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THE OSCILLATILGNS OF BROWNIAN MOTION NEAR
A HYPERSURFACE
by

L. STOICA

INTRODUCTION

There are several methods of determining the local time
of the one—dimensional Brownian motion. One of these methods,
proposed by P. Levy, is based on the analysis of the oscillations
of the paths near the origin. By this method one should consider
the number of times NE that the Brownian path comes to 0 after
visits outside the interval (-€, +€) untill time t. It was
checked by K. Ito and H.P.Mc Kéan (see [I-K}) that

]jnlﬁNi=¥t . for each t, a.s.,
¢ >0

-
TEmay -

where ¥ is the local time of Brownian motion.

The aim of this paper'is to extend this result to the case
of multidimensional Brownian motion. So let us consider the
Brownian'motion in Rd as a standard process ¥ and observe its
behaviour near a hyperplané. To fix the notation we éonsider
that the hyperplane is K={x€Rd:xd=O}. Then the Brownian oscil-
lations near K depend only on the component Xd. Let us denote

by Ni(w) the number of times that the path X (w) hits K after
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visits outside the neighbourhood D€={xéRd:\xdi<€} before time
t. Then by the one dimensional result we immediately get

.

Son

(0.1) lim g N =A,

€—>0
where A=(At) is a continuous additive functional uniformly dis-
tributed on K. In fact A is nothing else but the local time at |
0 of the component Xd, considered as additive functional with
respect to the multidimensional process X.
What will happen if instead of a hyperplane we consider
a hypersurface? Then of course, we can treat this problem locally.
If X is an arbitrary point of the surface, we may find an open
neighbourhood of X D and a diffeomorphism F:D—>B, which
- maps D onto an open neighbourhood of 0, B such ‘that F(xo)=0 and
maps the piece of surface which is in D onto KNB. So we reduce
the problem of a hypersurface to a hyperplane, except that,
transported by F, the Brownian_motion becomes a_diffusion pro-
cess having as infinitesimal generator an elliptic operator.
This elliptic operator is obtained from 1/2/A by the change of
variable x—=>F(x) and it is of the form

2 4

d d

Ve . = 0p kT BiD

R e i

i,j=1 i=1
Surprisingly we find in Theorem 3.1 that for the hyperplane K
we can treat any diffusion generated by an elliptie operator of
this form almost as easy as brownian motion, provided that the
drift coefficient bd vanish (deO). However if L is obtained

from 1/2A by a diffeomorphism'chosenu as above, then the coef-

ficient bd depends essentially on the curvature of the surface



and it is non»nuil in general. In Theorem 3.3 we treat the hyper-
plaen K with a general diffusion,generated by an elliptic opera-
tor of the above form (with bd nonnnuﬂ). The proof is more
complicated. The difficulty is related to the L2 estimate. Then
in Theorem 7.2 we treat the case of a compact hypersurface with
a general diffusion. As a particular corollary we have the
following result,which was our initial aim in doing(this work.
THEOREM. Let X be the Brownian motion in Rd with d»3 and
let K be a compact hypersurface. For each ES-vae denote by vé
the neighbourhood of radius ¢ of K and by NE(*» the number of
times that the path X(w) hits K after visits in Rd\VE‘ before
time t. Then there exists a continuous additive functional A such
that

(0.2) lim supleNi—Atl=0, azsis
£—=>0 t

(0.3) & (suple Ea (1% et sert B R )

where C and to are constants. The functional A is uniformly dis-
tributed on K, in the sense that its potential is represented

with the "surface area" p by the following formula
e 0 ;
(0.4) E (Aao)— g(X:Y)u(dY), XE&R ’
K

where g(x,y)=k\x—y12—d is the Green function of Rd.

A different approach of the oscillations of Brownian mo-
tion (or of diffusions) near a hypersuraface was proposed by

N. Portenko (see [P] and‘EP-YJ). We use the approach of V. Bally




[B1] and our work is more related to the papers [BZ] and]:BfS].

Our main tool in the proof is the Green function. Section
1 of this paper is a long introductory section where we gather
together several properties of Green function and of Green
potentials. In general these are more or less known. In the
second section we give a rigurous definition of the functionals
numbering the displacements of the path and then study their
bésic properties. The third section is devoted to the proof
of Theorem 3.3 mentioned above. Then Sections 4, 5 and 6 pre-
sent the lemmas needed in the proof of Theorem 3.3.

The main‘result of Section 4 is Lemma 4;2. In ?ection 5
Lemma 5.9 is central, the.others are needed to prove it. Lemma
6.1 of Section 6 is used in the proof of Theorem 3.3 while
Lemma 6.2 is J%E in the proof of Theorem 7.2. The last section
is devoted to thé proof of Theorem 7.2 which is the main result

of this paper.

NOTATION

The ball of center x and radius r is denoted by B(x,r)=

={yéRd:ix—yp:r}. We call strip a set of the form
{yeRd:Snylxlé(a,b{}, where xeRd, a,beR, alb are fixed. Some-
i=1

times the last component of Rd is put in a special position,

and then we write a point xéRd as x =(x',xd), where xJéRd-1.

D is a subset of Rd and f:D—%R ,then we denote by supp f the

i

closure in D of the set { x¢D: f(x)#O}. The set supp f is called
the support of f. If D is an open set we say thrat p is a
measure'in D if it is a Radon measure in D. The space of all

bounded Borel measurable functions in D is denoted by,Bb(D)



and the family of all nonneéative Borel-functioné in D‘is denoted
by B, (D). The space of continuous functions with compact support
in D is denoted by ¥, (D). If f£(x,t) is a function defined in
ahd open subset of Rde, we denote its partial derivatives as
follows

e 9%r t. of

;. D,.f=—m—— , D f=— .
1377y lysd

D, f=2=—
i Dxl

" If f(x,y) is defined in an open subset of Rded; we use the

notation

: , 2 2

pXg-of : pYg-0f =g f—~‘)——f— pY fzi-——
1 1 1 1
dx dy

2
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In the hope that a reader with little knowledge may under-
stand how we use some results of partial differential equations,
we recall here the notation of Holder spaces of functions to
help him. Let D be any set in Rd and =¢€(0,1). Tf A is an arbitra-
ry subset of D and f:D—>»R we put
’
: [f]§=sup {If(xﬂ :xeA} ;

[£]%=sup { ‘f(X)—fg)‘ :X,YER, X#YY .
- | x- |

If D is open and f possess firs order derivatives, we put

d
A A
€] i el

d
Cel ommexiinid] -

Similarly, if f possess second order derivatives




We also write
Nk 2=gels, el Z-lls s 515 e 5= Meib Boiel s

el t,om {[f“ el im0l

If A=D we simpiy write
1D i D
[f]iz[f]i 4 ‘Jl-f'u Lf]l‘}-(}( 7 “f " i= %f" l 14
£ W o ILE] ‘i)ML Ay g,

Moreover we write | f|f = f” ff] . Now let us suppose thé.t A

is a subset of )D. Then for each xeD we set
d =inf {|x-y| SVeR Y, LE MDD o,
dx=1, if A=¢ ,
dxy=inf (dx,dy) -

and define another series of seminorms and norms

At-x%:sup{ d_|p, £ (x)] :xeD, i=1’.‘..d'} ;

A[ {*];Sllp{ di\Dijﬂx)\ “x€D, i, 3=1i2edY ,

A | & £ (x)-£(y)]
[ ,j]u—sup{ dXy .x,yéD"I :

et



e VB E00)=D £ (9]

A- | =su
; .;[:€’]1+04 : P'( dxy \X-Y‘a

:x,y€D, i=1...4%} ,

A:_[ {)_] =sup{dZW\Dijf(x)—Dijf(Y)\
5 s Xy \X"y ‘Q(

:x,y€D, i,3=1...4%},

Ay Al =i,
A
5 }QH _+1=A e

Milen, SAhel B 250

Of course, if A=0, we have ¢Hf \!i= | £ “i’ Q)“f” ire “fn i+ e

i=0,1,2. We also define the spaces of functions

fo.(D)={f:D-—>R: f is continuous and || fl] O<‘uo},
%! p)={re€° D):D, £6€° (D), 1=1...d7Y,

Y 2 myfeell :Dijf'e’fo(m e

C i feeit mielicll <Y, 10,10

ol ' o
A function f € kf(D) admits a unique extention f:D — R such

that[ T ] _<*¢. We use the notation Bf=_fl-a pi and so we have

ol 5
Bf € € (J9). If the boundary 9D is a hypersurface of class € 2+x)
0 i 4ol
we can define the HOlder semi-norms and classes \él(JD), f? ! (D)
4 : : i+l
i=0,1,2, in an obvious manner. We observe that Bf¢¥G (ID) ,
i 1l
provided £f€% " (D), for i=0,1,2.

The letter C is designed for constants. Though we will have

different constants, in various places we will use the same



symbol C.

Concerning the Markov processes we use the tefminology
and notation of the book of R.M. Blumenthal and R.K. Getoor
[B-G]. For example, if X is a standard precess with state space

d , then for each fé:fB+(E) we may write

an open subset ECR
Ex(f(xT))=Ex(f(xT}>,T<co)> ;

because f is automatically extended to EA with £(4)=0.



1. THE DIFFUSION GENERATED BY AN ELLIPTIC

DIFFERENTIAL OPERATOR

The method we employ in this paper is essentially related
to the Green function. The most general class of diffusions,
which we know to possess satisfactory properties of the Green
functions, is the class generatéd by elliptic operators with
Holder coefficients. The construction of thesg diffusions and
some of the properties we need may be founded in the book of

"E.B. Dynkin’?Dy]. However for the reader's easy we briefly retake
here these aspects. We also add several properties of the Green
function that will be of speéial interest to our approach. We
begin by listing a series of results from the theory of partial
differential equations, which_are at the ground of this matter.

