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- ASYMPTOTIC COMPLETENESS OF THE WAVE OPERATORS FOR
SIMPLY CHARACTERISTIC OPERATORS AND LONG-RANGE

POTENTIALS BY ENSS' METHOD

by Mihai PASCU

1. INTRODUCTION

Let HO be the self-adjoint realization in L2(Rn) of the
operator of convolution with a real C function P defined in

Rn:

i<x,&>

H_u(x)=P(D)u(x)=(2m) "fe BAENB(EIdE i Bec (D)

Here i denotes the Fourier transform of u. We assume that P has

the following properties:

(i) there exist two positive constants c and § such that
1 $ el
R eiEnaele] - - (%] feR:

1) 2 @) fsc i+ p@) [+ €1, ) £erD,
(¥) aeN', |a|22;
(idd) 4f Cv={P(£); P'(£)=0} then EV is at most a counta-
ble: set.
If P is a polynomial we can see using the Tarski-Seidenberg

theorem that the assumption (i) may be replaced with

)L dame ([ eiE) [+ ()| )ees

1E] o



A polynomial which satisfies (i)' and (ii) is called a simply
characteristic polynomial (E4]).

The spectral properties of HO which is unitary equivalent
(via the Fourier transform) with the operator of multiplication
with P(£) are wellknown. 1In this paper we shall describe the
spectrum of a pertﬁrbed operator H=HO+V. The perturbations V
considered here can be decomposed in two parts, V=VS+VL,_VS is
fhe short~range perturbation and VL is the long-range perturba-
tion. The conditions imposed on VS and VL are the following:

(iv) there exists a number N in N such that dom Vsjdom Hg
(dom A is the domain of definition of the operator A);

(v) |l(Ho+i)_NvS®(%)\]eL‘(R+;dr) for one (and hence for
every) function O in @ IB). il =0 for x| stf2, )1 for
lx|21;

(vi) the operator VL is an operator of multiplication

with a Coo function VL(X) and

ladv ( < _60“‘(}" n n
. x) | sC <x> ;oW meR, (W) oe

where §_ is a positive constant and <x>=(1+\x12)1/2;

(vii) the perturbation V:VS+VL is a symmetric operator on
dom HN;
o

(viii) the operator U is a-selfadjoint extension of

(Hgr Vg Vi) | gom Hg i

(ix) w(H)~w(HO) is a compact operator for every P dn . (Riy

0898

{R) -

(x) w(H)(HO+i)N is a bounded operator for every -3 C

Now we recall some notations. If A is a self-adjoint ope-
ratoxr then 2@ac(A) is the subspace of absolute continuity of A,
PaC(A) is the orthogonal projection on this subspace, QQSC(A} is

the subspace of singularly continuous vectors and Ran A is the °



range of A,

The main result of this paper is the follewing.

THEOREM. If the assumptions (1)-(x) are satisfied then
there exists a c¢” function W:RxR"™ + R such that:
(a) there exist the modified wave operators

= e EE R D

x ac(Ho) !

(d) the eigenvalues of H which are not in EV are of finite

multiplieity and they can accumunlate only in the peints of EV'

REMARK. 1) Instead of (v) and () we could assume that

Y (H) Vg

every 1 in C:(R) and © like in (v). Dom Hg can be replaced with

is a bounded operator and llw(H)VSQ(é)l|eL1(R+;dr) for

any set which is included in dom HO and dense in L2(Rn).
2). Slightly moedifications in the proeof of the theorem pér—
mit us to consider functions P which are not smooth in the whole

[ee)
space. More precisely we can assume that P is C in Rn\S, that

(1) and (ii) are satisfied in Rn\S, that E;UP(S) is at most a
couhtable set .and that 1f K is a compact set in R\E;G§T§), then
dist (P"1(K),S)>O. The last assertion is true in particular if
S is a bounded set.

We shall give a time-dependent proof of the theorem stated
before. Our proof was inspired by the paper of ﬁuthuramalingam

[7]. In that paper he proved @a similar result for second degree

polynomials P and more restrictive conditions imposed on VS'
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Time-dependent proofs of the asymptotic completeness for the
case |P(£)| + « when |g| » « can be found in a lot of papers.
We menﬁion here those of Simon [91, Kitada and Yajima [6] and
Iftimie [5], In Faet in [7] Muthuramalingam has adapted the
proof of Kitada and Yajima to the case of simply characteristic

operators of order two.

2. APPROXIMATE SOLUTIONS OF THE HAMILTON-JACOBI

EQUATIONS

fer) [3] the funetion W{(t,%}) which defines the modified free

evolution is a solution of the Hamilton-Jacobi equation

e e AW (&, t)
— BUE Y, (= R

In this paper we do not use an exact solution of this
equation, but an approximate one. However  the modified wave ope-
rators defined here differ from those defined in EB] enly by a
constant factor.

We proceed now to the construction of the approximate
solutioné of the Hamilton-Jacobi equation. Let y be a function

ZZ;HX(X)zo for |%x|<1 and

in COO(RD‘) ‘ 0§>,<1 2 X(X):,I . § X

\ =

pe(0,1] to be fixed later.

