and bounded operators on E satisfying:
(1) ke L €1 e £ 50 _
(1) PR =B, dor £, 8 50
Ciddy) Po S
Civ) 13 Ptf =f for ol f ¢ B,
1 =0
The infinitesimal generator (A, Q(4)) for (Pt) ig the
t >0
operator on E with domain
2 Gh) =r%f‘€£ B ‘ lim ir(P,f - f) exists in E %
Tl
t—0 :
and given by
Af = 1lim ..{. (Bt -2t {c D)
t—0
The semigroup generated by A will be denocted by (etA)t>w0 s

and the smallest closed extension of A, the clesure of A, will be

noted by A.

Proposition 1l.3. Let (4, 2(a)) be the infinitesimal generator
tA
)

L]

for the strongly continuous contraction semigroup on E, (e i
Let D © 2(4a) satisfy:
G 0 Sk
L N ‘LA i o
@) ¥t >0, e(D) C. D
Then A = A
D

[ooo



S
we remember two results due to Chernoff [21 , which we use

in this paper.

Theorem l.%. Lot ~%E};E be a family of linear contractions
20 % 2 : ‘

on & Banach space B such that the funetion 't —--m%.th is eon-

Y

tinunus for each f & E. Suppose that FO = T and for each t >0

lim (F, e ar, fox e 5,
n-w(;g.ﬁ o

n
Then ~{Gf} is a strongly continuous contraction semigroup on E.
e - 2c)
Theorem le4. LetiFt% be a feamily of linear contractions
t20

on a Banach space E with F = I. Assume that there is a strongly

continuous contraction semigroup on k, (et‘q)wO such that

lim (F)F = ot

- Qo -1;;
uniformly on compact t intervals.
Then 4 = F'(0), i.e. A is an extension of the strong derivative
F'(0)e
: Wt . =
In the sequel, we denote by C(R") the set of contlnuous’
lex functi n w1 By ¢ (@), res (R® denote tl t
complex functions on R’ . By Cc R"); Tespe. Cola ) we denote the 8e
of functions from c(R™) which have compact support, resp. which
tend to zero at infinity. C (R } is & Banach space with respect 1o
uniform norm:
« ; .
12 Il= sup |20
x & R? :
,4.  § b e 4 n . X
ng(ﬁn) denote the set of ¢ % functions on @ which have

o7~ I | . 2 . n
compact support. CZ’(M ) is dense in C (R7).

Definition l.4. A strongly continuous contraction semigroup

(P on COGRn), for which &1l the operators P, are positive,

t)t‘?c
j.e. such that for all t 7 O
¢ e cr@®) implies Pif € C (R,
0 b 0 ’
/o 6 &
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is.called a Feller semigroup on R°. A Feller semigroup (Pt)t>~o on
R® c@mmuﬁea with the translations of R if
(4) (V) a€ R, t>0 and f & ¢ @y, R = T,
where fz%f(x) = f(x - a) for x € R™.

A conveolution semigroup (Ft)t“wo dﬁ]ﬁh in@u@@$ a Feller gémim
gooup onjﬁn, (Pt) s which commuﬁ%a with trenslations, by the

1 >0
definition:

i

i = Al " ¥a £ fto k4! b - X
(%) Bel = py % £ for £ e C (R ) and t > O

Then, from the Theorem 1.l.b) resulis thet & continuocus
negative definite function %’such that ¥ (0) = O induces a Feller

semigroup which commute with the translstions of RY o

For the Feller semigroups OH'Bng the condition (i) of Definition
1.3 is equivelent with the next condition:
(6) (V)>0, (V) € C () and 0SE <1 =» 0P F < 1.

The infinitesimal generator (4, 2 (A)) for the Feller semi-

group onmn9 (Pt) , satisfies the positive maximum principle:
L0 : -
(1) €¥)u € ﬁﬁ(ﬁ) end x ﬁfﬁns u(x) = sup u > 0 =»Au(x) < O

In the sequel the basic notation and terminology will be
2 3 ﬂ £ T n
established * the pseudo-differential operators on R .