Let aij, T aisilnaiacds; bi,i=1...d,c, be functions of H6lder
class €%(r%), d)2. The index « will be fixed throught the
paper and will be supposed to satisfy 0 <«%<1. It will be reserved

ij

to indicate only H8lder continuity. The coefficients a are

supposed to be symmetric (i.e. aijzaji; 1,9=1,.-.8) and to
satisfy the uniform ellipticity condition

d
2 S D a
1 = alj(x)§l§32Cl§l , x,"f}ER :
i,j=1 .
where C is a strictly positive constant. We define a second

order differential operator as follows

a a
dz)en=7 alJDi.+Zlei+c ¥
i,j=1 J =1

Whenever we will say in this paper that an operator L is of the



form (1.2), its coefficients will implicitely be assumed as above.
For the next six theorems we consider a fixed operator L of the

form: (11 .2)"

THEOREM 1.1. There exists a continuous function Dt 530, )

d

defined on (O,QO)dexR with the following properties

{1.3.0) p>0 and possesses derivatives of second order with
respect to x and of first order with respect to t;

the derivatives Dfp, D?.p, i,jgd, Dtp, are continuous

J
functions on (O,ua)dede s

d

(1.3:4) for each fixed yeR™ the function p(.,.,y) satisfies

the equation (LX—Dt)p=0 .

(1.3.11)  lim {p(t,x,y) F(v)dy=£(x), xer?, £¢€°(rY).

t+>0

(1.3.141) p(t,x,y) < ¢t™ %exp(-c, fy|2/t)

d+2 T
2 exp(—Czlx—ylz/t)

lDtp(t,x,y)lé c,t

d+1 :
[pEpk vl et 2 expiemilnv| i), i¢a
ip 1X,Y ) & 1 : P ) Y ’ N
A2
X 2 2 o .
|pf et x| ot expl=e dx-—yvi=my 1,444
: _ d-d
» 2
(1.3.1iv) \p(t,x,y —py(t,x,y)\Q C1t 2 exp(—Czix-yl )

where

p, (i, y)=ilamie) 9/ B aet ot my | 1 /2

cexp (=% atd (2 (xi-yt) (xI-yI) sat) ;
i3
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#3(2) are the elements of the matrix (EiJ(z))whiéh ds

the inverse of (aij(z)) s

In the above estimates C1 and C, are strictly positive

constants. The function p with the above properties is unique.

v : ol
THEOREM 1.2. Let T>0, h€¥°(r%), £€¥% (r%%(0,T)) and put

1=
u(x,t):S p(t,x,y)h(y)dy-gog p(t-s,x,y)f(y,s)dyds,
d d
R : R
for xeaRd and tG(O,T]. Then u is bounded, it can be extended as
a continuous function on Rdxfo,T] and its derivatives Dtu,
Diu, Diju are continuous in Rdx(O,T]. Moreover u satisfies the

following relations

(1.4) (L-DY)u(x,t)=f(x,t), xer%, te (0,7] ,

(1.5) wfe,0)=Hleh; xenS -

[
If another function v is bounded and continuous on Rdx[b,T],

its derivatives Dtv, Div, Dijv are continuous in Rdx(O,T] and
‘satisfies relations (1.4) and (1.5), then this function coin-

cides with u.

THEOREM 1.3 (Maximum principle). Suppose that the coeffi-
cient c of L satisfies condition c{0. Let D be an open set in
RY which is included in a strip and let u:D—>R be a bounded

continuous function such that the derivatives Diu, Diju, i,9gd

are continueous in D. If ucd on J D and Luy0 in D, then ug0 din D.

THEOREM 1.4 (Schauder estimates). Let D be a bounded domain

ol
in Rd whose boundary is a hypersurface of class¥32+ , let A be



a closed subset of )D and set E=3 D\A. Then there exists a cons-
tant C>0 such that

Bl <ot sk o+ JelE
: 2+od : :
for any uéA@ (D) . The constant C depends only on the following
objecksbyn, i dll ot llndll . 1.5a, ”Cl(o{ and the ellip-

ticity constant appearing in condition (1.1).

THEOREM 1.5. Let D be a bounded domain in Rd whose boundary
is a hypersurface of class\(f o «cAssume that e 0. If fetd(D)
o s
and hé?é2+ (D), then there exists a unique function uef;ﬁ+°%D)

such that Bu=h and Lu=f in D.

THEOREM 1.6. Suppose that ale¥?*¥ &%), plc€!* %Y%),

; d d d
BTy d 1 ij i i
i,jgd and set b* =-b +22;_Dja J, c*=c-§: Dib-+§ Dija J

i1 1=t EEe
Then the operator ’ : :

d d
L*EEL alJDi.+Z b*iD.+c*
1,91 L= =

,—_q_f'

is:of the form (1.2). Let p(t,x;y) and p* (t,x,y) be the functions
associated by Theorem 1.1 td L and L*. Then p(t,x,y)=p*(t,y,x).
Theorem 1.1 was proved by W. Pogorzelski and Theorems 1.4
and 1.5 ére do to J. Schauder. For a systematic treatment of all
the above results the reader is refered to the books [F] and
[L—S—U]. The function u which satisfies conditions (1.4) and
(1.5) is called solution of the Cauchy problem. The function u

from Theorem 1.5 is called solution of the Dirichlet-Poisson



problem.

(If fiQ, we say Dirichlet problem. If HEO, we call it

Poisson problem). An elegant and self-contained proof of Theo-

rems 1.4 and 1.5 may also be found in the work [ B-M]. It is

not difficult to see that the proofs given there work also in

the case where D is a strip. We will use this fact with no other

comment.

L- DIFFUSIONS

From now on in this section we will assume that L is a

fixed operator of the form

23 R

(f?;lZ) with c=0. We dednote by ny,y)=p(t,x,y) the function given

in Theorem 1.1

LEMMA 1.7.

(a)

Spt(x,y)dy=1, xeRd, t>0

(b) pt+s(x,y)=g pt(x,z)ps(z,y)dz, x,yéRd, t>0, s>0.
(c) lim sup t-Ty : pt(x,y)dy=0, r)»0
t-0 xeRd |x-yjz r -
e :
(d) i;—:g Spt (XIY)f(X)dx=f(Y) 7 yeRdl fé\é)o(Rd)

Proof

-For (a) and (b) it suffices to use the unicity assertion

from Theorem 1.2. To deduce (c) one applies (1.3. iii) and (4d)

follows froem (1.3. iv).

From (a) and (b) in the‘preceding lemma it follows that

pt(x,y) is the density (with respect to Lebesgue measure) of a
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Markov semigroup. We denote by (Pt) this semigroup.
LEMMA 1.8.
d

P E(x)-f(x)- {TP_(Lf) (was=0, xer?, ty0, £e€?(xY) .

Proof

First we take f€ﬁfz+d(Rd). Then the relation follows from
the unicity assertion of Theorem 1.2. If féYSz(Rd),then we can
take a sequence (fn) of functions in.ﬁfﬁRd) which approximate f
in‘@z(Rd). The relation holds for each fn and, as n-»ec, we get
it feoxr f. ; ' 5

The theory of stochastic differential equations suggests

us the following definition (see Proposition 2.1 of page 155 in

Ly-u]).

DEFINITION 1.9. Let E be an open set in Rd and X=(£LFM,¢QE)
Xt' 'G-t,Px) a standard process with continucus paths with state
space E. We say that X is an L-diffusion in E provided that the

process
(1.7) £(x)- §fnex )as, te [0,
£ o s . :

is a martingale with respect to each measure Px, x¢E, for any
£eC, () 6% (B).

One can obviously see that the restriction of an L-diffusion
in B to an open sebt: DC.E is an L-diffusion in D.

Now we reformulate a result of Dynkin (see [Dy]).

THEOREM 1.10. There exists an L-diffusion in Rd whose tran-—

sition function is given by the semigroup (Pt)' Moreover for any
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ifefz(Rd) the process (1.7) is a martingale with respect to each

X
measure P .

Proof

The first estimate in (1.3. iii) shows that the semigroup
(Pt) maps on(Rd) inteo itself and frem (1.3.-ii) dk follows Ethat
it is continuous. Therefore there exists a Hunt process whose
transition functibn is given by this semigroup. Because of Lemma
1.7 (c) the process has continuous paths. Now let féﬁgz(Rd). To
show that the process (1.7) is a martingale we have to prove

the following equality
X t ,' o
(1.8) ED () SuLf(xs)ds/JLu)_f(xu)

for ugt. Thus we apply the Markov property and the left side
becomes

o £ (X )-St—uLf VSR e )-St'“p LEWX )d
E (£ t-u o (Xs s)= t-u u o s s e

By Lemma 1.8 the last expression eqﬁals f(Xu), proving the
equality (1.8). The proof is complete.

The following proposition gives the probabilistic interpre—
H._uq.. 5 A
tation of the Dirichlet-Poisson problem.

d

PROPOSITION 1.11. Let E be an open set in R® and X and

L-diffusion in E; Moreover let D be a bounded domain with boun-

(62+~‘x.

dary of class ‘¢ 2 such that DCE and fc-faiD) , hé (aD) .

The the function

X ble T :
(1.9). u(x) =E¥ (h (X)) -E (Sof(xt)dt), X €D,



with T=T aiv is the solution of the Dirichlet-Poisson problem,
R \D

+ol ;
ice. uG%Zz (D), Lu=f in D and Bu=h. Moreover for each xeD one

has EX(T<eo )=1.

The statement is still true if E=Rd and D is a strip.
Proof

Let us denote by v the solution of the Dirichlet-Poisson
s D4l
problem:'vét 2t (D), Lu=f in D and Bv=h. Since the boundary is

+ &L = c
of class € - » Wwe can extend v as a function of class ¥ g ;

. d : :
in R". Let w be such an extension which moreover has compact

support and supp wc E. We know that
|
w(Xt)—SOLw(XS)ds

is a martingale. Stopping this martingale at T and taking expec-

tation we get

- e el C ) )

A

Now let us assume that h=l and f=0. Then v=l and for x¢D, the

above relation gives

1=v (x) =E* (tAT<T )

Since t is arbitrary in this relation, we deduce Tgif, proals,

On the 6ther hand supposing hz0 and fz1 we get
L o3 tAT
vix)=E* (v (%, ) -E5(§ ST x)as)

For s<§§ we have 1(Xs)=1. (The usual convention from the theory
of standard processes is that any function % :E~>R is extended

on E, such thaty (4)=0. Therefore we have 1(X )=0 if 537 .)
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Because v is bounded the above relation shows that EX(T)<a,. In

particular T is finite, and hence lim v (X
£doa tAT

t~>o0 in relation (*) we deduce that v coincides with function u

)=V(XT). Letting

given by (1.9). The proof is complete.

