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: AF~-ALGEBRAS WITH UNIQUE TRACE
by Torok Andrei

STATEMENT OF THE RESULT

v = £ 3 . . . 5 s . .
Let A be a unital AF C™-algebra, inductive limit of the finite dimensional algebras

-] A, SN - 5 :
CleA < A, SA, U
(1 is the unit'of A). S
We denote by m, = (m‘;, m}; S ,m}é ) the dimension vector of the algebra A and by
3 > k 2
k ; : : _ ; ;

L ; = ; it o) At Vi
Rk (Fij)le, o ,ck;j=1, ad the inclusion matrix }for Ak [.\k+1 (k > 1). In particular,
t

kak mk+1.

If w is a real vector, w > 0 means that its entl ies are nonnegat;ve

For w = (Wl’ S ,wn)fz‘ R yW>0,w#0, we 'gefine
‘ 4

: i : ; _
_’ X,(w) = (% wk) -min{ Z_j W, { 1 211,2, C Sl'» card(l) > n/z}i ;

- =¥
We consider the mul‘uphcauve group G = U {,A ) and its action on A by inner
k*l
at_xtomorphisms, \
/3 _ -

g€ G Ad g€ Int(A) < Aut (4) S .

¢(x) = (Ad ) = gxg " (@€ G, XEB), :

We prove the following:

THEORER. With the notations introduced above, alet
= min >\, ((m kli‘) =1, Yl > 1)

j=1,...,ck+1 . oty :

If

. Lo
(») 2_ é:k—
k=1

then:

(a) There is a unique normalized trace, denoted by T, on A;



(b) T is faithful if and only if A is simple;
(c) The action # is mixing with respect-to the trace T, i.e

() x,y& A, ()@ G her) such that

hm Zle (x)y) = T{)Tly) -

(1~ OO

There are conditions which 1mply (#) and depend only on the mclusxon matrices Rk

(,OROLLARY With the R!s introduced above, let S mm IIJ/may iJ G=1.....¢

k' » ] K’
3 b]
L )
e W}
é," = min X( (r ) ).
K i gzl k
) fiod ’ 3 N
, It k+1
w ~
@ Ao
k=2
or

(2) L %S 5 .:00’

then:

(i) The algebra A is simple and has a unique normalized trace T, which is faithful;

(ii) The action & is mixing with respect to the trace 7.

Namnely, we shall prove that (2)=2{1)=>(x).

S

RTI“ARR 1. Condition (%) depends effectively on the particular sequence of algebras

n defining A. Indeed, let m, = = (1,1,1,1), and for k > 1

1 1 0 0 1 0 1 0
1 1 0 0 0 | 0 1
- e . -
Zhe! 0 i 1 2 1 0 o 0

TR T




hence

Byl —

< ... , but it is infinite for the

Then the sum in (%) is zero for the sequence A §

]_cf:; Aza A

N '/
sequence Al@“AgC Asfi: e
REMARK 2. Condition () does not imply any of the equivalent conditions in (b): let

my - (1,1,1), and

v 9
Rk: 0 i 0 forall k> 1
9 1 1 '

Then & i 1/3, but the (unique) trace on A has the weights (1/2~3~k+1, 0, 1/2'3"}{”‘) on A,

hence it is not faithful. One can also see from the Bratteli diagram that A is not simple.

REMARK 3. As a special case of the Corol].ai'y, (part (1)), we can treat the s:i.tuation
dealt with in a theorem of Elliott (Th. 6.1 in [2]), namely when R, - R f;x' all k, where R is a
primitive matrix, i.e. there is a nonzero p such that RP has positive entries. Indeed, if we
* consider the sequence

< & G <
Afran A u® S

(which also defines A), the inclusion matrices will be constantly RP, hence the Sk‘s will be
all equal and nonzero (because RP has no zero entry), and then clearly (2) holds.

The proof of Elliott follows different ideas.

NOTATIONS AND SKETCH OF THE PROCF

C 4
n 3 : '
Lot A Er)l Aln, AIn TMat - (C) be the factor.decomposition of the A 's.

m
1




For x &€ An, we denote by [x }1 its A] component and by C}c‘ln(x) the normalized trace

ivh & al.
of [}’]n € An.

ik .,«,‘ ol o |
X n(x) =t ({x}n) = 1'/mﬁ ’h([x]n)

(we denote by Tr the canonjcal trace on a full matrix algebra -i.e. the sum of all diagonal
entries- and by tr the normalized one).