For the derivatives operators we use the notations;:

D .
R - ;
g o 9;
where i :J¥» |
Let £) be an open = 'E{n, m, £ & R such that 0 < g’g 15

0 & gg‘<‘14 We denote with cgg(i“) the set of functions a é;C@?QX Ru)

with the property that for any .compact ¥ << JS2 and for eny multie
proj J I :

indices o and & there exists C = C(K, ¢4, (5 ) » 0 such that

3 O 8k ) | < e+ jo} - §lal+SUM

X

/o»w
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for all x € K, @ € R". The clﬁmant% of 8 S (§2) are called

symbols on SZ of order m and typs (gﬂﬁca), z;% (52) is a complex
lin@ar spaceofﬁgig rmﬂ .fh»<F2) . The most important case is
that in which §a¢1¢ & = Q. Instead of 8 (5?) we shall write

S®(S$)). The set of symbols of order - oo and type (1, O) we shall
: - 00 i = il
denote with 8  (§)). If my & M, then § 1(£1.)' ¢ - - (50)
By 39CEQ) or g we shall denote the set of all functions

TQCW%W% such that
by
sup % oie) Cf(x)s <400
xeﬁn -

for all multi-indices « and P

Therefore the functions of éf are indefinite derivable
functions, which for x —» @, tend to zero together with all their
derivatives of &ll orders, faster than any power of lx§"1 .
éf ig a linear space and the relation

e i D) e

Qo
Cc
}is satisfied.
The space iﬁ is invariant with respect tov the dxi*ewm‘tiation'
end multiplicetion by the temperate functions, i.e. with the
functions whi*h grow not at infinity faster than any polinomial .

Thug, ;x% ié L? & ;f is bounded and integrable’ on R®, for all %};a 3

P
and multi-indices o and {% + Therefore, between the spa s Fand L
: GO : e
the relation JC hp9 p » 1 is satisfied.
The Fourier .  transform : of a function f L“(Q ) is &
T s .A. n .
gompleéx function £ ¢~ = (¢ defined by
PR i e e
(%) = S et <% ¥ 2p(x) ax
¢p

J is invariant with raﬁp@ct to the Fourieyr transform and
i et :
reo) = em™® § S <HE> FiE) at

The form of a pseudo~differential operator of order m and

/oee-
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type ( §*3$> is:
- g e e o A -
st = @)™ § I <mEZ o g Ry ag -

neyen ( i<x <y, B B @
ey §Y TS o, g ) 2 oy e

where £ € C¥@®") and a & g% (D).
‘gig .

i

A,

o
The set of pseudo~differentisl SR e o =
ne set ol pseudo-differentisl operators of order m end type

(e, S ) on §2 is denoted with PS(m, ¢, $). 1f g= 1, S= 0 then
Pe(m) ¢ = PS(m, 1, 6)« The 5perators from PS(~ co):= PS(~ 02 , 1, O)
will be named in the sequel, regularizent pseudo-differentisl
operators. The composition of two operators from PS(-e¢o) is an
operator from PS(~- oo ).

Definition 1.5. A & PS(m, € 8 ) is called elliptic_of order

m if for each compact K < S there are positive constants CK, RK
such that ‘

= . Zapit ‘ =
(8) s B0 | pGdel® wraek, Pelow .

—Om i
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2. Negative Definite Functions and Symbols.

migroups of Pseudo-~differentisl Operators

In this section we shall prove that a continuous negative defi-

on can not be a symbol of order » 2. The effect of this

e

nite funct
result will be that of consideration in the rest the paper only

of the pseudo=differential operators of order < 2. Ve shall dis-
iinéu1bl the class of symbols which ca?aczeriae the Feller semigroups
of Tegularizanﬁ pseudo~differential operators which commute with
translaetions. In Proposition 2.4 we shall give conditions in which

& psGQGOWdifferential operator, whose symbol d@p@ﬂdﬁ not on x, is

. e . 3 . 11
the infinitesimal generator for a Feller semigroup on R as before.

Proposition 2.1. Let k%: R® —— ¢ be a continuous negative
definite function. Then there exists C 2> 0 such that
(9) () Ee ', | v |, + lg|)?.

Proof. Because %’ is continuous negative definite function,
the relation (%) from Theorem 1.2 tgkes placeo Obvioug, for ¢, 1, q
‘we can indicate a positive constant such that their sum is satisfying
an inegquality of type (9). For the integrsl from (3) we shall use
the }.u@q alities:

! i e"'i < W, E:}ml( ¥ “ﬁg‘;\?