REMARK 1.12. Let E be an open set in Rd and X a standard
process with continuous paths with state space E. Suppose that
for any boundea domain D with boundary of class?? = such that
DCE and for any hefzﬂx @D), fe"\gazD) the solution u of the
Dirichlet-Poisson problem satisfy relation (1.9). Then X is an
IL—diffusien in:E. :

We will not use this characterisation of L-diffusions and

therefore we do not insist on the proof.

PROPOSITION 1.13. Let E be an open set in Rd and X, X two

|

I-diffusions in E. Then the transition functions of X and
coincide.
Proof

Let us consider a bounded domain D with boundary of class

Y 2 ok that DCE. We denote by (Q.) (resp. (5t)) the transi-

“tion function of the process X (resp. X) restricted to D:

Bp ) eieDy Aé?)(D).

o
Qt(X,A)—E (1A(Xt), EAD

A similar formula expresses ﬁt(x,A). We will show first that
these transition functions coincide.
This will follow once we have proved that the resolvents

(U:\ )2;0 and (U?‘);\.2 0
St At = ~
Uﬂ— ge Qtdt, Uﬂ— e Qtdt :



coincide. In order to prove this we bake f & \(_?x(D). Then by re-
Vabiona (] 9 i n that U_f and U_f both belong o' C %) and
coincide with the solution of the Poisson problem. Chosing f=1

we observe that UO‘I =_L-IO1 is a bounded function and so Uo=ﬁo may
be viewed as a bounded‘operator on @)b(D) . On the other hand the

resolvent equation leads to the following relation
n n+1
—2 & P

which holds provided that 1;\-;;‘\ |U,ll < 1. Of course this relation

‘holds also with respect to (U.). Thus from Uozﬁo we get U,'3 =TJ'F
~ v : : = .
for P< Il U0 u . Let us putl\ ={ac[0,00): U?=U) . Reasoning as
above we deduce that f\ is an open set. The continuity of the
resolvents shows thatA is closed, and therefore /\ =[O,oo) . This
implies Qt=5t.
Now let us choose a sequence (D ) of bounded domains with

; ol
boundaries of class L€2+ such that D CD 40 D= 25 o and

E=UDn. The transition functions of the restrictions of X and X
n
to Dn coincide for each 71 and, in the limit, we have that the

transition functions. of % and X coincide, completing the proof.

LEMMA 1.14. Let E be an open set in Rd and X an L-diffus-

ion in E. Then a.s. the left limit at the life-time 7, Xz @)
exists in Rd and‘X; (W) & DE provided that “f (W)<ee, If E=Rd,

then '5-_‘_:_ o acs,

Proof

d

First let us consider an L-diffusion X in R~. Since Pt1=1

we have E* (x,)t) i for each x(—Rd, which shows that ”5:—-oca S.



=ildg a

Now let us suppose that E is an open subset of Rd and
denote by X' the restriction of X to E.
IE X=(_Q,,«/é,u ~t,Xt,‘9t,Px) is our L-diffusien in Rd, then

"= (Q. ,ﬂ,dét,xt':,‘g.é,Px), where Xé and 'Qé are defined by

X, fw), if —tem w) ,
- Rd\E
' (: =
Xt(vu)
A - e B by
R \E
B W), i1f t<T ;. W),
R \E
Q-t(u-").=
w SR s R (w) .
L\ : Rd\E
The life-time ‘5 ' of X' coincides with T 3 Thus X' has the
R\E

property asserted by the lemma. Further we.define the canonical
function space type process with state space E. First for a
function e« :[0,t) => E\=E U{AY , we put 1 («) =inf{ t€]0,00) :w(t)=4A}.

Then we set
WE={w 2[ 0,%)-— EA}
‘QE': {wewE: ifE (w)<o0, thenw(“s—) exists in Rd andw(g—)e” QE},

Y (w=w(t), telo0,00), we e

a-
Feoty; tefo,00))
Now we define the map ] :-QE‘? W, as follows

T () (£)=X! ()



Because a.s. X!E_EQE if¥<e0, it follows that pfeqr ! 1o

carried by -Q.E. If X= (3 b "Et"it’ %Ct,'ﬁx) is another L-diffusion

in E, then we defineT:.{l —> W )

T (@ (£) =X @) .

~ -

The measures PXO‘T," ! and PXOTI'_1 should coincide, because, on
account of Lemma 1.13, they are determined by the same transi-
tion function. Thus "15xoTI'_1 is also carried byQE. The proof

is complete.

THE GREEN FUNCTION

In this sub-section X will be a fixed L-diffusion in Rd.
If E is an open set in Rd such that 9E#@ and he“Bb( o0 E), then

we introduce the notation

ol )))I X&E.

#Eh (x) =EX (h (X (T
; R \E

If h. would be definedlon Rd} then of course HYh(x)=P 4 b=
R \E
for x€E.

LEMMA 1.15. Let E be an open set such that 9E#@. If
hé ibb (JE) and B is a bounded open set such that BCE, then
HEh€f2+°L(B) and LHEh=O in BE. If E is a strip ox a bounded

domain with boundary of class k€2+°", then one has
wouon . 20l cellnl, heB, (3E)

Moreover if h is continuous, then one has



(1.11) Y Bihipleh ), %N E -
¥>=X
YEE

Proof

If B is as in the statement we can chose an ppen set D
which is the union of a finite number of bounded domains with
boundary of class €2+°‘ such that BCD and D ¢cE. Putting .u=HEh,
from the strong Markov property we get u(x)=H?u(x), X€D. This
shows that we may suppose from the begining that E is a bounded
"domain with boundary of class Z?2+°i T hé%22+°L(E), then from
Proposition 1.11 we know that HEh is::the solutien of a Dirichlet

problem. On the other hand we have
“HEh“-S-\lhﬂ , for each ﬁ,éng(a Byt

‘Therefore if h.éT?(B]E) we approximate uniformly h by a sequence

(hn)'of functions in"ﬁpﬁaE). The preceding inequality shows that
HEhn uniformiy approximate HEh and relation (1.11), which. holds

for the functions hn is obtained also for h. Relation (1.10)

follows by a monotone class argument.

DEFINITION 1.16. Let E be an open set in Rd and u a fuhc—
tion that possesses continuous second order derivatives. We say

that u is L-harmonic in E if Lu=0 in E.

LEMMA 1.17. Let ué B (E) be such that it is bounded on
each compact subset of E.
] . —.C
(a) If (Di)iGI is an open covering of E such that Dl E
and

D.
H lu(x)=u(x), xEDi >



for each i€I, then u is L-harmonic in E.
(b) If u is L-harmonic in E and if D is a bounded open set

such that DCE, then ue%?zﬂx(D) and one has

(1.12)  Hu(x)=u(x), xeD.

Proof

(a) From the preceding lemma we know that u is L-harmonic
in each of the sets Di , therefore it is L-harmonic in E.

(b) We may conisder that D is included in a bounded domain
B with boundary of class‘f’2+d' such that Dc B and BCE: Then

the function
B
v(x)=u(x)-H u(x), xe€B,

is L-harmonic in B and vanishes on the boundary. The maximum
principle implies v=0, which proves (1.12) with B. Then the
strong Markov property leads to (1.12) with D. From (1.10) we
get uéfzw('(D).

From now on we assume that the dimension of the space
satisfies d»3. Then the Green function associated to L on Rd

has the expression

S . S
) : a

g(x,y)=So_p(t,x,y)dt, X, YER .
The first estimation in (1.3 iii) shows that g(x,y)<ece if x#y.
In the case d=2 this is not true. Here is the reason we are

assuming dy3 in the rest of this paper. The next lemma gathers

together some basic properties of Green's function.



LEMMA 1.18.

(a) There exist C)»0 and r>0 such that

G431 glEaceEyE T, v,

(1.14) Myl P9 xy) . xAy, |xyl<r .

(b) One has g(x,x)=o0 for each xeRd and g is continuous

on RdXRd.

s

(c) For each yERd the function g(-,y) is L-harmonic in

'Rd\{y}. Moreover there exists a constant C >0 such that

(1.15) \D’-fg(x,y)ISC\X'Ylj—d :

\'D}i{jg(x:Y)K ClX-Yl‘—d o R

(d) For each yeRd)g(-,y) is excessive.

Proof

(a) Relation (1.13) follows from the first inequality in

(1.3 1ii). To-prove (1.14) we -use (1.3‘iv) and first obtain

\g(X,Y)" S:py (tIXIY)dtlS ClX—YI el

An examination of the expression of pz(t,x,y) shows that

-d/2 2
¢t %exp (-, lx-y] */t)gp, (£,x,y)

which leads to

2-d =
C x-yli & Sopz(t,x,y)dt

From these estimates one easily deduces the existence of 0

such that (1.14) holds.
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(b) As in the preceding situation we use (1.3 iv) to obtain

an estimate of the form

d- o2
2

—d/2
/ =Ct: S_p(tlxlx)l

‘C1t
which shows that g(x,x)=oo. The continuity of g on the diagonal
follows from estimate (1.714). The continuity outside the diagonal
is a consequence of estimate (1.3 iii) and of the fact thaf
pl{t,x,y) is continucus.

(c) The estimates from (1.3 iii) show that we may inter-

s

change derivation with the integral so that

- _
D?g(XrY)= foDip(tIle)dtl XEY

X 9 i
Dijg(er)= SODijp(t'X'y)dt' %Yy

and these immediately lead to (1.15). On the other hand for x#y

a

we have

o0
L*g (x,y)= S:pr(t,x,y)dt= SO %p(_t.x,y)dt .

Since lim p(t,x,y)=limp(t,x,y)=0 we observe that the last term
t>0 t>oo
is nul, proving that g(-,y) is L-harmonic.

(d) We have
oo
P,g(+,y) ()= { p(s,x,y)ds

uhb
which allowsf%o deduce that g(°,y) is excessive. The lemma is

~ proved.
We will denote by V the potential kernel of the process

X. It is expressed by



X
(1.16) VE (x) =E™ ( Somf(Xt)dtv)=
=§ dg(x,y)f(y)dy,f663+(Rd), x€r9.
R ;

LEMMA 1.19.

(a) If fe@Bb(Rd) has compact support, then Vf is a bounded
continuous function and is L-harmonic in Rd\supp £

(b) If £é€ g“(Rd) has compact support, then Vf has conti-

nuous second order derivatives and LvVf=-f.

Proof

(a) From the estimate (1.13) we deduce that the functions
{alx,-), XERd} are uniformly integrable on‘any compact K. Taking
K=supp f we deduce that, Vf is bounded and continuous. Then in
order to prove L-harmonicity we are going to use Lemma 1.17.

