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Blelds of AF—CLalgebras on suspensions

by V.Nistor

15 Introduction

In a pioneering work J.Diximier and A.Dowady classified.
fields of elementary Cta;gebras ([}él).fields of AF—Cialgebras
were considered by several authors,[{],[?],[iq],[iZ],but the
classification problem has not been solved.completely. :

If X = S" then the isomorphism classes of homogeneous locally
trivial fields of Ctalgebras with fiber A are in one-to-one
correspondence with'ﬂh_l(Aut(A))/nB(Aut(A)) ([15]) andfﬂk(Aut(A))
has been cgéhted for a large class of AF-dialgebras([Zdl,[?é]).
A similar device holds if (X,xo) is-8a pointe%%ompact connected

CW-complex.If we denote by’[X,Aut(A{] the set of homotopy
| classes of basepoint predy@ving mappings X-—>Aut (A),Aut (A)
being pointed by the identity automorphism,then isomorphism
classes of homogeneus locally trivial fields of dﬁalgebras with
fiber A are in one-to-one correspondence with'[X,Aut(A{] /ﬂb(Aut
(A)). '
The main result of this paper is the determination of
[X,Aut(A{] up to an extension of groups if A is an
AF—étalgebra satisfying certain techniCai conditions as in 4,13
We also determine the kernel of this extension.

The techniq of proof generalysis the techhiq developed in
[20] and the resulting exact sequence has close trends with
the exact sequence of the Universal Coefficient Theorem for
Kasparov's KK-groups,[24].

An important fact is that AutO(A)—>EndO(A) is a weak

homotopy equivalence ([QQ]).
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Let us suppos; that A is simple and (X,xo) is a Htspace ((?7],
chapterjﬂ‘)then our results are complete and give isomorphisms
[x,Aut(A)J’—‘é,» KK’ (A,€, (X\fxg} ,A)) if 1 € A and [X,Aut(A)]i”»
— kK1 (8, Cy (X\§x,3 ,A)) if 1 € A,here A denotes the mapping
cone of the inclusion C-,A,

The next section contains notational conventions,
Section 3 éontains results aboﬁt filtered ﬁodules,morphisms
and extensions of filtered modules.,The definitions and the
results of‘this section are in the spirit of those in [QQ]{IBeir
purpose is to give a satisfactory framework for the groups
appearing in the exact sequence.The objects We introduce and
the theorem we prove reduce to well known ones if the filtrations
are trivial and this endeed happens if A is simple.The reader
interested only in this case may very well skip this sections,.
Section four containes preliminary results concerning cancellatio
and comparability of projections.The results we obtain are
crucial in turning K-theory datad in homotopy information,
they are in éhe spirit of the programs of [4] and {53].Sections
five and six contain the exact sequence in the general case and.
the determination of’[X,Aut(Ai} for A simple and X a HLspace.
The last section contains a brief discﬁtion of the Samelson
product.IE is proved that in general there exists no natural grou
structure on the set of isomorphism classes of locally trivial
fields of dtélgebras with fiber A.This contrasts with the .

results of J,Diximier and A.Douady ([EZJ).



2, Notations and conventions

In tﬁis section we shall fix same hotations and make s@me
conventions to be used in the sequel. v

KipiErEO,l} will denote the K-theory functors
([5].[25]) .M(n) is the multiplier c*-algebra of A ([21] J
We shall denote by U (A) the set of those unitaries A in M(A)\
such thata-1 € A.S is the suspension factor in the categery
of pointed topological spaces or in the.category of
C*—algebras.

By ideal we shall mean closed two-sided idealw

L e

Let A,B be C*—algebras,we shall denote byi4mn(A,B) the
set of all# -homomorphisms. A-»B witnh the topology of
pointwise Mmorm convergence.

We shall denote by ide the identity morphism of an object
0.

1 denotes the unit of various C -~algebras,if A ﬁas no
unit,l denotes the unit of M(A).

YW is the C*-algebra of compact operators on a separable
.Hilbert space.

IfA dsta d*—algebra,A+ denotes. the algebra with adjoiht

unit.



3. Filtered modules,morphisms

and extensions of filtered modules

Let £ be a complete lattice,R a commutative ring with unit.

3.1. Definition An.Q-filtered module E over a ring

R igéieft R-module E with a family of submodules (E, ), .q ..

such thattu—*Eais a morphism of lattices.An2-filtered .

ﬁgrmodule will be called simply an.l-filtered abelian group.
3.2. Let E,F befl-filtered R-modules.A morphism

f:E~F such f(Ew)c;EN will be called compatible.

The set of compatible morphisms f:E—F will be denoted by
HomR’c(E,F).
3.3. Let 0—E—=F-—>G—»0 be an exact sequence of

LN -filtered R-modules with compatible morphisms.

Definition The above exact sequence will be

called a compatible extension of G by E if E,,=FNE and
EQ/QJ* G,1is an isomorphism.

Two compatible extensions O-»E-&Fj—yc-vo,jefo,Ig are
equivalent if there exists a commutative diagram of compatible

morphisms

0—+E—+Fd—aG~a0_

e

0—»E—¢F1~96490

A compatible extension 0—E—»F—>G—>0 will be called trivial

if there exists a compatible morphism f£.:G—F such that

1
fofl=idG.
The pointed set of equivalence classes of compatible

extensions of G by E will be denoted by ExtR'c(G,E).



‘3,4, We want to show that ExtR'c(G,E) is a group with
the Baer sum as operation ‘and with the trivial extension
as neutral element.

Let g & G.Denote by.Q. iwe.ﬂ. ge& Ew§

Then.ﬂ. is a complete sublattice of 1 .Denote by w(g) th*

least element offl_  and call it support of g. N
For each g € G,g # 0 choose f(g) & Fw(g) such that v
f(f(g)) i:f.’ 0-—>E—?F-£76—90 b a c,a'm,;ai(abfg <xlenston

Lot £(0) = D, Elgy,0,) = Elgy) + Slap) = Flgy & 9ol

. (G E) if we denote by

é',(r,g) = rf(g) -f(rg).Then (£8 € Z
c(G,F) the group of pairs (g,g))%:GxG—éE,

&:RxG—E satisfying:

(1) Slay o)+ Bloy Fagp9g) = €(g,,9,%93) + Elg,195)%

(2) E(9;,,9)=E(95:97)
(3) &€(0,9) = €(g,0) = 0, (0,9) = {1,9) =0,

(4) g(rlrz.g) = §(r),ry9) + ry8(r).9)

(5) rg(glogz) = g(rglrrgz) +§(r:gl) 35 g(rfgz)

-g(rlgl'*'gz)

(6) g(gl,gz)EEwrg(r:g)eEw for any 91’g2196 Gwrr e R

(glgltgz e Gl‘ rlrllrz 6 R) o
Denote by Bll:{ (G,E) € 7 (G,E) the group of these pairs
Jc Ry
(5,8 € 2L _(G,E) such that
4
E(g,,9,) = elgy) +elgy) - elg tdl
Z(r,g) = ~e(rg) + relg)

for sgme function e:G—*E,e(0) = O',e(Gw)C Ew)(¥)w€_9.-
Let x € Extp o (G/E) .Define (%, as above,two different
’

choises of f give elements of Z%{ c:(G,E) wich differ by an
4

( =



element of pl (G,E).This shows that we obtain a well

R,
defined function c:Extp C(G,E)'-?"Z (G F)/B (C;E).