LEMMA 2,1..If

slogetsc. n
Viprtoxl = xlpmplt=—2= )V (), 3R, ter ,
then
2 : B =l = = [ fe
IBXV(prt;X)!;Ca’qp <t <>



A e

for x in R, 6:60/4, v=0,1,...,9, v¢la| . Here g is ‘a positive
integer. -

The proof of this lemma consists in a straightforward cal-
culation and we skip over ifn

We define by recurrence

i
o

¥(Olpltl’xrg)

t

Yook = | Vlp,caenRllBl im0, b0 20 Jdn

£

< ¥
where mO€=1<(moi1)€.

We also introduce the following notations:

Ylmypit bl =¥ m,p+6:0,8), Ydm, Lotd=ym, | o6 o,

Y(p,t;X:E)=Y(morprtrxr€) v

W(mrpltrxrg)‘:x"g*"tp(€)+Y(mipltrxlg) ’

W(mtprtlg):W(mrpftrorg) 7 W(ppt,g)=W(mo,p,t,§) ’

W(t:€)=W(1 rt,é:) ’ W(DrtrX,E):W(moypitrxrg)o

For a fixed number ce(0,1) and two positive constants a
and A we set s

D, =D, (0,a,A)=
={(x,E); x+*P'(E)2=0|x||P'(E)],] P'(E)]2a, |P(E)|sA(1+]|P' (E) ‘,)}y

D ={(x,8); xP' (§)so|x||P' (8)], |P'(8)|2a, |P(E)|sACI+[P' (E)])] .

X

LEMMA 2.2. For every g in N there exists a number pO@(Opij

suech that



et b e e

. (64 c ‘]..... e
(l) ’agy(mrpltﬁxyg)!écmp ]tl €<X> €I [OL gq'{'mo"mr mﬁmo v

p§por tz0, (Xfi)éDt;

£

: (JJ-) IBgV(p:t th (mrprtrxrg) I§Cmp€<t>_ <X>~€r lcxl_i\_fﬁmo“m"“T ¢

mngr ps v 2205 (ng)@Di;

Po
O S € e |
(141) lagaﬁi(m,p,t,x,g)lgcmp <x> 7, |o|zgtm -m, 0<ﬁ3[§q,
m§mol pépof t?ior (Xrg)GDiF

(iv) |ag"a:ffv(p,t,w‘;’(m,p,t,x,g)‘lgcmpg<t>"1'~ e,
|a|§q+mo-m-1, O<IB‘§qr m§m01 péﬁor tz0, (XJE)GDJ_j
me . =¢

(v) |8a3>§(\_’ (mrpttrxrg)""y (m""!fpltrxlg)} 1§Cmpe<t>1m <X> 7

[OLl§q+mo"mf IBI§QI’ mémor pépof t%ol (XIE)EDi .

Proof. We shall: prove only (i) and (i1} -thesproof of the

other statements of the lemma is similar. We consider only the case
of the sign "+" (most of the assertions in this paﬁer will be proved
only for this case since the case of the sign "% js in general
analogous). The estimations (i) and (ii) can be verified simulta-

neously by induction with respect toim. oFf (i) -is tEue For m, then

{ij) is also true for m. Indeéd,fﬁ(v(p;tgv%(m}ﬁ,t}x,f)) is a sum
of terms of the form
c 65) (ot st x,)) o T (EP(E)FY (st ixeE)) s

i=1 &
where (ji) is the multiindex of length one whose ji~th component is

| 8] B
(3.)=8B

B
nonzero. Here 0<|B|s|a| , ) Y{ =0 lyi]¢0, fsl At i
e ]

o~

8| »
o=

Now Y (m,pet , X.0) satisfies (1), the fungtion P~the assump-—
£ion (ii1) from the intreduction and Vi{p,t,s)-the conclusion of Lemma

2.1. Hence the absolute walue of such a term can be estimated on D+



i e s

by

Pl T e

. “t|p &) |+

.~ e.1-¢ B8]
Cmp'F )

But on D+ we have

sy

|x+tp'(g)lsz%9(1x1+th'(g>|)=:co(lx|+t!P'(£)l)a

If telP'(g)]ziplthen

1o C

: € S :
]Yé(m,p,t,x,g)Lgcmpet sc_ptt|Pr(E) |ssmeler el |
o 1
if p is smaller than (Eam) - Hence
: m

. Lty =

<x+tP'(E)+Yﬂ(m,p,t,x,g)>—1§Cmin{<x>”

; : £ = =g
S0 we can. further estimate our expresion by Cp <t> <>

£ té[P'(£)|~1/€§am1/2, the derivatives of V(p,t,wé(m,pﬂ;x,gn
(1-€) /e

admif the majorant c(a)pg<t>_€<x> E.since.t!P'(g)léa"
Summing up one obtains (ii)n'
In order to conclude the proof we remark that (i) is tri-
vial for.m=0 and for m#0 it.is an immediate consequence of (ii)
for m-1. -
Qe b
LEMMA 2.3, For every g in Nand for every eompact set KeR™
we have that

=g

(i)lazY(m,p,t,g}lgcm]t[ ; |algqtm -m, pe(0,1], msm_ ,

EEK, EeR:

en i
|8]sq, pe(0,1], msm_, EeK, teR;

ui)[ﬂuﬁw<th%Mumt&>Hs%5uf“lm,lwgwa;m4,

(iii) lag(Y(m,p,t,E)“Y(m~T,p,t,g))|§Cm<t> gl

|a|sgtm_-m, pe(0,1}, msm_ , EeK, teR.