So let B be any open ball such that B 1K=¢ and put T=T g .« Eor
) R \B

xéB we have

HBVf(x)=EX(Vf(XT))=§EX(9(XT,Y))f(y)dy=
K

=(EPg (- ,y) (x) £(y)dy=0g (x,y) £ (y)dy
K K
The last equality holds because g(-,y) is L-harmonic in RENK i
yeK. Thus Vf satisfies the condition from Lemma 1.17 (a) and
hénce it is L-harmonic in Rd\K. :
(b) We write Vf(x)=u(x,t)+v(x,t), with t>0 and u, v given

by



u(x,t)= ggpsf(x)ds ’

vi(x,t)={P_f(x)ds=P VE(x) .

By Theorem 1.2 we know that u and v possess continuous second
order derivatives with respect to x, first order with respect

to t and

(L-D%)u(x,t)=—£(x) ,
(L-D%) v (x,t)=0 .

As one can easily see Dtu(x,t)=Ptf(x) and Dtv(x,t)=—Ptf(x).

These relations lead to L(u+v)=-f, which completes the proof.

LEMMA 1.20. Let D be a strip or a bounded domain with
boundary of class € 2+°<. Then any point xé 3D is regular for

Rd\D.

Proof

Let fQQQb(Rd) be such that supp £ is compact. Then the

function u defined by

ViE(x),;, 1f % Rq\D,
u(x)= :
HPVE (x), Af x€D,

is continuous, on account of relation (1.11). The function

=P g Vf is excessive and u=v in Rd\EQD. Since 9D is negli-

R\D
gible with respect to Lebesgue measure we have Ptu=Ptv for

each t50. By (1.3 ii) we have 1lim Ptu=u and since v is excessive
: t>0
we also have lim P,v=v. Therefore we get u=v. For x€ 9D we may

AL



write
So = ©0
BN ( §_£(X,)de)=VE(x) =P VE (x)=E" ( [ £(X,)dt),

with T=Rd\D, which shows that

eS¢ ] Bl yaeie

The function f is arbitrary and so we may choose it so that £)0
in a neighbourhood of x. Then the preceding relation implies

Px(T>O)=0, completing the proof.

Now we introduce some notation related to an arbitrary open

set ECRd. The potential kernel of an L-diffusion in E coincides

with the potential kernel of the restriction of X to E. We denote

it by VE. It is given by

Q.17 vEE=E (L eixaae), B B, wE,

with T=T e If fé?% (Rd) has compact support, then
R\E = : :

(1.18) VEf(x)=Vf(x)—P a VE(x), XeE. .
R\NE

;¥Ee‘denote by gE the Green function in E. It i; defined by
(1.19) gE(x}y)=§(x,y)—h(x,y); X,YEE ,
where h is given by
h(,y) =E* (g (X7,¥)) -
From relation (1.18) we immediately get

(1.20) vrm= § Fytmay , £69 @, xem .



The main properties of Green's function in E are listed in

the following lemma. The proof is omitted because is easy.

LEMMA 1.21

(a) The function ?\ is finite and continuous in ExE. For each
fixed y€E, the function h(-,y) is L-harmonic in E.

(b) The function gE is continuous in ExXE and for each y¢E,

g(*,y) is excessive in E and L-harmonic in Ex{ y}. Moreover one has

gE(xly)Sg(x,y) o X, Ve B

(¢) For each compact set KCE, there exists r»0 and C»0

such that
= 2-d E
@ 1|x—y| <9 (x,¥), X€E, yeK, =yl & .

(d) Assume that E is a strip or a bounded domain with
boundary:.of class f 2+el . Then for each fixed y¢E, the function
gE(- ,y) can be extended to E as a continuous function

vanishing on 3J E.
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Green potentials

There are several approaches to Green/s function and Green

potentials in the axiomatic potential theory as well as in
probabilistic potential theory.Chapter VI of the book [B-G] and
the book'fM] are most familiar to probabilists.We will prefer the
approach presented in fM} because tﬁe hypotheses XK-W(of Kunita-

Watapabe) are very easy to check in our case.

o-Lemma-l.22

Let E be an open set in Rd. Then the semigroup of an L-diffussior
in E satisfies the hypotheses K-W with Lebesque measure as duality
measure. For each x £ E the function gE(x, Jis coexcessive and the

dual potential kernel is given by -
% E
U (@xpy) = g (%,¥)dx%, Y E E.

Proof,

In the case E =Rd we can write explicitely the dual semigrcup
A

P (ax,y) = p(t,x,y)ax.
The hypotheses K-W can be easily checked on account of Lemma 1,7,
estimation(1l.13)and using the continuity of P(t,x,y), .
Now let E be an arbitrary open set.We will work with a process X
which is an L-diffusion in Rd.Its restriction te B, which is an .~

diffusion in E, has the following resolvent
-2 1
Vetlx) = EX(§ T e £ixpat). £ B @) xe B, 1
withT’=7§d\E.Denoting by(V&) the resolvent of X we can write
E £ X, =AT
Va £(x)=Vg(x)-2% e TV £(x))

Then we introduce the notation

= :
g%(XIY) =Soe—xtp(trer)dtr17/ 0, X,y € Rdr

A

halxy) = B (™9 (xv)),

gE (x,¥) g, (x,¥) = h_ (x,¥), 220,%,Y € E
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Thus we deduce :
E ' E '
V"\ £(x)= SE ga(x,y)f(y)dy, x € E, f€ (Q+(E).

Now we assert that gf is contihuous on E ¥ E for each A% o.
Of course for A=o0 we have gg=gE and we know it is continuous.

For 4 > o we should repeat the reasoning.First;the relation

Ak
e Ptf“f“gze‘“‘sPS(L- A)£. ds, £€ 62 1Y

is analogous to {:hat in Lemma l.8.The operator L-a should be used -~ |
instead of L.The martingale from(l.7)should be replased by

exp (- ;\.t)f(Xt)— Sg exp (-As) (L=-2) f()(s)ds.

.Formula(l1.9) is generalised so that
X ' E ¢ R
U (x)=E(3xp(-?\R)h(XR)-E (S exp(-at) f{X,)dt) ,x e D,

with R*—.-TRd,\ D’ is the solution of the Dirichlet-Poisson problem

with respect to L-a ,iie. (L=a)up,= £ in D and uy = h on 2D . m
We conclude that hﬁ(x,y) is c;ontinuOus which leads to the conEIrﬁg%ﬁ:
Further to verify the hypotheses K-W everything is obvious except .

the 'following relation
lim A SE f(x) gE(x,y) dx=f(y),f € & (E), 4€ E.
This relation will be proved once we have establizhed the following
() lim A gEf(x) h,(x,y) dx=o.
—> 00
Trcm the first estimation in (1.3.iii) we have
& g0 0
At : /2e Car /‘E

©0
sy

_d .
provided that }x-y\>/_ r.Putting M(r)=sgp,{ t éxp (—Czrz/t) we get
nga(x,y) < ClM(r) .Then for a fixed y ¢ T we put r=§(y,3E)and

obtain

Ah,(x,y) < € M(r)Ex(e—m') .From this relation we easily

get relation (), completing the verification of the hypotheses K-W.

Now from the resolvent equation we have

qE(x,y)=g§(x.y5 U SE gE(x,,z)ga(z;y)dz.
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From estimate (1.3.iii) we deduce 1lim g_ (x,y) = 0,and hence
A->oo A

‘&im.gi}x,y) = 0.Therefore letting A-»=s in the preceding relation
we deduce that gE(x, ) is co-excessive,completing the proof.
Remark,

The dual semigroup (?t)is not sub-Markov in general.More
precisely under the hypotheses of Theorem 1.6 the semigroup
(?t) is sub-Markov if and only if the coeficient dxappearing ther
satisfies éfg 0.Therefore we could not usé directly the results
of Chapter VI in [B-g].

Iffb is a Radon measure in E we intrdduce the notation

%EKX)=§E 9" (x,y) /v (dy),x € E.
This function is called the Green potential in E of measure .
Since gE(v,y) is excessive in E for each y ¢ E,one easily
deduces that %i is excessive in E for each/M.As a-particular
case of Theorem T9 from page 66 in [ M] we have the following
result.

Theorem 1.23

d

Let E be an open set in R and u an excessive function in E.

Suppose that there exists f€ (B_I_(E) such thatVEf is finite and
u ¢ VEf.Then there exists a uniqﬁe Radon measure K such that

M

considered with respect to an L-diffusion in E.Then supgﬁ(ﬁM. |

The next lemma gather together some properties of Green

u=qE.Let M be a closed set in E such that PMu=u,where P -is

potentials.

Lemma 1.24.

Let X be an L-diffusion in an open set E C‘Rd.

(a) If D is an open set such that DC E and/“vis a Radon

measure such that suppf—C,D,then P GE=

D

(2.21) Gﬁ(x):z(jz(x)+PE\D-G§((x), 2€.D.

(b) LetVbe such that qﬁ_is bounded.Then %ﬁ_is L-harmonic in

E\supgﬁ;f %ﬁ is L-harmonic in an open set D £ E ,then suppf»ﬂ D=0 .

E
G, and
/\4.
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Proof.
(a) The first assertion follows from Theorem T6 of page 65 in

{M2].Relation (1.21)is a consequence of the following equality

E D E
g (x,¥) = g (x,¥)+E*(g" (Xp,¥)), X €D, Y € D, T=Tp |, »

\

whieh results directly from (1.19).
(b) The first assertion follows from Lemma 1.15.Now let us

suppose that supp #/ID#J. Then we take X5 6 supp/tnD and choose
O<y < d(xo,,CD). Then the set B=B(xo,§)satisfies EC D. From

Lemma 1.21. <—

((c) we get C >0 and r € (0,9) such that

= 2= ~ :
c 1\xo—yl dg gB(xo,y), y € B(xo,r).

: o = o il
Since Xog supp/.a,, it follows that the measure V 1B(xo,r) / is

non-null. Thus from the preceding estimate we have

B N a=f D =id
e (x )2 olis RGab 0,
and using relation (1.21)we obtain

(3%) G5 (x,)-Pp g Cylxg) > O.