I

Cconversely,given (&) s'atisfylng (1Y %® (6) then let

GXE = F with opperations
(gyrey) + (gye85) = (g +gy,e e + £(97,9,))
rlgpe) = (rgrre"l'g(rrg))rerellezé Ergrglrgze,G-

and filtration T, = G X, .Note that F is anfl-filtered

R-module due to (1)-(6) and satisfies an exact sequencé

0=PE =2 F->G >0 for any cuéflénd 1f we let £iG—>F be

given by f£(g) = (g,0) then 2(g l,gz) = f(gl) + f(gz) = Elg, & g5)
and EBle;g) = rilg) =i flrg).

Since to Baer sum of extension there corresponds the sum Of
cycles we get that c is the desired isomorphism (see ElB]).

It is obv10us that Extp (G, E)n 505 if G is a free R-module.

3.5 liek CP:GT>G' W:E—»El,be compatible morphisms then we

obtain morphisms zl (G E)-—»zl ((‘l,E) B o)
14
1 1 5 L

defined byg-_»aO(fJXy’ 5;>§o(1dff(<{)) and ?f-f\{/o ‘f’ «(/oﬁ
This shows that ExtR,c(- r*) is contravariant in the second
variable in the category of £Q-filtered R-modules with
compatible morphisms,and covariant in the fizret variable.
We shall denote by’f Ext (G E)~?Fxt (Gl,E) and
‘fi’EXtR,c(G’E)%X"R,c(G'El) the morphlsms defined bycﬁ
and ¥,
3.6, Lemma Let F,E_be Sl-filtered R—modules,([an:En'%—EIHl,

E = llm(En,Cfn).Then there exists an exact seguence.

1 w"‘ =
0—911m (Homg (En,F) 73‘}—~7th (B E)=Lim(Bxty (B, F)F) =0




- Proof.

* :
Let Xn (> EXtR,c(En’F) sgch that(ivn(xn_l_l) = Xn.There exists

an infinite commutative diagram

..... - -~ Eicy

)
o—>F—>G —>>ﬁ =0

Vq%t\&tpn

0>F>G —>E
n+ -’r

-~ -— R Rt

Such that 0—>F—>C —>E -;0 represents X, in Extp c(En'F) .Let
’

G = lim(Gn,J/n) .Then there exists an exact sequence

0—>F—9G-9E-90 whose image in ExtR (E o) s X

Let us identify the kernel of Eyt (E T‘)zvvhm(ExtR c(E F)f,’)
To this end denote byx :E ->E the obvious morphism.Suppose
that 0>F-»G->E->[ defines an element X € Extp (E F) such thaty
9(, () =0 for any% Then exists a compatible morphism
Zn ¢B -9G making the followlng diagram commutative

/"

"0—>F—>G—»E—0

Let A= A ) . € hﬁzwﬂom (E o) o Ay = Cnia®Pn ~Tne
Denote by d: @HomR B e o) Homp o(E F) the morphisms
new 4 meiN
d((fn)new)) =(fn+1Oan - fn)nem Then two different. choises of
Cn define sequences A differing by an element in Imd.This
" shows that there exists 2 wall defined morphism

keerq]ix_nl (Homp o (E,,F) :ﬁ) which turns out to be an isomorphi
7 a : : )

3.2 Ne sl_lall need also an, other group,the group of

extensions with order unit.It 1is defined as in [:'laoj

Let E,G be_Q-—filteréd modules, W € G an element such that
W € G, if and - only if W= supS£L (supLL is thé largest element
in ). :

By a compatible extension with order uniti of G by E we
mean a compjgtible extension 0—;E—9F—>G;->O such that F has

=




order unit v and £(¥) = u.We shall w;ite in this case 0->E->
—>FEN)— (GUu)=>0.

Two compatible extensions with order unit
0—>E—9(ijvj)—>(G;u)—>0 je %(3,13 are equivalent if and only

if there sxists a commutative diagram

03E>(F,, V%) > (Gu)—~0

o

0—?E-9(Fl,vl) - (G,%)—>0
auch that £ lsia compatible morphism and £ (w%) =V -

A compatible extension'with order unit
0~9E-+(F5V)-9&G;u4—a0 will be called trivial if there exists
a compatible morphism fl:G-aF such-that fihL) =V and
fof, = idG.
We shall denote by Exf%tc(G,E) the set of equivalence
classes of compatible extensions with order unit of G by E.
We. omitt R when R =7.

3,8.  Propoziticn . a) Exf% C(G, Y 18 a covariant functor
’

from the category off{l-filtered R-modules with compatible
morphisms to Ems.

b) Exﬁg’c( ,E) 18 a contravariant functor
from the category oijrfiltered R-modules with unit preserving
compatible morphism to Ewg,r

c) Exfg;c is an abelian group in a
ﬁatural way .

d) There exists an exact sequence:

O—>Hom(G/R%§EﬁWHomR,C(G,E)uaHomR'c(G,E)-}HomR(Rm,E)—¢

&

u
—->ExtR’C(G,E)-—>ExtR’c(G,E)—-)O



Proof.(Sketch) a) Let fi:E-»E; be a compatible morphism
between thefl-filtered R-modules E and E,.Let 0~®E—» (F,V)—>
-»(G,%)-»0 be a compatible extension with order uﬁit)denote by
X dts eclass. in Ext?{’c(G,E).There exists by 3.5 a commutative

diagram of compatible morphisms

0-—9E-—9F-1_7G—-:» 0

51 4

0-‘?El—~> Fl—-> G->0

Then f*(X) is defined to be the class of

' 1
0-—>E—3(Fl,f (v))-ﬁ(Gf&)—aO in Ext%’c(G,El).

b) Let?: (Gl-»,"al) <$(G,#) be a unit preserving

compatible morphisms,G,Gl beingfl -filtered R-modules with order

S

B n

uniti.Let X € Extp - (G,E) be represented by 0-E —» (F,v)—»(G,%)-=>0
5 ]

Let Fl C FH G be the submodule consisting of those pairs
(f,gl) such that h(f) = ({) (gl).Let‘\f'l = (\f,{ul) be the order
: ¥ A

unit of Fl then (}7(X) is represented by O-)E—-)(Fl,\fl)—-}(Gl,'Lil)-'bO

c) Let 0~>E~;"(Fj,\!’j)-,>(G,'u)—->O represent
n : : : :
X; € Extp  (G/E), J€ gO,ll}.Denote by d,:G->G % G the diagonal
map:dz(g) = (g,9),and by 62:E% E—-»E the"addition" map:crz(el,ez)

e, H ez.Let X & Extg é(G ¥ G,E x E) be represented by
4 k

0E®E->F, @ F,y, (v, ,vy)) > (C @G, @M)->0

: . : * *
Then X, + %y 1s defined to be d, (O’Zk(X)) = (72*(d2 (%)) +(The last
relation is proved as lemma lif .1.6. of [18])
: : : n
d) The morphism in sG.HomR(Rn,E)-#ExtR’C(G,E)

is defined as follows.Let e &€ E and denote by fe the morphism
£ (£} = xei,Then eG(fe) is the class of 0= E-» (E @G,’(-—e) %)) —>

—-)(G,u)-QO.Ext% C(G,E)->ExtR,c(G,E) is defined by "forgeting"

14

the units.The exactness is obvious.



