& ]

INSTITUTUL. . : - INSTITUTUL NATIONAL

s | PENTRU CREATIE
MATEMATICA ‘ STIINTIFICA SI TEHNICA

ISSN 0250 3638

SPECTRAL ANALYSIS FOR SIMPLY CHARACTERISTIC
OPERATORS BY MOURRE'S METHOD
by
Gruia ARSU
PREPRIN'I‘ SERIES IN MATHEMATICS

No.38/1988

BUCURESTI /\J\J&ﬂ -



 SPECTRAL ANALYSIS FOR SIMPLY CHARACTERISTIC
OPERATORS BY MOURRE'S METHOD
by

=)
Gruia ARSU

July 1988

3

Bepartment of Mathematlies,The National Institute for Seci

and Technical Creation,Bd.Paéii 220,79622 Bucharest,Roma




SPECTRAL ANALYSIS FOR SIMPLY CHARACTERISTIC

OPERATORS BY MOURRE'S METHOD

by
Gruia ARSU

1. INTRODUCTION

The purpose of this paper is to give a time dependent
scattering theory for Ooperators of the form pO(D)+V, where
pO(D) is a convolution operator with the symbol not satisfying

the condition lim po(g)=w and ‘V is a shert range perturbation.

(el =

The methods used here are essentially the same as those
used in ﬁ] and [5]. Hoewever, if in E1] and [5} the homogéneity
property of the symbol‘of the free hamiltonian was intensely
used, in this more general case the constructions of the auxi-
liary operators must be made with care, such that the results
we obtain should not be affected by the absence of the homoge-
neity. As we shall see, these constructions are natural and
give operators with nice commutation properties with functions

of the free hamiltonian.

HYPOTHESES

I. The free'hamiltonian HO is-a self-adjoint operator on

the Hilbert spacegszz(Rn), with the domain @ G%)={u€%%poﬁ€9?},

|
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H,u=p,u, where u is the Fourier transform of u and p_ is a real

valued function which satisfies:

(i) po:lRn » R- s a .continuous. function.

(ii) If we denote by S the following set {£e R"; P is not
¢” in any neighborhood of &, or Vp6(£)=0}, then pO(S)

is a countable subset of R.

(iii) For any compact interval ICR\po(S) we have
: -1
. €
inf {|Vpo(€)|, & o (m) >0 =

(iv) (local compactness). For any compact interval ICR\pO(S)

and for each r>0, the operator

F(|x|<r)E_(T)

is compact. Here F (M) denotes the indicator function
of the set M and EO(I) denotes the spectral projection
for HO onto the interval I.

A A

II. Let V:d > P be a symmetric operator such that

(v) For some e£>0 the operator V¢(HO)<X>1+€ has a bounded

e extension to the whole of # for each ¢ in Cz(R).

A

We used the notations: &) for the image of 2 (the space of test
functions defined on Rn) by the Fourier transform and

142

e
<x>=(1+]x]) ', xeR".

A

ITI. 4{vi) The operdtor HO+V with the domain & has a
self-adjoint extension H.

(vii) For any ¢eC§(R) the operator



¢(H)-¢(Ho)

is a compact one.

The main result is the following

THEOREM 1.1. Assume that the hypotheses (i)=(vii) are
satisfied. Then
(a) The wave operators W+=s—lim e e E (H) exist;
: 5 t>too 2
(b) Range W+=]%(H), the continuous subspacebof H

(c) OSC(H)=®;

(d) Any eigenvalue of H not in pO(S)U{O} is of finite
multiplicity. The eigenvalues of H can accumulate

only at points of po(S)U{O}

Before proving the main theorem we wish to make a few
remarks about the hypotheses we made and about the connections

between the present paper and other related on this subject.

REMARK 1.2. a) The free hamiltonian H is & ecomvolution
operator with a continuous real symbol which satisfies the

conditions (i)-(iii). The growth conditions which are commonly

e

imposed (see [3], [4], [7], LBJ, [9]) are replaced with the

condition (iii). This condition can be read as feollows:

(iii) ' If the free energy lies in a compact interval
‘disjoint from thresholds, then the velocity is

bounded from below by a positive constant.