Let us put ¢ =/«—V. Since G/E is L-harmonic in D, from Lemma 117,
(b) we get

E Eee s i B E E
Gz * G, = Gu = Pgplu = Ppyp Cf +PL B¢

WOn the other hand the functions GEZ. and GEV are excessive, and so

E

G2 P e

E\B G’

E : E
Gy = PE\BGP'

These inequalities and the preceding equality shows that

Gv = PE\BGv’ which is in contradiction with the relation ().

Therefore our suppositicn fails,and hence supp/u /] D= .The proof

is complete.
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Lemma 1.25

d

Let E be an open set in R and/&,/“«n, n ¢ N Radon measures in E

\

such that
(W) Um po (5) =pt), £e B ),

(ii) lim limsup jG (a,r)ll:o_’a € E,

>0 n Fn

(1ii) 11m Gt /u( r)” =0 y &E.E,

Awhere/& (a,r) = 1B(a,r:)./b'n JHta,z) = l5(a, r)'/l"
(a) Then for each f¢ \69 (E):, f O one has

lim HG £y Gf‘ {0

(b) ‘Moreover if there exists fe'ﬁ (E) such that the function

VEf is finite and G E E ¥V, ne€ N, then for any compact
S

K CE one has

limNG e I8 g

/u

Proof.
(a) Let féfc(E),f ? O be fixed. We choose a compact)M such that
O 1
supp £ C M. Conditions(ii)and #{iii)together with a compacity

argument show that for each fixed ¢»0 there exists r > 0 such that

"G;(a,r)U<f' and NG/E o Al

n

r)
for each a ¢ M provided n is large enough. Further we choose
Wéf(ExE) such that 0s ¥ < l,q}(x,y') =Olif lx—y] < r/2, and

Y (x,y) =1 if |[x-y|> r. Then the functions'in the family
{l[)(x,b )gE(k,-Sf(mj :X € M}are'equéi"tunifariﬁ‘ continuous. Therefore
the measures/&.n converge to/u uniform with respect to this family

of functions. Thus we havé

(*)_159/ (X,Y)gE(x,y)f(y)/un(dv)—g\;/(x,Y)gE(x;y)f(y)/_‘n(dv)kf.,
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for each x € M, provided n is large enough. On the other hand sinc

0 £ 1- V(x,-) g lB(x,r),we have
.0 < SgE(x y)E(y) (dV)-S J(x,y) E(X y)E(y)M (dy) <
’ /‘n Y Y9 ’ /"n S

< nl G/ﬁ .y ) € 6 Ul
n 14

for each x € M and n large. A similar estimate holds with/l.v instesc

of/kn. These estimat@e§: and (x) lead to

1$o® o £ (an)- §o° (oy) £Iptan)|ge 2D,

for each x € M and n large. With our notation this can be written

as

(x) -G (x)\ ¢(21E1+1), x € M.

it

By Lemma 1.24 (a) we have P GE = s
; M f./4

E
PG = G..; 1 Pecause M
Mf-/cn f/ldn

has been choosen so that supp £ € M. Thus the préceding estimate

leads to

ﬂ f/un E ll < ¢ (20£4+1),

which completes the proof:of (a).

(b) We choose a sequence of bounded open sets such that
fnCB d E=U B . Working with a process X which is an
n

L-diffusion in E we can write

nfye 2l

P (x)=e*({ " £(x.)at), x € E
\an X)= Tn £ y X ?

with Tn=TE\Bn.Since l;.lm Tn>/3 , we get
Bk alim..P'E\B v(x)=0, x € E. .
h ]
Since PE B v is L-harmonic in B .1t follows that the preceding '

limit relatlon holds uniformly on each compact set. Now let K be

e
a fixed compactYand £>0. We choose k so that Bk:‘) K and

i BE\BkvﬂK.: £ .

Then we choose fé€ (gc(E) such that 0 { £< 1 in E and =1 on a
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neighbourhood of'ﬁk. If we denote by h=1-f, we can write supp

h ﬂ.§£=ﬂ. Applying Lemma 1.24 (a) we get

= _
h/«, *E\B r-./k§ E\kas. E\B ’

and similarly G v. It follows

h,un E\Bk
[ ~B E i K ;
ol e o o IF <
Combining these estimates with - = assertion (a) we obtain “the

dessired conclusion, completing the proof.

Lemma 1.26

Let E be an open set and/# a Radon measure in E such that GE is

/K

bounded. Suppose that a € E is such that

(1.22) 1im || 6 [ =0,
r-0 r

. ] . o :
where/xr—lB(a'r)fA.Then the function G, is continuous at a.

Proof.
/ e ;
We putfxrﬁ%jﬂr. The function Gg, is L-harmonic in B(a,r)}ln

, r
particular continuous.Since

le=ag l={les |
relation (1.22)implies the continuity of e
Remark
Relation (l1.22)characterises the continuity,i.e. if GE
continuous in a,then relation (1.22) holds.

Lemma 1.27

Assume that the coeficients of I satisfies the conditions

alJ€\€2+“(Rd)and bié %’1+M(Rd), i,j< d so that the adjoint

d). Then for each x €& Rd

s o
operator L™ has coefficients of class & (R
the function g(x,+) possesses continuous second order derivatives

in Rd\{x}.Moreover there exists C >0 such that
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‘D{ g(x,y){ < C!X'yll_d rer"éRd 1 XEY
lD{j é(x’y>‘ < ,,Ctx—Y,-d IXIYGRdIX#V.

Proof.
It follows from TheOrem 1.6 and Lemma 1.18.(C).

Lemma 1.28

Aséume the hypotheses of the preceding lemma.lLet D be a bounded

\é“ 2+ oL

domain with boundary of class . If Y is a Radon measure such

that Gs is bounded and he 6 2(D)ﬂ'€:(D) , then one has

Y neo) v (@ =- § &P i) ' () .
D b
Proof.
&0 .
If £€6 (D)nfc (D), relation (1.9) ensures us that
=-LvPf
Then by the Green’s formula we have
§ ne= -§nwvPe = - (*n) vPe
D. D P
We put
v(y) = S L*‘h(x)gD(x,y)dx, ‘¥Y-€ D,
D

The properties of gD allow us to deduce that v is a continuous

function. The preceding identity may be written as
o e
: Shf = -yvf.

Since £ is arbitrary, it fallows hi= =wv. Integrating this equality

with ¥ (dy) we éet the relation in the statement.
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2. Functionals which Number the Crossihgs
In this section L will be an operator ofithe form(1.2)with ¢ =
' a

and E an open set in R .X will be an L-diffusion in E and K a clos

subset of E.For each £3> 0 we put
[ .
V- = {xeE:d(x,K)<e Y .

Then we define the following stopping times

T =T, S= Tt

T1=$+ T © 8¢,

Timpe s Te b Ty eTn r 0 =1,2...

Of course these stopping times depend on ¢ .For tec [0,%) we put

-

¢ 80
@y e =t - :
n=l dn € tY
For each weéf) , the number of distinct displacemens of the path
from the exterior of V& to X until the time t equals the quantity
i € :
€ : At(w).The process Ae = (Ai) is adapted, nondecreasing,
right-continuous and of pure jumps;The jumps accur only at the.

times Tn,n =1,2..., and are of constant length .Now let us look at

the moments

T, 50 0 €

The following statements hold almost surely:
1f Tn (w)<es ,then X (o) G R-and 1 ¢ (Tn + So ng) (@) <eo , then
X(Tn'+ Se ng) (w) € E\Vs.On account of Lemma 1.14 we deduce that one

should have lim Tn =®43,s,Therefore Af'; is finite a.s. for each

n ;
t <cc ,We set Agw= lim A%C.One obviously has Ty > 0a.s.,and hence
20 £ —Doo
Ai = O0a.s.We note that
e
0 lE\K(Xt)d" e 0« y.a.8.

The prbcéss As looks very much like an additive functional supported
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by K.This feature is stressed by Lemma 2.3 from below.

Lemma 2.1

Let t € [0,~)and put T, = 0 and, for n = 0,1,2..., set

£ Taneeel

1 v

oA =ans t< t +S00,

5 |
N, ={_Tn< e t+$°9t'&,

, &
A, nt T {Tn S Tn+1 =°°}’
it
A

A =U A 4 =U A 4 : = °
t et nt t 1n=0,r/nt t A0 nt
Then the sets/\ nt"/\nt'/\nt’ n=20,1,2... are mutually disjoint

ey
and O =A tUA’ tU A ¢ almost surely.

a

Proof.
Since lim Tn =o® a.s., we have
U
L) = . {Tn < | Tl’i'i"l} .S,

We assert that for each n

: Y Wit
Ge o otig oy }:AntUA S e

. : . el . A ;
Since the inclusion @ is obvious we have to prove only the inclusic

e,
3,(',’".Thus let us consider @ and n Su—t:%n(w) € < T, ).

s
LE S her) == theanAnt-If T, 41 ) <20, then X

n+l1
If besides we supppse that t = T_(w),then t +Se 6, ) Tn+l(w)<co
and so X({t+ Se Gt) ) € E\VE.This implies t + Soet(w) < Tn+l(cu) ;

and hence wefl nt
- Now let us suppose that B 1957 Eoilie o8P S (W) <=0 .Suppose

that ’
besides oet(w) =0 ,Then clearly weAn

n+l

t.If SGGt(w) <=¢ , then

X(t + So_et) w) = Xsoet(w) & ENVS.Therefore t + So 6, () # T 41 @)

4
and we conclude that either w(—i'/\ntor wé‘f\nt,which completes

the proof of (x).The reminder proof is obvious.
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Lemma 2.2

Assume the notation of the preceding lemma.If we Ant'

then one has
Ifw 6/\, then one has
: nt ;
(1.3) Lok = £ & Ty © et(w),k=1,2...

/
If we Ant,then Tlc Gt(w) =w ,in particular relation (2.2) holds.
Proof.

First we assert that the inequality Th (@) < t implies

(2.4) T 4@ S t+ Tloet(w).
To check this we use the following general relation
(2.5) u + e = inf{s > w:x.€ M}, M& R (E) ,ue [0,).