4 Preliminary results

- .
4,1 We shall fix from now on an AF-C-algebra A with the

following proprierties:
a) Let IC J C A be ideals I # d,then J/I is not type |

b) Either 1 € A or A is completely nenunital in the

sense that for any projection e € A,(1 - e)A(l - e) is full
in A,

4.2, Definition ({20]) definition 2.2).Let (G,G,) be an

ordered group,we say that (G,G+) has large dominators if for
any g€ G, and n €IN there exists g, € G, and m€&IN such that

nglg g £ mg, .

R > i
4.3, Proposition Let A be an AF-C-algebra.Then A satisfies

4,1.,a) if and only if K. (A) has large denominators.

0
Proof.Suppose ‘that TM:A->B (#) is an irreducible representation

such thaﬁ"]C(Iie)CTr(A) (?(% denotes the algebra of compact operators

ond). :

) Using L.Brown/s lifting projection ’;heorem For AF-Ctalgebras

([7],‘:13]) we find a projection e & A such that Ti(e) is a rank

one projection in HH) .Then g=[e] does not satisfy the

conditions of definition 2.1.

Conversely, let e be a projection in Mgv(A) for some gEIN . V
Denote by J'the ideal generated by e in Mq(A).Fix n €N and let
J=eJe=UJ, eith J, finite dimensional.Denote by I, the ideal of
Jk consisting of those factors of Jk }h'aving dimension 2 N

o
It follows that I and hence 126; is an ideal of J.

k< Tkt .
Denote as in Ll 1] by r(n) the last integer m with the propriety

that essgn (@) ao-(l) e .ao_(m)=0 for any a;,... ra, €M () (Sm is the
o ' :
symetri"é group of crdeim) .It follows that for any Xj,...,Xy =

J/L 10> r(n),2ssign (o) x =0 since this is true for

Bt
FES,, (1) & (m)
Xj in the dense subalgebra Jk/Ik.The proof of [11]7

- =10~ .



proposition 3.6.3; shows that J/I has only finite dimensional
representations (of dimension & n).The assumption on A shows
that I = J and hence e & Jk for same large k. Chb%e a minimal
projection from each factor of Jk and denote by f their summ,
Then n[p]g fe]\ m[p] for same large m ENN.

4.4 Let B = (A(x),x € X, be a 'locally trivial field of
(f*-algebras such that A(x) 2¢ A for any x € X,and X a compact space
([ll},;:h.x.) B may be viewed as a fiber bundle with Aut@) as
structure group.Denote by Aut®(A) the connected component of the
identity in Aut(a).Recall that aut®(a) = Inn(a) ({2]):

Denote by ) the lattice of ideals of A,{l can be identified -

with the lattice of the 1deals of A@K .
amgcue&’,/
Let CPE Aut (A&), thenCP(w “Sup

pose that our bundle admits
a restriction of the structure group to aut®(a) (this allways
happens if X is simply connected).Denote by € the associated
aut®(a) prineipal .bundle,

The Auto(A) ~equivariant inclusion WCA gives rise to an
inclusion _‘g[w]C %[A] of fiber bundles. (Our notation and
terminology are taken from [15] )

Denote by B(Bw) the C*—algebra of continuous sections of
%[_A] =R (%Bo]),see [1 1],ch\xWe obtain anfl-filtration of K, (B)
by KO(B)w = Ran(K (B )=>K,(B)).

The following proposition is the key in translating homotopy

dnformation into K-theory algebraic language.

4.5. Proposition Let (X,x,) be a pointed compact connected
CW-complex,A,B,B,, as above .Denote by'rl :KO(B)-a»KO(A) the morphism ¢
of "evaluation at x4".

. / /
a) 1f a,a’€ K, (B) M (2)z y(a) and m(y(a)-f(a))y 7 (a) for
sgme meiN then a’ 2 a. ‘

J
b) Let a,a’E KO(B),a = {e],?('(a) =7Z(a) .Denote by @) the ideal

/ ;
qenerated by e(xo) in A@f}{_ Then a 2 0 if and only if a’-a & KO(B&,

. 1T 9



c) Suppose € is trivial,then B has the caaceilation
propriety for projections.apdTTj(U(B))~§Kj+l(B) is an
isomorphism for any j 2 0,

Proof .

The idea of Qroof will be to regard elements b & B satisfying
certain proprieéés as sections in a suitabie defined fiber
bundle.

We may assume that B is stable (1.e B B®XK)

a) Let e,el' be projections in B repreéenting a,a’_ in KO(B) .
We may assume that e(xO) = e’(xO).Denote by lV(x)f =iv(x) G D8y,
V*(X)V(x) = e(x),V(k)V%(.x) £ e’(x)})it is a sort of "generalised
Stieffel manifald". »

Let -V =) . V(x) C g[A;]with the induced topology,then V becomes
a locall;{etrivial fiber bundle on X It is easy to prove that
Ule (%) Be(xy)) 9 usue € V(xy) is a lacally trivial fiber bundle
(the proof is .similar to lemmal. 2 of[ZO] Yywith fiber
U((E(XO)-e (xo))A(e(xd)—e(xo)))-The hypothesis shows that the
ideals generated by e(xo)and e(xo)—e(xo) in A®K coincide.
The exact sequence oOf homotopy groups ([27]) and proposition ‘
2.4.0) of [20] showp that T (V(x))~ T, (V(xy)) ¥ §0§ for any
/('}O and x ¢ X,A standard argument ([15},theorem 1.1 pag 2 1)
shows that V has a cross-section.This cross-section defines a
partial isometry from e to a subprojection of -

Bi-Lied e,e/e B be projections such that e(xo) = e'(xo). .
Then e,e’€ B;u and hence [e]-[e'] & K (B -

Conversely,suppose thaia = [e_ka’ —a.& KO(B)w,cobeing the ideal
generated by e(xo) in A.Then Auto(A) acts on (. .Tet B -be khe
C*—algebra of continuous sections in E[w*] .The split exact

,V»’)Ca
sequence O—:‘-BCJ-; Bw->C(x) —>0 shows that the element

et o T



- a’”= (a’-a) + a of K, (B,) may be represented by [ei]—[el],

e 1 . = .
e, and e; being jactions in §»693Csuch‘thatﬂ£(el) =Xl(e,),
(X=%X ®idlk,) .Denote bYX_ G WO(X) @F> the quotient morphism

e

((x)T is the fiber of g[w]at %) . Define W(x) =\§\W€x—)\6 w(x)&)?{:
. | g
X 4 (W (x)) =xx<el<x)>(=xx<el:(x>>>,
V/(xﬁk%x) = el(x),udxrwﬂx) RS e{(xi} It follow as in b)