B) If we replace the condition (iii) by the stronger

condition.




(did) lim (|po(€)|+|Vpo(€)|)=°°,
|€‘+oo
Ee S
then the local compactness, property of HO (i.e. condition (iv))
is fulfiled (see the appendix).
c) In the same way one can prove a similar theorem with
the condition (v) replaced by the condition
1T+

(v) ' For some €>0 the operator ¢ (H)V<x> has a bounded

extension to the whole of # for each ¢ dn C:(R).
This condition is allways true when V is a symmetric Ho—compact
operator and there is an ¢€>0 such that the operator

has a bounded extension.

d). By taking into account the above remarks one can -compare

this paper with [7] and [8].

Proof of Theorem 1.1. (a) The proof of the existence of
wave operators is standard (see L3}, [4], [9]), so that we only
sketch it.

o
By Cook's argument, it suffices to show that

- -iH t
[_ollvem )e ul |at<e
for any ¢€CZ(R) and ueﬂ%Rn) with supp U a compact set, disjoint
from S. By using (v) this follows from
i =1H

ffmi‘<x>_ e nllgEce

which can be proved for instance by writing




S HE ' -iH t —iH t

e i u+<x>_1—€F(]x|z&tk <

<x> e u=<x>-1—€F(lx|§6t)e u=B+C

and estimating ||B|| by means of stationary phase method and

=1-e

Liefibyeic L<t>

Sy
The other parts of Theorem 1.1 will be proved below by

means of time dependent methods.

2. PRELIMINARIES

In this section we shall make the constructions already
announced. As a consequence they will provide operators which
will serve to prove some propagation estimates which are the

main tosls-. ih the proof of Theorem 1.1.

We pass now to define the operators which we mentioned

at the begining. Let ygcz(R\po(S)). We define the smooth vector

field v in phase space by
(2.1) v(E)=p, (§)7(p, (£)) | Vb () | 2p (E), EeR™ ..

Then the:condition (iii) implies that there exists 0<e<o

such that

(2, 2) v (&) |sc, wateR

From this relation it follows that the Cauchy problem

(@/da) T (a,E)=v(l(a,E&))
(2.3)
r(org):g

defines a group of Cm—diffeomorphisms F(a,.):Rn > R°. To this

group of diffeomorphisms {F(a")}aeR we associate a group of

unitary operators {V(a)}ag on Lz(Rn,dE) by

R




(2.4) (v () 9) (£)=|det T (a,8) /98] /29T (a,8)), el @)

If we denote by F the Fourier transform on Lz(Rn), then

we obtain another group of unitary operators on Lz(Rn,dx) defined

by
(2.5) U(a)=3:—1V(a)3J on LZ(Rn,dx) ;
Let now A=A, . be the self-adjoint operator on 2?=L2(Rn,dx)
Ol
such that

U(a)=e—lAa

By taking into account the definition of U(a) one obtains

in a straightforward manner the following

A
LEMMA 2.1. @ is a.core of A and

7 9
(2.6) A=j£1(vj(D)xj+xjvj(D))/2 on

Next we shall establish some relations which givelthe

commutators i[f(H ),a] and i[£(H)), (A+1) " ].

LEMMA 2.2. Let feC1

(R) be a bounded function. Then the
form i[f(Ho),A]=i(f(Ho)A—Af(HO)) defined on £ (A) has a bounded

extension and

(2.7 i[f(Ho),A]=HOf'(HO)y(HO)

Proof. The proof of this lemma is elementary and it is

based on the relation

W

Ly
Ula) E(HE o) = Mooy opyy,.)

Q.E.D.
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LEMMA 2.3. Let melN and let fec”(m) be a bounded function.

Then

m .
(2.8) (A+i)"mf<HO)={k§0<£><A+i)’kfk(Ho)}(A+i)‘m

with kaCw(R) given by

£, (M) =(=1Ay (1) @/ax) *£ ()

Proof. The proof of this lemma is also elementary and is

made by induction.

