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Abstract
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We study hemi-spaces (i,e,, convex sets with convex complements) in R'. We give
of hemi-spaces

several geometric characterizationsvand several ways of representing them with the aid

of linear operators and 1eX|cograph|ca1 order, We obtain a melric-

~affine classification of hemi-spaces, in terms of their "rank'" and 'type', and a ''de-
composition theorem'., We also give some characterizations of affine transformations

which preserve a hemi-space,

§0, lntroductlon

A set H in R" is called (éee e.q.[5]) a hemi-space, if both H and its complement
Nj\H are convex, A;tualTy, this definition makes sense in other structures, too, in
which the notion of '"'convex set' is defined in some way (e.g., in arbitrary linear .spa-.
ces, partially ordered sets, etc., or, more generally, in the case of axiomatically
defined '"convex sets'" [5], [16],011]), but he}e we sl tonsTder only Hemi-sﬁaces in R";
we shall study hemi-spaces in some other structures elsewhere (in éreparation).

The main use of hemi-spaces in linear spaces has been the ap@lication of various
particﬁ]ar classes of hem[vsbaces;'suchfas‘closed ha]f—sﬁaces in Jocally convex sbacés,
Usemi-spaces'' in linear spaces ([2],[3]) and "generalized ha1ffspaces” in R" (113, 2]
and of general hemi-spaces in linear spaces (e.g. [2],13],[8]) to the separation of
convex sets, Furtﬁermore, Eemi~dpaces can be also abb]ied to the study of quasi-affine
(i.e., simultaneously quasi-convex and quasi—cgncave)functions% or, in other words,
functions h:R"—R=[-es,+c0), whose leve] sets Sé(h)=-{yeRnlh(y)$c} afe'hemi—séaces, for
all ceR)., For example, let us obserye that for a sét ngRn, denoting by‘XH-the W i
cator function' of H (defined by XH(Y)=0 for yeH and XH(y)=+m for yeRn\H), the follow-
.ing statements, are equivalent:

1%, 8 Is 3 hemi-space.
2°, There exists deR such that xH+d is quasi-affine.
30._For all deR, XH+d is quasi-affine.
Indeed, thig follows from the above definitions, and from thé fact that for any
c,deR we have SC(XH%d)=ﬁ (the empty set) if =w<c<d, and SC(XH+d)=H if dgc<too.
vA]thqugh various particulqr classes of hemi-sbaces in R (such as those mentioned

aboveiiﬁéve been studied in the literature (see e.g.[2], [3} e, 80,10, Di2l),  fon ge?
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neral hem;QSpaces such a study has begun only recently (see [9] and [iO], where the
term "convex half-space' is used, instead of "hemi-space''). In the present paper, as
announced in [lZ]W %O, one of our main toak for tﬁe study of hemivspacés in Rn, will
be the lexicographical separation of two convex subsets of R By linear operators (see
theorem 0,1 below), Therefore, our méthods and results are différent from those of the
papers [9] ~An& [’Oj; with the exception of the .
equivalence | ©20°% of theorem 2.1, as mentioned in remark 2,2 a) Beleow (in fact, we
have learned of [9} and [10] only .after -the present paper had been completed),

.ln 861-3 we shall give several geometric characterizations‘of hemi—sbaces and se-
veral ways of representing hemi*sﬁages.with the aid of linear oberators and lexicogra-
phical order, Furthermore, in §2 we shall obtain a metric-affine classificatfo% of Hemi~r

-spaces in Rn, and in §3 we shall introduce and study the "1 1né§f manifold associated to
a hemi—spape”; which wi]l_]ead us, in particular, to a ”decomposition theorem' for hemi-
-spaces, In 8§k we sba]) give soﬁe Eharacterizations of affine'lransformations breserving.
a hemi-space, Fina]ly, in §5 (Aﬁbendix) we shall give a théorem on separation of p sub-
sets of R” by hemi spaces; and some results which, in Rn, extend a theorem given by
V.Klee for semlwspaces of linear spaces [6], theorem 2, ?)

We cénﬁlude this Introduction by recalling some notions, notations and résults,
which will be used in the geque],

“Unless otherwise stated, whenever wé shall writé RN (wheré R=(wx,+«ﬂ or R" (where -
Re[-c0,+00)) , we shall understand that nzl; however, we shall also work with R%={0} and
Ré={0} (e.g., in R" of theorem 2,1 and R" of proﬁosition 258 may also be 0), The
elements of R" will be considered column yectors, and the superscript T will mean trans-
pose., We recall that x—(§ )ooe,\n)T is said to be "lexicographically less than"
y=(Q]i.o;,Qn)Teﬁn (in symbo]s; x < y) if x#y and if for k=min _{Ié{l,qg,,n}!§i¢qi}
we have %k<7k° Ve write x gL Vit X <y or x=y. The notafions V-Bait and vy 7L X res-
pectively, will bé also used, We shall denote by {ej}? the unit vector basis of R".
When {ej}? is an arbitrary basis of R", we shall also consider (only in theorem 4.k

below) the lexicographical ordér on R" “in the basis" ‘e’}n ", defimed snm:]arly to

the above, with X=(§]|ono;§n {J ] and. y= ql,...,nn) *4L4n e replaced by x= éi)gjej

and y~2{27 j respectively,
4= e . ' |
We shall denote by £(R"), UR™) and O(R"), the families of all linear operators,

‘ : L
all isomorphisms, and all linear isometries viR"—R" respectively, and by i(Rn, R') the
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family of all linear operators u:R"—R", We shall identify each u%@(Rné RM) with its
r¥n matrix with respect to the unit vector bases of R" and Rr, that is, we shall write

u m(mij):(m3’°°”’mr)r* (0.1)

T ‘ . ey
where mi=(mi],,e,,min)(1=1,cao,r) are the rows of (mi]); we shall also use this identi-

£ ; T e ; Sl Iy
fication, "in particular, when r=n, i,e,,for each vef(R'),

fis & 2 \ . . .
We recall that a set HCR is called [2] a semi-space at Xy s if H is a maxima]

convex set (with respect to inclusion) such that x £S. By [15], Jemma 1,1, a set HCR"
is a semi-space (at some xo) if and only if there exist veO(R") and zeR" (namely,

z:v(xo)) such that

{yéR lv <p A . : (0.2)
More generally, any set of the form (0,2), with ve2(R") and zeR" (instead of

veO'(R") and zeR") is called ([11], [12]) a geherali;ethaff~space, As has been observed

in [11], the empty set @ and the whole space R" are genera]ized half-spaces; and, if
st and all cpen half-spaces
- n22, then all closed half- space§Y5re generalized half= soaces (for suitable v and z in
(0.2)). Clearly, all generalized half-spaces and al] complements of generalized half-
spaces are hemi-spaces; in §1 we shall show that these are the only hemi-spaces, and
~we shall obtain further relations between these concepts,
Let us recall the following ”}exicograﬁh?cal séﬁaration theorem' (@here co G, de-

notes the convex Hu ek Gi)' which we shall use in the sequel:

Theorem 0.1 ([12], theorem 2.1), For any sets Gy, G2<:R tbé fo44onnq statements

e R AU

" are equivalent:

SRR GyNco Gz-'-‘ﬂ°

2°-4°, There exists vei(Rn), veU(Rn), veOTRn),areshéttiVéTy;‘suéh'ﬁﬂat

viyy) < viy,) (y €6y, Y€6,) . « (0.3)

5°, There exists either a generalized half-space H'eR" such that

GysHY G eRMNH, (0.4)

or a generalized ha]f~spaé¢'H”c:Rn such-that
Bre NI & G g HO, {5}
Remark 0,1, After the appearance of [12], we have learned that the term '‘lexico-
graphicrseparation“_aﬁdba theorem on’ lexicographical separation of two disjoint convex

sets in an arpitrary linear space (different from theorem 0,1 above. but related to it,

in the.ﬁé?ficu]ar case of Rn), are due to V.Klee (17 Section 2k,
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For two subsets A and B of R", we shall use, following Pontryagin [14], the nota-

tion
ALB ={yer"|y+Bg A}, « ' (0.6)

For a linear subspace S of Rni we shél] denote by Sl'fts orthogonal complement in
Rn. By a linear manifold M we shall mean a translate of a linear subspace S, or, equi-
valently, a set M such that the relations Yo yzeM; XeR imply ky]+(]—k)y25M; We shall
identify the conjugate space (Rn)'K of R" with R" in the usual way (with the aid of thé
scalar pfoduct), and thus the adjoint u® of a linear operator ue2 (R", R") will belong

. AL
to L(R", R"); we shall use the well-known fact that u*(R")={(Ker u) (where Ker u=

={yeRn§u(y)=O}), Finally, we shall denote by I the identity operator on R".

§1, Some representations and characterizations of Remi-spaces

In the. sequel, we shall need the following Jemma (the'Existence part of it was
also assumed, implicitly, in [12]):

Lemma 1.]. For ahy set Gg;ﬁn, the lexicographical infimum

inf, a=z:(§j)?e§” - : & AR

exists; namely, it is given by

: [ e : '
gk:lnf{jk‘q:(’gj)]esl, ij=§j ,\_/(J:;],ooo’k—])} (k:':]')ooa;n)s (102)
Proof. For z=(§j)s§n defined by (1.2) we have, clearly,

2 9 : (geG). _ : (1.3)

Assume now that z’=(§j)?é§n\{z} satisfies

z! <L 9 (geG) ; o~ (1.4)
we shall show that, in this case, z* <, 7, which will prove (1o a0 cbek
k=min{lsn|§)# §, 1, a ; 5]

and take any g=(3;)7¢6 such that g=¢; (j=1,..0,k=1)s Then, by (1,5), we have =

‘=§j=jj (j=1,...7k-1), whence, by (1.4), §f<y, . Therefore, by (1,2), we obtain
' OPTIA OGRS T i . Lk :
§k*élnf{3kiq-“(b’j)]€(3, Jj"“%j (_I“l,oon,k 1)}""§k s (‘.6)
and hence, by (1. 5) it Follows that z* <L Ze On the other hand, if there is no
g=(}j)?EG such that 5j=§j (j=1,,.;,k~]),_then, by (]fZ) we have ¢, =inf f= +m;§£ , when-

ce, by (1.5), we obtain again that z* <L 2

Theorem 1,1, For a set Hs;Rn, the following statements are equivalent:

lo. H is a hemi-space,
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2°-4°, There exist yeP(R i ve%l{j‘(,Rn)§ yed(R"), *respecti.yel'y\«and 2eR", such that

either :
e sfyertlvly) < 2T, ' (o)
= 3
H ={yer"|v(y) < z]. . : (1.8)
5°-7°, There exists ved (R"), vell(R"), ve@XRn) resﬁectivelv? such that either
H ={yeR"|v(y) ity v(R"\H) ¥, (1.9)
i :
Ho=4yerR"| v (y) s inf v(R"\H) }, (1.30)
80° H is either a qeneral}zed’ha]fwspace; of_the cpmp]ement of "a semi-space.
9°. H is either a semi—ﬁpace,;or_fhe cémp]ement of.a éenefa1izéd ba]f~s§a¢e,
"10°, H is either a gengra]ized'halffspace;‘or the comp]emeht of a Qenera]fzéd

Proof, 1°=7°, If 1° holds, then, by theorem 0,1, applied to Gy=H, 6,=R"\H, the-
re exists veOTRn) such that
n
V§y1) <L v(y,) (y]éH, yo€R \H), i
Hence,
] . By

. Hc {yeR"|v(y) < inf v(RART, A

and, on the other hand, we have, clearly,

RIHE{yer"[v(y) 3, inf, v(R™\W) T, (980

e |
Then, at least one of the lexicographical inequalities in (1.12), (1,13), must
be strict; indeed, if not, then there exist y,eH and ych "\H such that wlpgd=
=inf, V(Rn\H)=v(y2)? which contradicts (1,11), Consequent] y, both |nc]u010ns in (1;12)
and (1,13) must be equalities,
The implications 7°=54°, 6°=33° and 5°=2° are obvious, with

z = inf

L vR™R), (1.14)
LO=582 p (1,7) holds, then H is a generalized half~sﬁace, | f (138) holds with
zeﬁn\Rn, then, since

R v ()<= (2eR"\R") | (1.15)
we hav; again (1.7). Finally, if (1.8) holds and zeR", then: by veéTRn);‘H is the com-

plement of a semi-space,

4°=9% 1f (1.8) holds, then H is the complement of the generalized half-space
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ch !v o zr 1.7) holds and zeR"\R", then, by (1,15}, we haye again (1,8),

Finally, if (107) holds and zeR", then, by vcé%Rn), His a.semi~5pace,

10°22°, If His a generalized half-space, we have (1,7), while if R™\H is a éeﬂem
ralized half-space, we have Rn\H={y&Rn}v(y |z}, with sustable VCQ&QW) and zeR", when-
ce HefyeR"| (-v) (y) <, -2}, | '

The implications 80=?TOO, 9O=#100, 79=6%=55% and 4°=3°%2° are obvious. Finally,
the implication 2°=1° is immediate, using that, since <L is a total order on Rn, the
bairs ,

e Vi) < 2}, {yer™viy) 3, =} (1.16)

 and

{yeRn‘v(y) < 2% {yéRn]v(y) >Liz} ; §

are pairs of complementary sets, Thus, 1%, ,.e>10°,

Rcmiiﬁml“lL a) As shown by the above proof of the implication 4°=8° ‘the represen-
tationé (1,7) and (1.8) of H, even with the same ved R™) and z¢R", are not mutually
exclusive,

b) From theorem ];1 there follows again {12]; rémafk 2;1 £l aééording to which
lexicographical separation is équivalent to the known (see e;g; 187,.&17) seéaration by
heﬁi;spaCes. Indeed, since every generalized halfﬂséacé and every comb}ement of a gene-

ralized half-space is a hemi-space, from theorem 0,1, implication 10:950, it follows

that for any sets G],G cR" with co G]f\co GZ=G there exists a hemi~space HcR" such

R —ad

that

¢ A

B.e i 6, RM\H : (1,18}

(and, conversely, if there exists a hemi-space H satisfying (1,18), then co G, <H,

1
co ng;Rn\H, whence co G, Nco G,=F). On the other hand, assume that for ahy sets Gy,G,
with co G, MNco G2=ﬂ there exists a hemi-space H cRr" satisfying (1.18), Then, by theo-
rem 1,1, H is e;ther a generalized half-space or the comb]ement<3fa generalized half-
space, whence we obtaiﬁ again theorem 0,1, implication ]O:;SO,

c) Separation by hemi-spaces can be extended to p subsets of R" (see §5).