=l : ' e . ;
If v (\!1, ..4¥ ) & € is a vector, we write (g(v) for the “oscillation” of v, i.e.

k

Celv) = max | e Avjf.

il e - ’ :
sJ < Cn

Now for any xf A o e introduce the vector O( (x) = (Oﬁi(x)t.ﬁi’(x), e ,Q‘:'n (x)) and
the value (& (X (x)).

(&4

We shall prove that for any x€ A, s llnxw((>’ (y)) , L.e. the entries of o (x)
i =] Wi eo : n

tend to become equal. It is here that we use condition (). This implies that the entries of

D('n(x) tend to be all equal to some complex number Z (x) (Lemma 3). Then the map
X & A 3**"%6, e

defines a tracial state on Aou which is the unique tracial state._.on A (Lemma 4). Assertion
(b) of the Theorem is proved in Lemma 5, assertion (¢) in Lemma 6 after soﬁ’ze preparation,
~and the Corollary in Lemma 7.

We ompwsme that the whole proof depends on the fact math]lmn;;&?( (")) = 0. Thi
deduced from condition (x) by the estimate given in Lemma 2. One can look for other
eétnnaics in order to obtain the same fact from other conditions. Our estimate is insensitive

to the equality of all rows of Q, when i Qff,, =0, regardless of £ (see the notations in

Lemma 2). We have chosen it because of its relative simplicity.

THE PROOY

First of all we clarify how the inclusion maftrices Rk and the dimension vectors m,

N INC 1 : ior A :/' X ; < X TI 2t = I N b
allow the computation of {)‘n*-l( ) from C\n(h)- Let Q (q 11)1“1: . C




o

the matrix given by qn mnln/mm] 1G]
: : A
m“*l L
/ o b / g
) - : n':- & >
| C m 2”‘- \‘*«j mz 7
: . n+l i ¢
: oM ; n+l MJ\) n o n
ahd 1 =l s EC . Note that (1 )=1 because m, = . m T
Z5m iie ¢ 1 et ol Kl
n ntl k=1
E=—l ’cnﬂ)'

LEMMA 1. For any X € A we have

S :
(2) X, 00 = Q X (¥);

: 1
D)l ¢
L R ] © 138 o)

min Im(x}i(x)_<_Imo(ln+1(x)_<_ max. - Im cf\ (V) foralll=1,..,C .y
1<k<e 1<k<e :

Proof. (a) Using the information given by the inclusion matrix, it follows that

)_ -C«Q n k & <n n+l

(>\ lx([x]]ﬂ)/m = (E,;l g Ti(b\]n)/m]_ ~(§ mk ch x)/my " .

(b) This is a consequence of the relation Q (] =l and of the fact that Q, has
ho il

' T . ]
real nonnegative entries (hence O( (x) is a wcmhtcd average of the entries of X (\)

Lct us study the matrices Q = (g )i"l with real nonnegative entries which

13 seniz R L s

satisfy

Q1

m % ]'n'
Note that if veR™ and Gi(v) = 0, then QW) = 0 (@(w) = 02w 8 proportional to the
vector 1 ) Since (2 defines a seminorm on any Rp, from the above remark we see that Q

induces' a liniar map Q: R' /(,u‘““?{ /W, where ’{p/w denotes the quotient space

RD/{VGRP/W(V) = O}“. Hence ' ;



: “ Q‘{W = sup ll (\)(Q(V)) ’ Y E;;Rn, o (V) S 1 (g
1s finite. Clearly

i (Q)) < Qlf -t {v),
and

[ Q Q()/z(,w < ¥Q1/§,4)’5§ Q, £
whenever Q. Q) is defined.

LEMMA 2. Let Q=(q..). e be a matrix with real nonnegative entries
. sl cansi=la..m :

wich satisfies Q(1 - ) =1 . The
which satisfic (*Um) 111 Ihen
i Ql,<1- E

where

= ) ;
£= min AUg). .
- i=1,...,n/ (Q‘J)J“ls-'-,m)

Proof. It is enough to show that if v = (v], i ,\/m) ER W (Wl’ e ,Wm) @pr™ are

m m

“sueh that v > 0, w > i Vo L W= 1. )5(\,) _>_C 5)\'1(W) ZE , then
k=1 k=1
[ <O{,v> = <K,w> <1 =& P (KX) . ;

. 28 e i : )
for any i = (Qf], o )E R, where <> stands for the canonical scalar product of R

The desired result will then follow by considering v = (qik)k:l....,m’ W= (qjk)k:l, o for

all 1 <i,j<n.