" that ITk (WX):‘l_f 5 O}and that W = U Wx has a cross-section.
x € X

This shows that e, is equivalent to a subprojection of e, and
hence a’2 0. | ‘

c)The cancellation propriety follows from standard results
in topology.Endéeg,suppose that A are projections in Mq(B)
such that [el:‘ =[e2] in KO(B) JWe write'A :.U_gn)An are finite
dimensional C* -algebras.Let d denote the dimension of X.We may

suppose that e, ,e, & C(X,3)) for same large n.Also,since K, (A)

has large denominators we may SuppoOSe that the dimensions of the

projections e, ana;fn KO(C(X,An)) are large enough (greater than
d"/2). and that [el] =[e2] in KO(C(X,An)).This can be done by
encreasing n if necessary.But stable isomorphic vector bundles of
large dlmenSlOI‘l are isomorphic (see [15] theorem 8.1.7,page 100).
Let us observe that s = tsr (C(X) ) o (seeL22]) for definition
and potations.It follows that 'n'O(U(M ’(C(X))).) is isomorphic to
K (C(X))for g2 s+2,(\_22} theorem 10. 12) use also the fact that
the topological stable rank and the Bass stable rank co:.nc1de
for C* —algebras [14] .This shows thatf'(U(B)) (o llmTT (U(C(X An)))
Q’,Eglto(U(S C(X,An)))'.’_\i ]__—J:g Kj+1(C(X’An)) A j+l (B) s:.n;e the
dimension of the blocks oF A, encrease to @O .
Let A =UA with A finite dimensional.Denote by J.m - the
inclusion A ==A and by i the inclusion A —>A. Let Hom (An,A)

denote the connected component of in itha! Hom(An, p01nted by i,.

C o) Vv L



i

: : = 0 :
Let B = C(X,A),J = Co (X\§xgt /A) .Denote by LX,Hom (AH,A)] the
homotopy classes of base poinﬁ preserving continuous functions

0

(I?:X-——)Hom (An,A) .Such a continuous function (‘f defines a morphism

fn\(‘(‘o):An—)B.We shall denote by J/n:%—QB the morphism . -
<Pn(7o) for @(x) =1 O x € X.

The following lemma shows the power of the previous propositior

il :

4.6. Lemma l_k,hom (An,A)]E['CP]_} K, @n(q))) =Rl e
Homc(K0 (Ah)’KO (J)) is well defined and bijective if the filtration
of Ky (J) is Ky(J),, = Ky(C, (XN\{xp} W), the filtration of K(a )
48 Ko(Ap),, = Ko(4,) 7 Ky @), and A does not have unit.

Proof.

Let p,,...,p, be the minimal projections of A, +denote by Jp
the ideal generated by ¥ in-A.Tt follows from proposition
4:5LbY that K @n(?)) ([pg]) -‘K'O(jn) (rpg]) £ KO(J)wf.Convers‘ely,
sSuppose -that f£-€ Homc(KO (An),KO(J)) then it follows also from

s
proposition 4.5.b) that there exists a projection e€ & B

such that [e%] = [jn(pf)] + f_([p'g]) .Suppose that Ee = }%)GB (EZS};)

and Aéq) 1S a - factor of type |l . .Using proposition 4.5.b) one

obtaines by induction ml+m2+._..2mk'ortogonal projecticns

fe\a’l(iz e ”glfllr)nl ,'/euﬁz T, '/g(;]imk such that ["é’é?]: [elg].It follows
then from éroposition d.5.e) that "e\;{f)is equivalent to ’é}éfz
there exists g('& such that "eul(_;g)%fgém= %/l(f) and

?ajégj) rg(fﬁi ’e\alr(f;r & { Araaidr ,ml} .lgenot,i) by ’é’é’c‘f) = gé‘g) ('é/é e) )*,

D !
qé& 22,...m17g"§j‘(f)._=: géé)_.Let eé'g) 'feg_i,...,k}),r,qe {l,...,m }

denote a matrix unit of An.There exists?:X'»HomO (An,A) i
By - =) ] 0 g :
= AL A )}
(Px(erq ) erq (x) .Moreover any map X —> Hom ( ntA) is homotopic
to a base point preserving map.This shows the surjeetivity of

[X,Homo (An,A)] ~> Hom, (K0 (Bes) 1Ky Gy

n

In orcder to prove that it is injective let us observe that

if @, e Hom(A ,B) have the provprierty- that Ky @) = K, ()(«) then



it follows from proposition 4.5.c) using a standard trick of
O.Bratteli. that ?7and‘4'are unitary conjugated:
q9= adu?¢lwith u'e U(J).Let e =‘¢Nl).Then there exists a unitary
Vin U((1l-e)J(1=-e)) such that uv is in the connected ccmponent
of the identity (use proposition 4.5.c)) and q7= aduérw Gl
follows that (Pis homotopic to‘¢l.

4,7 Remark Let us observe that if X is a ﬁispace ([éj],ch}i?,

3) then.[X,HomO(An,Af] is a group and {&,Homo(An,A{]—_>

~§Homc(Ko(An),KO(J)) is actusaly a morphism.

s T
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5. The exact sequence

{42
Denote by Map(X,Aut0 (A)) the space of base poft preserving

continuous mapgings X--;'Auto (a) .

5.1. There exists a commutative diagram

Map (X, Auto (A))

Hom (A,B) —TL—»-End (B) = Hom (B,B)

The first vertical. arrow associates to a continuous function

X9 x->ﬁD € Aut(A) the morphism@(cp) :A-»B given by@(@) (a) (x) =

—(P (a) .The hoocrizcntal arrow associates to a morphism
\

1}/ A-»E thc morphism T(\#l) c(x) ® A—»B defined by T(J/) (E® a) =

= f#’(a) ;

Passing to K-groups one obtaines the following commutative

diagram

[;( ,Aut (A] \og

om(K (B) /Ky (B)) E von O(X)(KO(B),K (B))

(i =0 if '1¢A,i= 1 if 1 € 3).
Since KO(B) o~ KO(X) & KO(A) it follows that KO(B)is a
0(X)—module.This module structure can be described directly
0 :
as follows,let [e]e Kq (B),l_’p] €K (X)) with e G Mq(B),
P € Mr(C(X)) .Then [p][e] is the class of
(p ®Iq) (I, e) e qu(B) in K, (B).This shows thatai(fqﬂ) is

endeed KO(X) linear.
[X Aut(A)] is a group with the law ['CF][\H E(P lﬂ

It is clear from definition that €{; (L(P][\H) = of; (['q)])o( ([-‘]U])

/J-X can be described by/ux(f) (x @ z) = xflz) for £ € Hom (K (A) ,

K (B)), XCK (20 ZCK (A)

Let us denote by Gt (G ) the range of . (o(l) Since

/ux:Hom(KO-(A) ,KO (B) )--—)HomKO (X) (R(B) Ko (B)) is bijective it
4

follows that it is enough to determine G .
...1.6...