Corollary 1.1, a) Every qenera uzed half-space is either a. seml-space, or the

complement of a genera]ized half~space.

b) Every complement of a aeneralized ha]f-spacelis either a gehéralized half-spaée,

or the complement of a semi-space,

gy
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Theorem 1,2, For a set H(,;Rn,, and for any kzn+l, the statements of theorem 1,1 are

equivalent to

: : 2
1 There exist ue2 (R", R®) and xe,Rk,g such that

H ={yer"[uly) < xJ}. (1.19)

Spclae ot : ; O oE e : SRR : o
Proof. The implication 117=1" is obvious, by the definition of hemi-spaces.
'

e}

E 2 sihssume first (1.7) and let (where —o denotes the demeﬁﬁ(*m,.u,—aaféﬁﬁyn )
‘ u=(v',0 ) Te2 (R", RY), x=(2" =00 ) TeR¥. (1.20)
Then; by (1.7}, we have
| uly)=(v(y 7,07 ot P L (yeH),

" whence the inclusion ¢ in (1,19). Conversely, if yeR", ul(y) < %, then either v(y) <
or v(y)=z and O‘<L -0; but, the second case is imbossible, whence, by (1.7), we obtain
yeH. |

i gl T (1.8) and let (where 400 denctes the element (+°0,.“,+oa)Te'ik¢“)
u=(v',0 ) Te2 (R", RY), xe(2T 4Ty TeRK. (1.21)

Then, by (1,8), we have
s =) T,0)T < (2T 00") T (yeH),

whence the inclusion € in (1,19), Conversely, if veR", uly) <, x, =" then v(

whence, by (1.8), we obtain yeH,

Remark 1,2, a) In other words, condition 11° can be expressed as follows; H is

the solution set of a linear lexicographical strict inequality u(y) < x, where

ueﬁ(Rn, Rk), xeﬁkb Similar remarks can be also made for other results of this papere’

b) Theorem 1.2 remains also valid for <L reélaced by SL in (1,19). Indeed, one‘
has only to add, in the ¢ parts of the proof, that {yERn]u(y) <, x}eyer"uly) < x}

L
for all xéﬁk, and to reﬁ]ace, in the » parts, u(y)<<L % by uly) <. s (and 0 <

- 00 by

L L

0¢, -m), See also remark 2.2 ¢) below.

c) One cannot replace kzn+l by kyn, in theorem ];2, implication 2=, Indeed,
if we have (1.8) for some ve((R") and zeR" (i,e., if H is the complement of a semi-spa-

ce), then, by theorem 1,3 below, we cannot have (1,19) with uei(Rn, R”) and xeR",

Lemma 1.2, Let H be a generalized half-space, Then, for every yeH there exist

e e

d=d(y)eR"\{0} and e=e(y, d)>0, such that

y + AdcH (\eR, [N < € ); : (1.22)

R

Proof, Let

H={yeR" |v (y) <L 2}, ' : (1.23)



Lip
with vm(mi,“,?bmn)réi(Rn) and zm(ﬁl,gq,,ﬁn)réinp and let yeH. Then, by (1,23), there
exists ié{l,.a.,n} such that
10 s : T
mJ‘/ ""éj (J"’l)“'?f‘i‘_})ﬁ miy<§; e. (1e7~l">
bfsh=lai et ngn\{D} be arbitrary, [f i»], then, since 1-lgn=-1, we can choose
déRn\{O} such that
ik : A
mjd =0 (1= e ensi=d)s (Ta25)
Finally, let

<J +oo if m?d=0 or §;=+u:(or both),

T otherwise,

Then, by (1.24),e>0, Furthermore, by (1.24) and (1,25), for each AeR with
lXI<g, we have

T T T &
m. +Ad = . ™, . :=" L] = L4 .= .—
J (y ) mJy*{/\de §_1+>\ O §_J (J ];sso)l ])’

m?(y+kd)%m?y+Am?q!kmry +&1m?d)={
e S g _
L~m;‘7~<§; it md=0,

iF m 40,

vhence v(y+xd) < z, Thus, by (1.23), we obtain (1.22),

L

Now we can prove

Theorem 1.3, The complement of a semi-=space is not a generalized half-space (i.e.,

the two cases in 8° of theorem 1,1 are mutually exclusive) .,

Proof. Let H be a semivsbace (1;23), with vell(R") and 2eR " 80

. (127

[N

RINH = {yeR"|v(y) » z

Then, since veU(Rn), we have v(v-l(z))=z,'whence vvi(z)eRn\H, Furthermore, if
deR™\{0}, then, since véu(Rn), we have v(d)#0, so either v(d) <, 0, or v(d)>L 0. Hence,
by (1.23), in the first case we have v(v“](z)+hd)mz+kv(d) <Lz (»>0), so v“](2)+

+kd¢Rn\H (X>0),'whi]e in the second case we have v(v~](z)+kd)xz+kv(d) < z (h<0), so

v (2)+hdgRM\H (x<0).:;'

~ “Hence, by lemma 1.2 (with y=v1‘(z)k R™\H is not a generalized
. c . . ity
2

half-space,
Remark 1.3. For ancther proof of theorem 1.3, see remark 2.4,

CoraTTary 1.2. A semi-space is not the complement of a generalized half-space

; o : :
(i.e,, the two cases in 9 of theorem 1,1 are mutually exclusive) .,

Proof, This follows from theorem 1,3, by passing to complements.

Corellary 1.3. Every generalized half-space H can be written in the form (1.7),




.,3.-

Hew (or, even ve((R")) and z¢R",

with ve

Proof. Since H is a hemi-space, by theorem 1,1, implication 1Om§30 (oriﬁorﬁho)v
there exist vel(R") (respectively, ve@(R™)) and zeR", such that we have efther (1.7
or (1.8), Now, if (1,7) holds, then we are done, On the other hand, if (1,8) holds,

L T : : : n . .
then zeR'\R" (since otherwise we have (1.8) with zeR , s0 H is the complement of a semi-

. o
-space, in contradiction with theorem 1,3) and hence, by (1.15),we have again (1,7). [
Remark 1,%. Most of the subsequent results on hemi -spaces, combined with theorems

1.1 and 1.3, yield, in a similar viay, corresponding results on‘genera]ized half~spaces,

which we shall omit,

. : g ; : : e e e
Since a semi-space in R is a maximal convex set excluding some point of R ot

may be of interest to prove

s : . ’ ' ;
Theorem 1.4, A set HeR" is 3 hemi-space if and only if there exists a convex set

y

n . Ak . ;
GSR such that H is a maximal convex set not intersecting G,

Proof, If H is a hemi-space, then, obviously, it is the largest convex set which

: ; : n
does not intersect the conyex set G=R \H,

Conversely, assume now that H is a maximal convex set not intersecting a given con-
vex set G. Then, by theorem 0,1, there exists vei(Rn) such that
v(y) <, vig) (yeH, geG). » (1.28)
Hehce,
He Hf={yeR" v (y) o inf v(6)}, _ (1.29)
vhere inf, v(G) exists (by lemma 1,1) and
PR B
<, if inf, v(Qev (6)
if inf v(C)¢v(a),
Then, clearly, H' {s a convex set; which does not intersect G, Hence, by the maxi-
mality of H and (1,29), we obtain H=H*, But, by (1.29) and theorem 1;1, implication

ZOzéio

» H' is a"hemi-space, so H is a hemi-space,
Remark 1.5, For related results, in which the set G of theorem T4 is @ linear

manifold, see theorem 3.2, corollary 3.1 and remark 3,2 below,

§2, Further representations of hemi-spaces, Classification of hemi-spaces

Let'first prove some geometric results, which we shall need in the proof of the

miqueness statements of theorem 2,1 below,

Proposition 2,1, Let
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PefyeR™uty) s x},  HefyeR" uly)=x}s, | (2.1}
oy r : T r e 7 Foaks : il
Hﬁ&ig u=(m l,eg,imr) e&jR 5 Ry _.(g ,Gaﬁ,gr) €R", Then M is the unique linear manifold

such that Mg H nno HN\M is Convex, or, equiva]ent?yf such tﬁg} M and H\M is a hemi-

e i

Proof. Clearly, M is a linear manifold, McH, and the set
I n :
H\MM{yER lu(y) £ %} : (2.2)
is convex (even a hemi-space) ., Assume now. that N is a linear manifold such that N& H

and H\N is convex, Let us first show that

N, - ' (Ze3)
Indeed, if NdM, then, for each yeN\M, Tet
‘ i e i T '
ﬁ(y)=mm{l\<;r_]v(m],,M,mi) y#(,%l,“o,ﬁi) I, (2.4)
and choose y'eN\M such that L=L(y*)=min L(y), whence .
yéH\M 2 :
(m ],,,M,mz 1) i %1,”6,&1 (_nyN)Q" (2.5)

Then, by y’éhJQl%, (2.5) and (2 L), we obtain
m/@yl<§ ® } i (2.6)
Observe now that m; is constant on N, i.e., there exists CpeR such that
27 0L ol ‘ ‘
N ¢ {yeRr [m£y=c£}- . (2.7)
indeed, otherwise there would exjst Yy Yo€N such that mzy]¢m;y2 y whence (since N is
3 1|near manifold) also an element
yé{%y +(1=A) yZCR }XER}(ZN CH
such that m y>§£ s which, together with (2, 5), contradicts (2.1), Note also that, by
vieN, (2.7) and (2,6), we have _ l _
‘ 2.8
cp<bp . _ (2.8)
Since M##, take and Yo&M, and let
y” = 2yl - yo° " (2a9)
Then, by y%eN, (2.7), v oMy (2.1) and (2,8),
i
mey —ZmEy ~m£y =2¢ p- §£<2c£~c£~c£<§£ )
whence, by (2,5) and (2,7), we obtain y"€H\N, Furthermore, by y €MEH and by
n%yo=§£>c£ and (2,7), we have Y,€H\N, Hence, by (2,9) and the‘convexity of H\N, we
obtain o .»»
y! = %<y” + y ) EH\N,

in contradiction with our choice of y*. This proves (2.3),



~l]m
In ordef to prove thé opposite inc]uéion,'let yeM be arbitrary, Take VeN< M and let
s A _ _ (2,10)
If yeN, then, since N is a linear han?fo]ds we have y=2y-yfeN, Onhthe other hand,
if y'¢N, then, since M is a linear manifold, we have y‘wZ?~*éMS§H; SO y’eH\N: Since

1 2 ; : ; -
g(y+yﬁ)=y¢H\N, we obtain, by the convexity of H\N, that y¢H\N, which, by yeMCSH, yields

yeN. Thus, MESN, which, together with (2,3), yields N=M,

Proposition 212« Let

H={yeR [ uly) < x}, M={yeRnlu(y)=x}¢ﬂ, ‘ (2,11)

where u=(m],e¢°,mr)Téi(Rn, R") ) and x= él‘”‘&’ér eRr, Then M is the largest linear ma-

nifold such that HAM=§ and HUM is convex, or, equivalently, the only linear manifold

———

such that HAM =f and HUM is a hemi-~space,

- Proof, Clearly, we have HAM=§ and the set

= ; :
HUM={yeR uly) <| x} , R (L1Q
is convex (even a hemi- space)6 Assume now, a contrario, that there exists a linear mani-

fold N such that HAN=@ and HUN is convex, and such that NEM, For each yeN\M let

Ely)= mln{jxnl m],,e,,m Yf §],,.,,§i }, (2.13)
and choose yfeN\M such that £=£(yf)=min L(y), whence
, yEeN\M
. T )
(_m'lpaouyn]/e.r‘J) y.—f _g];sbeyéﬁ_.']) (yeN)e (2011})

Then, By y‘eN, HNN=§ and (2,14), we obtain
mzy’>§£ , , (2,15)
Observe now that mz is constant on N, i,e,, there exists Cp€R such that
Nc {yeRr" [mzy Cg} (2.16)
indeed, otherwnse there would exist Y+ Yo€N such that mz ]#m;y7 » whence (since N is a
linear manifold) also an element
Fe{hy (1= y, R heR}C N
such that m£§<§£', whence, by (2,14), VeH, in contradiction with HAN=ff, Note also that,
by y‘eN, (2,16) and (2,15), we haye
cf‘>§‘ﬁ : (2,17)
Since M#f , take any YoM, and let
L (2.18)-

Then, by YoM, (2,11), y’eN, (2,16) and (2,17), we have

AR T g,k
mty’=2m£yo-m£y’22§ﬁmgﬁ< 2§£“§£=§g '



§

=R
whence yeHcHUN; also, y'eNg HUN, Hence, by (2,18) and the convexity of HUN, we ob-

tain

vy %(\/’ + y")eHUN, (@19

towever, by y €M, (2,11) and (2,17), we have mgyon§£r<c£ , whence, by (2,16), we.
obtain yO¢N, Also, by yOGM and HNM=F, we have yoéH, in contradiction with (2,19);
Finally, assume that N is a linear manifold such that HNAN=§ and HUN ig a hemi-spa-
ce.. Then, N¢ R"\H and the set
(RPNH)AN= (R™\H) A (RTAN) =R \(HUN) ' (2.20)
" is convex,  Since
R™\H={yeR"[uly) 3 x}={yeR"[-uly) < -x}, : (2.21)
by proposition 2,1 we have that M’={yeRn]vu(y)=~x} is the unique linear manifold such
that M! < R™\H and (R™NH)\M! is convex; Hence; by the above @roperties of N and by (2;11),

we obtain

N=mf={yeR"| ~u(y)=-x}=M,
Remark 2.1, In ﬁropositions 2,1 and 292; a sufficient condition in order that
M##, is that
rank u=rg _ (2.23)
"éy theorem 2,1, impiication ]O=$]7O, the assumption (2;23) is not restrictive.
Now we shall show thaf, under the assumption (2;1) (resbectively: (2;11), there

cannot hold a result like proposition 2,2 (respectively, 2.1),

Lemma 2.1, For a set H of the form (2,1), a linear manifold N R" does not intersect

Hif and only if there exist £é{l,.,.,r} and c,> such that
Y 02y DS Spase o LS

Difeal k. 2 ~ il . ' : ) ;
Nefyermiy=§; (j=1,...,L-1) mpy=c . (2,28)

Proof. 1f there exist et yo v o0} vand CK>§£ such that (2.24) holds, then for each

yeéN we have

(01 wesmp_ys M V= (8 sennbpeys €907 7 Bpaienafp g B (2025)
whence also uly) > x, so yg¢H.
Conversely, assume that N is a linear manifold satisfying HNN=@, Let
L’=min{i<nlNgj;{ye‘R”lmTiyng. (j=1,..7,i)}}. (2.26)

Note that the set in the right hand side of (2.26) contains at least i=r, since

otherwise we would have

l“é{YéRnlm§y=§j::(j=l,,a,,r)}={yeRnlu<y):x}5;HJ



==

in contradiction with HfWN:%; thugiel i 226} Vs wall defined,

' s s .
Observe now that Mp Is constant.on N, i,e,, there eixsts CpeR such that we have

(2.16); indeéd, this follows with the same argument as in the proof of proposition 2,2

(since (2.5) holds now by the definition (2,26) of &),

Now, by (2.5) and (2,16), we have (QGZQ), whence, by HNAN=f¢ and (2.1), we obtain

b .