The proef of this lemma is simllar to that of Lemma 2.2-1Ff

we make use of the inegualities

IBZV(p,trx)}gca<t>"’0‘l”€, weR ; oel0, 11, e .

LEMMA 2.4. For every p in (0,1} there exist

lim (W('Il rtr‘z)”w(pit.lg) )

>t

: . : : n
uniformly with respect to & in a compact set KcR™ .

Proof. Since W(1,t;E)—W(p,t,E)zY(mO,t,€)~Y(mo,pp@&), it

sufficient to prove by induction that there exist

lim 9

SOl el im 0 £ 80, o folEn o, el
>+ g o % e

We suppose that this assertion is true for m-1 and we prove it
for m. We have

t
Y(m,t,£)~Y(m,p,t§£):f [V(1,T,TP‘(E)+Yé(m“7,T4€))"
o

—Vp, 1, TP B Y T p a0 )’T‘! dt

g
But
b IR el AL e T
| - 5 ;
log<t>
. \7(1,t,x)wV(p,t,y)=‘(><(X)'"'><(D>>"))X("}‘{'""2%?"”)VL(X)Jr
1
+(x=y)-[ (3,V) (p,t,0x+(1-0)y)dB .
. :
Hence

&

¥ (m,t,E) =Y (m,p,t,8)=f [Vt W m=1,1,8))-
O - e

v

~V(p,1T ,Wé {(m~1,7,&) )] g (¥} (=12 ,F,)“Yé fm=l,p,1,E))*
O 2

4

| :
[ (3, V) (p,t P! (£)+0Y (=1 ) G

O

é(mf1,p,T,€}) dgeT .



In the first integral we have to integrate only from 0 to to ;
where to is §€e>smallest number which has the properties that
<to>ze and ~mw9jw~22pm1; if .t 1s gredter than to‘ then the funcF
tion tb integrate is equal to zero. The existence of the limit
of the second term is established using Lemma 2.3, (ii) and the
hypothesis of induction.

Q.E.:D.

The following result is an immediate consequence of Lemma

2.2 i,
LEMMR: 2. 5. Bf lgls [ 8li<g, then

= i B :
sup <x> [agai[Y(mom1,p,t,g%-Ymbw1mhtpmg)][<w_
(trXIE)‘iDi 7

The last lemma from this section compares the approximate

solution W(t,£) of the Hamilton-Jacobi equation with the exact

one W1(t'€)

3, W (t;g)=P<€)+VL(a,WT(t;€))

1 £

constructed in [3] . (In fact for every compact set
Ke{&; |P'(£)|#0} there exists a number ty>0 such that this equa-

tion is satisfied for & in K-and ltlth.) Moreover

1—@
O

n Ol 7 - 2 \} o 1 (e < L esd 2 s+ - u
log(w1(t,g, tP (£)) sc t for £ in K

The constants Ca may depend on the compact set K.

~H

LEMMA 2.6. Let K be a compact set in {&; |[P'(£)|#0}. Then

the limits



lim (W(tFE)~w1(t,£))

t>to

exist uniformly with respect to £ in K.

Sketch of proof. We set Yj(t,g)=w1(t,g)th(g}. It can be

proved by induction that

(trg)“Y(m,t,g))léCtTw(m+1)€, lu]ﬁmomm, LER, nmo,ip.,m0~1,

Then

(mo'"'1 rTfE) ) e

t
Y1(t,a>«Y<moft,£):jo(1wx(w;'E

W{’E(mon1,T,£)lOg<T>

> e Ao _

“ %!

£ 1
N e e al ) i i

b= 0%, 0,0 ) dEds

+ei{,€(T,g)+(1me)Yé

Now we can proceed like in the proof of Lemma 2.4

3. THE EXISTENCE OF THE MODIFIED WAVE OPERATORS
; 3 S NSNSy s R > jot I

In this section we shall outline the proof of the part a)
of the theorem. Let W(t,£) be the approximate solution of the
Hamilton~Jacobi eguation constructed in the previous section.

Then the limit

LR

2 L S U
lim eltHe M’(‘t’mu

tortoo

A
exist for u in D) ={uef(RY) ; supp e}, where Q={&;P'(E)#0}.

o 0 Z 2 : 214 ;
The set ()} is dense in &%C(Ho) and



e 11 e

e"iW(t,D)u(X): (zﬂ)“nfej.<X;€>e“iW(tig)ﬁ(g)dg

=AWt D)

A
LEMMA 3.1..If u is inéD(Q), then e u converges weakly

to zero when t->zo |,

Progﬁ“ Tt ds sufficient to show:that

A

mlh(th)u,V%QO, bare (B uelin), @) veSlmY .

(e

But
e e e s s e

Let: ust remark that ﬁ@eCO(Q). Hence the conclusion of the lemma

is a conmseguence.of -the following result.