<3 2Ys |7|

and

£l We have:

‘l i emi SH82. 4 ,,mf/:,g,f;fw & Lo ml <YyE>; wix}ix:u}i«? =
1 +lyl 1 +lyl©

{Vﬂ? Iy ll<v > |yl?
1 +ly]?

H

£}

[e]
H
/\

s\

N

S

i

N/

Hence
@ -~ = ) o
i <y, 87 + S, o ‘ l‘” E\"‘ft .
L8 = ; 122 S J S% 5




let 0 < ¢ < 1 be,

O#lyl€e iﬂ
(,c;:sg 2 s §r§’} L
< el % 1 +|y|®) a9 (y) + E:ﬂé vlav g @lgl® «efs])) aan)
0|yl € € O {yige O \yls e
e 2 Q
we} e M1 +iv \ o
g - <y§ 5/}?.,“%,.,,”‘5} gw«-— uﬂ*{)(:y‘; & 2 J wl*m:';)- d -7 (y} o
y

vi > &
j <‘v,% . 1+ 1yl lelly | -
st | mah e o) Bl aa
\Vl g 3 Ba il [yl |yl

e o, « by 05»,2
& [L B e f’fﬂ L “‘g_?w av(y) g (2% w!‘?%)g a g (y)
B ~f01 Lol v

O#lylse

A % . A o ;
e S d¥(y) € b (L + | £1)%, where b is & constant

Remerk 2.1. There exist many exemples of continuous negative

definite functions which are symbols (for example, P jies el

P T
8-

The importante of Proposition 2.1. consists in the fact that

s o) A oy

a continuous negative definite fution can not be a symbol of order

= 7.

Propogition 2.2, Let (Wt) be a family of regularizant
te o

£
e e
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S e

hseudo=differential operators Qn‘cc(kn) defined by the relation:

ol LY )t 20 [Vt & T (R), WE(x) = (2nr) g{ e IE-Ts % >
a,(x, ) £(y) dyd§

If the following conditions are satisfied:

. e nl ine =1

'tw‘ﬁf} /,,r-"‘”'h"’*'«m
= ey : S i -
(i) (W)t 30, (¥, yeR, & (%) ¥yl 20
s At £ : T cof grald w‘"""ﬂy‘wm«wm’
(iii) (%) t, 8 >0, (¥, v, 2€ I;%p? a‘bm(z‘“} (2 =) =
n e e :
. -n (—" = o
= () S a, (x, - . 5y, o)l y) Gy =
) ﬂ/"’"\%. //\\
cem P el w80y, v Eeyla

(iv) (¥)t >0, (W) xR, @M\ T&, ) W awg1,

is & Feller semigroup on .
L20 Nl
Proof. The proof 1s immediately since atég S (BR=zR ) and,

iJ
then (Lt)

therefore, we can use the

of integration in (10) it

Fubini theorem. Changing the succession

follows that

(W) t >0, (¥) fe ™ ®), Wi(x) =

g Kt(xs y) £y ay

‘ ) i<x ~ S ,
where Kt(m ) = (2ar) S e < ¥ § 2 at(‘x, i;) as.

t2>0
are sub~Markovien positive lineasr functions. The conditions (1)

;

The conditions (ii) and (iv) provide the fact that (W,t

and (1ii) imply that (Wt) is @ strongly continuous contraction
t>20 =
semigroupe For to finish the proof we use the fact that Cék’(ﬁm) is

. : w1 5 =
dense 1in CQ (R™) and by a change of variable
v o i< z,%7 ¢ v
W E(x) =H2m) XX‘@ o i’ft(xd €) £filx - z) dz d%

> ; R ; = ; n
It follows that (W ig & Feller semigroup onR .
g it

t),

T 20
Proposition 2.%. Let (wt) be such &8 in Proposition 2.2,
: i3 0 -
Then (W,) commute with the translations if and only if for
s 1iha00; ~
~ fo
€.

eny t 70, a (x, £) is a function depending only on ;

&

pasol. Get £ 20 0 € R snd £ € ;:;c‘@’“*’ @™y,

T

[eoe



wt( t““g;a:f) = “‘i,_a("s’tf)a where ‘"é;{}:f (z) = f(x - a), x & R 1is
[ A
equivalent with the relation
=i ¢ T N
(V) xe B, SQ\ sl e, G D
(=
or witk