Proposition 2,3, If we have G N then there is no linear manifold NeR" such that

ngég ; but, by (2,16) and (2626), we have c£#§£ ,» and hence c

. HNAN=§ and HUN s convex,

Proof, Assume, a contrario,.fhat N is a linear manifold in Rn, such that HNN=§
and HUN is convex, Take any yOEH, y,éN, and let £ and <p be as in lemma 2,1. Then, by

(2,1} and (2,24} we have

T g oo T ,
mjyo‘:;\j:n}jy] (leyqog”e—])) (2527)
T T e
.m£y0:§£<c£=m£y1 . - (2,28)
. whence '
ol yo+y Wz . :
mj' 2""‘j (J“];ouo,y«_‘])s i (?°29)
Yty ‘ ‘
@w% =y “L<Cz ‘ (2.30)
YTy ‘ ;

Hence, by (2.1) and (2,24), we obtain 'mf%rwl¢ HUN, which, together with
Yo MSHCSHUN and Y1ENSHUN, contradicts the convexity of HUN, E3

Lemma 2,2, For a set H of the form (2,1]), a linear manifold Nc:Rn is contained in

Hif and only if there exist Ke{i,oao,k} and-cf<§@ such that we have (2,24),

Proof. Since NS H if and only if (Rn\H)F\N=ﬁ, the conclusion follows from Jemma
2.1 applied to the set

R™\H={yeR™ (=u) (y) < | =xh, (2.31)

Proposition 2,4, |f we have (2,11), then there is no linear manifold NcR" contai-

ned in H and such that HNXN is convex,

«

Proof, Assume; a contrario, that N is a Jinear manifold in Rn, contained in H and
such that HNXN is convex, Take any yoeN,'y]eM, and Jet £ and <y be as in lemma 2,2, Then,

by (2.2L4) and (2,11), we have.

T = — T 2 ,‘ i . = ‘ ?
@iyo—gjmmjy] (J=1,00e,2-1), . (Ze32)
o o T : ;
: mzyo=cﬁ<fg=m£y, ' (2.33)

whence T



T e s one o T | :
mj(yoﬁﬁlyifyo))mmjyoi?(mjy)-m v )4§J (j=1,g.,ﬁﬁw!), (2,34)
£ e A erv el Sl L SLEIER R g
M (yotz v Vo) )Tmgy stz (mey, or L ey
{ l/e
e /(,’_'sz(é)e"c‘e)(\cﬁs(g'{,""uﬁ)zgﬁ ’ : (2&35)
hemee, by (2 10 ) Sand (2, 2k e ohtain yo;t%(ylnyo)éH\N; which, since Y EN, con-
tradicts the convexity of H\N, W B

nos ;
Theorem 2,1, For a set HCR » the statements of theorems 1,1 and 1.2 are equivalent

to the following statements:

12 10 s exist (r,O“)E,({O,],M.,n}-X{ﬂ})U{(n,-SL )} (unigue in 13°, 14°),

. T & = : : =
z=(§],ou,,§r ) §r+]’ +0o, , ,, ,+00). " €R' XAt oo} X{#a}70 ] (Enlque inThE Sand i th §r+1

being unique in 13°, if r<n), and ved (R"), respectively vell(R") résbectively v={(m

],uno
Eerr——— S

.,.,mn)TEOKRn) (with Mysee.,m being uniquely determined in 14°), such that

H:{yé Rn’v(y)crz}o (2.56)

15°, There exist Jéi{<L ; QL}, zeR" and veZ (R™), such that we have (2.36).

O : ; L ; F
]60-]8 . There exist (r,t)E{O,],O,e,n})K:{<L : SL} (unique in ]7O.§Qé 18°%), xeR

(unique in 18°) and ued (R", RT), respectively wel{R™ BT with rank k=

respectively

uel (R", R") with w*=I (unique in 18°), such that

H ={yeRnIQ(y)tx}'° A . (2;37)

19°-20°, There exist unique (r,t)éfﬁ,l,bqe,n}/><{<1 ; SL}” an_element yoéRn, and

a basis {ej}? y respectively, ‘an orthonormal basis {ej}? , Of R, with coefficiant func-

tionals{}j}?’C(Rn)% (with {ej}; anq_{?J(yo)}; ‘uniquely determined in 200), such that

'H={yeR”lw]<y>,m,wr<y>,o,m,o>%<%f]<yo>,,..,uv,_<yo>',o,“.,o>"}.' (2.38)

21°, There exist (unique)(r,?)é{O,],,,,,n}><%:<L ; SL}" an element yOERn, and

veﬁ(Rn)(with v-](ej)};.and the first r coordinates of Yo in_the basis {v—l(ej)}? of R"

being uniquely determined), such that

=l ), ” (239)

where Ho is the hemi-space .

oy =R (e 0, .. ) e, e
Proof, Let us first note that, in 120~1MO, r=0 means that z=(tw,+w,“°,4ﬁ9T, and

thus, for §]=+w (respectively, §]=7m), (2,36) yields H=R" (respective}y, H=#) . Further-

more, "in 16°-18°, r=0 corresponds to Rof{O}, so x=0 in (2,37), and the only ued (R",R®)

is uz0,~whence (2,37) with tvbeihg gL (respectively, <L ) yields H=R" (respectively,



“H=g). Finally, in 19%-21°, r=0 means that (1), . 8, 1p,0,4.0,0

= 5k -
T LAt
Jalof (2040)_15 0, and
a similar remark holds for (2.38), whence, by (2.45) below, formula (2.40) or (2.38),
with © being < (respectively, <L ), yields H=R" (resbective]y, H=g) ,
{ e =5 g
4°=20°, |f v%Q(R”) and 2=(§},,,.,§H)T6Rn are as In 40, let _
ej:v"(e.) e (2.41)
<N

Then, by veO'(R™), {ej}? is an orthonormal basis of R", If zeR \R", then, by (1 a5)

we are in case (1.7) of 4°, Define

ro= min{isn]§i¢R};), 15 ,‘(2'42)
bt T T { =wc0
T is : Ar+] : (2')_‘3)
S'L ] if '§r+]=+00. \
S . ;
, G | - (2.48)
Then, since
: > ‘
y=§2:ﬁ§(y)ej (yer™), . 4 (2.45)
; j=1
we have, by (2,41),
; n : n
V(Y)=2:%%j(Y)v(ef)=§z:§j(y)ej=(?](y),,,,,?n(y))T (yer™), (2.46)
= = J=) : .

~ Hence, v(y) < (fl,...,gr,—m,..,)T if and only if (%](y),...,?r(y),O,..;,O)T

<y ‘(ﬁl,...,ﬁr,ﬂ.'.,.,O)T, and, v(y) < 9 ly ),,,.,‘I' (yv), +oo,..,)T if and only if
() s B s o B 8 o000, 00T it by a0 7). andi]58),
proves (2,38),

Finally, if zeR", then, taking r=n,f€{'<L z Sl.} the same as. in (1.7) , respecti=

vely (1.8), and Y, as in (2,4%4) (with p=n), and Qsing (2.46) (with r=n), we obtain,again,

(2l38)0 » =

19°=17°, 1f 19° holds, define uel(R", R") and xeR" by

e. PR ri :
ulef)=4 , ’ . | (2.47)
J 00, BE Jieret s i sk :

x=u(y0). , : . (2.48)

Then, rank u=r and, by (2,45), we have
r

—Z? () ule?) ”Ij(y)ef(‘i’](y),...,?r(y),O.,.f,O)T Ry,
= . :
5<=U(yo)=(‘i“] Gt e
which, by (2,38), proves (2,37) (with the same r and = ).
16°=15°%, If (r,z), xeR" and ue#(Rn, RT) are a5 im 167, deflne<r6{<L ) SL}, zent

and vei(Rn) by



= fo-

: <i (in R"), if ©1s < (in R%) ,
el Qo ifiels e b - 2.49)
2 =0 0000,0) TeR”, : o

viy)=y)T,0,,..,0  er" (yer"), ifaan)

Then, by (2.37), we have (2.36),
Thus, since the implications 20°519°%, 17°=16° and 15°=512%52° are obvious, we
have proved the equivalences 4%220%319%=17%=216C15%=12°,

200:#11*0’ 'f 200 hO‘dS, define Z:,(é)rieelgr’ §r+]’ +C‘0,-n.)+00>T€Rr><{iOO}X{'*'OO}nwr—] :
and veO'(R™) by o -

SRR e . (2.52)

rlco i il e : ;
§r+l={+oo T s gL ; ; (2.53)

vlel) eJ' ' Gl i e ~ (2.54)

Then_ by the above proof of the |mp]xcat|on 4°=21°, we have (2.46), Hence, when

ref0,1,...,n=1}, we have v(y) <L (?](y ),.,.,%}(yo),—m,+w,.,,,+m)T if and only if

O
(%1(y),.,,,?rw),o,...,o)T<L (1 (7g) seves¥ (v ),0,...,0)7, and, we have

) <L (R0 e ¥, lyg) otimess ) T 5 and only 18 (9 (p) e, ¥, (0,0, 0,00 T <, (4, ),

¥y 30,00, 00T, which, by (2,53}, (2,52) and (2.38), proves (2,36) (with o being

<)

Fiﬁa]]y, when r=n, from (2,46) we obtain, again, (2,36), with o=t of (2.38),

]3o==>]70 (respectively, 14°=18%), Let (r,O'),.2=(§],...,§n)Tand V=(m],...;mn)T
éu(Rn) (respective]y,i (R™)) be as in 13° (respectively, 14°), If zeR"™\R", then. by
2 : with o . 2 For ) :
(1.15Lwe}mye(2,36fﬁéng < Irebiiie case, define = by (2,43), and let

€

u=(.m],..,,,mr) Ei (R e {2.55)
x=<§1,.,.;§ L R Jtest g
(respectively, 14 0z T ] (<% :
w;th r of 13%y'Then, v(y) <L (§1’°°°’§ ~t0,+00,,, ,*+) ' if and only if u(y) <_ X, while
ﬁ],,.Q,@r, ,..,,+q0T if and only if u(y) < %, which, by (2,36) (with o
being <L ), proves (2,37). On the other hand, if zeRn, then r=n, and hence, taking u=v,
x=z and t=0, from (2,36) we obtain, again, (2,37). Furthermore, in both cases, veﬂ(Rn)

(respectively, ve@(R™)) implies rank u=r (respectivel ) uu*=I).
p Y. p 7 p Y

20°=521°, If we have 20°, define ve@(R") by~(2,5h), Then, since

ety =1 0, 7 ».n -1 L |
v (y)=v. <%njej>=;vg;v <ej>=j>;¢;ej (v!=(gt)er™, (2.57)

we have



o i ' ~ 7.

¥, (v ()= (yr=()er”, 1=1,0 .00, (2.58)
whence, for He ‘of (25400, : :
v*1(Ho)f{v’1(y’)ly’=(qj)eRn, (n{;n..;q;,O,.ﬁ,,O)TtO}z

={yer”| (8, (), vvn ) (9,0, 0) w0}, (2.59)

Hence, by (2,38), we obtain

I

n : 4P
Gy v (HO)={yO+yER ](4](yo+y),fe.,?r(yo+y),0,,e,,0) z .

. T
""(?](YO),.,”,‘P[.(YO),O.”-’O} = H!

ive., (2,39) (with the same (r,z) and yé, A ine 20,

21°=520°%, If we have 21°, define {ej}? by (2.41). Then, by ve@(R"), {ej}? is an

orthonormal basis of R". Finally, by (2.39) and the computations of the above proof of

the implication 20°=$21°, we obtain (2,38) (with the same (r,2) and yo', as im 20%)5

Thus, since the implications 1&029130 and 1892?170 are obvious, we have broved all

equivalences stated in theorem 2,1, Let us prove now the uniqueness statements of the

theorem,

Uniqueness of (r,t) in 17° (and hence 18%), Assume that we have two repfesentations

(2.37), say,

H={yeRn]u] (y) )%, h={yer"|u, e (2.60)
: | & - I
where (ri, Ti)é{o,l,...,n}><{<i_, '(L}', X €R ' and uiéﬁﬂRn, R l), with rank up=r; (1=
= 1,2), and let '

Myo=tyer™u; (y)=x;} (i=1,2), (2.61)

Then, since rank ui=fi, we have M.#§ (=1, 2).c 1F Ty is £, then, by proposition,

2,3, there exists no linear manifold N such that Hr\N=ﬁjand HUN is convex; and hence,
by M,## and proposition 2,2, we obtéiﬁ that v, is <y » too, Hence, by M]#Q and proposi-
tion 2.0, it fol lows that M]=M2, and therefore, since by rank u;=r. we have ry=codim M.
(i=1,2), we obtain F1=rp. On the other hand; if Ty is <, then the argument is similar

using: prepositions 2.4, 2,1 and 2,2.

Uniqueness of x and u in 18%, Assume that we have (2.60), with z,=z, =2, x.€¢R" and
q SHAS) LR ’ |3 e S

~

wi th u‘=(m],...,mr)T, u2=(m],..5,%r)TEi(Rn, R) satisfying uiuT=I =t ), if uj#u,, let
L = min{isnlﬁ{i#mi}. (2.62)
Observe now that, by Hm£ﬂ=nﬁ£n=l and mE#Fﬁ'z , we have the strict inequality m£m£<

<!lm£hH%£H=l, and hence we can define



il

ey o ey on ; L '
d 1; = (_m£ mﬂ)CR : : (2,63)
mefil, »
Then, by the orthonormality of the sets of rows of u, (i=1,2), we have
m}d =0 (=i s da 2011, ' (2.64)
T i - |
mpd=1, T,d=-1, (2.65)

On the other hand, by the above proof of the uniqueness of (r,z) in ]80, we have

A {yeRn]u](y)=xj}={yeﬁnluz(y)=x2}%¢. - (2.66)

Let'yo be any element of (2,66), Then, by (2,64) and (2.65),
T
U](yo+d)=u‘(yo)+u(d)le+(0,‘..,O,l,,br) >L x]’

2
uz(y0+d)=u2(yo)+u(d)=x2+(0,...,0,-1,,,,) S

whence, by (2,60), we obtain that yo+deH and y0+d¢H, which is impossible, This proves

)=U2(yo)=xze

that u,=u,, whence also x]=u](yO

Uniqueness of (r,o) 12_]30'(and hence 14°), of §r+] 12&130, when r<n, and of z

and {mj}; iﬂ_]ho; These follow from the above broof of the implication ]3O:¢17O (res-=
pectively, 1QO:¢18O),_using the uniqueness of (r,z) in 17° (respectively, of (r,z),x
and u in 18%), |

Uniqueness of (r,z) in 19° (and hence 20°), This follows from the above ?roof of

the implication 199:¢I7O; using the uniqueness of (r,z) in 17°.