LEMMA 3.2. Let a be equal to inf{|P'(£)|;:& supp {i} and b to
sup{|P'(&)|; Zesupp G}. Then for every m in N there exists a con-

stant € and it >0 sueh that
m o

lew_'iW(th)u( -

e for

x)lécm(?+

X
Elgé(?JbM tlet

Egoofw Accordingly to the definitien

~—

’~iW(th)u

e e Eomi EPUE Y=Ll i

)(x)z(Zﬂ)mnfe o > u{E)1dE

for £ in supp U, there exists a number tO>O such that

lx~tP‘(€}wYé(mOrtrg)Izﬁ(t+|x[}

8
A : : :
for lgﬂég‘f Eesupp U and t>t0. Therefore we can introduce the

operator



X-Wi (€, &)
L==1 : i
| %=1y (t,E) | 5

which hast:thefproperty . that

Lei<x,g>wiW(t,£):ei<x,g>fiW(tg£)'

Thus

ewiW(t,D)u I Ee-d e, B} b Unla

=ty fe (‘L)) de

As

(o Tale) fsc it x| ey T

for x and t like before, we obtain the desired estimation for

@

a

X s : i
the case lflgi’ t>t . The other cases can be treated in a simi-

lar way.
Qe EaDR

A
Now, since u is in D), there exists a funeiion ¢ En

20,

CS(R) with ¢{(H )u=u. Applying Lemma 3.1 and the assumption (ix)

from the introduction we deduce that

s- lim e ™ (o m-gm ))e ™

t>+too

(t’D}uzO@

Therefore the limits (1) exist if there exist

Sl
lim ¢(H)@ltﬂe iw(t,D)
Tt

UEEE)

- :
[e] 3 : z e
for §in CO(R) and u 1nA$WQ)» The existence of these limits

proved by Cook's method. We consider only the case to+e .

e e : %o : oo
LEMMA 3.3. Let u be in &{Q) and ¢ in CO(R). Then

[ et TR HIE B g G



Proof. We have

(R i TS - i+H S ey
3E¢(H)e}tﬁe lh(t,D)u:ieLLH¢(H)(Hwatw(t'D))e 1W(t,D)u:
:ieitH¢(P)nv FAN RN =Nt ) b (V0 Ll e o) =l il £ D) )
: S Terdil el S Gl oot !

w(t,D)u -

HV (1, £,x)=V (1,60 (£,D)) )] ar

We must estimate four integrals. In what follows to is a

fixed number greater than zero and sufficiently large.

iw(t,D

~a) f: |!w(H)VSe" )ufldt<w, This estimation results in
o

a standard way from Lemma 3.2 and the assumptions (v) and (x)

from the introduction (see [gl).

-iW (t,D

) f: L0 (=) =V T b ,x) e )ul[dt<wu First we remark
o

L

that VL(X)—V(T,t,x)zo for

x|>2max (1, <t>/log<t>). Then we take

to suchithat 2<t>/lagat> <at /) for tzto and we apply again
Lemma  3..2.

o) fy | RO e (e DId ¥ gt D)) & T P g | gt can,
O

gitvb 5

Indeed, Lemma 2.3 (ii) and {(iii) imply that

[V(1,th‘(tyg))waty(mo,t,g)lgc<t>‘

£

for £ dnisupp.is But (mo+1)£ is greater than 1.

s iw(t,D

d) fi ll(V(1rt,x)ﬂv(i,t,Wé(t,D)}) Ju||dt<e. We have
O

(v<1,t,x}~V(i,t,wg<t,n;)e”lW(F'D’

uxk=



==i(2m) "3, FOETANELEL 1 (5 v) (1, 00 (1-0)W;

= 14 -

/

=(2m)He S VB Wy, £ o=t gt B i~

- (2m) TP X BT [emtat,00) (0,90 (1,05 1-00w;

(t, €))d8u(€)d5—

&
n g R :
=i ) A (eo,Die TSN G Y oot p)e TUE R gy
gl ey J
i 3=1
where

] o o .
aj(t,x,g>~fo(axjaxv)(1,t,ex+(1—e)w€(t,g)>(1'e)de o2 ML)

b (£,x,8) =[] (3, V) (1,&, 0+ (1-0)W} (,£))d6 .

3 3
The amplitudes aj and bj satisfy the following inequalities:

B

j(t ey g)|+|a d b (k= x,g)|<c<t> e, lal,lalg[§]+1 -

€

for £ in a neighbourhood of supp i. We can now apply the theorem
of continuity of pseudodifferential oéerators due to Calderon
and Vaillancourt.
FYEXYY F AR B A DS AR A kg Ty
: ; O ..

The next proposition is an immediate consequence of this

lemma.

PROPOSITION 3.4. If the assumptions (i)—(x) are satisfied
and if W(t,£) is the approximate solution of the Hamilton-Jacobi
equation constructed in the second section ﬁhen there exist the
modified wave operators

~ s s
W+=s—lim eltHe iw(t,D)

P C(HO) %
==t

&éﬂdﬂﬁ@%d&



REMARK 3.5. Let W1(t,£) be the exact solution of the
Hamilton—-Jacobi equation constructed in [3] and let F+(g) be

equal to lim (W(t,£)~W1(t,£)), £eQl. Then
t>too

~iW, (£,D) i¥ (D)

Al 2
e He u=w,e Tt

ey
t>too
. ~
for w-in QNQ). Thus the modified wave operators defined as in

[3] exist and, moreover, their ranges are equal to Ran ﬁ+.