(a+1) 7 £ (H ) =£ (H,) (ari) e (aed) T £ (R ) ,A] (A1) = |

1 1

={£ (H )+ (Avi) T £, (H )} (A+i)” (by (2.7))
Assume that the statement is true for m. Then
=ti= 1 -1, ¥ m =~k -m
(A+i) B0 =Rl ) {kzo(k)(A+i) £, (H )} (A+i)

But (2.7) of Lemma 2.2 implies that

1 1

1 : - -
fk(Ho)—{fk(Ho)+(A+1) fk+1(Ho)}(A+l)

(A+i)

SO we obtain

=1 S -k =1 -1
(Nﬂ)m_fﬁ%hﬂgJEHNi) £ (H )+ (A1) £, () }(A+i)

m m L=k m+1 - g |
={k§0 (k) (A+i) fk (Ho)+kZ1 (k—1) (A+i) fk(Ho)} . (A+i

)—m—1

since ()+(1.)=(":"), it follows that

m¥1
m-1 s m+1 vk ==
f(HO)—{kZO( o JiABet)

(A+i)' fk(Ho)}(A+i)



°

One can use the above results to prove another needed

lemma.
LEMMA 2.4. For 0=2¢<2,

<A>a(Ho+i)-1<x>—aEJa

is a bounded operator on # . Here <A>=(1+A2)1/2=|A+i

Proof. We need only to prove the case a=2 and then use the

complex interpolation. Thus we must to prove that

A2(HO+i)—1<X>—2

is bounded. For a suitable function f, we obtain from Lemma 2.2

that

Af(Ho)=iHOy(Ho)f'(HO)+f(HO)A :
By iterating this formula we get
2 o ‘ 1] 1 ] "
ACE(H ) =—H_y (H ) (v (H ) £' (B )+H y' (H ) £' (H)+H v (H ) £" (H ) +
¢ . 2
+21iH y(H ) £' (H )A+£(H )A

By taking f£(A)=(A+1)

we obtain the conclusion of Lemma 2.4 by
using the explicit formula for A (Lemma 2.1).

0.E.D.

We can now prove the basic estimate which we shall use in
the proof of the asymptotic completeness. Since we shall work
wifh functions belonging to the space Cz((a,b)), where (a,b) is
an open interval such that [a,b]C3R+\§;T§TU{O} or
[é,b]CLRi\E;TgT L0}, we shall considér, as an. auxiliary operaton,

the self-adjoint operator A:AH y associated to a function
o ,



yecz((a,B)), 0<y<1, v=1 in a neighborhood of [a,b]. Here (a,B) is
another open interval such that [a,b]CXa,B) and [ﬁ,S]C:R+\E;T§)U{O}
in the first case and [a,gk;R?\ESTg)U{O} in the second case. Let

P+ and P be the spectral projecﬁors of A on the positive and ne-
gative parts of its spectrum, <A> the usual operator

2)1/2

(1+A =|a+i| and Xi the indicator funetion of Ri\{o}. Then we

have the following

THEOREM 2.5. Let 02p'<p. Assume that (a,b) is an opeh inter-
vai such that [ﬁ,b}:R+\po(S)U{O}. Let geCZ((a,b)). Then there is
a constant c=c (g, ,n") such that

. ik z =

(2.9) ot = gl e | (<o |e(™

Proof. 1° The proof of this theorem follows in almost the
same way as the proof of Theorem 2.1 of [ﬁ],or the proof of Lemma
21 0f [5]. However, the absence of homogeneity of o requires

some changes which we shall point out at the right time.