Uniqueness of {ej}; and-f%(yo)}; LQ_ZOO. Thi's follows from the above broof of thg
implication 20°=14°, uéing the uniqueness of {mj}; and {%}; in 14°, Indeed, by (2.5L)

and v=(m],..,,mn)T, we have

m}e5=] . (3=1, cxuisn), : ' (2.67)
which, since Hmjﬂ=ﬂejﬂ=] (j=1,.0e,n), implies
‘ e}=mj (j=1,.°.,n),b : (2.68)

. e ; ; ’ e} . o ;
and thus, since Miyeos,m are uniquely determined in 147, so are e ,..,,e; in 217, Fi=

nally, since §1;.,.,§

By Tk, Gy ) i 208

f
]
. are uniquely determined in 14°, so are, by (2,52), the numbers

Uniqueness of (r,z), {vi](ej)}; and the first r coordinates of Yo in the basis
{v”‘(ej)}? of R", in 21°, These follow from the above proof of the implication 21°=320°,

using the uniqueness of (r,z), {ej}; and-%%(yo)}; in 20°, Thus, the proof of theorem

2,1 is complete,

Remark 2,2, a) The equivalence 1°<20° without the uni ueness properties in 200,
q ) q RECR

has been also proved, with a different method, by M,Lassak ([9], theorem 1, statement



105; but he has not expressed 20° i'n terms of the lexicographical order.

b) One can give éimp]er proofs of some of the implications of theorem 2,1, and hen-
ce of _the-whole chain of eqﬁiva]énéés '(e,g.,, one can replace 13°2517° and 21250102 by
the obviou5'imp1ications 13°=1° and 21O=¢]O), but the proofs of the implications selec~
ted aone‘are a]go used in the proéfs 6f'the uniqueness statements of theorem 2,1,

c) Statement 15° is the particular case r=n of 12° and of 16°; also, 15° shows that

; o)
in 2

(of theorem 1.1) one can répTage zeR" by zeR", However, similarly to remark 1;1 a);
in the representation (2,36) (even with the same ves (R") and zeR"), o is not uniquely de-
termined, as shown e.g. by :

Hefy=(1y,7) TeR? [ (q,, 0T <, (1,1)T3=

={y=(n],72)TeR2l(vll, 0)T<L (s, ' (2.69)

FurtHermore, in 11° of theorem 1,2 oné can'rep1acé xeﬁk by xeRk, using, in the

proof, 152 (instead 6f 2°) and =1 and 1 instead of - and #wo ; respectively; This bfoof :
works (with obvious ;hanges) also for <L reblaced by <L in (1.f9).

d) Itxis well;known (see [2],[3],[8)) that H is a semi-space if and only if we have
21° with r=n and 7= i (and hence with HO of (2,40) being a semi—space); Similarly, in
the general case, condition 212 will turn out to be useful in the sequel, since -it says
that, modulo a translation and a.llnear isometry; H of (2.40) is the génera] form of a
hemi-space in Rn. In view of this special role of HO; jet us observé that for H=HO, the

(unique) ueL(R", R") and xeR" of 18° are

ut)=lnyseen ) 0 =l feRM, ' (2.70)

s _ _ )

Note also that 21° gives, already in R3, a simple example of a hemi-space which is

3

neither R°, nor #, nor a closed (open) half-space, nor a (complement of a) semi—space,

namely, H_={y :(nj)?éwl("l]:’l-z» 0) ' » 0}, withre{<, , < }.

e) In 17° tﬁe pair (u, x) is unique Qb to a (unique) 1exicographical order preserv-.
ing linear isomorphism of R (F;r a study of lexicographical order breserving linear
operators, see [13]), i.e,, the equaligy

{YERn\u](y)fxl}={y6Rnlu2(y)l‘x2}, : (2.72)

Cwith tef< 5}, uelR", RT), rank u;=r, x;eR" (i=1,2), holds if and only if there exists

— = s {anfque) lexiéogféphica] order preserving linear isomorphism KeU(Rr) such that

s el 92=£u ] ’ X2=€(XI) ' (2~ 73)



whence £Ul|uT(Rr)ZQZlQTKRr) ; also, by (i), Zu‘l

00 s
Indeed; assume that for wef< |, LY and (ug, x;) (i=1,2) there exists Ecﬁ(Rr)
preserving the lexicographical order relation € and satisfying (2.73) . Then, the rela=

tions yeR", u](y)rx] imply

y (V)= (1) e () )=x,

(since, by LeU(R"), £ preserves £ if and only if it preserves 5 )i similarly, since

Zf]eU(Rr) preserves the )exicographica]'order, the relations yéRn, uz(y)tx2 imply

u](y)txl, so (2,72) holds.

Conversely, if (2.72) holds, then, by the above proof of the uniqueness of (r,z) in

170, we have

| {YﬁRn|u](y);x]}={yeRn|uz(y)=x2}¥ﬁ, (2.74)
whence Ker u]=Ker QZ‘ Hence, since rank uy=r, tﬁere exists anuniqué‘KEU(Rr) such that
Luy=u,. Take any yOAin (2.74). Then,

gty (g )=y () =L (x,), i (2.75)

O

so (2.73) holds, Finally, take any xeR' such that x <_ 0. Then, by rank uj=r, there exists

.yeRn such that

up (y)=xtu (y ) < uy (yg)=xy,

whence, by (2,72), u, (y) < %9 Hence, by (2.75),
K(x)=ﬁ(u](y"yo))=u2(y)~£(u](yé))=u2(y)-x2 < 0,
vhich proves that £ preserves the jexicographical order <L :
Let us also observe that, by computing explicitly the unique Keyer) above, we ob-
tain that (2,72) holds if and only if

(i) Ker uy= Ker u,,

Gi) uyu (u,u™ " preserves the lexicographical order,
et (o) E

i P =]

(iii) uzuf(g]uT) (x})=x2.

Indeed, if (2,72) holds, then we have (i) and the unique KEU(Rr), satisfying

£=u2u?(u]uT)_], . : (2.76)

whence, since £ preserves the lexicographical order and satisfies x2=£(x]), we obtain

*

(ii) and (iii). In order to see that K_of (2,76) satisfies Kul=u2, note that Ku]uT=u2u{,

Ker u1=O=U2|Ker u2=u21Ker uy G Kul

k)+Ker Ui?(KCF_Q]) + Ker u‘=Rn, Conversely, if we have (i)-(iii),

coincides with u, on uf(R

define by (2,76). Then, by_(i); we have Ker £ =10}, so Zeu(Rr): for, if xeR", £(x)=0,
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then uz(uz(u] UT) (x))=0, whence x=u](u?(u] uT)

PN

(x))=0, Finally, by (ii) and (iii),
L preserves the lexicographical order and satisfies_l’,(x‘)zxzo ; |

f) Using similar arguments, one can prove that in 130, with v=(m],°,.,mn)T (respec-
tively, in 19°), the pair ((m],.,,,mr)T, (ﬁj);) <respective]y, the pair ({?j}; ,{?j(yoﬁT))
are unique up to a lexicographical order preserving linear isomorphism of Rr‘ We omit
the details, .

g) In various proofs which we shall givé in the_seqﬁél (and in [13]), separation of
convex sets by hemi-spaces (see remark 1,1 b)), combined with the representation theorem
2.1 for hemi-spaces (which, in turn, has been obtained, ultimately, by applying the e~
xicographical separation theorem 0,1), will be a more powerful tool than a direct apéli-

cation of the lexicographical separation theorem 0,1,

_Definition 2.1, Fer any hemi~space H in Rn; represented in one of the forms 170—210
of theorem 2.1, we shall call] the (unique) re{O,l;,.,,n} and te{<l‘, <L}- of the rebré-'
sentation, the rank and the Lype.of the hemf—space H, resbective1y. Wé shall also use,
when necessary, the notations

e, veT(H), ' (2.77)

When v=2(H) is Sy (respectively, < ), we shall say that H is a hemi-space of type

<L”(respectively, of type SL)'
Remark 2.3. a) From the uniqueness of (r,2),u and x in 18° of theorem 2!1; it fol-

lows that a hemi-space H is of type <L if and only if it is not of type <)L (i.e., the

<

types <L and éL are mutually exclusive),

b) HCR" is a hemi-sbace of type S| if and only if R™\H is a hemiwsbace of‘type
<+ Indeed, we have H={yeR" [ u(y) <, xJ (where uE%(Rn, R™), xeR™) if and only if
Rn\H={yeRn\(-u)(y) < o : '
c) By definition 25 eveny hemi—space of type <1 is a génera!ized half—sﬁace; How-

ever, the converse is not true, as shown e.g. by the generalized half=space

H¥{y=(ﬁ11,nz)T€Rzl(’z],’zz)T < (0, 4}

={y=(2y,1,) "er”| (R UL SR - (2.78)

indeed, the last term of (2.78)nis a representation of H as in 17° of theorem 2.1, with
uet (R?, R') defined by ’

uly)=n, (y=(y, 1,)€R?),

so H is a hemi-space of type § » whence not of type <L -
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" d) Clearly, H is a semi-space if and only if it is a hemi-space of type <. and of

rank r(H)=n, This fact, together with theorem 1.3, suggests to conjecture that the com-

]

plement of a hemi-space of type {L'fs not a generalized half-space; however, (2,78) abo
ve proVides a_counterQexamp)e:

We have the following minimality broﬁerty of the rank r(H):

Proposition:2,5, Let HeR" be a hemihsbace. Then, for any reﬁresentation (2:37) of

Wy with uet (8™: RN and xeR", we’hgng

ryrank u;r(H),‘ : ‘ (2.79)

Proof, Clearly, we have to prove only the second"inequa]ity. We may assume (repla-

cing H, if necessary, by R \H), that H is of type <L Then, by theorem 2.1, implication
F(H)) F(H)

1°217°, there exist ufe2 (R" , R y with rank u’=r(H), and xfeR.* - such that

H ={yeR" [u’(y) <t (2.80)
also, by rank u’=r(H) and x’eRr(H), there existsﬂyoeRn.such that
W=, ' : ‘ (2.81)
s i . n F
Let deKer u, Then u(yotd)=u(y0)ju(d)=u(yo), whence, by y_eR'\H and (2.37), we obtain
yéideRn\H, Consequently,
K% sy wtlyrdl=ut by, haul(d)=prautife),
whence +u’(d) 2, 0, which is equivalent to u’(d)=0, Thus, we have proved that Ker ucKeru}

whence

rank u=n-dim Ker upn-dim Ker uf=rank u’=r(H),

Corollany- 2.1, Let HaR' bea hemifspace, Then, for any representation (2,37

H, with uei(Rn, Rr(H)) and xeﬁr(H) we have rank u=r(H), z=2(H) and xeRr(H). _
' r(H) -

Proof. By proposition 2,5 (with r=r(H)), we have rank u=r(H), Hence, if xeR

then, by (2.37) and the uniqueness of z(H), we obtain v=2(H). Therefore, let us @rove

that ngr(H), If r(H)= 0, this is obv1ous (snnce R ~{0}) so let x= (E,,_.»,§ (H))T
r(H)21; also, as-in the proof of proposition 2, 5, assume that H is of type < and choo-
se u'ei( ik r(H )) with rank u —r(H), x'eR" r(H) and yOeR satisfying (2,80) and (2.81).

Then, by the proof of proposition 2,5, we have Ker. ucKer u', whence, since (by our
assumptions on the ranks of u and u’)
E oo ~ ) :
dim Ker u=n-rank u=n-r(H)=n-rank u’=dim Ker u’ 5

we obtain

PR Ker u = Ker uf, -~ (2,82)
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Let ie{l,.,.,r(H)}, let ey denote the i-th unit vector of Rr(H), and by rank u =
=r(H), choose »

efeu” (e, S , (2.83)

Then, since ef¢Ker u=Ker u’, we have u’(e,)#0, whence
f
Sl

0, ; (2.84)
for some sie{1, -]}. Hence, by (2,81), :

) $ e f ! 2\ ¢ AN 14
u (yo+siei) u (yo)+5iu (ei) x!+s . u (ei) <

and thus, by (2,80), yd+sie;eH. Therefore, by (2,83) and (2,37), we obtain u(yo)+

.+siei=u(y0+sie;) < X, Hence, if §i=icn, then u(yo)<L x, and thus, by (2,37), Y €Hs but

then, by (2,81) and (2,80), x’=u’(yo) <y x', which is impossible, This proves that g%eR,

whence, since 16{3;.,.,r(H)} was arbitrary; xeRr(H),
.Remark 2,4, From corollary 2;1 theré follows again theorem 1,3, lndeed; if His

the complement of a semi-space, then H={yeR"|v(y) < z} for some Qgﬁ(Rh); 1éRn, so r(H)=

=n and %(H) is € : Hence; if His also a generalized half—space, say, H={yeR"|ul(y) <l_gh

where uei(Rd), xeR", then, by corollary 2;1; we obtain rank u=r(H)=n (so Qeu(Rn));_xeRn

e

From theorem 2,1 it follows that the pairs (r(H), z(H)) yield a metric-affine clas-

and < =v(H), in contradiction with the above observation that z(H) is.<

sification of hemi-spaces, Indeed, we have

n

H2 ¢R ', the following statements are equiva-

Theorem'2,2, For two hemi-spaces H],

lent:

10, We have

(r(H)), <()=(r (), = (H,)), sy,

2°-3°, There exist vell(R"), veO(R"), respectively, and 7eR", such that

Hy =7 + v (M), T

Proof. 1°=3°, By theorem 2,1, implication 1°=521°, there exist y*, y"eR" and v
Y ) I ) Yoy Vg M

v,e0(R"), such that

H]=yéfv]](Ho), H2=yg+v£](Ho), | ST (2.87)

with H_ of (2.40), where r=r(H])=r(H2),T'=T(H1)=?(H2) (thus, H, is the same for both H
and H,). Hence,
= = o |
v](H] yc'))—Ho—vz(H2 yo),

whence



. T
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i.e, we have (2,86) with Vayilevs v](yé) and v=v, v, c0(R"),

The implication 3°=2° is obvious,

29249 18 2% Holideaid H] is represented in the form (2,87), then

e S e S R
Hz—ykv (y0+v] (Ho))~y+v (yo)+v vy (H.),

so H, satisfies (2,87) with yg3?+v_](yé), v

]O

2=V and with the same Ho, whence we obtain
: , : . i

Let us show now how the representations of hemi-spaces, given in 12°-14° of theo-
rem 2,1, can be also dqduced directly firom . the repfesentations 5°-7° of theoren el
since this.may present_some interest for other applications as well, To this end, let us

“first prove

“Lemma 2,3, For an element z=(§i)?eRn, the follawing statements are equivalent:

12, There exists a subset G gf Rn, such that we have (1,1),

2°. There exists re{0,1,4400,n} such that §yreees§ €R and

2=(§),000, € b, 4e,,0,, 40, (2.88)
Proof, ]o=$20, Assume ]O, and let re{O,T,.,,,n} be such that §r+]6ﬁ\R. Then, for

kyr+2 we have k-13r+1, whence, by lemma 1,1 and gERn, we obtain
. n R X
§k=lnf{zk|g=(5j)166, ?r=% (j=1,0c0,k=1)}=inf § = +o,
. 2°=1°, Assume that z=(§j)?eﬁn satiafies 29,
a) it §F+l=—w, let

e S G R ) T (2.89)
Then, by lemma 1,1, the lexicographical infimum =
l._ I n o . ¥
z _{ij}l = inf. G (2-90)
exists, and it is given by §j=§j U=ls i) §j+]=i2; A=-oo, §£=inf §=too (k=r+2,,..,n),

so z'=z, which proves (1,1),
b) If € p=t and r=0, then we have
z=(+oo,..‘,+oo)T=+m=infL g,
i.e., (1,1) for G=4,
el If §r+]=+w and ré{],...,n}, let
T o :
G e oG a0 i) U T e B™) L (2.91)
Then, by lemma 1,1, the leiicographical infimum (2,90) exjsts and it is given by
f_ 1= - L = [ = = a ’: H ‘
§j—§j (j=1,00.,r=1), §r inf X\ gr ? §k inf f=+oo (k=r+1,...,n), so z’=z, which proves

)\>§r
i ' ,

Now, as announced before lemma 2,3, let us give the



.25_

Second proof of - theorem 2,1, implication 1%314°, If we " have ]O, then, by theorem

‘1.1, implication 1°57°, and lemma 2.3 (with G=v.(R"\H) ¢ R"), there exist (r,o),z and v

as in 14° (indeed, if ré{O,],,.,,n—l}, then z of (2,88) belongs to ﬁn\Rn, whence, by
(1.15), we have (2,36) with & being <L » while if r=n, then zeRh; so we have (2,36) with

o being the same as in (1.9) or (1,10), respectively, |

§3. Further geometric results on hemi-spaces

In addition to the geometric results of §1, we shall deduce now, from the preceding

representation theorems, some further geometric results on hemi-spaces,

Theorem 3.1, For. a set.He Rn, the following statements are equivalent:

1°, H is a hemi-space,

e {0,y}= HU(H+y) is convex, for each yeRn.

30. Hi% C issa hemi-space, for each set Cc Rn.

KO, H%C is a hemi-space; for each set CcR", 3

Proof. IO=¢30. Let H be represented as in 152 of theorem 2.1, and 1et ccRr. Then;

by (2.36), we have

Hee={yreer” | yet, ceCh={yrcer”|v(y)oz, cecl=

={y'ERn|3cEC, vy oz+v(c)}, (3
Define .
zli= 724 sup, v(C), | _ (3;2)_
Span e 1 < and sup|. v(C)év(C)
o is : (3.3)
<L otherwise,
We shall show that
H+C ={y‘eRnlv(y')G'Zf}, ; (3.4)
which, by theorem 1,1, implication 20=%1O, will prove that H + C is a hemi-space. If
y’e H+C, then, by (3.1); there extists ceC such that 7
: v(y’)02+v(C5. . A , (3.5)

Hence, if o is < and sup, v(C)év(C), then, by (3.2), we have
v(y')SL Z+V(C)$L z+sup| vi{C)=z" ‘
vhence, by (3.3), v(y')o’f2!, |f O"S.SL and sup, v(C)¢v(C), then v(c)<L sup, v(C), when-
ce, by (3,2),

V(Y')SL 2+v(c)<L z+supL vi(Cl=z",

and hence v(y')<L z'; shusy by (34 3), v(y’)cJZ’. Finally, ifois <L , then, by (320,
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viy’) <L z+9(c) €L zHsup| v(C)=z* ,

f

whence v(y’) < =z

L

the inclusion G in. (3,4):

; thus, for any U‘E'{<L"$L} » we have again v(y‘)e’z*, which proves
Conversely, if y/eR”, viy?’) <5, z!, then there exists ceC such that viy?) < z+v(c);

indeed, otherwise v(y*) 2 z+v(c) (ceC), whence v(y*)-z 21 supL VB 50 v(y’);L z+

tsup v(C)=z’, in coptradiction with our assumption on y’. Hence, v(y’)oz+v(c), and thﬁs,
by (3.1), y’€H+C, On the other hand, if y‘eR" satisfies v(y’)=z’éz+supL vl )and ol e
Sp 5 themy by(8.3), o s < and suva(C)ev(C), whence there exists ceC such that
vly)=z+v(c), so v(y"oz+v(c): thus, by (3.1), we have again y!eH+C, which proves (3.4).
The implication 3°=2° is obvious, .

e}

o} : ;
2°=1", Assume 20. Then, by 2° for y=0, H is convex, Assume now, a contrario, that

R'\H is not convex, i,e,, there exist y],yzeRn\H and 0<A<] such that (1-%)y]+ky26H,
Then, .

H +-{0, y]—y2}3(]—X)y]+Xy2+O=y]+X(y2—y]),

H + {0, y]~y2}5(l—X)y]+Xy2+(y}fy2)=y]+(]-A)(y]‘yz),
whence, by 20,

H+{O,y]—y2}3(I—X)[y]+k(y2—y]X]+A[y]+(]-A)(y]vyz)]=y].

" "Henee, either Hay], or H+(y1—y2)ay], in which case H—yzao, so yzeH, in contradic-

tion with our assumption that y],yzeRn\H. This proves that R™\H is convex, and hence‘H
is a hemi-space,

12382, Lew Hobe represented as in 15° of theorem 2.1 andslecite R, Then, by (2.36)

and (0.6), we have

HEC=/"Y(H-c) =/ {y-ceR"| yeH}= M\ {y-cer"|v (y)oz}=
ceC ceC

ceC
={yeR"[v{yoz-v(c)__(ceC)}. ' (3.6)
Define
gilizs - sup| vilCl, A ' | {(3.7)
'<L y if o is < and sup| v(Clev(C)
of is < otherwise, (3.8)
Then, similarly to the above proof of the implication ]0:$30; we obtain
HE C={y’eR"| v(y/) ol 21], Az
and hence, by theorem 1.1, implication 20=¢Io, HXC is a hemi-space,

Finally, the implication 4°=1° follows from H=H2{0}. .
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Definition 3.1, For any hemi-~space H in R", represented (uniquely) as in 18° of

theorem 2,1, the set '
M=M(H) = {yeR" [uly) =x}#0 (3.10)

will be'ca]]ed the linear manifo]d_asséciated to. H.

Remark 3.1, a) By remark 2.3 d), we see that H is a semi-space or the complement of

a semi-space if and only if M(H) consists of one point (namely, M(H)={u_](x)}).

b) From the uniqueness of (r,z),x and'u in 18° of theorem 2.1 it follows that for H

represented as in 19° (or; in particular, 20°) of theorem 2,1, we have, by (2,38),

ut)=Ch ), O =37 % (e, (yer"), (3.11)
x=(?ﬂ(yo),.'.,?}(yo)) —-’:%§;\%(yo)ej g = . {3.12)
whence, by (3,10), ; .
HE={yer" ¥ 0)=% (y ) G=1,000,}s _ (3.13)

Also, from remark 2;2 d) it follows that the linear manifold associated to the he-

" mi-space H=H_ of (2,40) is

M(HO)={Y=(QJ)?]7ZJ=O (.j=]:oo')r)}e : ) (3.“‘*)
c) For any hemi-space H in_Rn, we have
MR™NH) =M (H) , : ol
Indeed, by (2.37), Rn\H={y§Rn|(—u)(y)t’(—x)}, where ¢’ is the unique element of
{<_ » QL}‘\gr}f whence M(Rn\H)={yeRn[(-u)(y)=-x}=M(H). :

fe—-d)‘For any hemi-space H, with associatéd linear manifold M=M(H), the sets

HUM,H\M and H-M are hemi-spaces, namely, representing H as in 18° of theorem 2,1, we

have _
| HUM={yeR”[_u(y) € xk, H\M={yeR" | u(y) <L x},‘ ' (5.16)
H-M={yeR"|u(y)T(H)0}, _ (3:17)
with ©(H) of definition 2,1, Indeed, (3,16) is obvious. Furthermore, if y=yf-y", where
uly’) © (H)x, uly™)=x, then uly)=uly’)-uly")=uly’)-xz(H)0; conversely, if yeR", u(y)z(H)o,

then, taking any y €M, we have y=(y+yo)—yo, where u(y+yo)=u(y)+xt(H)x, Pee., yty eH,

and thus y € H-M.

When © of (2,37} is <| » propositions 2.1 and 2.3, respectively, when = is <

propositionsrz.z and 2.4, qgive geometric characterizations of M, which do not depend on

uor x-of -the representation (2,37) of the hemi-space H. Let us give now a further geo-

metric characterization of M, not depending on = either, To this end, we shall need
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Aly)={deR"| y+XdeH, y-Ad¢H (A>0)}  (yer™), > (3.18)

Lema 3,1, For H and M as in (2,37) and (3.10), where u=(m],.°°,mr)T§£KRn, LY
- T A G PSR 3 |93

Then, we have

A ={der” | (ny, oo () Td <) 0} (ver"), e
where
p(y)=maxﬁisr[m}y=§j\*,(jfl,...,f)}KJ{OH . : .(3.20)
Hence, in particular,
Aly)={der"|u(d) < 0 (yeM) . (3.21)

Proof. Let yeR" and deA(y). Then, by (3,18) and (2.37), we have e
u(y+id)exe’ uly-Ad) (\>0), ks : (3.22)
where tf-is the only element in {<L ; gL}\\{t},
Now, if.p(y)=0, then mTy¢§]; whence either u(y+Ad) < x for sufficiently small
AoQ (if m§y<§]) or ulyxAd) >, x for sufficiently small A>0 (if me>é]),_which contra-

dicts (3.22); thus, lgp(y)gr. Then, by the first inequality in (3,22) we have, in parti-

cular,
g T T T T 1. iT:
(m]y+>\m]d,..,,mp(y)y+>\mp(y)d) ‘\-L(gl,.-.,gp(y)) . (>\>0),
whence, by (3,20),
T
2
(m],lo-,mp(y)) dSL 0. (3 3)
If 1<p(y)=r and i
(m],...,mp(y)) d—O, (S-QL*)
then, by (3.20), we obtain
uly+id)=uly)+Au(d)=x+A,0=x (MeR),

in contradiction with (3.22), If (3,24) holds with 1¢p(y)<r; note that, by (3,20), we

{ ’ T ,
have mp(y)+1y¢§p(y)+1 . Assume that mp(y)+1y<§p(y)+] , and, let

s
m y=-§
el il

Ay e : ’
T =+, 1f m 347950}, (3.25)
2mp(y>+]d ply
'Then,
Mo ()41 2RIy (o) YEAGML (1) 419
1 i :
<mb(y)+1y+(§p(y)+1‘mp(y)+1y)=§p(y)+1 i : _ (3.26)

x, whence, by d2.:37) 4 y) deH,

Hence, by (3.20) and (3.24), we obtain u(ytAod) <L
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“which, by (3.18), contradicts the assumption deA(y), On the other- hand, if m;(y)+1y>

>§p(y)+] ,ivthen, for AO of (3.25), we obtain, similarly, that ul(y iAOd) > X, whence,
byl 3705 yth dfH, which, again, contradicts deA(y), By (3.23) and since deA(y) was

arbitrary, this proves the inclusion € in (3.19),

Conversely, assume now that y,deR" and (m],...,m )rd <o 0 U p(y)=0, then this

ply)
assumption means that 0d <Lk0, which is impossible; thus, T<p{y)<r. Then, by (3.20), we-
have
I i e ) i
(m];uv;mp(y)) (Y“*)\d)-‘(g]..e.,ép(y)) .{)\(m],on.,mp(y)) d
<L (ﬁl,oouygp(y)) (>\>0), (3-27)

. whence u(y+A\d) = (A>0), and hence, by (2,37), y+hdeH (A>0). Similarly, we also obtain
uly-Ad) % (A>0), whence, by (2,37), y-AdéH (A>0) . Hence,‘by (3,18), deA(y),

Finally, if yeM, then, by (3,10) and (3.20), we have p(y)=r, so (m],..,,mp(y))T=u,

which, by (3.19), yields (3.21). '

From lemma 3.1 we see that, among the sets A(y) (yeR") there are at most r+] dis-
tinct ones, and that all sets A(y) (yeM) coincide. Moreover, from lemma 3.1 we obtain

the following_characterization of M:

Proposition 3.1, For H and M as in (2,37) and (3.10), where uel (R",R"), xeR" and

(r,f}é{ﬂ,?,.,.n}><{<L , gL} , we have

M={y€RnlA(y) is the largest set of the form (3,18)}, B (3.28)

Let us give now, using the representations (2,37) and (3,10), some results on hemi-

-spaces of types <L and <y respectively, related to theorem 1,4,

Theorem 3,2, A set HcR"

is a hemi-space of type <L if and only if there exists a

5 s . n . : ; ; o
linear manifold M in R such that H is a maximal convex set not intersecting M. In this

case, M=M(H), the linear manifold associated to His

Proof. Let H be a hemi-space of type <, and M=M(H), Then

H={y€Rn!u(y) <L xby MeM(H)={yer"| uly)=x}, (3.29)
where uei(Rn, R") anx xeR™ are as in 18° of theorem 2,1, Then, clearly, HNM=§, Assume
now, a contrario, that there exists a convex set CcR" such that HcC, H#C, and CNM=0,
and let yeC\H, Then, by y¢H, we have ul(y) Z| %, whence, by yeC and CNM=#, we obtain
Q(y) > X+ Take any y_eM and let Y1=2y_y. Then

U(y])=2u(yo)—u(y) <L 2x-x=x,
]

whence yleHCZC. Hence, since C is convex and yeC, we obtain Y 7(y]+y)6C, 50 yOeSC/WM,

in contradiction with CAM#B. This proves that H is maximal. .
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Conversely, let H'be a maximal convex set not intersecting a linear manifold M,
Then, by theorem 1,4, H is a hemi-space, and hence
H={yeR"July)ex}, (3.30)
ihere.netlr™, R, e iand te{<L, <} are as in 18° of theorem 2,1. If inf, u (M) <L

then there exists yeM such that uy) <L % which, by (3.30), contradicts the assumption

Xy

HAM=#. On the other hand, if we had infL u (M) 7L

fi ={y6Rn|u(y) < infy u(M)} , (330

x, then

would be a convex set (in fact, a hemi-space) not intersecting M and such that HcH,

~

HAH, in contradiction with the maximality of H, Hence, we must have

inf, ulM) = x, (3:32)