The following proposition is proved in [4].

PROPOSITION 3.6. The modified wave operators ﬁ+ are partial

isometries which intertwine H and HO and Ran ﬁ+c:?%C(H).

4. THE ASYMPTOTIC COMPLETENESS OF THE MODIFIED WAVE

OPERATORS

DEFINITION. The modified wave operators are asymptotic
complete if Ran Wi=§ﬁ%c(H) and QZSC(H)={O}.
In order to prove the asymptotic completeness of the

modified wave operators, . we shall construct  for every ¢ in

Hmﬂ§ou“cv) two families of bounded operators {Pr,i}rg1 such that
P +P approximates the identity and
Lo o=

lin sup | [(1-#,@%)y (@P_ e " ul|=0 , (2)
o o

r>« £z20

lim sup [l(1—ﬁ+ﬁi)w(H)P e_ltHu|l=O 7 (20

+ o
rro-t20 = !

for every u in L2.

The operators Pr owill be pseudodifferential operators.
[fe s



The amplitudes of these operators are defined with the aid of

the following functions:

1) gecm(R), g(x)=0 for: \ia, g(r)=1 for A22a, where a is
a positive constant;

2) FeCT(B), E£(A)=T for |x|&1, E£(r)=0 for |x|=2;

3) eecw(Rn) is like in the assumption (v) from the intro-
duction;

4) y, C(R), y, (A)+y_(A)=1 for |x|s1, 0sy, (A)sT, y (X)=0
for As-o, ., y_(A)=0 for AZ0 s where 006(0,1) is a fixed constant.

We fix another constant C>0 and set

i LRI .
h(e)=f (errpry) 9B @ D

Blic) y 7
i(}’IE) h(g)lj) HYHP (£ I)@(-f), 1.
Then
Iagar’i(Yrg)l§Cu, (y,g)eRzn, Sl - | (3)
and
e |3£ g (Y:E)|<C Br—1, (y.& )chn, Arg?, B#0 . (4)

Next we define
o,

P, Lulx)=(2n) [t K80 (y,e)uly)ayds, uesfIRT) .

LEMMA 4.1. (i) The operators Pr can be extended by con-

1+

4

tinuity to operators defined on Lz(Rn) and

il e

sup l]Pr,i

vzl



(1i) Pr’++.Pr'_=h(D)e(—;;

(i ay IlPr’i~P§’il]§Cr , rzj .
EEQQE' The assertion (i) is an immediate consequence of
the Calderon-Vaillancourt theorem of continuity of pseudodif-
ferential operators, (ii) results by a straightforward calcula-
tion ‘and (iii) from (4) and the same theorem of Calderon and
Vaillapcourt (for details, see [5], [8}).
QL E.D

«

Now we consider some approximations of the modified free

evolution of P u and P us
Tk T

= -n i<‘l >=diWlpst,¥,E)
Ep, . (B)ulx)=(2m) e e Ygar,i(y,g)u(y)dy)dg,

t20, ued(R™M)

The number p will be fixed latexr sufficiently. . small. In
the seguel we shall write W(t,yv.&)=Wlp,t,v:E), Y(t,-Y/€)=Y(Drtry}€).
Since Y satisfies the estimations from Lemma 2.2 on a neighbour-

the functions (y, ) > e"iY(t’y’g)a (v,&)

hood of supp ar,i i : =

-amsatisfy the inequalities

: - .
+(Yr€)léca8<t> S lgaern s, 20,
i

laqaﬁe~iY(t,Y:€)a
&y ¥

Therefore the operators defined by

e . = =1 dxx- r€>“iY(tir. rg) . -
Fr,i(L)U(X)“(Zﬂ) [[e i v ar,iﬁy,g)u(y)dydg

may be considered as pseudodifferential operators of order zero

; e : 2
(and they admit extensions to continuous operators on L™ (R7)).

/



We have
5 =t H
__—itP (D), s
Er,i(t)“ lr'i(t)—e Fr’i(t) ¢
We want to prove that Fr . (t) and Er . (t) are suni formly
3 A {

12
continuous operators in L2(Rn) with respect to r21 and t20. The

proof of this statement is based on the following lemma from {7]:

LEMMA 4.2. Let Z be a COo real function defined in R+anan

which satisfies:
: 1
(1) llagayz(t,y,g)||g§ v o)l e Bl i RE R

| denotes the norm of the linear map in rR";

where |

(11) |9%afa s,y E)]sC, o (D) (L, IR, w0 .