Denote as before byf) the lattice of ideals of A and
observe that K, (A),Kj (B) ,Kj(J) have natural {{-filtrations
Crefo ik '

T CP € Map(X,Aut(A)) is constant denote by & = (’X the
embedding K (A)—>K, (B) defined by K (<’P(cp) .It coincides with
the composition of Ky (A)D [ 1»—7[1]@[ ]CK )G Ky (R) with
the isomorphism K (xX) @K (A)u—%KO(B).

5,2, The following constructions are needed in order o
determine the kernel of O(i.

Let @€ Map(X,Aut(A)).Denote by E_C M_ C c(Lo 1]xx A) the

wef

C*algebras defined by E?-—{f (d)a € A such that £(0,x) = a, E(E! x&
= a,f(1,x) ?)(a for any x € X tG[Ol]}
{f f(l,x) =(P (f(O,x))for any x &€ X} 19 is the mapping
toru,s of CP— TO@(?) € End(B) (see [5_]
Let folcoB plE) = o5 o,xo),x:M(F-aB,')af) = £]{0} xx.
Then there exists a commutative diagram with exact rows:
\ i
O*QSJ«QE?«9A~>0

%
0—>SB~>M —»B-—>0(

Let us recall that the connecting morphisms of the
K-theory exact sequence of the bottom row are the composition of
~ ~T :
id-K. K. (B)Y=>K. (B £ K.(B R SB) (see | 5
LK (@) :K; (B)=>K, (B) and of X, (B)=BK,_, (sB) (see [5],
proposition 10.4.1)

hat if b D =K () ® K, @ *
Observe that if we denote by K*((‘o) = O(qo) Kl (({7) .

® Fes ), :
.K*(B) __KO (B) (45 Kl(B)-aK*_(B) then K'&-(?)) is the unique

# 0 4 > : "~ > L
K7 (X)=K (X) ® K™ (X)-linear extension of Ko(q:’) .Thus if KO (cp) =

= K (B) the'n also K ((F K (B) *

We obtaln for any (Fe Map (X, Aut(A)) such that ¢, (f(p_]) = id a

commutative dlagram with exact rows:

-17- {45/
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0->K, (J)-;»K (Er{,)-yK (A)—> 0 ()

e

05K, (B)->Kq (Me)—>K (B) 0 (2)

If we denote E‘F'w = Ec‘;ﬁ C([O,l]xx,w) ;

Ruis

) -filtration.Moreover there exists an obvious morphism of C(X)

= M., N C([O,l]xx,w) then K _.(E(‘; and K (M Yhave natural
&
in the center of M(MCF) giving a K (X) -module structure on KO(MSp) .
Let us denote by ‘6\5(7)) the class of
(8 dm Extc(KO(A),K,(J)) and bySFO(Cf) the class of

(2): in Ext (Kd(B),K,(B)) for (:“fjéker °<O.

KO () pe
If A has a unit then Eﬁﬂ and Mcfare also unital and the quotient
morphisms 5’ and X are unit preserving.Let us note also that

K, (ch) and KO(M<]a) have order units given by the classes of the

units.This shows that if PE Map(X,Aut(A)),O(l([tfj) — el (A)
o

then we can define Y () € Extyo(yy o (Ko (B) K, (B)) and
yV]/‘(Cf) (=1 E:»{t‘é‘(KO (A) ,K,(J)) regarding (1) and(2) as compatible
extensions with order unit.

Let Yant}/e Map(X,Aut(A) ) ,\7= TO‘P(\IP) .Denote by ¢, the corﬁpositi.on
of SB €@ SB =™ ((O 1/2),B) & CO((l/Z 1) ,B)~>SB.Then,if we denote
by D={£f€ c(Lo,zj,B))f(J:) ‘)b(f(O)) £(2) cp(f(l)) ,we obtain

a commutative diagram with exact rows:

0—>SB EBSB-—#M‘#G)M —<B@® B~—~0

I ¢ had

0SB ® SB—>D ——>» B —~ 0

‘% v l

0SB —> M w—-—-—)B-_—aO

) ~ 2 k
Lf KO((P) = K, (1}») = idy then the corresponding diagram of

K ,~groups shows that )Ai(q),o#/) =)"i ( ; +JA, (\'l/),ie{o,lj.It is

obvious that if ()v is homotopic to the constant map x-:bld then

a‘i (50) 0.Also observe that there exists obv1ous morphlsms

_18._



tExt (Ky (B) /K (B) )-}ExtC(KO(A) 1Ky () and

S g
r) tExtgo yy (Kq (B) K, (B))=»Ext (K, (A) ,K; (J)) obtained by

composing the "forgetfull" morphism ExtKo (X) ,c( o )-«?Extc( v i)

(EXtKO(X) (o ,')maExtg(‘,~)) with L&and using the isomorphism

/ ; :
Kl(J)ﬂ! Kl(B).It follows thatdﬁi = rfwgz is also a morphism,
: : !
It also follows thatayo,i%,lﬁ andjﬁl depend only on the class
oFf ?7in [X,Aut(A{].The preceding discution is partially included
in the following lemma:

5.3. Lemma

a)There exist commutative diagram of morphisms:

Ext (KO(B),Kl(B))...O.pExtC(IEU'(A),Kl(J))

k0 (x),c

for A non unital, and

Extg0 (x) ¢ Ko (B) Ky (B)) ZLeBxt (Ko (A) /Ky (3))

for A unltal ry is an 1somorphlsm ie § 0, 1} 9

b)fi(ﬁﬂg’[\ﬂ ) = of; (YT K (4;) o ¢ &)) for PEmap (X, Aut(R
g'E]qercXi. :
Proof. Let A =ETX£ with An finite dimensional.

Let us observe that there exists by lemma 3.6 a

commutative diagram

(K, (B) Ko (B))-—é-"-smxt (K (B) /K (3))

: éjf HomKO(X) (KO(X) & Xy (A)) /K, (B)) L-’iﬁ
7'3\9 limiHom. (€ (n ). B Lo
: L cranlen 1

EXtKO(X) ¢

St



from which it follows that r, is also an ‘isomorphism,
We get using lemma 3.8. a commutative diagram with exact rows:

—pHom_ (K (B) K, (7)) —> Hom(Z,X, (J) ) —>
PHOM0 () & (K (B),K (B))-—»HomKo(X) (2 (x); K, (B))—>

—» Ext (Ko (8) K, (3)) ——=Ext_(Kq (3) /K, (3))—> 0

y

--,Ext}éo x),cFo (B) /Ky (B)) —>Exty0 4 (K (B) /K, (B))0

We obtain from the five lemma that r, is alsé an isomorphism.

1
The equality of b) follows from the commutative diagram

0 —»SB —> M ——ﬁ913‘~ﬁ>0

¥ L3

0 —ﬂ>SE3->I4-——j?§;—f90
1£ (@] -Z.
5.4, Proposition G= ¢+ HomC(KO(A),KO(J)) andjag is an
isomorphism.
Proof. Let A ¥UX; with‘An finite dimensioﬁal.Denote as before
by i :A.—>Am the inclusion of An in Am and by in the inclusion

' &
of A, in AsLet Homo(An,A) be the connected component of in in

Hom(A A) pointed by ln It is proved in

[éd] lemma 1.2. that the restriction lm n.Hom (A A)—»Hom (An,A)
is a fibratlon and hence-Map(X,Hom (A ,A))—-aMap(X,Hom(An A))
is also a fibration ([2f] theorem(7.10) ,pag 31).