This relation gives first

‘T';i(w) + 0 @) St + S ),

and then using it again we get inequality (2.4).
I] :
Now let us suppose that -wéA nt.Frpm inequality (2.4) we
obtain Tlc 6, @) =oo, which implies relation (2.2).Then let us

suppose thatweAnt.Since in this case X W) € K, from

Tn+l

relation (2.5) anc&x‘equality t + Soet(w) < T, @) we deduce
tiha

t + Soet(w) + TeB(t +Soet) w) .T W) .

n+l
v -
The left side of this inequalityYt + Tloet(w).Therefore we get
t + Tlc Gt(w) = Tn+1 (w) ybecause of (2.4).Relation (2.2) follows
5
by induction.Further let us consider the case w &/ nt-Using
again relation (2.5) , from the inequality t < Tn+l(w) we obtain

t + Tloét(w) S Thyp @) .
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Similarly from the inequality Tn+l(w)<; t-+Sc»9t@u) we obtain
'I'n+l W) +S%e eTn+1 w)g t + S Gt(c.-a) and also Theo @) < t+T¢ 8, (W) .
Relation(2.3)follows by induction.The lemma is proved.

Lemma 2.3

Assume the notation of Lemma 2.1.If ¢ 0, ) and s 0, ,then

provided that and

t t
do e S

prqyided that £
Proof.
Relation (2.6) follows from (2.2) and relation (2.9) from (2.3) The
proof is complete,

Let’'I be y Borel subset of K and put
(2.8) up(x) = EX( | @ )aB.) % - E.

Obviously we have U (x) = EX(A ) .We will simply write u = .

Lemma 2.4

For each I (K).the functiaon Uy is excessive ,One has uy PIuI

and PDuI = urprovided that D is an open set such that Vv D
Proof.

We treat the case I = K only,because the general case is similar.From

the relations (2.6)and(2.7) we obtain

.Ex(u(xt)) = gX(a Gt) EX(A ) = u(x), x E.
Now we are going to prove that lim Ex(u(xt)) = u(x) for each x E.
: t0
First from relation (2.5) we observe that s t implies
s + Gs t + Gt.Therefore the sets T t + Gt Tl 't 0,:)
satisfy the relation < g bProvided that s t.Then we remark that
lim t + &, = ,and hence
t0
poons il

t 0
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Since { § <Tl} ={8<2Y} we deduce that

U.a, UlS==}=q .
t>0

By Lemma 2.3 we have
Bw) = AS () + ASe0, (),

provided that we¢Q U { S =w}.Since lim Aat = 0 we obtain
t+0

o AJgt'{ntvis N N

‘Ta.king the expectation we get

Lim B*(A06, 5.0, U LS =) =E*(af),

t->0
which in turn implies lim E¥(a° oet) = 1im E* (u(X )) =u(x).Thus
t»0 t>0
u is excessive.Now let us check that u < PKu +¢ .Phis follows once
we have proved that
(%) It Ge iotg
o N oy T °
K
We have T, & T,.If Ty ) < T, (w) ,then AT (¢) = 0 though if
il
TK(w) = T (w) , then M.C/\ G L A Therefore we get relation

(¢) applying Lemma 2.3.
Let D be an open set such that VEC D.If x¢ D, the relation
PDu(x) = u(x) is obvious.If x € E\D,then X(TD){—' D D,PX?-a'.s.,

and henceSOQT = O,Px—a.s.Since At (TD) =0,relation (2.6) gives us
D : -

A{;: wac gTD Px-a,s.Therefore PDu(x) = u(x),completing the proof.
The aim of this paper is to prove that in the case when K is a
hype'rsﬁrface the functionals A€ converge (as€¢»0) to a continuous .
additive functional supported by K.The basic estimate in proving

- the convergence is the following lemma which is a version of a

result of BAlly(see Lemma 1 of[B1l]).We omit the proof because it i

similar to the 6riginal.
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Lemma 2.5

Let A =(A£) be an increasing process which is right continuous,

adapted and such that Ao =0.Assume that A= 1inm At is P7=

t->o0
integrable for each x € E and set u(x) = EX (Ae) .Moreover suppose

that ‘there are .two-constants A .and.[” such that

A, -A

& A k= 0,

t
[Rowr B~ ch»ot\sr o0
Let X be a CAF and u/ (x) = Ex(Af,o) its potential.Then one has

P - N |DMer s -l +

; {
#2{Z(u(x) +u’ V2 +A +ju ) )2
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3. The Case of a Hyperplane

In this section L is an operator of the form (1.2) in Rd(df} 3)

with ¢ = 0.For F»> 0 we put D

K ={x ¢ rR%:x¢

B ={x e o fxdl<'§} and

= 0}.We retake the frame of the preceding section

with respect to the set E = Dl.Sp X is an L-diffusion in D, .

The set V° coincides with DQ.For'E € (0.1)we preserve the notation
T,S,T, and A? will be defined by (2.1).The Lebesgue measure in K

d-1 e may conside

this measure).We denote by A the megsure;Zadq Jthere,add is’ .

will be denoted by/(.(Since K is isomorphic to R

the coeficient appearing in the expression of L.The integral of a

~
function f<£.h%(Rd)with respect to A can be written as follows

{ £ aan =§ o £0¢ ,002a% ,00ax’.
R

d d=1

If x& R ‘we write x = (xixd),with ¥ie R ’ xdé. R&.Now we $tate

the result of convergence of a€ in the case when the coeficient

bq appearing in the expression of L is null.

Theorem 3.1

d

Assume that b° == 0.Then there exists a CAF,A,such that

(3.1) 1lim sup B -n =0, a8
ot t‘ o 2'//; '
(3.2) E (sEplAEC - a.| V"¢ cfE,xe D;.

The functional A is determined by the following relation

(3.3) BX(a) = ) gl (xy) A (dy) ,x € D,
K

1

where g~ = gDi is the Green function associated with L in Dl.

Proof.
First we are going to prove the following relation

@) EX(T <) =1 -|x
{8
We observe thatYfunction appearing in the right side of this

equality is L-harmonic in Di\K.(Here we use the fact that b@;O.)

;X Dl'

This function is the solution of the Dirichlet problem in Di\K



44 =

with the following boundary conditions:1 on K and 0 on 9D,.

Since our process X may be vie_awed as the resfrictibn to D,
of an L-diffusion in Rdr,we apply formula (1.9) to obtain relation
(%) with x ¢ Dl\K.Further,a point x € K is regqular for the set

{x ¢ Rd:xd‘; 0%} and for the set {x G Rd:xds 0}, on account of
Lemma 1.20.A little analisys of the trajectories shows that x
should be regular for K,which implies relation (x).Similarly we

have

EX(S<oo ) =1, x € Dy.

Further we are going to prove the following relation
/ _x d
(3.3) EN(T;<e0) = (1-€)A(l-[x"|), x € D,.
By the strong Markov property we have

Ex(Tl<vo ) = EX(Exé(T <ec); § <=0).

If x e’ﬁ;,then XSe’aD ’ Px-a.s., and hence

E*S(T <o ) = 1-g , P¥-a.s.

If x¢€ DI\F , then Xo =X P*-a.s., and hence

€
Bn <o) = B e ) =le x4,

which proves(3.3i) .Computing further we get

, e
L enaae

=(1-€)EX(T <o) = (1—£)nEx('1.‘1 <eo),

because almost surely Tn(w)<oo implies Xg (e K. .
n e
Now we can obtain an explicite expression for ulx) = ET(RL)

o

iz} =6 = BNlm e ) = (1eE) A (i)

n=1
Let us put ulx) = 1-§xdl .By Lemma 3.2 from below we know that

‘u' is a regular potential.Hence,there exists a CAF A such that

u’(x) = EX(Aw).The formula proved in Lemma 3.2 gives relation (:3:3)
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Estimation (3.2) follows from Lemma 2.5 and the following easily
observed relations

fu-u’li=¢ ,

2=t e i g

e = B8
o< af - & -oo gt ,t> 0.

The last estimate is obtained from Lemma 2.3.It remains to prove

“relation (3.1).Then we seti:k = k_2 and Ak = A?k.

A Borel-Cantelli argument together with estimate (3.2) leads to

t\ =0,a.s.

%) lim sup \A]é - A
k E
On the other hand, putting T§-= T

-

: . ™
we observe that Trf < T, provided &€ < ¢ .Therefore we have

- and looking at the definition

ey
51A°ts£ 2,

Now for ¢ such that £k+l£ € < i:_k we obtain

2=l ok ( 2 =1 k]
KiE Ats Atg(k+1) & At 2
and further
\AE_A1<(k)2IAk_A\+[k+12Ak+1_A -5
t IS (kF1 t £l LK lt Bl TR o

This estimate together with &%) leads to relation (3.l;which
completes the proof of the theorem.

Lemma 3.2

Under the condition bd"g,O, the function ukx) = 1- xd is

a regular potential in D,.It can be represented as a Green

1

~potential of measure A :

u/(x) = 5 gl(x,y) A dy), x € D, -
i
Proof.

Lef(J be the potential kernel of Brownian motion in the

interval (-1,1).The Green fonction g corresponding to U has



e
the expression(see page 258 of [Do])

. (1-5) (t41) ,s % t,
g (S,t) =

(1-t) (s+1) ,t 2 s.
We choose a function fefoo(R) such that supp fC (=lsl) £ 0
and §f = 1l.Then we put fn(t) = nf(nt), n € N.Then the functions

Ut =fZ) 3(t,8)8,(s)as, ne w,

‘

are of classtn»(-l,l) and all vanish at the boundary points.

A strightforward computation shows that

g2
n%,u £ (t) = <2f (§).
Further a change of variable dn the inegral shows that

Ut (t) = _i g(t,u/n) f(u)du.

Sice § is unifé%ly continuous on (-1,1) x (-1,1) ,we deduce from

this formula thatl)fn converges uniformly to g(+,0).Now we put
- a RO

un(x) =U fn(x ) for ea.ch X € Dl.Then unef (Dl) and

d_l.Applying L we obtain

iy / v 7
un(x,;}) = un(x +1) = 0 for each x/ € R
= dd d
Lun(x) = -2a (x)fn(x Jes

B -‘ 2
Here we.have used the fact that bggz 0.By forrula(1.9) we deduce - _

= Dy o 5 dd d
that i = hn,mhere hn(x) = 2a (x)fn(x Y ¥ E Dl.Then we can

write
u (0 = 3 g (x,y)h (v)dy, x € D;.
D 3 '
Since g(s,0) = l1-|s|,it follows that u, converges uniformly to u}.