; M - s :
letoe = r}m’i\’, b= maxol, 1=[a,bl". Thenye I, w(X)=b-a. Since the map

Bk
{21+ R, flu) == <u,v> - <u,w> is an affine map, £(1) = co flext()), where extI denotes the set
of extreme points of I and co stands for the convex hull.
Let :ﬁs@extl,'% = (/(’51, = ‘_‘“//}m)' Theﬂ/?k & { f for any k = 1,...,m. Denote

!

I)a,—:'}ik;likslﬂ,ﬁ}k'—:ag’ Kb:{{1<1\“n1/) =

One of the sets R and K, has at least n/2 elements. Suppose card Kazn/.‘z. Since

5@,w> > a, we have

gAY =(a X > v b3 v)-<hw e
Al P g o s
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=lb-ib-a)z v </3,w> =D s a))C(v) -8 1 -€)ib-alk

keK
a

For v instead of w we also obtain
f¢)341_gXD~w
The case card Kb > n/2 can be treated ‘similarly and we obtain the same results.
Thus for any /ééextl we have
~(1-& b -a) <A <L -&)b-a)
hence f)e (1 -& Mb-al (1 =& )b - a))
and so

[f()]< (b -a)l - €)= W(&KN1-E)

o S (o]
Recall that T (1 ~'7] )= 0 whenever 0< 7/ <1 and }—:’7 =02 Therefore, by
S n - = /n= S
n=1 n=1 A
condition () we have
(%) e 6 =0 & 51
- n o=
n=n :

Note that due to Lemma 1(a), the En‘s defined in the Theorem have the same meaning

for the matrices Qn as & for the matrix Q in Lemma 2.

« 1M

For v =(vy,... v JECT, define (vl = max | vk!

oo
k=l msm

Now we can prove the following:

LEBRA 3. For any xGAn we have
(a) lim (X (x)) = 0;
Nt O n

(b) lim §§0§1(x) —Tf(x%lc Hao = 0 for some T (x) €C.
n.-,n,wib n

Proof. Let n > n,- Since both ) and i - lleo are seminorms, we can deal separately
with the real and imaginary parts of X n(x). Denote by Re(Xn(x) and Im (}(n(x) the vectors
whose entries are the real and respectively, the imaginary parts of the entries of & n(X)-

By Lemma 1(a), we sce that ' : .



3

Re OQ:H 1(x) = Qﬁ(ReO( n(x)), ImO(’n +1(x) = Qn(f{mo('n(x)).

Lemma 2 implies that

e (Re bl () < f Q, ey co(ReX 0 < - &) ‘?C*-*(Re &C ().
Iterating, we get

n

(1%6(3‘5;]”():)) < T a- 6k) w (Reﬁi’n (x)) and then, by (xx),
; k=n 0
0 75
lim ) (Re® (x)) = 0.
N OO n
Since

C\)(Reb{n(x» =nax Re(}(ln(x) - min Re&(]‘r(x),
1dice Idlce :

Lemma 1(b) implies that

yim i Re&(n(x) e e =0
N —» OO ‘ n

for some a € R.

The vectors Im D’f'n(x) can be treated similarily.

LEMMA 4. (a) The mapping

56
XE A C(x)EC

continuous,

5 e , . o
is a¥hormalized trace on Ay, which can be extended by continuity to the whole Al
(b) Any normalized trace on A g equals o
'MG—.}

Proof. (a) The linearity follows from the fact that

| lax + by) = a&;’n(x) ~%-‘b£>f(n(y) for any x,y&A and a,b& C.

It is easy to see that C*fn(l) = ]’c , hence T0(1) = 1.
Since | tr([xlln) [-< i [xﬁ,gqax;g, we see that O{'n(x) I, <iixl,

T <1 xd ‘

Similarily, X n(x* o hence Tx*x) > 0. -

ThatZ" is a trace follows from the relation

and

hence




>

Ly

»

; 0('n(xy) = {bfn(yx) for any 3,y € An’

which is a consequence of the definition of C\(n.

(b) Let p be any normalized trace on A . 5ince the factors An have unigue normalized

traces, the restriction of p to the algebra A, is described by a nonnegative vector

c C"W
(t ) thh FFFF k =lsif xe& A, then
et : ko1 b n’
“n
ux) = 2 ‘LkC‘;('k(x)
kel 2

Then for all x & An,

[ 1) - E 0 {2 £ ”“(x)l{g:;i;::lt;rwn<x)~‘Z'(x)°1c ri(“"‘” =

= || {’}(, ](x) -~ Clx) cnj[%

Hence Lemma 3 (a) implies that p(x) = € (x) for all X& Ass-

LEMMA 5. Suppose () holds and T is the above defined trace. Then Z is faithful if

and only if the alg‘ebra A is simple.