Denote Hom(A,A) by End(A) pointed by ld and by End (A) the
connecﬁed component of idA in End(A) .Then
Map (X, AutO(AJ)~9Map(X EndO(A)) is a weak homotopy equivalence
([?0] lemma 1.4).It is. obvious that Map (X, End (A)) 1is
vhomeomorphlc to the inverse limit lim Map (X, Hom (A ) ey

The proof of Theorem(4.8) from.[27],pag 433 shows that
H = llm%T (Map (X, Hom (A ,A))) acts free on the pointed set
T‘ (Map (X, End® (2))) and that T, (Map (X, Eng’ (A))-—:?%_:L_IT_T/‘O (Map (X, Hom? (

(An,A) )) gives a bijection

Ty (Map (X, End0 (2)) ) /H-> Linfl, (Map (%, Hom” (A,2))) .



Let us observe thatTTl(Map(X,Homo(An,A))) is naturaly isomorphic
to SX,HomO(A ,A{]tk’Hom (R (A ) ,K. (J)) by lemma 4.6.(use also

n cisilzEn i :
remark 4.7.).It follows also from lemma 4.6. that there exists a

commutative diagram

fx,Endo (A)] — Linil (Map (%, Hom’ (A ,2)))
ldg-c
Hom (K, (A) ,K (J) )"“5’23“ Hom, (K, (A ) /K, (3))
in which the bottom arrow is an isomorphism and the right
vertical arrow is a bijection.
We obtain the following diagram:
oaﬁianomc (K (B.) K () )-;->[X,End0 (A)]-a c+Hom, (K (B) Ky (3))-»0

W yo
Extc(KO(A),Kl(J))<9--lkequ

in which the first vertical arrow is an isomorphism by
lemma 3.6 and the top horrisontal line is an exact sedquence
of pointed sets.
The proof of this proposition will be concluded if we show
that this diagram is commutative.
0 = : i
Let Cf?é Map (X,Aut” (7)), Lq)] & kerO(O .Our assumption shows that

qﬂzﬁle Map(X,HomO(An,A)) is homotopic.to the function x-ain

via a homotopy gln € Map ([_O : 1] xx/[_-o : 1] X{XOS,HOmO (An’A_) )

1.e.\Pnlgrng = ?VAn,yg(O,x) = ln'?h defines a morphism
fn:AdmaE such thatfofn =.in ff is the guotient map E?-%A).
It follows from lemma 3.6. thatd16([¢ﬂ) is represented in
1<i.r_an9mc(K0(An),Kl(J)) by the Sequence

A,) = (Ko (f

HEMN
to Kl(J) by Bott periodicity).

Je K, (1 (we identify K (SJ)

Al n+1,n) 2 KO(fn))nEN

Let us observe that we may define

')L,n:[-o,l]:(X'-bHomO(An,A) byY;l(t,x) =)Ln+l(2t,x)/ A for t € LO,l/ZJ
and by 7, (t,%) =)//n(2-2t,x) for t € [1/2,1]then

=20 =



/
1Z/n(0,x) =71’q(t,x0) =Zn(l,x) = in and 711/1 factors to a mapping

0

7n:SX-& Hom (An,A) of pointed spaces.’I‘hen([Q?],TheoremM.8),

pag 433) ? is represented in J(._i_r.n‘[éx,Homo(An,A)] by the sequence
([?n]@\ .Since[«;zn] is sent tqlne Hom, (K, (A ) K, (J))

under the isomorphism of lemma 4.6(see also 4.,7) the
commutativity of the diagram follows,

We now turn to the ‘unital case.

Let us note first that A @K is completely non unital and that
there exists a morphism Aut(A)—aoAut(A(X)f}ﬁ) given by 'Z-—,wz® i%.
We have denoted by X ,as usual,the Ctalgebra of compact operators
on a separable Hilbert space.

Denote by o':[X,Aut(A)J——«PP(,Aut(A ®}C)] the corresponding
morphism.The following lexﬁma is folklore and identifies the
range of this morphism.We skétch its proof for the convenience
of the reader.

5.5. Lemma Let '%éMap(X,Aut(A@%’)) thenﬁl/] is in the range
of ¢ if and only if o o ([¥] ([1]) = [1].

Proof. One implication is obvious.

Let (e ) denote a matrix unit of K.

n,m’n,m €N >
Denote as usual B = C(X,A) and let V:B@W{’» B&®K be the morphism

T B@K.Ifx/(fn,m) = B then

de ined by}b,fn’m

follows that there exists ?) € Map (X,Aut(A)) such that

oo ~

y = ® idx (¢is the morphism B-»B defined by&D),and it follows

that\,’/ is even in the range of Map(X,Aut(A))->Map (X,Aut (2 QK)) .
~ =

In general,the assumption that K, (Y) ([l]) =O(O(wfj) (Llj) = (l]

g .

shows thaty/(foo)is equivalent to foo(use prepositieon 4.5.).

(If we identify K,(A) with K, (A®J') by stability,then [1] = [foo])

Let VE BXR.Xbe such that .v*v=-foo,vv§ k?j(ﬁoo) Let u=

= Z'W(fﬁo)van,the convergence being in the strict topology of

néN

M(EQX) ,u is a unitary. in M(B@%) and.ad. (£

il >
n~,m)=Y('fn,m) «Since the

u
unitary group of M(D®XK) is contractible



* —
- for eny C-algebra D(L9_], [19]) it follows that there exists
an -arc of uniltaries u’,é & M(B ®HK) connecting u to 1¢ M(BRKX)

and such that the wvalue of u; in Xq is a multiple of the identity

t
in M(A @K) (use the fact that U(M(A®J)) is a direct summand
of UMM(B®'K)) .Then t—i»adut a)l/ is a homotopy of 1/ in
Map (X,Aut (A ®K)) to a mapping in the range of
Map (X,Aut (A) )~» Map (X,Aut (A ®'K) )

We get the following corollary:

' o’
5.6. Corollary a) G' = G°Nn§ £e Hom(R, (A),K;(B)),

& (& (1] =[ 1]ex )}
b)The restriction of & to kero(l maps kero(l
onto kero(o.
Proof. Use proposition 5.4. and lemma 5.5.
We are left with the determination of the kernel of 9('1.
Sl -emmad Jli is an isomorphism,
M.- We first prove thatf,l is injective.

e }'cnw & & Al Koy o
Suppose that there exists such that K ( Ned = idy (a)
()

«'s

amdre i) = Ll

Let A =UAn with Al finite dimensional and let i ,:'Ln have

m,n
the same meaning as in the discution preading lemma 4.6.It is

an immediate consequence of proposition 4.5, that there exists

a morphlsm’Zn:An—-éESD such that .90%1 = i and K0(7n) =ZToKyli ),
moreover any two such morphisms are unitary conjugated.Using
induction on n one can define morphisms an:AnaEY) as above

such that ?mlAn =')Zn.Thls can b.e done as follows.Suppose that we

/
have defined le,.. 7 as above.Choose 7[n+l:An+1'—) ESD arbitrar 1y

n

such thatf 1Zn+l = ln+1 and KO (7n+l =ZoK (1 ) . Then there

exists « €U (A) such that 7/+1 A =r7adl orz Let/Zn+1 = adu*OZrHl

')z 5 collect to deflne a l.lftlng 'Z.A%E? forf y ’DZ = ldA
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7