L3
% “5‘ { j_ Ke=tn , G‘ “’:»%n Lo g G i
(Vizxek, Je i 185248, (x,%8) - a,(x-8,8) }i( £} 4% =0
Cad

From the injectivety of Fourler transform it follows
&y 4 (P L Y 'fl Qv G o o o
Y V) x, $€ R, a,lx, €)=28(x8% 5
since a was arbitrarly chosen it follows thet g (%, % ) 188
7 8 ¢
function depending only on § .
Exenple 2.1. The brownian semigroup is g Feller gemigroup on
n ; G
R, which commute with the trens slations, the operators of semigroup
being regulasrizant pseudo-differentisal operalors,., on c ( R } :
; - e
Indeed, for any t 2 0, let &t(‘%’) = @ Z" , TeRr”
dor £ & 0% my ¢ ~ : e
For £ & > (R°) and t >» O we define
T o -] i<x-y, ¢ : :
W E(x) = (mr) S% SIEVIR2 4 (%) £ly) 4y 68 .
Since a, &© S ) it follows that (WT) are regularizant
k20
peeudo-differential operators. Using the Proposidion 2.2 and the
Proposition 2.3. we obtain that (W,) is a Feller semigroup on
n b 28
R which commute with the "z.ranulam ns. We remark now that
- . , . 2
; : e g: = J.&’:Qlwm
- b 5
oG n st o T SR -l e s , 2 {8 _L Hs
i.e. the formula of brownlan semigroup.
é - CoReL o KIZO, corib:
: Proposition 2.4. Let Y R Wo) =0, WES (R
: with 0< m € 2, Y being negative definite such that there are

the constants K S0, r >0 with the property
",rh

a1y (¥ ser®, mewierz xlel” .

#

Let the pseudo~di: fferential operator of order m defined by:

(V) o, f?-g multi-indices

Sup {Xﬁ ”&\ £ix) } < €& 3
x e R? .

9 -7 5‘2( re % @Y



A

%))

o

3
sy r} ren
R

10-«
o

: -
o e s v=n (| i < x-y
. = A (A / = —_ I & 0
(Y) £ed(a), aflx) = (2m) 3 e PPN fly) ay dE
Then there exists a Feller semigroup on R® such that his
infinitesimal generstor is the closure of Operator A, the semigroup

el e G, . = o ;
being given, om.Cc (R”), by the following formula:

S eo» = g
Yit S el " 2 )DL J2CE=Y, € =ty -
(Vit 20, (V)EE Cd(ﬁ )y W, T(x) = (2m) ‘§§<3LXC Fr %2 “%(%}f(y)dyu%

7

where (W are r@g&lafizamﬁ pseudo=-differential opersators which

ﬁ) -
,e;;,C)

commute with the translations.

Remark 2.2. From the Proposition 2.1 it follows, necegsarily,

o

that m € 2 . On the other hand, the existence of o > 0 which verify

(11), imply m >0. Also, the relation (11) imply » & m .

o ()
The proof of Proposition 2.4. We denote by &t( £E): = e tT(E) -

@ - 1 : ; S 2 S - &
s& R, We show that 8, & S (K'). Indeed, let p& N be. Then:

=t Re-AEER) 2
e 2 o K o o '<
e e%:,l\. ‘ ‘; E b =

I
T il
L 1)

o iy LB

(515

3

with 1 & IN such that rl 7 Pe It followe thet there exists & positive
constant € such that

o
s P g el ted
We egsily deduce that the last inequaliﬁv takes place for
any pe Re. &nmekﬁ“‘cm(ﬁnh iﬁfbl&mﬁz% e ¢ (R,

By derivation with respect to € = gjﬂ .o.g'ﬁn) we heve the

{h .