We also suppose that b:FxR+anan > [ is a € function with
respect to (y,&) R™xR" (I' is a set of parameters), such that
for every 't in T there is a compact set K(r) with the property
that bilr,t,v,;£)=0 if ek (r). In addition the funcfion b satisfies

the following estimations:

(i1i) 1agaSb(T,t,y,€)igc'

n n
. () (T,tfy,g)eFxR+xR xR

Then the integral operator with kernel

(bl PRSI o Y L

: : . Pl : : : -
. is a continuous operator in L~ (R) and its norm is dominated

by M sup{C| i la|,|B|sp} for p sufficiently large. The constant
; :

B

M depends only on a finite number of constants Co B
¥

REMARK 4.3. The fact that the estimations (i) and (ii) hold




for all sy, ~in RY is essential for the proof of this lemma
given . in [7]. But we can prove that the conclusion of Lemma 4.2

remains valid if
A B Y
supp b(T,t,-,-)cD+(oo,c,C), (V) tel., £>0

Indeed, from Lemma 2.2 we obtain that for p.small enough
the estimations (i) and (ii) are satisfied on D+(o,c/2,2c), when
a00<0<1. The kernel of the integral operator remains the same if

we replace Y (t,y,&) with h1(g)Y(t,y,g), where

- ' P (£)
hy (8) =g, ([P' (8) D £ (grsTp ) s

)

g1(x)=g(2k); g.anasf are the functions defined at the beginning
of this section. Therefore we can suppose that Y(t,y,f) satis-

fies the estimations (i) and (ii) from the Lemma 4,2 on the set

{lt, v, el £20, v-! (E)2=c|y| [P ()]} -

We want to split our oéerator into a sum of operators and
to apply the proof of Lemma 4.2 to each term of this sum. In
order to do this we choose an appropriate e partition of Bnity
on Sn“1, {Xj}?=1 . We suppose that if W, ¢ W,ESUPP o then

|w1-w2]<(owoo)/4, Let wj be such that byX57%3 and lw1“w2|<(0woo)/2

LE w1,wzesupp wj, We define
Bl(E)
. PR = e e ey v

v. (t . P L) yvy(t,y,t
¥ (£,y /) =Yy ey Y (678D -

Then



)d€=‘_c§ felermy £rity [ty .8)

jei<X"Yr€>"iY(t rYFg)b(
: 521

TrtrYrg

"bj (T r’CaYrE)dE

The functions Yj(t,y,g) satisfy the estimatidns from Lemma 2.2

. on the sets

_j O’+OO
c’={(y.&)iy-P"(n;)2—3 |yllP‘(nj)l} ’

J

where wj=P'(nj)/|P'(nj)|-is in supp Y We also have that

3o -t
9

supp bj(T,t,°,‘)Céj={(Y:€); s

5
Now, for j fixed, there exists a family {w§}§=0 such that
e
Tk
B iy wj>0} ,
then

= o) :
ﬂijc&Z%Sk 2 S(c:w c’ o ) ka,T,.,.p

(w? can be taken to be equal to wj).

Let {ek}E:O be a partition of the unity in the neighbour-
oS . : 5
hood of ﬂyC], positive homogeneous of degree zero and subordi-

S D o : o
nated to the covering {Gk?rk:1 of ﬂij . Finally we set

b..

]k(w,t,y,£)=ek(y)bj(TrtrYrﬁ)

Then

supp by (T/t,,0) € {(y,E)s yews>0)

and Yj (t,v,£) satisfies the estimations from Lemma 2.2 on the



Gl

set-{ (v,&); va?zO}.

The proof of Lemma 4.2 applies to this case.

LEMMA 4.4. sup sup ||E () e
r,+
ral 20 4
Proof. As we have seen, E +(t)=e"ltp(9)Fr (t) . The eper o=
r = rx

tors Fr +(t) are continuous on L2

(Rn) for every t20. Let ¢ be in
,* .

Cz(Rn), oe) =1 for |£)§1..Then ¢(D/s)F ’i(t}+Fru+

e

= (t) strongly

when s+, But the operators ¢(D/s)Fr . (t) satisfy the properties
it

listed in Remark 4.3.
Q. E.D.
The proof of the relations (2) and (2)' is based on the
fact that

1tHE

. e 1 d
Lin [[ 7] |qgw(Me™ B,

r->o

()| at|=0 = (5)

for every i in Cs(R), Indeed, for u in J we have

%E(W(H)eitHEr,+(t)u):eitHw(H)VSEr,+(t)u+
+p (1) e (v, () -V (k%)) B, (£ us

(o)

2.

w(mye et S T By, ) 0 .81 -

°ar . (y;E)U(Y)deg)" (Z'TT)“DL!) (H)eltHeri<X;£>"’lW(t rYIE) 2

(v, &) ulyldydg |

[Vt i te,y,8))-Vip, £, W =1, 0,8y, 8] ca, €

{ e



LEMMA #4.5. (Schur). Let K be. a cohtinuous function defined

in R"xR™ such that sup |
Y

K(x,y) |dxsC, supf|K(x,y) |dysC. Then the
%

; ; S : S : 2
integral operator with kernel K is a continuous operator in L

with norm £C.