Proof. Denote by e1 {he minimal central projection of A corresponding to A1 ;
It is known that A is simple if and only if for any n > lLoand eny 1 < lLCe o there is a
p > n such that the inclusion matrix R_ _=(r ,p) for A < A has only
e S e p
nonzero entries on the 1-th row (i.e. A1 "enters" in all factm summands of Ap)—just look at

the T&eription of the ideals in the Bratteli diagram of Ap'

Since

B p( 1) = (1 B pm )/m o oo €

' - . : : = = i
we sce that the above condition on the inclusion matrix is equivalent to the fact that Q\P(e n)
has only nonzero entries.

Suppose first that ' is faithful. Choose n 2 1 and 1.<1< c'n. Since T~ (e]'n) # 0, and

lim{f &X (e ) = Zﬂ(el »1 ”w = 0,
ne e
P €0 p

we infer that for p large enough, all the entries of & (G ) are nonzexo Thus by the above
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remark, A must be simple.

AR

Supposc now that A is simple. It suffices to prove the faithfulness of ‘Z on A,y Indeed,

since J :/i XE A !“;C’"(x*x) =0 i is a bilateral ideal, it is known that ([1))
o'? :
Lot e
3 =clos 2,3 1A).

-3 : ; ; . . el
Since the support projection of any trace on An is central, it suffices to show that 7 (e n) > 0

foralll=1,c.% €
n

Since A is simple, we know that there is a p > n such that X p<en) has no zero

entries,hence

= mi ) fk 1 = g
a_ = min{& p(en” k=1 e ,cpk > 0.

From Lemma 1(b) we infer that 'Z‘M(eln) oG > 0.

For proving the mixing property of T we need two elementary and possible well known |
results which we record below.

: = : ; % ; : - ; .

For a finite dimensional C -algebra, with a fixed system of matrix units and x€ N, we

denote by Diag(x).the set of values which are on the diagonal of x.

REMARK 4. Let x € I\Jatn(a)":“@(ﬁ:”), x = x*.
Then there is a unitary ué};\"latn(ﬁiﬁ) such that Diag((Ad-u)(x)).has only one element

(namely tr(x)). (This statement also holds for x # X" but its proof would be more intricate.)

To see this, notice first that since X = x*, there is an orthozonal basis of © with
3 ilo)

respeet to which x has diagonal form, hence the corresponding matrix has real entries. If we

N

consider (Ad u)x) instead of x, where u is the unitary that describes the change of

coordinates, we may assume that Xe Mai‘,n(}.{}.

We shall obtain the assertion by induction.

Letn=2:% é:Matz(R). We define . !
¢ d/ i



>

1t

feost  sint
= : e L{(rviat?@{))., t&[0, T /2]
~-sint cost '

a b

: ok T
Sinee (Adu Xx) = , (Ad ug Wx) = : , and te—>(Adu)Xx) is a continuous
o 3 !,/2 S t

@
function with values in Mut?( R), the Darboux property of it implies that there is a t€[0,7/2)
such that (Ad ut)(x) has equal diagonal entries. Moreover,
_ N %Y
Sl - —r i s
(3) (V) XER, min{a d) A< max|a, d(' 5 (310, /2], such that (Ad u,[)(x) = \
b */
The statement is proved for n=2. Assume we have proved it for n -1, n>3. Let
X = (a )a.. Mat (R) If x has different diagonal entries, one of them dlffers from tr(x); let's

say it is a,,.We may assume that a 1 tr(x). There must be an 1 # 1 such that a; > Lol

= o'o
We may consider io = 2.

Due to (3), there is a unitary - .
e o b A
u, = &Mat (R)
E i
n-2

such that

te{x) =
X (Ad"\f,l)(x) :<

e il

_where x"& M“t - (Y{) By the inductive assumption there is a L" & Mat, _.(C:’) such that

Diagéad u)' )) has only one value, namely tr (x"). But tr(x") = tr (x); hence if

10
T
\0 u”,

then Diag ((Ad u‘ut)(x)) has 611}37 one value.

e

REMARK 5. Let N be a finite dimensional C¥-algebra with & fixed system of matrix
units, and let p be a normalized trace on N.