-t W E 2 ] e .
< R L v, Dy e - D e
/ 3 m’«CA' 53
vmmwﬁﬁﬂzﬁﬁ“<2+¢ee+&(m&m39(%(§)ﬁ'égﬁﬁ)gew, W (€))

e o 4 e e
is & polynomiel in Y(E), Qﬁgg(*g)y i W ( £)e

Q.
e

ot
R .
§
St

. 100 o e :
Since W& S(R), 0< m <2, it follows that there exists

M, > 0 such that
= . s g - D.
(15) o) e R

l 3t e e , - - badl
SY(E) | € M, (1 §"§3 D

On the other hand we have seen that for any p € R there exigts

lona
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»)}

fia<

> 0 such
(MY enly e

From the

Hence a, &

Since Wis a continuous

Y (0) = 0, fr

b

that

il
e

f

relations {1),‘ (133, (14) follows that

for eny

om the Theorem l.l.b) there exists an uniquely

R R SIS = h
determined convalut¢0n semlgroup (Ht) on R° such that

-

A -
e

From the relation (%) it follows that

3, = T
(e ”t;o
with the tran

define
V!I tf PR

: A
Since n

7t

we denote by

gition l.2:

Wtf(x)

Yot = o

(X e R PV ¢ 7-‘}3«
for any f é:(%(& )
determines a Feller semigroup on ®° which commute
({,"‘i )ﬁ we

slations. For any t -0 and any £ € ¢

ok fy doee  Wotlx) = g (xe-y y
} LR £ { } \&](‘jh‘})d}’x (})
oo :
= a8, & S we cen apply Pr@poan'*un.J& Por . > 0

g, @ combinuous density of measure P from the Propo-

o n :' . '@; S o
(271) @<ywxaiv)oi

T

=T ﬂ i 5 (&N Na"‘ 154 ; 3
S fx=y) ( S e STy €3 aﬁ( Bl = 1 dy

e
(29
o

Ton )
)

Since 8y & 8 we can apply the Fubini Theorem: we can

integrate in
By £ &0 T
W iz
1, T (x)

&Wﬁﬂmﬁ(%d

which commute

Let £ & S(a) beo

3

eny order in the formula of W yo 1t follows that, for
(R™) and any t 20

ook i =y, €% ~ t W2} . e

C2ar) )&e AR %\W:My)dyd&

are regularizant pseudo~differential operators
t>0
with the translations.

Then, we deduce easily that,

£
fﬁ‘.é,’»@

R R R S L
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Wtf(X) - £(x)

lim = Af(x) in C_(R")
=0 t
It follows that the infinitesimal generator for (W’t) extends A.
t> o

On the other hand, we notice that for any f@i-;ap, Wtfé Lo (M)t > 0,
ieee (W)t 20, W (R(L) C 2D (A). Also, R (4) =& is dense
in CO(IRn) since ff'_j_) Cff(ﬂ?n)» |
From the Proposition 1.3 it follows that thé infinit esimal
generator for (Wt)
t20

generator for(wt) is the closure of operator A.
t>o

Remark 2.%.

is equal with A Io‘Zf(A)° Hence the infinitesimal

For the result from the Proposition 2.4 see [3] alsos

The novelty taken by our propcsition consists in the selection

of the conditions in which the semigroup (Wt) have & canonical
130

form and the choosing of the subspace % (4) such that it is stable

at (VJt)tZO.

On the other hand this Proposition will be used in the next

gectione.
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%, Pseudo-differential Operators es Infinitesimal Generators

of Feller Semigroups

This section contains the main result of this paper: the
Theorem %.1l. In this theorem we give conditions in which the results
of the Proposition 2.4 can be generalized to the symbols that
depende also on x. This corresponds, for a differential operator,
to the case of variable coefficients.

To the end of section we obtain, from our theorem &s & corol-
lary, one of the results contained in[4]o

Theorem Y.l

Let WY: R®—» C be with the properties:
(1) e gt eR ) w0 n & 2
(i1) (Y x € B, Wix, 0) =0
(iii) (VJ x € R®, the function € Y. (€) := W(x,§) is
negative definite.
(iv) There exist the constants K >0 and r > O such that
) wer 9y ee®, Be i (x; 8 o KIE] -
(v) (Y B & IRn, the function x —Y (%, €) _is bounded.
let the pseudo-differential operator of order m defined by:

Sy =l

(YY) £& D(B), BElx) = (2 rr)"'ng& St R, °‘3"_>(-xr(x,f;))f(y)ayag

Then there exists a Feller semigroup on R® such that his infinitesi-
mal generator is the closure of operator A, the semigroup being
given, on C;p URn), by the following formula:

(¥Y) t20, (N & cc‘*‘"“ @y, p,f = lim (Wt)mf,
‘ N 00 e
n

W E(x) = <2w>"“.§g A <EY, B bW Be(y) ay at
where(wt)t\‘ are regularizant psaudo~differential operators.