The proof of this lemma is not difficultand can be found
e

B e, e <

LEMMA 4.6. Let n be in CS(R -

X

- nil)=0Ffor [x|21. Then there exists a constantlb>0 such that

for every m in N the following estimation holds:

|| n (o VB () ] seitm) Garsle ) T 20
bl BN ek

S - e
Proot. The kewnel OF n‘ET?TET)Lr,+(t) is

b(r+t)

K(rlt;X:Y):‘(2ﬂ‘)—nfei<x'£>‘iw(tIYIE)n( )

a_  Warlat
where the integral is an oselllateory. one., On the support of the

function to integrate the fbllowing inequality holds

|y+tp'(£)+Yé(t,y,€)Izc(]y|+t|P'(£)l)

Hence there exists a constant b such that

|X~y~tP'(i)"Yé(tryrE)lic1(r+ta) : (6)

and

| 2=yt (£) =¥} (£,7,8) |26, (|x| +|y| ve<e>F) (7)

for (x,y,E)esupp N{ET§?ET)ar,+(y’g)‘

Therefore we can introduce the differential operator

(R™)




x“y*tP'(é)"Yé(teYrE)
Li==—i oo LS 9
| x~y=tP"' (£)- ;;< 'Y iE) |

A repeated integration by parts gives

X t

o e t,y, E)”(b(EIET)( L)kar,+(y,i)d€

K(rrtfer):

Taking k large and applying Lemma 4.5 we obtain the desired

estimation.

Q.E.D
LEMMA 4.7. iii jo[]w(H)VSEr’+(t)|]dt=Ou
Proof. We have
v, ()] |s] vV | HIE, , ®)]]+

] ey | s v
Now the assumptions (v) and (x} from the introduction are used to
estimate the first term.of the sum and the assumption (x) and
Lemma 4.6 for the estimation of the second term.

0.E.D.

e

LEMMA 4.8. lim foll(VL(X)~V(p,t,x))Eri+(t)I[dt:O ;

>0

xlog<t>

Bioof. Since 1“X(DX)X('QE§“” =) ds.equal &6 zowe for
> =] s e . o e -
|X|'mah{logat>’ } there exists a constant to>0 such that

xlog<t>
<t

Findee el (pRr) e ) (8)

(1-x (px) x ( ity

for tzto, From Lemma 4.6 we deduce that



Lim (2L 07, hewlpnt 210 (£) ] 80 .
o) : ¥

X->co

On the other hand, if tgto  We can find a constant ro>0
such that (8) holds for rgro, We can apply again Lemma 4.6.
(Ora b

The following lemma is a consequence of Remark 4.3 and of

LEMMA 4.9. If

A (t)u(x):(Zﬂ)wmjfei<xr~:>”iW(’C:Yr<:) [V(p’trwfl (t,ylg))m

~V(p ot W tm=1,p,t,y,E)] o, (v, Eluly)dyde

then
i ol i de0
-
LEMMA 4.10. If
S T i |
B, +(t)u(x)=(2ﬂ) nffe1<>,€> iW( ryrg)[V(prtzx)”v<gﬂ%Wéﬁ;y,a]a
¢
SEC A °ar’{N(y,F)u(y)dyd{ .
then

lim jé][Br£+(t)||dt:O

X—>co

Proof. We decompose the domain of integration in two sub-

domains. If

x=y~tP ' (E)lco x|+ |pttP (L) |) amd if edl is cufei-

ciently small, then ]x~y~tP‘(g)|§%iy+tP‘(g)]. Let x, be in

2

CS(R), Xqothih=1 Foxr |}|= (%)2, x4 {1)=0 for |x]2c”. We define



= 25 —

e 2
X(Z,v,E) =y ( | 2-y-tP' (€) |

: |X[2+ly+tP'(€)|2

)

aj k%, Bl =xd® yuEla . (y,E)

aZ(Xing) el (Yrg)"'a»l(}u’-fY:‘g) .

r,+

Accordingly to these definitions, the operator_Br e} spliis 10 &
13

sum of two operators, B (t) and B (£

hed| T
Now |x-y-tP'(E)| is greater than c1(|x]%|y|+t[Pﬁ(£)[) on
SUpPP a,, where op is a positive constant sufficiently small.

Thus the norm of Br 2(t) can be estimated as in Lemma 4.6.
rF

We have
||B. . (£)]||<C(t+r+t) 2
e
On the other hand, on supp a, we have that b=yt P () | €
g%]y+tP'(g)|.and |x|<cly+tP' (£)|. The kernel of Br,1(t) i?

equal to

i(Zw)nnjel<x,g>~iw(t,y,€)8

£

[ag oy 0L 0,00 (e, 0 (1-0) Wy ey, 8) ) a8] ag

If we set

b1(X:Yfg)zag[a1(XrY:E)Il(BXV)(p,t,@x+(1*6)W%(t,y,g))dé}

then

10%38aTb, (x,y,£) | sC lelal

Vi

Q,B,Y<y+tP'K£)

P MR el



Using once again the Taylor formula, we obtain

fei<xfg>"iW(t’y’g)b1(x,ypﬁ)dgz

:fei<X‘£>'-iV\7(t,y‘rg)b1 (T’ifé (1: ,y,«f;) ;y,g)dg'}'

+ijei<x,g>~iw(t;Y:€)a€j1

O

(Bbe)(8X+(1"6)Wé(trYz€);Y:E)deE

The Remark 4.3 can be used to estimate the first term of the

sum. We denote with b, the amplitude of the second term

2
b, (%, ,E)=3, [0 (3,b) (6x+ (1-0)WL (t,y,£) ,¥,£)A0 .
Then
[8§3§8gb2(XrYz€)ISCugy<y+tP’(£)>'2“lal“€'

We proceed like before until we obtain a remainder bN(x,y,g)
which satisfies the conditions from the lemma of Schur. Summing

up we obtain that

e e
||Br’1(t)|]§C(1+t) e
O E.D.