We claim that

u(M)=ix}. | | (3.33)
Indeed, by (3.32), it is enough to show that u(M) is a singleton, i.e,, that ubis
constant on M, If u=(m],,”,mr)T is not constant on M, let ’
| io=min{j<rlmT is not constant on MJ,

and let y’,.y”eM be such that m{ y’>m? y', Then
: o] o

Xm{ Y'+(1-X)mT y”=k(mT y’~mT y”)+mT v —>~00 as A—>-00,
o

| |
(0] (o} (0] (0]

whence, since Ay +(1-A)y"eM for all AeR (because M is a linear manifold), and since
u(ky'+(1-%)y")z(Xm?y‘+(1-k)mry”jq (MeR), from (3.32) and lemma 1,1 we obtain, denoting
x=(§i);, thait '
%i0=inf {m?oy]yéM, m:y=§i 3 (i=],,..,io—])}=~oo,
in contradiction with xeR". This proves the claim (3.33), whence ‘
M {yeR"uly)=x]. ' (3.34)
From‘t€{<L , <l_} , (3,30) and (3.34) it follows that = is '<L.’ whehce‘b
H ={y6Rn\u(y)‘<L % ¥, : (3.35)
Now let yoéRn be ;uch that u(yo)=x. Then, by (3.35), HU{y_ } is a convex set,
HcHU{y } and H#HLJ{yO}. Hence, the maximality of H implies that (H\j{yo})nM¢ﬁ, which,
by HNM=@, is equivalent to y_ eM, Thus, we have the opposite inclusion to (3.34), whence

the equality

M={yeR" [uly)=x}, (3.36)
and hence, by definition 3,1, M=M(H), the linear manifold associated to M, E3
Corollary 3.1, A set HCR is a hemi-space of type ¢ if and only, if there exists
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a linear manifold M in R” such that R"\H is a maximal convex set not intersecting M. In

this case, M=M(H),

Proof, This follows from theorem 3,2, using remarks 2.3 b) and 3,1 ¢, @g

4
Ui

Remark 3,2, P.C.Hammer [4] has called a set H ina linear space E a demispace at

a linear manifold McE, M#E, provided H is a maximal convex set not intersecting M, and

he has called E\H a codemispace at M, Furthermore, be has mentioned, without proof, that

every demispace H at M is a hemi—sgace and then every point of M is a vertex of the co-
ﬁe H ([4]), theorem 3, pact 1 )%nd. 4n E=Rn, exactly one of each‘ﬁair of non-empty comple-
mentary convex sets H and R™H is a demispace at some linear manifold M of dimension j,
;here 0¢jgn-1 ([4], theorem 3, part 2), Also, M,Lassak ([9], theorem 1, part 6) has shown
that a set HCR" isa hemi-space if and only if one of the sets H,’Rn\H is a maximal
convex set not intersecting a linear manifold M and, 1m.this case, Miie the set of ald
vertices of the cone H; for some related results, see also [48]. Theorem 3,2 above shows,
in addition to the.above results, that the ”dgmispaces” in R" are exactly those hemi-
—spaces‘ which admit the representation (3,35), i.e.,, the hemi-spaces of type < .
Using theorem 3,2, we obtain,. for hemi-spaces H of type L the following charac-

terization of the associated linear manifold M(H) :

, then

Theorem 3,3, If H is’'a hemi-space of type <L

M(H)={yeRn\H( HUiy} s convex}. (3.37),A

Proof, Assume that we have (3.29), with u and x as in 18° of theorem 2.1. Then,
clearly, McR™H, Furthermore, if yeM, y'eH and 0< A<, then, by (3.29),

(=N y+hy )=(1-Nuly)+hu(y?) < (]-%)x+%x=x,

L

whence (1-A)y+hy‘eH, which proves that H\U{y} is convex (since H is convex), Thus, we ha-
ve the inclusion < in (3.37).

Conversely, let yéRn\H be such that HU{y} is convex. If y¢M, then (HU{y})NM=0,
so H is not a makimal convex set sétisfying HNM=@, which contradicts the&rem 3525 Thusk
héAmust have yeM, which proves the inclusion 2 in (3.37) and hence the equality (3.37).H3

Corollary 3.2, lf H is a hemi-space of type S then

M(H)={9€H1(Rn\H)k}{y} is convex}, - ' (3.38)

Proof, This follows from theorem 3,3, using remarks 2.3 b) and 300 <),

We can use the set M to express HEH, as follows:

Proposition 3,2, Let H be a hemi-space, with associated linear manifold M, Then,

we have



2U

-whence, by (2,37), yeH. But, by (3.43) and (3.4 ), we have
1
5U

-
HEH = (HUM) =M, et (3.39)
2ﬁé9f° Let H be represented (uniquely) as in 18° of theorem 2,1. Then, by (3,16)
and- (3. 17) (and since ttHL)M) isbét'); we have
' | (HUM)-Mé{yER”]u(y) & ik (3.40)
whence, by (2.37), we obtain :
" FHH={5+yeR [ uly)exd={y fer™ | uly )z x+u e

cyerulyDexf=t - (Fe(HLM) =), (3.41)

which proves that

(HUM)-Mc HEH,
To prove the opposite inclusion, assume, a contrario, that there exists an element

ye(HEH)N({(HUM)-M), whence, by (3.40), w0 Let

»
y=u*(x - Ju(y)). (3.42)

Then, since uu*=1 (by 18° of theorem 2,1), we obtain

uly)=uu®(x - %—u(V))=x— ] (¥) <L % B (3.43)
) 0

U(Fry)=u (7) +x = gu () =xitu 5) > x,

L
which, by (2,37), implies that J+y¢ H, contradicting JeH % H,

We shall denote by D(M) the direction (i.e., the translate to the origin) of the
linear manifold M associated to a hemi-space HeR™; thus,
D (M) =t-=h-y (y ). - (3.4b)

Corollary 3.3, For H and M as above, we have

HZH=(H-M)\UD (M), : o (3.45)
Proof. This follows from (3.39) and the obvious equalities
(HUM) =M= (H-M) U (M=M) = (H-M)U D (M) . (3.46)

Lemma 3,2, Let Hg;Rn be a hemi-s ace, with associated linear manifold M=M(H). Then
Lemma 5.2, Let p

: Hosetls Wiy et (3.47)

Proof, Let y_eM. Then, by (2,37), (3.10) and (3.17), we have

H-yo={y-yoeRnlu(y)tx}¥{y~yoeRn|u(y)tu(yo)}={y'eRn|u(y')f0}=H—M.

Corollary 3.4, For H and M as above, we have

(HZH)ND (M) = (H=M)ND (M) = (H\M) =M, / (3.48)

Proof., From (3.45) and (3.&7).wé obtain, for any Yo €M,
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('HﬁiH)\D(M)-f[(H~M)UD(M)]\ D (M) = (H-M)\D (M) =

= (H~M)\(M~M)=(H-yo)\(M-yo)=(H\M) =y = (H\H) -H,

(3.49)

Efﬁﬁﬁf_éié° If H is represented as in 18° of tﬁeorem 2,11, thenl, sby the above, we
have

(HEHND () ={yer" [u(y) <, o}, - (3.50)

Corollgﬁy 3.5 ForsH and M as in: Yemns 3.2, H=M is the unique translate of H whose

- associated linear manifold is a linear subspace of R" (namely, D(M)),

_gfgaj. Let y €M. Then the linear manifold associated to H‘-M=H~yo is M-y _=D(M),
Conversely, if H—y] is a trans]gte of H, whose associated linear manifold M—y] is

a linear subspace of Rn, then Y €M, whence, by (3,47), H-y]=H~M. @
Remark 3.4, From (3,39), (3.50) and corollary 3.5, it follews shat, for H and M

as above, HXH (respectively, (HEND(M)) is the unique translate of HUM (respective-

ly, of H\M), whose associated 1inear manifold is a linear §ubspace (namely, D(M), in both

cases),

S

Corollary 3,6, Let H and M be as in lemma 3,2, For a set H’an, the following sta-

7

tements are equivalent:

1% HisHXH,

2%, W e hemi-space with M(H*)=D (M), and H* is a translate of HUM,

3Of H' is a hemi-space of type < , with M(H')=D(M), and H'\M(H*) is a translate

of H\M.

Proof, The equivalence 1%2° and the implication 1°=53° follow from remark 3.5
and (3.39), (3.40) (by which HXH is of type <, ).

S0 il 3° holds, then, since Hf is of type <, , we have M(Hf)< H?, so H'\ M(H?)
is a hemi-space.of type <, with M(H’\M(H'))zM(H’)=D(M) (Ey 59, Hence, by the last
property in 3° .and by-remark 3.4, we have

HONM(H* )= (H2 H)\D () , _ |
whence, by D(M)=M(H')< H" and D(M)< K% H e aliEl. e obban
HY= (HONM(HE) ) UMY ) = ((HE H)ND (M) )UD (M) =H % H, &

Let us also give

Propesition 3,3 & mer™ s a hemi-space, with associated linear manifold M,

then
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D(M)={cJeR”(y+xder-: lyeH, NeR)}=
={der"|y+0deR™H . (yeR™\H, ne R)}. (3.51)
Progfe A5 Hills Muilauely) repreéeﬁted as in 18° of theorem 2,1, then, by the defi-
nition (3.10) of M, we have D(M)=Ker u,

Now, .if deKer u, we have

uly +>\d)=u(y_)*c“x (yeH, NeR),

whence, by (2,37), we obtain
y + N\ deH o (yeH, NeR), e
which proves the inclusion C in/fhe first part of (3.51). Conversely, if deR" satisfies
(3.52), then, by (3,10), we have
) o (y+Ad)ex=u (y) " (yeM, AeR),
whence, byz’é{<l_ . {L} , we obtain
Au(d)=u(rd) < 0 x (NeR),
mﬁich implies u(d)=0, i.e., deKer u. Finally, the second representation of D(M)in(3.51)
follows from the first one, replacing H by R"\H and using remark 3.1 c).
Our main result in this Section is the following ”decompositioﬁ theorem'': |

Theorem 3,4, A set HaR" is a hemi-space if and only if there exist a linear mani-

Sold M and 4 -sek Sic (D(M))'L (where D(M) is the direction of M) which is either a semi-

-space at 0 in D(MYL or the complement of a semi-space at 0 in D(MYL, such that

B 8. _ (3.53)

Moreover, in this case, M and S are unique, namely, M is the linear manifold asso-

-
ciated to H and S is the projection of H-M onto D(M)™ along D(M), whence

s = (H~ Mo, : (3.54)

Proof, Assume that we have (3,53), with M a linear manifold and S either a semi-spa--
: 1 .
ce at 0, or the complement of a semi-space at 0, in D(M)", and. let
- r = codim D(M), » (3.58)
. . A : L r
Then, by [15) , lemma 1.1, there exists a linear isomorphism w of D(M)” onto R,

such that )
S S ={yeD (M) |wly) = 0}, | (3.56)
vhere T is L1 if:S—isra semi-spacg; and T is sL , if S is the complement of a se-
mi-space. Defineuei{Rn, R™) by , '
S 15 ‘ : ' L . A
=== : ) ‘ <{w(y)\w“.tf yeD (M) | | e
: 0 if yeD(M), .
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ahd'mﬂwmwlet yoéM be arbitrary, Then, by (3.44) and (3.57), we have uly=y,)=0 (yeM).
Conversely, Pf yeRr" éatjsfies u(y—yo)zo, then, by .(3,57), (3.44), and since w is an iso-
morphism, we have y-yOGM-yé, so.yéﬁg Thus,

M\z{ye,Rnlu(y)‘w‘u(\/o)}o (3.58)

Furthermoré, let yeR", Then,'tﬁere‘exist unique y]ED(M) and yzéD(M)L, such that

y«yozyl%;z. By yleD(M) and (3,57){hwe,haye u(y])=0, Also, by (3,53) and S§;D(M)i} we ha~.
ve y~yO€H—yOx(M-yo)+S=D(M)+S if and én!y it yye5, that is, by (33560 w(yZ)TO, which, by
(3.57) -and yZESQD(MYL, is equivé]enf to uty?)vO. Hence, since.u(y)=u(yO)+u(y])+u(y2), we
obtain ‘ _

Ho=fyer"uly) wuly )], o faeoe
and thus H is a hemi-space., Moreover, from proposition; 2.1-2.4 it follows that M is the

linear manifold associated to H, Finally, by (3,53) and Sg;D(M)L, we have
L .n

H-M= (M-M)+S=D (M)+S <D (M) @ D(M) =R", - : : (3.60)
and hence S is the projection of H-y, onto D(M)l along D(M). Hence, since 0eD(M), we
obtain

i L :

SSOM)+S)MNM)) =(H-M)A DM, (3.61)

On the other hand, if ye(H-M)/\D(MyL=(D(M)+s)r\D(M)i} say, y=y]+y2€D(M)l, where
y,€0 (M), yzeSQQD(M)l, then y]+(y2~9)=0, where y2~yeD(M)L, and hence, by R"=D(M) & D(ﬁ)L,
we obtain y =0 and y=y,€S, Thus, (H-M)f\D(M)l'gS, thch, together with (3.61), proves
(3.54). ' - ‘
Conversely, if H is a hemi-space, represented (uniduely) as in 18° of theorem
2,1, define M by (3,10) and S'by
s =fyep (" Ju(y)vod, | (3.62)
For any y €M we have u(y0)=x, whence (3,58), (3.59), Given yeR", there exist unique
y]ED(M)=M—yO and yZED(M)L, §u;h that y-y_=y,+y,. Then, since Y €M-y,, we have, by (3.10),
u(y;)=0. Hence, by (3,58), (3.59) and (3.62), we have yeH if and only if y,€S. Thus, if
.ng, then, since yo+y]éM, -m*~;_;_____~__~,,~wwe have y=(yo+y])+y26M + S. Conversely,
if y=yé+y2, where y!eM, yzés, then yé¥yo+(yé-yo); where yé*yO€M~yO=D(M), whence, by thev
above (with yl=yé-yo), we obtain yeH, This proves (3.53).