Remark %.l. The observations from the Remark 2.2 are available

for Theorem 5.1, also. If r = m, by the Definition 1.5, the condition

/00'
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(iv) implies that B is elliptic of order m.

The proof of Theorem J.l.

Let z & R be fixed. We defiﬁe the operator 4, &s follows:

Q4,) = D (B) \

(VL e ;@:(Az)* Azf(x) = (2w) " SQS ei( x"y’c@é(z,‘%)f(y)éydﬁ
where a(z, €) = = \%JZ(‘%)., .

From the assumptions (1) = (iv) it follows that %’z &= sm(mP),

Y, is negative definite with \¥%(o) = O and there are the constants

K >0 and r »0 such that

(%) E&R", ReW,(§)> rigit

Then, from the Proposition 2.4, it follows that the closure
of operator A, is the infin;tesimal generator for the Feller semi-
group on’mn, which, for £ & CgﬂGRn), is given by the formula
(V) t 20, Vif(x) = (2w)"nSS A< et Y (B)e(yy gy ag
For t 2 0, let W, be the operator defined for all x &€ R and all
f e B (W), by

WL 5= Ve £(x),

1e€o

mfm)=(2wfﬂggei<XW’f?’*Wmfﬁkuwdydg

We notice that Wt have the properties:
(a) W, is linear, positive and contraction
(b) W, ( D(B)) < D (B)
(o) (YL L& Ci?ﬁn), the fuﬁction t»~w*~»W£f is continuous in

C, ®™).

For tb continue the proof we need of some supplementary
resultse.

Lemma %.1. Let (S, &b(s)) and (T, 2D(T)) be the infinitesimal
generators for the strongly continuous centraction gemigroups

(ets) and (ef’T

in the Benach space (3 guch that
30 by B o BEBAEh pace (%, || Il ) euch the

7
/ ooe

R o | V@’i (




e .
D) = D(T) = X. S and T are linear and continuous on X.
Then we have the inequality:

‘ietsx - etTX” g tCsup |8y - Ty |}) E!X!i

fylis L
for alk t >0 and x & X.

Proof. We have the following relstion for any x & X:

(15) netsx ~os l! < lle tz L HI(X) v el
= ws l’l T n
et el = 80 - || ey =
Yone o Iy 51 kv IS p-2 ip o
=H<e: ) - (= ) () + o )n‘t (e ) “(i}?a)nt (" ) :
e Lo Ao L TR
eh e e e >n”L(X)
s b Le eno & 1, 5
= H(en )n Gl enT) + (enS)I1 (eﬁS - enT) (enT) + oue +
to o L p-1 + t
i el < S
t
Bee s b t Ly
I “L(X) i ” iy I
vl . iq Lo
; pe e < e el y-y _ el y-y |
Hence “e € nL(k) n i?gJ\ y : 0 N &yﬁgg = %% |

If' n tends to infinity, it follows that:

“ets‘/-' L “L(X) < ﬁ f”p | sy - v I

From '(15) it follows the desired relation.

Lemma %.2. (Chernoff)

Let T be & linear end continuous operator on the Banach space

| || ) such that Tl .

- Then
nen(TMI) - T H éwm “TA - X “
for eny n Z1l and for any X & X.
Prooie First we observe Lhai e .
"M «"L t L“HT Yl : 1
2= | - HZ, 2 < 2 Hl TR

n=o0




let x & X be,

R RPN - P

Let k 3 n be
kel
7% - % |= {{ > (TJ”"l s llgs— H TJ(fM)x“ |ic-n) | ox=x ||«
: =t
Hencenen(lrml)x ~T"% ” < ew?g; %{;l k-n | lltx - x |

From t he Cauchy=~Schwartz inequql.ity we deduée:

S o B (e
o) B T n 240
& [k = n| < z;r) o (ﬂ*k))
k=0 ; cook=g k=0 ™F°

oo ,

k n

Since z —’k' (n - ¥)2 = ne™ it follows:

k=0

L e
Lemma 5.5,
For any t 330 and mny £ € Cw (R,

fey lin u (W, ) Be - (W, )p:f‘ H
m—e o2
p = oo p

Bier

in Co ({Rn), uniformly on compact t intervals.