We shall give the proof in the case t>0. As a result of
the first three steps of the proof of Theorem 2.1 ©f [ﬁJ we

obtain that

: el e
(2.40) <h> ‘e gH )P =mll (it

—iE - -m'-
.Ifme LEe m(HO—E—ie) . 1g(HO)P+dE '

(o] e'lEt<A>'m(Ho—E—ie)'m _1g(HO)P+dE[ | se (g,m,m'),

R\[a,b]

¥ 0<e<t,

and we see that we are reduced to study the family of operators



-m ia=mit o] et _
{<a> (B ~E=ig) P }EcLa,ﬁl :
eel0,1]

(Here we use Lemma 2.3 to prove that <A>_mg(HO)<A>m is a bounded

operator for meR).
2° If m,neN, m>n, O<esl, asELb, 0<26sn/2, we define

F(e,E,e)=<A>'m(Hoe”le--E—_ig)'ne_eAp+

with
- Fle,E,0)=<A>"" (H_~E-ig) "P
and
s-lim F(¢,E,8)=F(e,E,0) .
820+
Next we shall prove that the following estimate holds
242 |l(a/ae)F(e,E,e)]]gc(g,m,n)1|<A>'m+1(Hoe"le—E—ie)"ne"eAp+|l

for 0<g<1, asiEsh, 0<6<§ with § sufficiently small.

By using Lemma 2.2 it follows easily that
(B/BS)F(E,E,e):ine_le<A>—mHo(1—y(Ho))(Hoe_le—E—ie)—n_1e—eAP+

_<A>—mA(Hoe_le-E—i€)-ne_eAP+

To prove (2.12) we must estimate the norm of the operator

=36

-m 3 =16 =n=1 =@h
e <A> HO(1 y(HO))(HOe e P

-E-ig)
which we shall write in the form

(A+i)m<A>'m(A+i)”mf(HO)(Hoe"le—E—ig)’ne"eAp+



with

O soattys i

z : o
£(H_)=H_(1-y(H_)) (H_ ~Ee

Since we have 0<a<a1<a<b<b1<8, [@,B]ﬂpo(s)= ¢, supp gcla,b),
supp ycl(o,B8), y=1 on (a1,b1), it follows from Lemma 2.3 by

choosing § sufficiently small that

m
e 5 m au=k So=m
(A+1i) f(HO)—{ Z (1) (A+1) fk(Ho)}(A+l)
k=0
o =k
with (1) (A+i) “f, (H)) uniformly bounded for O<e<l, a<kE<b and
k=0 '

0<82§, so the proof of (2.12) is complete.

3° Following now the arguments of the steps 3°, 4°, 5° and 6°

of the proof of Theorem 2.1 OF [1], one. proves that for every
(m,m')eN x N, m>m'+1 there exists c=c(g,m,m') such that

=3l

(2.13) a2 g yor || coe T

From this relation we deduce that for every (m,m')eR x N, m>m'+2
there is e=clg,m,m"') such that (2,13) holds.
Now the general case follows by interpolation.

Q.E.D.

For the case [ﬁ,b]C:Ri\po(S)U{O} we have the following

COROLLARY 2.6. Let 0sp'<p. Assume that (a,b) is an open
interval such that [a,b]C:Ri\pO(S)U{O}. Let gecz((a,b)). Then
there is a constant e=clag u ') such that

r = _ -iH t =
29" [ e g(HO)Pi||§c]t] L

Proof. Apply the above theorem to the operator -HO (i.c.

Sl NS ik



-p, (D)) and the functions g, Y, and observe that A_ 7=A .

Here f means the function defined by f(x)=f(-x).

"Q.E.D.

3. ASYMPTOTIC COMPLETENESS

For the proof of the asymptotic completeness we need two
compactness results. We start with the case of an open interval

(a,b) such that {a,ﬁ]CIR+\pO(S)\J{O}.

LEMMA 3.1. Assume that the hypotheses (i)-(vii) are fulfil-
led, and let (a,b) be an open interval such that

@,b]C:R+\pO(S)U{O}. Then for every gecz((a,b)) the operators

+
(W,~1)g (H,)P

are compact onX.

Proof. We have

: ~iH s
+ . o 1Hs e} 1
(W,-1)g(H_)P —1foe Ve g(H )P ds

=HH. S :
and for any s>0, Ve g(HO)P+ is a compact: operator as it
,.w

follows from the hypotheses (iv) and (v).

Furthermore the integral

-iH s .