The functions u, are regular potentials,and hence the limit v is
also a regular potential.On the other hand the measures hn(y)dy
converge to the measure A (dy)so that condition(i) of Lemma 1.25 is
satisfied.Using estimate(1.13) one can easily see that conditions

(ii)and (iii)of that lemma are/verified too.Moreover choosing a
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number a > 0 large enough,the potential au, will satisfy

uh_g aﬁl for each n € N.Thus &assertion (b) of Lemma 1.25 implies

lim un(x) = ¢P1 %),

n A
completing the proof.

In the next theorem wa treat the same problem as in Theorem 3.1

for the general case when bd is nonnull.If one wants to generalise
only relation (3.1), this can be easily done using the Cameron-
~Martin-Girsanov formula;However relation (3.2) seems to be much
more difficult to generalise by this method.Iﬁ fact we are not
able to obtain it but a weaker version (see relation(3.5) from
below)using a'different me thod of analytical feature.The proof is
based on several lemmas which have their own interest.Since they
are also lengthy we present them in the next three sections.

Theorem 3.3

L3

-Assume that is non-null.Then there exists a CAF,A,such that

E=20- l = tl

(3.5) Ex(sgp}At - At}

where ¢,is a constant independent of x.The fonctional A is

2)1/25‘C(£1n el 2o Dyree (04)

determined by
(3.6) EX(a.) = S;(gl(x,Y)'/I(dY),XE D,.

Proof.
7 . | |
First we remark thatVstatement will hold true once we are able
to prove it for a process transformed by a mild random time change.

Both relations (3.4)and(3.5)remain unmodified after a random time
change.For relation (3.6)we should observe the following facts.

Let ¥ = alL, where ac¢ tf“(Rd).Then the Green function ﬁl asscciated

b
with L in Dy is related to g1 by
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T (x,y) = gl(x,y)a'l(y)

and the measure afcorresponding to E is related to a by L = aJA.

So relation (3.6) holds-fdr L once it was established for fﬁ

- We use this remark choosing a = (Zadd)_l,so that the coefficient
: = .
gdd corresponding to L is gdd = 1/2.Thus in the rest of this proof
we will assume that add = 1/2.This assumption will allow us %o use

Lemme 5.9 at the proper time.

As in the proof of Theorem 3.1,relation (3.4) follows from
relation (3.5).Also inequality (3.5) follows from Lemma 2.5 once
we are able to estimate Uu-Gil“;where u(xj = E?(Ai),x (S Dl.This
is difficult point now and the reminder proof is devoted to obtain
such an estimate.Under the hypothesis we have just made the
measures } and/u_coincide.Besides ¢ we will use a second parameter
B which will be small.We will see that the optimal choice is
something like ? =?€.However until the proper time we only suppose

that O0< € < p <l.We set R=T .Since SoGR =0 a.s., we deduce

Di\DP
from relation(2.6)that
¢ ¢ €

Aoo= AR +ANOGR a.s.

Setting vix) = EX(Az)we obtain

DD uflx), % € DP'

P

Now we are going to study function v :

(3D ulx) =rwln) it P

)
Vil =E= il coni, o Dg .
n=1

We know from Proposition 1.11 that P¥(R<oo ) = 1 for each x € qp.
On the other hand we have {Tn <00<}CZ{f%1<f Tn+lk a,s,,begause
T& > 0 a.s.Therefore the following equalities hold PX-a.s. for

each x € D
B,

fe < B) G0 +T109Tn$ RiT, < Ry ={ Tp eTns RoeTn;Tn< R}
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Furhter we have RCQR = 0 a.s. because Df\Dp is regular.This deads

S clo)

% : ; & X =
E (TlceTnéRoeTn, T =R)& E (Tlong< 0) =0,

which in turn implies

I

- EX(T

e
bhp S B =BG (M0l

T n

o X i
@g"(E"Tn(T, ¢ R);T & R).

1

Now we define an operator on<E%(DP) by

ME(x) = E¥(£(Xy, )T, & R), x€ D,.
1

P

+This operator is in fact a kernel supported by K.With this notatio

we can repeat the above reasoning to obtain

X : = pX(g¥T : : =
BMEE, )il <R = BEEIE, S Bl <R
n+1 1
= E¥(ME(X, )3T € R) = Ml (k).

n

We deduce the following expression for v-

o
.77y =¢> M.

n=1

Further let us look at the operator M.Because £<:P- we have

R=S + Raesa.s., and therefore

ME(x) = EX(E®S(£(X,);T <R

The probabilistic interpretation of the Dirichlet problem shows

that the function

Bl BB )T £ R, e Dy s

is L=harmonic in DS\K.Mbreover if £ is continuous then h can be
extended as a continuous function on'Bb such that h(x) = 0
for. x el)DP and ‘hilx) = £(x) 1f x ¢ K.Similarly Ehe function

1(x) = E¥(h(X¢)), X€ D¢y

is L-harmonic in DE and can be extended as a continuous function
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on D¢ such that 1(x) = h(x) for x e D¢ .The Tast expression of

Mf shows that Mf(x) = h(x) if x & D#\DL and Mf(x) = 1(x) if

X € %7In particular Mf is continuous provided f:is continuous.

Further, from Lemma 4.3 and the maximum principle,we deduce that

M1 g l—Tip_l,with 2 constant &€ (0,1].Therefore IM[l< 1 and we

: OO

may consider the series > Mp,which defines a bounded operator
n=1

satisfying

(3.8)}\% v IS B /3E.
n=1

From relation(3.7/)we deduce that v is a bounded continuous

function,.Taking F = 1 we have u = v and so we find that u is also

bounded and cbntinuous.FrOm Lemmas 2.4 and 5.12 we deduce that u i

a regular potential.

Now we associate to L another operator defined by

=
E= 2 o i3 ]Di..
i,j=1 d

We denote by‘i an L-diffusion procesé in Dl and E[V{ﬁ will
be objects similar to u,v,M associated with respect to X.As we
have seen in the proof of Theorem 3.1,it is quite easy to work
with such a process.For example the expression of Ml can be

explicitely computed and similar to relation (3.3/) we obtain

Mi(x) = (1- kY HA a-gg7h ,xe Dy -

This formula leads to
: oo
T (x) =€ Z_W10) = @-1x) A @-e),
n=1
Nl = 1-gp~F,
; -Ag-o_ @1 -1
| == 3| < (-2 pre.
n=1
Further we apply Lemma 4.2 and obtain the following estimate

(3.9) |ME(x)-ME(x)] < Ce(l + Ilnp/e)lI£l ,x € Dy,
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which holds provided that P( p grWhere FO € (0,1] is a constant ;

.Then we are going to prove the following inequality
(3.10) |\v(x)-V(x)|& cp® In(/e),xen,,
which holds provided that B<PBy and g€ (0,B).To this aim we begin

with the following identity which can be checked by a strightforwarcd

computation
o0 o0 O = >0 s
= 5 - weene W
n=1 n=1 n=0 n=0

Applying the above operators to function l,we get
w e
v-v = (= M%) (M-V) (V+€).

n=0
Sinceilv+€\ {=p ,relation(3, 9)1mplles

| (-F0) () (x) < Cep(1+1np/€) ,x& D, .
Finally estimate(3.10)follows from this inequality and relatioh(3,8)
Now we fix some notation.For each F we denote by gFthe Green

function associated to L in I¢.Ihe Green potential Sf measure Z in D

f

will be denoted by ﬁg.Similarly'EFand Gg will indicate analogous
objects associated with E.By Lemma 3.2 we have

e yood

cf=p -1,
which leads to

(3.11) ||¥ - 'c';'?uc £,
At this moment we apply Lemma 5.9 with respect to L and then with
respect to T, ,Obtainig

i 2
(3.12) lef - GF (¢ a2,
e

This inequality together with (3.10)and (3.11)show that
: Ly 2 :

\v(x) C}‘_(X)KS + Cp“Inp/e ,x € D,
Since the functions appearing in this inequality are continuous near
the boundary JDE we observe that the inequality holds even for
X€ )Da.On the other hand the expression of Gi_allows us to deduce

PE S

(x) for each X € Di.Then by(3.12) we obtain

'\QQ.
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P/Z < G;(x),xe “155,
provided that£<F/q mmiP is small enough.This inequality énd

the preceding one imply

| v - cfealg ciep™ +p ln(F/E))G;(X) g B, .
We intend to apply Lemma 6.1.Therefore we look at the function %i.
By Lemma 1.26 we deduce that qﬁ»is a continuous function and from
(3.12) with fR = 1,we see it is bounded.Then we deduce that %i is

a regular potential, on account of Lemma 5.12.Finally we apply

Lemma 6.1 and from the above inequality we get
fu - GI[ s C(gfs'l +Pln("3/g))Gl.
i | e
Since G1 is bounded this implies
/&
lu - 6Ll < cep™ +p1n(p/e)).
e e
Now we ovserve that the sharpe$t estimate we may obtain from this

inequality is when P is choosen to be P =V€'/Vln1/g.Namely we get
(B3 lia —'G}JLS_C ¢lnl/e, for smallE .

As we have. already mentioned the reminder proof is similar to that

of Theorem 3.1.
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4. Application of the Shauder Estimates

In this section B is a parameter belonging to (0,11 and we put

d

D@ = {x éRd: |xd! <P} = D"3 ={x€ Rd:O <x <p} . We suppose that L is an operator

of the form (1.2) with ¢ = 0. With the coefficients a' of L we define another operator

d o
L= > a”D.-..

= ij

=l
Lemma 4. 1.

For f & f”(Rd—l) and B € (0,1], we denote by u the L - harmonic function in D,'3

which is the solution of the following Dirichlet problem

u(x',0) = 1), utx',B) = 0, X' € r9-1,

Then, for € € (0,}3), we denote by v the L-harmonic function in D£ which is the

solution of the Dirichlet problem

—

Vi € mnlsie )y wlxk - g =0, we RS

There exists a constant C independent of f, ‘:’3 and £ such that
.1 A1, <cydl,

with A ={ x¢ Rd:xdzO}(f'_Tl)D;S ) and

(.2) [v], < Ce .