Frogf. Tet f & g (Z,Rn) and t » 0. From Lenmme %.2 1t follows:

m(v, -1

(ﬁ) “(w Pr-e @ £ jlg\m ”“""3" S “
m

(18) “(“"";;_)pf -e p fIKVF [s(wi STy of “;H(w&_-» 1)t “ =
P m

P
. )(x,
- sup ‘(?T) SGKX’\E}{ m% '5‘:)1 f(z)dﬁ

me

p(f

ag g e S(J,{ [§])° ff(i°)fd

@wgg |y | z

xc i

= -;% C ” Sf “Ll,wm@?{?fe S(E) g (1t h?! ) ‘ijém end C is
/ww’



RO
a positive constant (we have used the assumption (v),also). Analogous,

lo -oef <o lls2 |,

It follows that each left side of the inequelities (17) and
(18) tends to zero, uniformly on compact t intervals, when m - co

and p-+ co.

From Lemma 5.1 it follows that

Ho=1 Wy - I
L X
- ieow t%?-fm Wy =2 gl 1
. 3 m g 2 o,
S S A N
’ lefel ™ m i
For any g & CcaD {B") with ”g | €1 we have
W“E‘—I W}—-—I WI'.“I Wi""'l
~£%7-~ 2= ’llfg“" g || = sup “ELqT"“ glx) = —5%7*- g(x) | g
m P x€ R® m P
. A A
e oaEE clunegg -
gun, Sel(x” [e e e
¥€ R = , =
- Sy, 6) - SY(x, )
e. - 1 e "“1, o = >
sup S T - " ’é’(‘i_z;)l ag
x € R™ : e

Passing to limit when m—» ec and p—+ oo it follows that:

W& - I WE,“ I i
B By | =,
and we obtalnwt -1 WEQ I
e e R
(20) fe TP e D £ ‘mw()

and from (19) it follows that the convergence is uniform on compact
t intervals.
From the relations (17), (18) and (20) we deduce the desired

/coa-



e
relation (16) and the uniform convergence on compact t intervals.

The proof of Theorem 3.1. - sequel

Using Lemma 3.3 it follows that for eny t 7 0 and for any

s €30 n m , s
f & Cc i), (W } f converges uniform on compact t intervals
to en element from C, (®® ), denoted B f@ Since (W )m'ar@ bounded by

m
1 and O (m ) is dense in C Cﬁ ), the above convergence tokes

place for all f & CO(R ) e

Moreover considering the relation (c) and the faect that PEd
we.can apply Theorem 1.%. It followg that (Pt)tzzohiﬁ a strongly
continuous contraction semigroup on R™.

From (a) we deduce that (Pt)t:;o is a Feller semigroup$

In the sequel we shall prove that the infinitesimsl generator

for (P

t)tﬁ;o is (B, € (B)). We denote with (C, D(C)) the infinite~
simal generator for (Pt)t:%%' From Theorem 1.4 it follows that
aw ay
¢ -E% . Since 5€£ ~ > B it .follows that C DB,
: t=o0 t=o0

whence?gﬁliﬂow, we shall prove that B =C. Since the composition
of two operators from PS(~ge ) is an Op@rator from PS(-e»), there
exists bt & 5™ % auch that
(i ) (zw)“ngei@’%} bi(x, §) T(€) 4
_ : .

= . . . - s
€J and any t 2 0. Since lim (Wt } £ exists and it is
I = oo o

L
m
for eny f

eQual with Ptf,‘iﬁ follows that:

B () = (2‘}“?‘)“n g Gzi{m \gi?[lim bfa(x, € ) I?( €)a¥

I~ g3

We deduce that Bt e, for eny r€J, i.e. Pt(wﬁ(ﬁ e D(B)

) : 7. o : o
2 (B) is dense in co(m Yosinee J ) gJ ®"), TFrom the Proposition
1.% it follows that C is equal with E i%(th Hence the infinitesiw
A \ A2/
mal generator for the semigroup (pt)n 5 is the closure of operator B.
.;/ :
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As a consequence of the Th@@fem 7.1 we obtain g result due
to Roth in EAI: the cherecterization of elliptic operators as
Jnxlnltes;mdl generators of Feller semigroups.