The following result is an immediate corollary of Lemmas

doil=d 10,

LEMMA 4.11. (i) If ¢ is in C_(R") then there existibhe

operators

itn
h|r = (t—)

W =s~1lim Yy(H)e
Lo t>+ oo

G Lim ||1,b(1—1)pr +~Wrri|1:0 :

300 e



Now the proof of the theorem proceeds as in [7], For the

sake of completeness we shall indicate the main steps.
LEMMA 4.12. The relation (2) (for ﬁ+ and t>0) holds.

Proof. It can be shown using Lemmas 2.4, 2.5 and Remark

4.3 that there exists

iw(t,D)

W . =s—lim e E (t)
A trtw s
and Ran W L€ %c(Ho)’
Hence Wr,+=w(H)W+wr,+. Lemma 4.11 implies that

0=lim ||WiplBIB,  -WipEIW. 9, . ||=

r— Lot

=1lim |[W+ij(H)Pr’+*W+w(HO)wr,+]]x

-0

=14 ‘N :v‘k 'Y F — ==,

iiﬁ | ]q+w+qjuayprr*.¥ﬂr,+ll

~lima | wele . cldmie s
r->o

At the second step we have used the fact that for ¢y in

= A : , . SRS e e v e B
CO(R%CV) the range of w(HO) is contained ln‘héc(ﬂo) Ran W¥W,_ .

O EaD s

LEMMA 4.13. For every u in LZ(Rn) and Y in Cg(R\EV) we

have that

~itH
ul |

lim sup [[(1—wiwi)w(ﬁ)h(nyg(;)e 80 .

r»wo t20

Proof. We consider again only the ‘case £>0. 8 ds sulffi-

cient to show that



e P Rgc —itH
iiﬁ izg ]](1~W+Wi)w(h)Pr’it ul |=0.

Thesassertienfor P = is contained in the conclusion of
i ¢

Lemma 4.12. In the case of P e proceed as follows. As a
: &

consequence of Lemma 4.6 we obtain that

E (E)sad=0" .

Lim sup | B
F

reo t<0

On the other hand we know that

Lin sup ||¢ (HP. _~¢ me e, _(£)]]=0

r-o t<0 2

for every ¢ in CS(R); Therefore

3 : =it 2 o0
lim sup |[R% _e AtH, (myul =0, (¥) uel”(R'}, (%) ¢eC_(R).
r+o t>0
Since ¢ is arbitrary in e Ry and P =D g(‘,r—1 we have
O r,"' g
that
lim sup ]]Pr’~e"ltHu[|:o, (%) ueLz(Rn)
I £>0

0.E.D.

LEMMA 4.14. Let y be in C_(R~Cy) and u in ¥ (H). Then

T

sl
@]

mitHul Szl Ees

lim %f

00

|| (1w wE) ¢ (H)e

The procf of this lemma is identical to that of Lemma 4

from r81 . Tt makes use of the RAGE theorem and of the fact
1 Y L) “1 ® = (=) - o e e 3 £o n
that n(x;(HO+1) is a compact operator for every n 1in CO(R )

(see EZ])°

The statements (b) and (c¢) of the theorem are simply



corollaries of this lemma. The last statement results from the

. fact that (1"@+ﬁi}W(H) is a compact operator for every %/in

(e.2]

CO(R\EV) .

REFERENCES

1. R. Coifman, Y. Meyer, Au deld des opérateurs pseudo-diffé-
ventiels, Asterisaque,; 57 (1978).

= 2. E.B. Davies, Pl. Muthuramalingam, Trace pfoperties of some
highly anisotropic operators, J. London Math. Soc. (sec.
series), 31, 1(1985), 137-149.

3. 1. Hdrmander, The existence of wave operators in scattering
theory, Mathe 7., 145 (1976), 63-91%

%. L. H6rmander, The Analysis of Liheax Partial Differentials

: “Operatores, viol .. 2 (1983), vol, 3 and. .vol. 4985,
Springer-Verlag, Berlin-Heidelberg-New York-Tokyo.

5. ‘Vﬁ Iftimie, Sur la complétude asymptotique dans le cas
"longue portée" et "dépendant du temps", Rev. Roum. Math.
Purés Appl. ;32,5 (1987), 407-433.

6 H. Kitada, K. Yajima, A scattering theory for time dependent
long-range potentials, Duke Math. J., 49 (1982), A=375%

is Bl Muthuramalingam,'Enss’theory in long range scattering:
second order hyperbolic and parabolic o?erators, Math. Nachr.,
127 (1986) , 145163

8- M. Pascu, A time~dependent proof of the asymptotic complet-

ness for simply characteristic operators and general short-
-range perturbations, to appear in Rev. Roumaine Math. Pures

hppl.