If x,y € Nand y has a diagonal form, then

B
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[ bxy) - u(x}u(y)} <yl A}\](X),

' : 1
where AN(X) =imax }W’- - a'l (.a,a' & Diag (x))f':

m

This follows by an easy computation. Suppose that N = &P Mat (), end et
: ; i=1 B
t= (tl"" t ) be the vector of the weights of the minimal projections of the factor
: m
summands of N in the trace pt (so tha ‘LZ;‘ nye i = 1). Let the diagonal entries of x and y be
i=1
sl Nl /i _m _m
al,d?‘; ° e o ’dn ) 8.1, e s 0 ’ax] g ¢ @ 5{}{1 y ve gd n 5
1 2 m
and respectively
Tl 1 2 2 m m
bl,bz b 4 Dyye e sb e b
4 2 m

(the upper index indicates the factor summand of N).

Then :
e e :
ey 2N
1(x) —?‘, g ZJ as
1=1 i=1
m Nia
K (\7) = i—:tl ZM;\ b'ks
k=1t g1
Wi Mlos
o e \:--—'\ r
nlxy) = 2 tha}(b.“
k=i ©je1d d
m "
(because y has a diagonal form). Since I = t? } tl
1=1 i=1

' Sam e Ui
{p(xy) - )yl —(> e 6 (a2 D: - a?‘bjk)[_{

_— e
m om0 ”ifi ooy =
G o t ) max|a; - a;f-max] bols A (x)- iyl
] k Sk i j N
1=1 k=1 i=1 J =1 k11, ] Ky

LERMA 6. Suppose (%) holds and < is the trace in A given in Lemina 4, Then the

L e ! i
action 4} is mixing with respect to [S
O I

Proof. Choose the systems of matrix units in the A‘ns such that the matrix units of An

!

“are sums of matrix units of AHJ_1 for all n.




a0

153

» * b . o . oo
Let X,y & Apg, X=X , y=y . We may assume & An . Since y is selfadjoint, there

: 1)) = : - ;
is -a uof:-:l,g([s,n ) such that (Ad uo)(y) is disgonal in the matrix units system of Al
0

moreover, this will hold in all An’ n> Ny
From the Remark 4. we infer that for n > N there is a unéﬂ/é(Al_]) such that

. =it ] 1 .
ao ([(/ 57 = / frily = }{/ X ( fop =
Diag ([{(Adu )6I] ) =4 ar\lzJ)n({ 0 () fforalll=1,... e

Hence AA ((Ad un)(x)) :C-)J(G‘ffn(x)). Since il n(;«i)) =0 and = (hrd &) =T &), by

n A e O

Remark 5. we see that

| T (tad u?u )60y) - TEOZW =[TAad u A u )y)) ~T (Ad u ) THA RIS

<l au )yl A 5 (adu)00) =1yl e (e ) —=0
n
as N —5.00.

So we proved the mixing property for x,y€ (Aoq )h' That it also holds for any X,y< A;r

can be proved using an obvious approximation argument.

LEMMA 7. (a) With the notations of the Corollary,

<§ T e

& c
c . L)
WS s Gl

e o

k
hence (2) = (1) == (x).
(b) If any of (1) or (2) holds, then the algebra A is simple, hence, by the Theorem, part

(b), the unique normalized trace on A is faithful.

o {=
wBroof. (a)Since m, = R, .m__ ., wesee that

. K Il el
L= R e
(maxr.. )2 mlv > x*lf" e ml(w =m5 >
g 1=1 =1 )
e e
Smin e e o ml( ,
for any j=1,...,Cp ‘ -

Hence : : /
(4)  minm /maxm? > min K7 max aled ,
- e e Sl skl

J J 1) 1)

{
:
{




14

The result can now be obtained using the following straightforward inequalities: for any

nonnegative nonzero vectors w = (Wl’ o ’Wn)"‘ a= (a], o ,an)

. N
149 =-min v\ri/n‘nta[x W < X (w);
A 2 d

> mina./max a.) X (w) < 9., W, Vi eiate B W T
(g- a/ - iAW) < Allagwyaw g+ 9By ) '
]
e The first one of these inequalities gives 1/20’1(_(: -:’;;k, while the second one and (4)
N S"‘ 5 g < r" 2
rivoe S (A
e ke Tk
(b) Both (1) and (2) imply that there are an infinity of R 's with no zero entries. This
implies that A is simple, by the same argument as that used in the proof of Lemma 5.
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