Corollary 5.1. Let Q(x) x[qjj(x)lbe a8 symmetric square
i

matrix of oéde%'n; with the elements real bounded funétions.of
class ng on Rn, such that there exists g :>*O with the property

(V) x& R, (V) $&R”, qm§ 3 alt| 2 -
where we have identified the matrix Q(x) with the bi~linear form
associated on R®, ' .

Let 1(x) 2[?i(x)]be a linear form on R" with.the elements
real’bounded functions of clasg ¢ @ » where we have identified
the vector [1i(x)] with the linear form associated on En.

Let B be the operator defined by :

QB) = &
« n n :
B ¥ o ne q (Y) i} jﬁ f 4 > li(x)(aif
j=l =l

: . a8 ;
Then there exists a Feller semigroup on R such that his
infinitesimal generator is the closure of operator B, the semi-

groun being by the following formula:
m

C¥txa, (it & 0 w90 Lin (W )%,
£ t =8 3-‘-
L o
Wtf(X) = “iﬁ Sffﬂﬂd Pl tl(x) o= QQ%'P(X)U) du
"o

where Pt(X)P(X) = Q(x), (V) x &€ il

Proof. We apply the Theorem 3.l. for the function

%}: R” x g" e given by the relation
n - n 2
€=y 5 e B .17 0 e
\V (x, § @)J “i %ﬁf qij(x) $ 5. - 18 1(x) 5

The conditions (i) - (¥) from the Theorem 3.1 are satisfied. We

see that: n
Bf (x) = Ew., fém,' a; (A) D, D f(x) 12 4 1(x) Dyf(x) =
gl = 1w1
: /ecwa-



= 2'5 =
= (oH4p) F SX LR 5‘;}( """”f 2 ¢ (Y) V% (f + 1,@_,1 (%) % )
=1 i=1

£(y) dy a§ = (2m)7 Si A<ETEY (L 4x, §)) £() dy

. Then from the Theorem 3.1, there exists a Feller &é@migrougﬁ
on R such that his infinitesimal g@.m_erator is the closure of
operator B, the semigroup being given, on C,, (%{f’\n), by the formula
(21). W can be written: &.{M(ﬁt, %"):r:."&f(;z(:r{)‘g‘”f?ﬁ “% S il R B

It proves ({4:{) th&‘t for any me"tri};: Q which verifies the
above properties, there exists a square matrix P, of order n, such
that:

(V) x € R, Q(x) = P {x) P(x)
Then W :f‘(y) = (2m)™" Sg ei< x-y+t1(x),§7-t <P ¥ P(X)ﬁ"?ﬁy)dyd?ﬁ

By the change of variable \Ewp(}k) ? = \,’ we bt b
W f(X) = (2%) S(S i< x=y+t1(x), fyﬂP (x)v)-«» \V\zdv)

s |27
Tl

e Hly) iy = ‘M:{-f P"l(x)(x»y+t1(x)‘}§2
s ; 4 6 t
_em Y. ok ey
_ Wt )ml
If r;g%r— Pwl(x) (x=y+tl(x)) = u then
lm,..n !P”l(x)l dy = du. Hence

(2 \T) . el

Wy \}') (21‘?) §', o Semm% f(x + tl(x) =~ mec_ P(x)u) du

2 S
= n—;}liw (}} e«éui Pl & k) - 2 {t P(x) u)du.
N2 :
Certeinly, this expression of W, can be extended for ell.
£ & G (R).
A

corollary %.2. In the conditions of ‘heorem %.1, the operator

- . o A . e . A n
5 satisfies the positive meximum principle: (in G(R ,R))

(Y) v & B(B) end x € Ein, u(x) = sup uggel bBu(x) £ O

oo g AR

Proof. Since B is the infinitesimal generator of a Feller

gemigroup on R®, we write (7).

TN T ST e
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Remark %.2. Instead of the Banach space GO(Rn) we can

éonsider'any Banach space E such that
(it By is dense in E
@iy % e F

(for example, LP with pl).

Certainly, then we shall obtain strongly continuous contraction t
A semigroup of positive operators.
f
z
t
|
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