[ollve © g(@)P7||ds

is well defined since

_iHOS 2 -m "'iHOS m e
| |ve g(H )P | |=] vy (Hy) (B Al o (H+1) g(H )P || <
sl e )] e R R
-iH s

j<as" 7% O i) Tg )t




Prom Theorem 2.5 and the condition (v), it suffices to verify that

m T1+¢

'1“€(Ho+i)" A

m>0 can be chosen such that <x> is a bounded
operator on Z. -

By Lemma 2.4 this is true for m=1, because we always may
suppose that 21 in (v).

Q.E.D.

COROLLARY 3.2. Assume that the hypotheses (i)-(vii) are
fulfilled, and let (a,b) be an open interval such that [a,b]CR—\
§;T§TLHO}. Then for every gecz((a,b)) the operators

(W_-1)g(H)P*
+

are compact on & .

Now it is clear that the conclusions of Theorem 1.1 can be
obtained by using the Enss argument. Since there are many papers
on this method ([1}, [3], [9], [10]) we shall not repeat Enss'

argument here.

APPENDIX

We commented in Remark 1.2 b) that the local compactness
property of HO is implied if we assume that the function Po satis-
sl o
fies conditions (i), (ii) and (iii)". In this appendix we shall

prove this compactness result which we shall state as

PROPOSITION A.1. Assume that pO:(Rn > R is a function which
satisfies the conditiens (i), (dii) and (iii)". Let IC:R\pO(S) be a

compact interval and let r>0. Then

F(|x|sr)E (T)

is a compact operator on X .



We assume that R is divided into unit "cubes" C ‘keN

k 14
so that

RilJE  and © AC=¢ for kil .
S _

Then, in order to prove Proposition A.1, it suffices to show (cf.

Corollary 3 of [2]) that the following lemma is true.

LEMMA A.2. Assume that Pq satdsfies (i), (dd)eand (ii)":

Let ICRSp, (S): be & compact interval. Then
o p

. ; =
lim ICkﬂpo (E): | =0 .

koo
Here |A| denotes the Lebesgue measure of the measurable set A.
Proof. If we denote by
g, =inf {|vp_(£)|; £ep  (1)Nc,}
k o g o k
then the compactness of I and the condition-(iii)" imply that
lim B, =
koo

Therefore the proof of the lemma is.completed by the following

estimate:
(A.1) Ip;1(I)ﬂCk|§n/H]IIB;1 o kel

- 0L S0 s n
Let Bj_lgeR \S; IVpO(g)|g/H|ajpo(g)\} and 0;:R\S > R

defined by

(DJ(E):(g»I 7o oo rgj_1 rpo(i) ,€j+1 7o ,En)

for: j=d ... Then ®j is a local diffeomorfism at every point in

-1
Py (I)ﬂBj.




n
Sinece po1(1)ﬂck: U po1(I)ﬂCkﬂBj , then (A.1) follows from
3=l

a1 lp;1(1) cknleg/Hms;, kel d=t.n

This estimate can be obtained by making a change of varia-

ble. Let us write p;1(1)ﬂckﬂBj as a disjoint union

=4 : ‘ !
o e c,NB.NM h = G el

\% 5 (C, N kﬂ N, , where ¢ m (C)x. Xﬂj_1(Ck)XIXWj+1(Ck)X...XWn(Ck) and MQ;
2€N are disjoint measurable sets which have neighborhoods on which

®j is a diffeomorphism. %

Then
o nE - Ué"1 (e )
Pg ki . 5 kj L

where Aka, 2eN are disjoint measurable subsets of CkI such that

i = . : = -
®j (Aka)—Qj (ij)ﬂckﬂBjﬂMg . Qj is a diffeomorphism in a neigh

1

borhood of ®; (A ) and

kjL
|det(®;1)'(n)|§/36;1 for i€ Akjﬁ :

Hence

-1 =1
o (nillee =1 - de=¥ . et (s i) ldns
I, = %j®.1 ) %jAka J

</ngl '

= =1
K dn—/ﬁlIlBk

Ckr1
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