Let\{/:[o,l] xX-—aEndO (A) be defined by \}»(t,x) = the composition

ofdz:A-—;B andwofiithe Yevaluation: at (t,x)!'3B 9 bpb(t ) e A,

'\{/ defines an arc connecting (P to the constant mapping

in Map(X,End0 (A)) .Using the isomorphism [X,Auto (A)]-—-p X,Endo (A)J

([20], lemma 41 .4) we obtain that ker&ﬂl’ ~ §o} ¢

}
To prove the surjectivity of consider the diagram
1 g

Kl(J)_Z}épkerofl-we keroy—» 0

J
= A =
Hom(Z, K, (J) )—p Ext? (K, (A),K. (F)—Ext (K. (A),K. (J))~>0
ol 6] 0 L] c 0 il
Ad is defined as follows.Let u € U(J),u is represented by
a function u:X-» U(A) such that u(x,) = 1l.Let Ad([‘u_']) be the
class of x--badu(x)-a Aut(A).It follows that the diagram is

commutative and hence%/'is onto(a simple diagram chase).

/



We put together the results of this section in the following
theorem.

5,8. Theorem Let'(X,xO) be a pointed compact connected
CW-complex and A an AF-algebra which satisfies 4.1.a) and.b).
Letid = B 1fa @R 1 =T iif g en,

Denote byf) the lattice of ideals of A,B = C(X,A),

J = CO(X\ixoﬁ,A);Kj(B) and Kj(J) areSeriitered KO(X)—mOdules

(3 €£0,1}). Ko (8,

The range ocho is G0 = idK () + HomKO(X) C(KO(J)) and the
0 ’

i1l

The product in G* is the composition of morphisms,

range of o, is G M€ G .)"7,([1])

J1O:kerw0~—9 EXtKO(X),c(KO(B)’Kl(B)) and

4 /2
are isomorphisms.We obtain exact sequences
0
0—)ExtKo(X)'C(KO(B),Kl(B))-9[X,Aut(Ai}~9G-—>O.

€1 ? A,and

u
KO (x)

if 1 € A.These exact sequences are natural in (X,xo);their

0-»Ext C(KO(B),Kl(B))—9[X,Aut(A{]¥9Gl—é0
’
kernels are determined by lemma 5.3.b).

Here are seme consequence of thé naturality in X of the exact
sequence,

579, Corellary Let'(X,xo),(Y,yo) be pointed compact
connected Cchomplexes.Suppose f:(X'XO)”7(Y’yO) induces an
isomorphism of the K-grougs en f:[ﬁ,nut{Aﬂ—?[%unt(A){]ls

an isomorphism.If k% (£) is an isomorphism and k! (¥) ﬁ!{O} then

the exact sequences of the preceding theorem split .

—25=



Proof. Denote by Gi(x) (Gi (Y)) the range of x. in order to
put in evidence the natural dependence of these groups on X(Y).
Then there exist by the naturality of the exact sequences

commutative diagrams
0-» Ext (K (A) K (v) )-a[Y, Aut (A)]-9G0 (Y )= 0

& (£ L Olﬁo(f)
0-» Ext_(K_(A),K (X))-—,?[X,Aut(A)]-—&oG (X)—>0

if 1 & A and

0—?Extg (K, (B) ) )-a[Y,Aut(A)'J-st’ (Y)-»0

1 1
J/K (), l £ lG (£)

0—>Ext‘cl(1<0 (A) ,Kl (x) )—»[X,Aut(Aﬂ-rG‘ (X)=-»0

=

if 1 & A.

Go(f) is obtained from the commutative diagram

Ly + Hom, (K, (A) ,KO(CO-(Y\{yOrA)))ﬁL, Gy (¥)

O o
() ‘L O
A

("X + Hom  (Kj (A) ,Kq (Cq (X \{XO},A) ) ) ——2 G (X)

X! Y x'/aY have the same meaning as in 5.1
f*:co (Y\iyo},A)_.yco (X\ {xo} 5
is given by b-»b o f. ‘
The first part of the corollary is a consequence of the
Five Lemma, The secohd part follows from the fact that
.g(c: Y,Aut (A) -~9Gi(Y) and Gi(f):Gi(Y)-bGi(X) are isomorphism and

1

hence f’faa(;la Gl(f)_ is well defined and is the descried spliting
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6 The case A simple and X a H’-space

Let A be a simple AF—C—algebra not stably isomorphic to
IGC,(X,XO) a pointed compact connected CW complex which is
also a H'space.

Let B and J have the meaning of the preceding sections and’
denote by Afthe mapping cone of the inclusion € —A if 1 € A.
We shall prove that[—X,Aut(Ai] is naturaly isomorphic to‘
KK(A,J) if 1 &€ A or to KK(A,,SJ) 1f-1 En

For the definition and the basic proprieties of the
KK-bifuncter the reader is refered to the original papers of
G.G.Kasparov [16],[17] or to the book of B.Blackadar [5].
Our approach uses Cuntz’s Qquasihomomorphism picture" of
KK-groups (see [8]or [5]). -

We shall define first natural transformations cO:[X,Aut(A{}
—»KK(A,J) if 1 € A and cl:[X,Aut(A‘)]—>KK(A,,SJ) if 1 € A.

Let ?b € Map(X,Aut(A)) denote the constant function.For

(Pe Map (X,Aut (A)) we shall denote by @((P)&End(B)the morphism

defined by ??,i.e. P(CF) (a) (x) = spx(a) .for any a € A, x &€ X. «
It follows that @(zfa) () = P@) (a) € 7 for any a € A and hence
the pair GI%P),Q%gb)) is a guasihomomorphism from A to J.
We shall denote by co([yﬂ) the corresponding element in KK(A,J)
(see [ 5],[8]).1£ A is unital denote by ,ih:alsc ([0, 1] xx, A)>M(52)
the morphisms defined as follows.Recall first that _
a'=§£:[0,1]>A£(0) = 0,£(1)EC ] .Then Y(£) (£,%) = @, (£(8)),
%O(f)(t,x) = f(t) for any f & A.It follows that
\{/(f) -\{/O(f) € SJ for any £ € A.We shall define c; ([{]) to be
the class of the quasihomomorphisn1(\k,¢0) in KK(A,SJ)(see[EJ,EQ)

6.1. Lemma c¢; is a morphism (i 6'{0,1}).

Proof. We shall prove the lemma for i = 0,for i = 1 the
=27



proof is similar.