Finally, since

S N .
D(M)"=(Ker u) =u*(RT) (3.63)
'Gdenﬁifyihq (RM* with R") and since uu™=1, we have u(D(MYL)zuu*(Rr)=Rr, whence, by

T .
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~dim u(D(H)L)=r=codim D(M)=dim D(M)L,
and ﬁence u‘D{M)L is aﬁ i somorphism of D(M)* onto RIS Consequently, by [15], lémma Lk
S is either a semi-space at 0 in D(MYL, or the complement of a semi-space at 0 in D(M)ilﬁ
" Remark 3,5, a) As shown by the above proof, S is a semi-space (respectively, the
complément oan semi-space) at 0, iH'DkMYL, if and only if v+ of 18° of theorem 2.1 is
<\ (respéctive]y,lgL ). Therefore, by'theorem 2,2, the equivalence class (r(H), = (H))
of a hemi-space H is uniquely determined by dim D(M) (=n-r(H)) ahdithe type of S, or,
Eﬂuivalenfly, by dim S(=r(H)) and the type of S, |
b) In the situation éf theorem 3,4, we have
H=Mes, = | (3.64)
i.e;, each yeH admits anunique aecomposition y=mts, with meM, se€S; indeed, the re]ations.
m,myeM, s,,s,€S, m+s =my+s, imply m]-m2=52—s]€D(M)ij§;D(M)K\D(M)L={O}.

c) Theorem 3,4 remains valid if we replace_D(M)l'by any linear subspace E of gl =

. such that D(M) & E=R", Indeed, we have used E=D(M)’L only in (3.63), but that part can be

- replaced by the following argument: by (3.57) (with D(M)‘L replaced by E), we have u(E)=

=w(E)=R", whence, by (300,

dim u(E)=r=codim D(M)=dim E,

and hence u]E is an isomorphism of E onto R, : 55 ]
Theorem 3.5, lLet H] and H, be two hemi-spaces, with (unique) decompositions H]=M]+S],

respectively, H,=M,+S, (of theorem 3.4), The folllowino statements are equivalent:
e D VT iiog ve  Wiepiem g 9

o -
1 S]—Sz.

20. H2,is a translate of H

] ° . -
' &

Proof, 19222, 1¢ 12 holds, then, since S%-is either a semi-space at 0 in D(Mi) :
or the complement of a semi-space at 0 in D(Mi)'L (i=1,2), we have
£ il
D(M))7=5, U {-5,Jufo}=s, U{-s,} U{0}= D)™, (3.65)
whence 7 ‘
R 1L '

Therefore, there exists yeRn such ‘that y + M]sz, whence, again: by 10, we obtain

sl e S A Rty s el

2°=1°, if H2=?+H]=?+(M]+S])=(V+M])+S] for some JeR", then, since y+M, is a linear
| A :
manifold and S, ¢ D(Mj)L=D(?+M]) » from H,=M,+S, and the uniqueness part of theorem 3.4

we obtain S4=52 (and § + M]=M2)," £, "

Tﬁégrém 3.6, Let Hl and H2 be two hemi-~spaces, with associated linear manifolds



=3

~3

.

M]Qﬂ M, respectively, The.foHowbing statements are equivalent:

| ° B(M)= '
' : ] ° D(M])"‘D(Mz)o

E 2°-3°, There exists vcﬂkRn),-réspective1y veOkRn), such that

v(D(M)))=D(H,), (3.67)
v(H =M )=H-H, for some HefH,, R™\H,}. (3.68)
49-5°, There exists vell(R"), respectively ve@(Rn), satisfying (3,68) and
‘ lyhay &0 fen(ih). (3.69)
Proof. 1°=55°, Assume 1°, and’ let (with =(H.) of definition 2.1)

Moo ARl d=ellig)

H=v ‘ : (3.70)
ReNHy i t(H])%t(Hz), :

that is, the unique element of the doub]eton‘{Hz, Rn\Hz} , satisfying
(W) = (), (3.71)
Let us define vel (R") by

{y if yéD(Mi)

(y)= ' e B
i GGy by), if yeou)h,

where u],uze'i(Rn, R") (with r=codim D(M])=c0dim D(MZ)’ by 12 are the operators such

that uiu?=1 (i=1,2), corresponding to H, and H respectively, by 18° of theorem 2.1. Then,

there holds (3.69), and, by (3.63) (for Uy, u2) and 1%, we have

u?u](D(H])L)=u§u]uT(Rr)=u§(Rr)=D(Mz)l=D(M] : (3.73)
} From (3.72) and (3.73), it follows that '
| | [y i y,eeD(M)

! : | " ; ' ‘?(U?U](y))=0=<e(y)_ I'f yeD(M])'L', ¢eD(M,)
L vi(e) (y)= ¢ (v(y))= '

| 9ly)=0=e(u3u; (y) if yeD(,), gep(n))t
| 9luzu; ()=ufu, (0 (v) if y,e D),
whence
' | 7 : ¢ if ¢eD(M]) :
*
(¢)= (3.74)
- i u?u2(¢) if feD(M])l, ' :
By (3.74) and (3,69), we have
’ vy yeotn)). (3.75)

]

On the other hand, if yéD(M])L=uT(Rr), then there exists xeR' such that y=u(x),

whence, bijj.]Z)-(3.7h) and uiu?=l, we obtain
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LM X S * X X x . %
v v(y)=u]u2u2u](u](x)) u]( ) 2u]u]( %)= u](x)=y,
vhich, together with (3,75), proves that v*v= 1, i.e, vekan).
Furthermore, by (3,69) and 1%, we have

gzv(D(M]))=u2(D(M])) (D(M })=u (Ket Uy ={0}=

=u, (Ker )=y, (D(H)), o (e
whence

U,v(y)=0=u, (y) (yed () 3 G
on the other hand, by (3.72) and u,uj=I, we have : .

uv(y)=uyudu, (y)=uy (y)  (yed(M))"), orEm e

which, together with (3.77), yields .-

Upv = Uy : : (3.79)
Hence, by (3.17) (for Hys My, up and H,My, u)) and (3.71), we obtain
ViH M) ={v ()] uy () 0k={v () u, (eo)=

5{Y'€Rnlulv-](y')f(H)0}={y‘eRn|u2vv~](y')r(H)0}=
C={yfeR" u, (y! e (H) Q) =H-,.

The implications 50=$h0=$20 and 50=§30=#20 are obvious,

.2°=¢]0' The linear manifolds associated to v(H]-M]) and H-Mz; where HG{HZ’ Rn\\HZ}’

are v(D(M‘)) and D(M,), respectively, Hence, if 2° holds, then D(M])=v( D (M, ))= . B
Remark 3.6, a) Formula (3,68) means that either v(H]-M])=H2—M2 or v(H]-M])=

=(Rn\H2)—M2. Note that,.since (by remark 3,1 d),c)) T(Hz-M2)=t(H2)#t(Rn\H2)=T((Rn\HZ)—
-M,), from theorem 2,2 it follows that there cannot exist v]; vzeh(Rn) satisfying
v](H]-M])=H2-M2 and VZ(HI_M]) (R™\H ) My
b) If v is as in 3° of theorem 3.6, then v
» V(S])=Sz, | A (3.80)

where H1=M]+S] and H=Mé+S2 are the decompositions given by theorem 3.4. Indeed, by
(3.60), (3.67) and 1°, we have

v(H]-M])=v(D(M])+Sj)=v(D(M]))+v(S])=D(M])+v(S{), (3.81)

H-My=D (M,)+5,=D (M)4S,, | (3.82)

here v(s))ev (D01 ) =D ()" (by (3.72), (3.73)) and 5, €000 =DM}, whence, by

(3.68) and the uniqueness part of theoreﬁ 3.4, we obtain (3.80j, ‘ El

¢) In 3° of theorem 346, VID(H )L ,and hence, in 5°, v, are uniquely determined.

]

Indeeed, if vied(Rn), vy (H)=H))=H=M, (i=1,2), with Het,, Rn\Hz}, then v;]vl(H]-M])=



=37 -
=3 (HeMy)=H =My, v by corollary 4.3 and theorem h.3 below, v; vy (y)=y ( h
9 D 1» whence, by corollary 4,3 and theorem 4,3 below, vy vyly)=y yeD(M]) )
Foe; v](y) (y) (yeD( M, ) ). Moreover, if 1° holds, then v%- o above is the unique
. ‘]
orthogonal transformation of D(M])L onto itself, satisfying (3.80); indeed, (3.80)-(3.82)
imply v(H]-M1)=H~M2, whence, by the above, V'D(M il is uniquely détermined. Similarly,

: - 1 : PR
using (the proof of) theorem 4,4 below and theorem 3.4, one can prove that if VisV elL(R")

satisfy (3.67), then the following statements are equivalent:

o |
1 - V] (H]—M‘)_VZ(H]—M]).

2°, There exists KeU(D(M])L)'such that £ preserves the lexicographical order in the

: i
B , r f D(M ) d r =7 J@,
basis {eJ}1 il e D(erLV]]D(M]YL D(M])LVZID(M1)L

Theorem 3,7. Let H] and H2 be two hemi-spaces, with associated 1linear -manifolds M]- iy

and M2, respectively, The following statements are equivalent:

0 -—
17, M]_MZ'
:. 20 ; n : N

2°-37, There exist vel(R-), respectively ve0(R"), and y, €M, such that we have

(3.67) and

.

v(H]~y])§H-y] for some HE{HZ, Rn\HZ}. : (3.83)
H°-5°, There exist vel(R"), respectively, ved(R"), and y €M, satisfying (3.69) and
(3.83).,

6°-7°. There exists.veu(Rn), respectively, VEOYRn), such that we have (3,67) and

(3.83): for all y]eM].

8°-9°. There exists'veU(Rn), respectively, veb(Rn), such that we have (3.69) and

3.83) for.all ZELIP

Proof. 1°=9°. Assume lo, and let y]GM =N

1=My. Then, D(M])=D(M2), whence, by theorem

3.6, implication 1°25°%, there exists ve@(R") satisfying (3.69) and (3,68), Hence, by
p

(3.47),
g \ ‘ n
v(H]~y])=v(H]—M]);H-M2=H—y], fOﬁ some HG{HZ, R \HZ}.
Since M #,, the implications 9°=8°=26°=2°, 9°27°=3°=2° 4nd 9°=55054° =20
obvious,
O

2°=531°, The linear manifolds associated to v(H]-yl) and H-y], where v €M, ,are

y(M1—y])=v(D(M])) and M-y, , respective]y; Hence, 1f 2° holds, then D(M])ZV(D(M])):

#,-y,, whence M2=y]+D( ])=M]. , ' “ 7 ]
In theorem 34 7, one cannot rep]ace H] Yy and H-y] by H]—M] and.H-M] respectively

(where HE{Hz, R \Hz} as shown by



..150».
_ExahB]e 3olilet
] {Y T nz CR lﬁq 0} Ho= {YCR ly < St } (3.84)

Then, M, {y T 72 eR |q] 0} whence H]«M =H,=H, M],‘dﬂd hence ¥ IeOK ) s

1

tisfies (3.69) and v(H -M )=H,-M

)» but M2={0}¢M].

§L. Affine transformations preserving a hemi-space

Let us first consider translations y-— y+y (yeRn), where VeRn

Theorem 4,1, Let H be a hemi-space, with associated linear manifold M, For an ele-

ment yeR , the following statements are equivalent:

~
a
ZE

1l
=0 0

w
~I
3
=
in
=

40, JeD (M),

Proof._]O:?ZO, This follows from the above proof of theorem 3,5, implication

2° = 1° (applied to H =H,=H).
0_, .0 0 and ; ol .
2°=1°, If 2° holdsv(3.53) is the decomposition of H, given by theorem 3.4, then
¥ + H=y +(M+S)=(J+M)+S=M+S=H,
Finally, the equivalences 2°=3°%=4° hold for any linear manifold M, Indeed, the
implications 2°=3°=4° 4re obvious. Finally, if 4° holds, then JeM-m (meM), whence

$+M< M. Also, since D(M) is a linear subspace, 4° implies -yeD (M)=M-m (meM), whence mey+M

(meM), that is, Mc y+M; thus, 4°=2°,

Remark 4,1, a) It is also easy td deduce the fmplication.ho:?lo above, from probo-
sition 3.3, Indeed, if 4° ho]dg, then, by the first part of (3.51), with d=§ and A=1,
we have y + JeH (yeH), so ¥ + HCH; similarly, by the first part of (3.51),.with d=y and
A==1, we have y-yeH (yeH), so HS y+H, whence y+H=H. : B

b) One can also wfite the above equivalences as formulas for D(M); e.g., one can
write the equivalence IQ@§QO in the form _ : |

D (M)={deR"| d+H=H}, (4. 1)

In particular, for demispaces, i,e. (see remark 3,2), for hemi-spaces of type <q
fofmu]a (4,1) has been given, without proof, by F.C.Hammer ([4]; theorem 3, part ]).‘No~
te that this also yields (4,1) in the general case, since if H is a hemi-space of type

< then R™\H is of type <_ » whence, by (3,15) and (4,1) for R"\H, we obtain

L ’



s
D (M)={deR"| d+ (R"\H)=R"\H} ={deR" | d+H=h}, e

Corollary .1, Let HSR" be a hemi-space, with associated linear manifold M, and

let VeRn. Then, ¥ + H is the unique translate of H, whose associated linear manifold is

Nk My,

Proof. Clearly, we have to prove only the uniqueness statement. |f y + H, 7] + H
are translates of H, both with the same associated linear manifold ¥y + M, then 7+M=V1+M,
hhence V—VIGM?M=D(M), and hence, by theorem L., implication'hozélo, y-y,+H=H; thus,
FrH=F +H. . | . B

Remark 4,2, In other words, coro]iary h;] means that any translate of a hemi-space
is uniquely detgrmined by its associated linear hanifo]d.

Corollary k4,2, Let HeR" be a hemi-space, with associated linear manifold M. For

n = . .
aset CCR ', the following statements are equivalent:

1°, HXC=H-C,

20 eicenng,

Proof, Since H%C=/")(H-c) and H-C=l_J(H=c), 1° is equivalent to H-c,=H-c, (c],czeC),
cel i ceC
i.e., to c2-¢]+H=H (c],czeC), which, by theorem 4,1, equivalence 1°%=4°, is equivalent
o it v : : @

"’ Letrus consider now affine transformations of the form

y=>§ + viy) (yerR"), ' (4.2)
where VERn and veU(Rn), or ve0(R™): note that such transformations (with v replaced by
v ), have been used in 2]0 of theorem 2,1 and in theorem 2,2, We‘shall give some neées—

sary and sufficient conditions in order that (4,2) should preserve a hemi-space H.