Denote by @ :X~»XvX the comultiplication of X and by
qp09,: XV X »X the projection on the first or the second coordinate
i.e. g = idlxvc:t,q2 = ctVidX(here ct:X-»X is the constant
function x-;xo).Then q,° G,qzoe and idX are homotopic.via base
point preserving homotopies S (X is a H'space} -

It is a well known fact that the multiplication in [X,Aut(A)]

- may be  defined also by [c{)] +[\P] :[((Fv\;t)o 9:‘

There exists a commutative diagram

0236 T+C(XVX,A)=>A-=0
g
0—=>J ———-——)C(X,A)v—-——9A-—70
The guotient maps are ok;tained from evaluation at the base
point.
It follows from the assumptions on ﬁ,ql and q, that » is a
homotopy equivalence on each factor.This shows that if

(£,$) @ XK(A,J) @ KK(A,J) =~ KK(A,J @ J) then (&L =E+&.

It follows from the definitions that

j&jco([?ﬂ),co(tvq)) = cO([YqW¥OaQ]) and hence
So ([QIYD = oo ([p1)+ oo (T¥D) .

{€A
6.2. Theorem cO:[:X,Aut(A)}—> KK (A,J) f@aﬁ
cl:lX,Aut(Ai]~>KK(AﬁJ) if 1 € A are isomorphisms.
Proof. Let ¢ be the composition KO(A)92-4[1]® Eex’x)®
R, (B} 2 Ky (B),

There exists a commutative diagram
OﬁExtc(KO(A),Kl(J))-)E(,Aut(A)]——?Homc(Ko(A),Kﬁx(J))-—aO
0-=;Ext(KO (A),Kl(J) )QKK(A,J)—aHom(KO(A),KO(J))'-)O

in which the top line is exact by proposition 5.4. and the
= (oo &



bottom line is exact by the Universal Coeficient Theorem
([54]).The first vertical arrow is a morphism since it is
the restriction of cO.The third vertical arrow is also a
morphism,This caﬁlbe viewed as follows.Let Fl,F2 €
Hom (K (a) 1Ky (3)) %AX:Hom(KO (n) +Kyq (B) )-—:>HomKO(X) (K (B) 4Ky (B))
be ag.dn 5.1 then
L, + b = $op + b

| /UX(L )(L(a) gl &ia) J(a) 0
for any a e;KO(A))b0 & KO(J) since KO(X)2 = 0,This shows
that (¢ + F,) (¢ + F,) =g¢(e+ F.+ B,

/HX ' Ay g o =

The filtration are trivial if A is simple and hence
Ext (Ky (R),K 1 (3))— Ext (K, (A), K, (J)) and

are lso'morf/rlsms )
Homc(KO(A), i( ))__aHom(Ki(A),KO(J)).Thls shows that ¢

an isomorphism,

0 is

Let us prove now that c. is an isomorphism.Since

1
/ - , ~o . q

K, (B) = K, (a)/2z[1] /Kg (B) 2 § 0} we obtain using corollary

5.6.a) and lemma5.7. and the Universal Coeficient Theorem

({24]) that there exists a commutative diagram with exact
g

Yows
u ; T
0—Extl (K, (A) K, () )-—>Lx,Aut(A>]—9Gl—»o

h : &

0—>Ext (K (2)/2[1],K, (J) )->KK(A,SI)— |
: Hom(K (A) /r» —,KO( ) )~> 0
Let us determine the morphlsm hi. L

Suppose that q7e Map (X, Aut (A) ,then [7{]6 kerqi,lf and

only if ko @P(p) = Ko@) =¢ .
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Then there exists a commutative diagram
0 0 ‘

0-—aSZJ—9 gE?rp S&\—) O.
5

0—»S°J— E' ‘—PA’—DO

¥ Y
c ¢
(We have denoted by EC'P the mapping cone of the inclusion € —E,).

P

The corresponding diagram of Kl—groups shows that h associates to

the class of the compatible extension with order unit
o—aKl(J)smO(E?),[1]>-><;<0<A),[1])—>o
the class of
WiﬁbﬂeKow?VZﬁjaKﬂANZﬁ}éo

in Ext (Ko (2)/2[1]/K,(3)). (see[5]) h is obviously an

isomorphism if A is simple.The Five Lemma shows that Cy is also

an isomorphism,
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7. The Samelson product

In this section we briefly study the effect of the Samelson
product.It turns out that it does not vanish in general and

hence the classifying space of AutO

(A) 48 not a H-—space([Qﬁﬂ).
This shows that the set of isomorphism classes of locally
trivial fields of C'(-'-algebras on X with fiber A cannot be given
a natural g@oup structure for any compact space X (see [27} '
pag. 475:7.8)) .

Let us recall the definition of the Samelson product ( [27],

pag.467) it is pairing
<. P :[X,Aut(A):] X [Y,Aut(A)]ﬁ[XAY,Aut(A)] defined by

([QILVD =lydyay) =@y (g (0™ iy ™

If X = Sn,Y = g™ thislgives a pairing
T (Aut(A))x T (Aut(A))=> T, (Aut(A))

Let us observe that X({a,b)) depends only on (a) and ' (b)
(we omitt various subscripts ofX ) and it is defined by

(7.1 3oftg,y ((<arD2)) = oy (ayy ()L ()7 g () 7)o
where. j:KO(C(X Y,A))—»KO(C(X Y,A)) is the obvious inclusion and
/J;{(a) is the extension of/&»vx(o(»(a))‘:KO(C(X,A))»—pKO(C(X,A))

to a KO(XxY)--linear morphism

/M}I{(a) :KO (C(XxY,A) )-—=>KO (C(XxY,A)) /u.; is defined similarily.
Moreover since ker« is represented by approximatively inner
loops we obtain the following result:
7.2, Propoesitien
a)  (¢a,bd) depends only on X(a) and a(b)and its formula
ig given by @ (7.1).
b) <kero(,[Y,Aut(A)]> and(’[_X,Aut(A)] ,kero(> are contained in
kerof .
c) {kero,kerx) ={0}.

3] e



d) @"ﬂ' (Aut (A)) with the Samelson product is gradedly
J.somorph?zoto Aut (K, (A) )/ 2.(A)) @ (k@Extp( )(K (B) Ky (R))) with
the product(a BN S sbaltn ! e o i b oane of degree 0,
<a,b> = aba™! -b if a is of degree 0 anéégf degree 2-1,and4<a,b>’=
=ab - ba if a,b are both of degree 2 1.

(Extp(k)(K (A),K (A)) denotes Hom (K (A),K (A)) 1f.k 1s even and
1 qux}kml(K (B, K, a)) N Hom(K (A) /gﬂj]]K (A)) if k is even and
l_e A, EXtC(K (A),KO(A)) if k 1s odd;1 éA,Extc(KO(A),KO (R sis

k is odd and 1 € &', J(A) & the acle of the orolened prup Kolh)).

Proof.
a),;b) and ¢) are obvioﬁs and d) follows from theorem(5.8)

using (7.1) (see also [201). i

5.8 d) gives. a necessary:condition on A in order to exist
a natural group structure on the set of isomorphism classes of
locally trivial fields of AF-algebras with fiber A.Indeed,if such
a natural group structure would exist then every field on s"vs
would have an extension on S™s™ thus forcing the vanishing of
the Samelsen product onTF, _, (Aut(A) KT, _ (Aut(a)).(See [27]
pPag.476(7,10)).This cannot happen if A is simple and

Hom(KO(A),KO(A)) is not commutative.
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