Theorem 4,2, Let HcR" be a hemi-space, with associated linear manifold M, For

?eRn and vé@(Rn), the <

e ,
“~following statements are equivalent:

1%, § + v(H)=H,

2°, 7 + v(M)=M and v (H-M)=H-M,
Proof, 1°=2°, For any yeR" and veuKRn), the linear manifold associated to the hemi-

space y+v(H) is y+v(M) (e.qg., by propositions 2,1-2,4), Hence, if 1° holds, then y+v(M)=M,

Thus, fixing any yoeM, we have V+v(yo)€M, whence

7+V(YO)“Y06M-YO=D(M), ‘ ' | - (4.3)

and hence, by theorem 4,1, implication 4°=1°,



< NS
FHv (yo) =y tH = H, ' o . )
Hence, by lemma 3,2 and ]O, we obtain
v(H—M)=v(H~y0)=v(H)~v(yo)=-?+H~v(yO)=
=—§+(y+v(yo)—yO+H)—v(yo)xH~yo=H—M.
2°=1°, Assume o and.]et yOeM. Then, by the First.part,of 20, we have ?+v(yo)eM,

whence, as in the above proof of the implication 1°=2°, we obtain (4.4), But, by lemma

3+2 and® the second part of 20, we have

v(H)—v(y01=v(H-yo)=v(H-M)=H—M=H-yO; : (4.5)

whence, by (4.4), we obtain

y+v(H)=7+v(yo)-yO+H=H,

TheQrem_H.B. ter HeR" be a hemi -space, with associated linear manifold M. For YeRn

and veU(Rn), the following statements are equivalent:

12, Ty (u)n,
2°, ¥ + H=H=v(H).
3%, §eD(M) and v(H)=H,

1°52°, Assume 1° and let H be represented (uniquely) as in 18° of theorem

Proof,
2.]..Then, by (2.37), we have

"V+V(H)={?+v(y)éRnlu(y)fx}={Y‘€Rnluv"](y'-?)fx}ﬁ
")} £ )

-])#=I, whence, by uu*=1, we obtain

={y‘eRn1uv~](y')éx+uv
Since v-]GQKRn), we have v—‘(v
(uv_])(uv—])*=uv-](v—])*u*=uuﬁ=l, _ (4.7)
‘Hence, by 1°, (4,6), (2.37) and the uniqueness of u in 18° of theorem 2.1, we obtain
u = uv—]. ; (4.85
Consequently, by (2:37) 5
V(H)={v(y)eRnlu(y)rx}={y'eRn]uv'](y')tx}=
={y'6Rn|u(y')tx}= H,
and hence, by 10,
7-+ H=y + v(H) = H,
2°=1%, 1f 2° holds, then +v(H)=y+H=H,
Finally, the equivalepce éo¢330 is an immediate consequence of theorem L.1, equi-
valence 1°=4°, _ i
In connection with 2° of theorem 4,3, let us give now some necessary and sufficient

conditions in order that an operator veU(R"), respectively, ve0(R™), should preserve a



hemi~space H,

Theorem 4,4, Let.HcR" be a hemi-space, with associated linear manifold M, For a

linear isomorphism veU(Rn); the following statements are equivalent:

1°, v(H)=H,
2%, v(M)=M and 5 v| preéerves the lexicoqraphical order in the orthonormal
e

basis {e}}; of D(MTL, given in 20° of theorem 2.1, where 1

denotes the orthogonal

n el D (M-
projection operator from R onto .D(M)™,

Proof. Note first that, by remark 3.1°b), we have, for {ej}? and{%}}?'as in 20° of

theorem 2,1,

D (M) ={yer"]¢, (y)=0 (j=1',:..,,r)}=lin{ej}:+] , ‘ (4.9)
D-(M)'L={yeRn]‘PJ.(y)=0 (j=r+1,,.,,n)}=nn.{e5}]r f : (4,10)
SO {ej}; ‘is indeed an orthonormal basis of D(M)L.

Assume now that H is also represented in the form 18° of theorem 2;1. Then, by
- (2.37), we have
' v(H)={v(y)1yeRn : u(y)Tx}-= '
={y’eR" uv ! (y")ex}, ‘ (5.11)
where, since veU(R™), v(H) is a hemi-space, too, with associated linear manifold
M) =fy eR™wv ™ (y )= = (v |yer", uly)sd=vi). (4.12)
Hence, by remark 2,2 e), we have 1° if and onl? if there exists a (unique) lexico-
grapﬁica] order preserving £6U(Rr)-§uch that .
Kuv—]=u, : e . (4.13)
L{x)=x. e , (h,1h)
Note also that, if 1° holds, then, by (h.fZ), we have v(M)=M(v(H))=M(H)=M, Thus,
for the proof of the equivalence 10§?20, we may (and it will be conQenient to) assume

that

v(M) = M, ' (4.15)

We claim that
L=uyu* ' . ' | (4,16)
is the unique operator in U(R"), satisfying (4.13). Indeed, the broof of the fact that
et (4, 16) saéisfies (h.13)'and.£é@(Rr), is similar to that éf the corresponding state-
I : "

ment in remark 2,2 e), using the décomposition R"=D(M)™ @ D(M) and the equalities

P >3 :
SHCORE uTu=1r =7 . (4.17)
s il T '




- i
1n order to see (4,17), note that, by uu*=1, we have
Qku(ux(x‘))=uﬂ(uu%(x’))=u%(x‘) (W (x)eu® (RT)=(Ker u)i);
* * At
also, clearly, u ulD(M)=u U]Ker 0 which proves (4,17), Now, to see that £ of (4.16)

satisfies . (4,13), or, equivalently,

Kﬁ=uv, (4.18)
note that by (4.17) we have ﬂul J-=uvu*u o FHY L On the other hand, by (3.4k)
: D (M) D (M) D (M)
and (4.15), we have : ' l :

v(D(M))=v (M-M)=v (M) ~v (M) =M-M=D (M) ; (4,19)

but, (4.19) implies v(y)eD(M)=Ker u (yeD(M)), whence Luly)=0=uv(y) (yeD(M)), and thus,
finally, (4.18). Let us also show that LeU(R™), or, equivalently, Ker £={0}:.Tf x'er",
£L(x*)=0, then there exists yED(M)J'such that u(y)=x’,lwhence, by (4,18), ulv(y))=L(uly))=
=2(x*)=0, Therefore, v(y)eKer u=D(M), whence, by (4.,19), yev_](D(M))=v-](v(D(M)))=D(M)=
=Ker u., Thus; x'=u(y)=0 (moreorer yeD (M) l' M)=1{0}). Flnally, if E], Z GU(R s Z 1=
=uv=L,u, then E]=£]uu*=£2uu*=£2 This proves the above claim on (h 16) Furthermore, A i
taking.any yOEM,be (sl b2y (4 13) and (3.10) we obtain £(x)=L( (uv (yo))=u(yo)=x;
and thus £ satisfies also (h.1h).-Censequeht1y, we o 32 if-and only if v(M)=M and

uvﬁx preeerves the lexicographical order,

Finally, let us show that W ' J_preserves'the 1exicographica1 order in the

(M)* lo(m)

basis {ef}." if and only if uvu* reserves the lexicoaraphical order. By the biorthogona-
iJj p P 4

lity of {ef . Yj}? we obtain, taking y=e{‘(i=1,,..,r) in (3.1y), that

&J e;=e; (i=1,...,r). (k,20)

, (4,9), and the definition of {e ,4}}? , we have

SLM“

On the other hand, by (h.

-1
™ viv Yoiil= Y
p(M)* p.(M)*
Hence, replacing 9 by v(y) and using (4,20), (3.11) and (4,13), (4,16), we obtain

u (1 )_L Z‘i’ (v(y)) ‘) Z‘P

i}(y)ej (yeR™. - (w2

N—r
i
—s
1] Mﬂ

D Ek SRR N
“ulv(y))=tuv” (v (y))=¢ (y)=uvuﬂ(u(y))' (yeR™). (4.22)
Observe now that, by (3.71), y= zi:i’ y)eJCD( M)© satisfies ok 0 in the basis

=) .
. and
{e}}:'of D(M)'L ifYonly if uly) <L (ln the unit vector baS|s {e }l of R7): hence, for

n -
yeR", we Have m viy) <, 0 in {e’} if and only if ulw v(y)) €, 0. Consequently,
o ¥ tefh) DM
by (4,22) and (4,20), the implication
yeD(M)L, y<, 0 in {ef}ﬁ:#n’ | viy) €0 in {ef}r
L J2 D(M)-L F 4]

il e



\f

e Z us 7

holds if and on1yAif we ‘have the implication

yed (™, uly)er"=u(d(I™), uly) ¢ 0=uvi*(uly)) < 0, "

e : ' - ;
veU(R'), the following statements are equivalent:

g

12, v(H)=H,

e}

2 .';(M)=M and v(y)=y (yeD(M)l)._

Proof., 1°=52°, 1f 1° holds, then, by theorem 4.4, we have v(M)=M, Furthermore, if H
is represented (uniquely) as in 18° of theorem 2,1, then, by the above proof of theorem

4.3, we have (4,7). Hence, by 1°,.(4,11), (2.37) and the uniquess of u in 18° of theorem

2.1 we obtatn (4.8}, that ls, - z

U . 3 (4.23)

whence uvu =1, Therefore, by allic22)

u(m lv(y))=u(y) (yfRn), ; {ho2b)
D (M) ‘
- and hence, since ul : J-,is an isomorphism, we obtain
D (M) N
T gt (yeo ()", (4,25)

On the other hand, by (3.44) and v(M)=M, we have (4,19), whencé, by veO(R™),

v ()5 =0 (M), | (4.26)

and hence, since T ( yL(y)=y (yeD(MTL), e ohta
D (M _ T
B o 0ol e dyebitieD. (4.27)
Thus, by (4.25) and (4.27), we have v(y)=y (yeD(MyL),

2°=1°,. 1f 2° holds, then.w 1=1, which ﬁreserves the lexi=

\Y% =1
oot o D(M)J"D(M)
cographical-order in the basis {ej}; of DM, Hence, by v(M)=MAand theorem 4, b, we

obtain v(H)=H,
Remark 4.3, Theorem 4.5 can be also deduced from theorem 4,4, using a result of

[13]. Indeed, by (3,44) and v(M)=M we obtain, as above, (L.27), that is, “b(MYLV]D(Msz

=v| yL..Thus, theorem 4,5 follows from theorem L.h and the fact [13] that a linear

D(M

isometry preserves the 1exicograbhica1 order in some basis if and only if it is the iden-

tity.

§5. Appendix

A) Separation of p sets by hemi-spaces,

Let us give now the separation theorem, announced in remark 1,1 el

Theorem-5,1, For any sets G],;..,GEC:RH, the following statements are equivalent:




=46 -
0 P
18 Cymlli
=] = :
2°, There exist p hemi"spaces'H‘,.,.,Hp lﬂ_Rn, such that

GEH o Geha), s (el
Pz T

Hi=9. d - (5.2)

] =
o .0 et :
Proof,.1"=2", If p=1, one can take H]:gzcl'

Now, let p»2, and assume that for some kE{0,1,...,p~1} there exist k hemi-~spaces

AP el Rn, such that
1 k
C,EH, (i=1,.,.,k), ; (53]
k p i g '
(7 Hi)fﬁ(//w\\ co C9=Q; (5.4)
i= P=k+] :
note that, for k=0, this assumption is vacuously satisfied (by 19) . Then, by (5.4),
_ k P
the convex sets co C, . and ((’\Hi)f\(/"\\ co Ci) are disjoint, ‘and hence, by the sepa-
i=1 i=k+2 .
ration theorem for two sets (see remark 1,1 b)}, there exists a hemi-space Hk+] in Rn,
such that
Ckﬂéco Ck+lng+] , ; (5.5)
k+1 p _
CR Hi)f\(/’"‘\ co Ci)=¢. o8 (5.6)
i=1 i=k+2.

Thus, by induction, we arrive (for k=p-1) at (5.1) and (5.2).

-2°=1%, 1f 2° holds, then, by.(5.1) and the convexity of H, we have co C.CH,

(i=1,...,p), whence, by (5.2),Awe obtain 1°,

B) On-a theorem of V, Klee,

We have the following results, which, in Rn, extend a theorem given by V, Klee

for semi-spaces of linear spaces ({6], theorem 2,2):

Theorem 5.2, a) For a subset H and a linear subspace M, of Rn, the following state-

ments are equivalent:

1O

. H is a hemi-space of type < , with M(H)=M,

o 2 '
27, H is convex and

HU(-H)=R™M, - (5.7)

b) For a linear subspace V of R" and a subset'H of V, the following statements are

“equivalent:
e e ot At A e —_—

& Hds A Heﬁi—spacé iin Vs

w1

O, H=EV\V, for some hemiqspace,ﬁ>ig Rn.

2




P - - a7 -

c) lf_Q is one of the open half-spaces bounded by a hyperplane P in Rni and H is

a hemi-space in P, then HUQ is a hemi-space in Rn; conversely, every hemi-space K% in

d1, with ﬁ#H“%Rn, is of the form HUQ, for su|tab1e Q and H as above,

We shall give the proofs elsewhere (in preparation).
EETELE_ELlf A result related to theorem 5.2 b) has been announced; without proo%,
in [10] (see [10], p.196, equivalence S
References
1 P.H.,Edelman and R.E.Jamison, The theory of convex geometries; Geom,Dedic,19:247-
270(1985),
2  P.C.Hammer, Maximal convex.sets, Duke Math.J. 22:103-106(1955),

3  P.C.Hammer, Semispaces and the topology of convexnty,ln Convexity,Proc.Symposia

PR EEESERRS. S S S

Pure .Math.7, Amer.Math,Soc,, Prov1dence, 1963, pp.305-316.

4  P.C.Hammer, lsotonic spaces in convexity, in Proceedings of the colloquium on

convexity, Copenhagen, 1965, Kobenhavns Univ.Mat.lnst.,Cobenhagen, 1967,
pp. 132-141,
5 R,E.Jamison-Waldner, A perspective on abstract convexity: Classifying alignments

by varieties, .in Convexity and related combinatorial geometry, Proc,Second

AJniv. of Oklahoma Confer., M. Dekker New York,1982, bp‘1\3*150.
6 V.Klee, The structure of semispaces, Math. Scand. b:5h-6€L( ]956)
7  V.Klee, Separation and support properties of convex sets=a survey, in Control

theory and the calculus of variations (A.V.Balakrishnan, ed.), ‘Acad;Press,

New, Yorky 1969, ‘ppw235-303.

8 G.Kothe, Topologische lineare Raume, I.Springer-Verlag, Berlin-Gottingen-Heidel-

berg, 1960,
9 M.Lassak, Convex half-spaces. Fundam.Math,120:7-13(1984),
10 M.Lassak and A,Prészynski, Translate-inclusive sets, orderings and convex half-spa-

ces. Bull.Polish Acad. Sci.Math,34:195-201(1986).,

11 J.-E.Martinez-lLegaz, Exact quasiconvex conjugation. Z.Oper.Res,27:257—266(1983).

12 J.-E.Martinez-lLegaz and l.Singer, Lexicographical separation in R, Lin.Alg.Appl.

90:147-163(1987).
13 J.-E.Martinez-Legaz and l.Singer, Lexicographical order, Jexicographical index and

linear operators (in preparation).




S G

14 - L;S.Pontryagin, Linear differential games,2,Soviet Math.Dokl. 8:910-912(1967) .

15 1.Singer, Generalized convexity, functional hulls and applications to conjugate

duality in optimization, in Selected topics in operations research and mathema-

tical economics (G.Hammer and D.Pallaschke, eds), Lecture Notes in Econ. and

Math. Systems 226, SpringerFVerlag, Berlin-Heidelberg-New York-Tokyo, 1984,
pp.49-79. :

16 V.P.Soltan, Introduction to_ the axiomatic theory of convexity, Kishinev, 1984

[Russian]e