Proof

For any t>0 we define the map Ft(x)ztx, Ft:Rd~7Rd. This map is a

diffeomorphism and, for (36(0,1], we have FB (Dl)‘: D?’ . One can easily see that if

he \@a(DP ), then he FP‘ e a(Dl) and the following relations hold

(.3) [heF 1 =p *hl,

' A el .
(. F 1=,

d 3

=3 aloF D, ' rall (al 2 (0,11 Th
B iz,j——;la 0 p Di and observe that “32’73 legua Il, » for any Be (0,1]. Then

Let us put L
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Theorm 1.4 gives us a constant C > 0, independent of l; , such that

(®.5) | hil,, , < LPhudgr Ihfl +liBhll,, ),
R A . -
(4..5’) iz, € CEYLL I+ bl + B0 =
for any hefzJ'(x(Dl), with E = {'x¢& Rl s 1} .1 the funceion £ in the statement is in

\6 2+<>((Rd"l), then ue“ézw{ (Di5 ) and, as one can easily see, we have L‘z(u o F,,g ) = 0. Then

from (4.5') we get

Aliue Fall 2,q <ClluoFal = cusy.

The same inequality holds for f& 5 c(Rd—l), on account of an approximation argument. Using

the equality (4.4) we get (4.1). Further, from the preceding inequality we have
[ue, )1, + €LuC, €], + €Xue, £, + 2% [u(e, €)1, < Cli£l
Bl o ot £ g Sl
Then, relation (4.3) allows us to transform this inequality into
li ueFy ¢,0,,, <clill.
Applying relation (4.5) to v oF , we get
lveE|l preg SCUVEF I+ fu o P G0, J<cllEg

Then, using relation (4.3), we get the estimate (4.2). The proof is complete.

Lemma 4. 2.

If féfo(Rd'l}, we denote by u the L-harmonic function in DF\{xd = 0% which is the

solution of the boundary problem

u(x',0) = £(x"), u(x',‘z ) = u(x',—P) =0, x'_GRd'l.

~ Then, for € € (0, F), we denote by v the function which is L-harmonic in DS and satisfies

v(x', € ) = ulx, € ), v(x',-€ ) = ulx',- £), x' & ek
Similarly, we define the function u to be f—harmonic in DP\{xdz 0} satisfying the

conditions

Ux,0) = £(x), Ux',p) = W'y~ p) = 0, x erd-



SeE
and the function ¥ to be L-harmonic in D ¢ satisfying
v(x', €) = ulx,¢), v(x',- € ) = ulx',-¢), x' € rI-1,
There exists a constant C > 0 and POE(O,I] such that

(4.6) Jiv-vi <Cell +Inpse)ill,

for any 1€ ¥R ) and 0 < € < P<pPo-

Proof

First we note that u satisfies the estimate (4.1). Also Vv may be written as v = Vit Yy
with Vi Yy both L-harmonic in DE satisfying the conditions

v, €)= u(x', € ), v, x,-£)=0, x'€ Rd—l,
! 1 Tl et ] d-l

VZ(X,E)-‘-O,VZ(X,-E.)=U(X,—£.),xGR .

Therefore v satisfies the estimate (4.2). Our next aim is to prove the following
inequality

= d d :
(4.7) Juk) - ux)| < Clx | In( F/(x PNE( .
From (4.1) we have
d: O } e

\x I[Diu(x){ <chiell,
and this allows us to obtain

| Lut)] =|=b'Duta] < cilft [M ST

i

Let us put Il(x) = xdln (F/xd), X D'ﬁ . This function vanishes on the boundary of D}3 :
Applying L we get

LI = -a%%60 /%% + b%n(g /xD-1).

Choosing F,c to be small enough we will have Ll(x) < -C" xd, for any x¢ D', prov.ided

B
0 <’3 < Po' Now let k be a positive constant and note w =k ||f]| vl +U- u. This fu.nction

t

also vanishes on the boundary of D’3 and applying L we: get

Lw(x) < (C' - ke {J]]/xC.
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Therefore we choose k so that C'< kC" and consequently Lw < 0 in D', . The maximum

P

pri'nciple (Theorem 1.3) gives w 2 0, which, written in a different form, is
u - u < kil

Repeating the above reasoning witﬁ w = k{[f{|]l - u + u we will get
u - u < kilf|lL

- These estimates together lead to the inequality (4.7), for xde (O,P). Similarly one gets the
inequality for xd(:‘ (-p,0).

Further we introduce the function f, which is L-harmonic in D and satisfies the
boundary conditions

=

Vix', £) = U, £), Vx!, - €) = ulx',- £), x'e RIL,

We are now going to show fhat
.8) | %0 - vool < ce e ? - .
From (4.2) we have

LV | .=l§biDiVIs cre”li.

Then we take I(x) = € 2 (xd)2 provided

E, b
- 0<¢ <ie. <F.°, where C" is a constant. This time we put w = k {_lﬂfﬂl +V -V and again w

ol Iao is small enough, we will get L1 < -C" in D

vanish on the boundary (of DE ). Inside DE we have

Lw < (C' - kc" e gy,

Choosing k such that C' < kC" we get Lw < 0. On account of the maximum prnciple we get

w > 0, which can be written as

<4}

-ngz”umL
Simila;ly we get
Cv-veke i,
completing the pr;)of of the estimate (4.3).

Now from the maximum principle we have
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"v - :/':HS supf {u(x) - u(x)] : x ¢ QDQ} ;
The right side can be estimated from (4.7) obtaining
Iv-Vj<c ein (g /€)ilt]
This inequality together with (4.8) lead to (4.6). The lemmz; is proved.

Lemma 4.3.

Let u be the L-harmonic function in D\{xdzo} which satisfies the boundary

i

conditions

u(x',0) = 1, u(x',F) = u(x',—"S )=0, x' e’-Rd'l.

£

Then there exist a constant j- ¢ (0,1] such that
-1¢ dj + .
ux) < 1-Fp 7 x [,xéDP,fo:(O,l].

Proof

We define f(t) = (eb - 1)(eb - expbt) and w(x) = f(la-l lxd‘), with b a constant to be

choosen. We see that
Wx,0) = 1, wixl, 3) = wix'- ) = 0 -
Lw(x) = -bp ™ (e” - Dexp(op ™ x%]Na®obp L + b3,

Choosing b large enogh we have badded, and hence Lw <0 in Dﬁ\{xdz 0} for each

]3 € (0,1]. The maximum principle implies u < w in Dl3 . =

On the other hand the derivative of the function h(t) = f(t) - 1 + (eb - 1)—1bt satisfies

hf(t) <0, for t¢ [0,00). Therefore we have
Mo b2 -l

This implies u(x) < w(x) < 1 - (eb - 1)"1b lxd' » completing the proof.

2. Potentials Supported by a Hyperplane

In the first part of this section we are assuming that L = § A and X is the Brownian
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motion in Rd,d > 3. The Green function is known to be
(5.1) glx,y) = k|x - ylz—d,

with k a constant which depends on the dimension d. We put D4 :{' X éRd : lxd| < 1'} .

Lemma 5.1.
The Green function for D 4 has the following expression

gl (x,y) =2 (-Diglxty2i + Dy, xyeD,.
: i€Z

Proof

In order to check that the function g‘I given by the above formula is the Green
function, one should prove that gl,y) - gq(-,y) is harmonic in D,1 -and g’l(x,y) =0 for any
xe)D’l, ye& D’1 (see relation (1.19)). =

First we write

gl(x,y) = g(x,y) + h'(x,y) + h"(x,y),
= i id

h‘(xy)') -"-z (-1) g(Xy(y',Zi +(-1) y ))’
i=1 :

hi(x,y) =2~ (- Dlg(x,(y2i + (-1ly9)).
i=-1

The general term which appears in the above series, g(x,y',2i + (—4)lyd),decreases to zero
provided i—ay or i~>=~-co and x,y éDdure fixed. Thus the series are convergent because of
the factor (-1)' which makes them alternating. If i # 0, the function g(-, (y',2i + (-{)lyd)) is

harmonic in D&’ and hence h' and h" are both harmonic in Dd' Further, for x = (x',1), we have
gxu(y',2i + (DY) = gy, 20-1 + ) + (<07,

which shows that g‘l(x,y) = 0. Similarly we get g4(x,y) =0 for any xé':)D'l, completing the
proof.
We will denote by U the potential kernel of Brownian motion in D4. It can be expressed

as

s j Gytydy, 1€ G @), xep,.
b
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"Lemma 5.2.
a) There exists a constant C > 0, such that
o
lut)f <chil, t€ % D).

b If fe"@'l(Dl), then D;Uf = UD,f for anyi<d- L.

Proof

Let y€ D‘1 be fixed. The function g(-,(y',—yd—Z)) is harmonic in Dfl and, on the boundary,

~ we have

S(X’(Y'y-yd—Z)) =g, if i
S(X,(yl,-yd-Z)) < glx,y), if x9 =14,
From the maximum principle we get _ =

g(x,(y',-yd-Z)) < glx,y) - gl(x,y), X€D,.

Now we introduce the functions
Hu,s,8) = Kkl + s < t)2)(2—d)/2’

m(u,s,t) =2 (- D'(u,s,2i + (- D),
i€Z

so that glx,y) = I(} x' - y'[, xd, yd) and g'i(x,y) =m([x' - y'|, xd, yd).
The preceding inequality can be written as

m(u,s,t) < I(y,s,t) - l(u,s, - t - 2),

for s,t (-1,4), ug R, . Then, from the identity

1 1 p=lie g
B3 a P2 P2 it aty s A2 P-1- 12y -pi2, -pi2
i=0

we deduce
(5.4) mlu,s,1) < 16k(d - 2u2"Yu? + 16)7 L,

The expression of Uf can be transformed by a change of variable in the integral,

obtaining
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: 4 : ; _

(5.5) Uif(x) =S4 S m(|y'| ,xd,yd)f(x' + y',yd)dy'dyd.

I}
: R

Then using the estimate (5.4) we get

1 . o _
S S m(ty'|,x%y Dy dyd < 32u(d - z)S 12 %1 2+ 167 lag <o,
-1 hd-l d-4 :

R

This estimate and relation (5.5) imply both a) and b) in the statement, completing the proof.

For the next lemmas we need some more notation. Let h : R—>R be so that

[ =)
(5.6)h€ € (R), supph C (-1,1), h > 0, fn=t.
For a function f: Rd'L> R and ngN we define another functian gt Rd-—a R by

M%) = nf(xhinxd).

Lemma 5.3.
There exists a constant C > 0 such that

huaty < cify, teERYD, nen.

proof

Using relation (5.5) and estimate (5.4) we get

1
| ua"ie| < e fus4 nh(ny%dy? = Ciity,

which proves the lemma.
The potential kernel of Brownian motion on the whole space RY will be denoted by N.

It can be expressed with the Green function given by (5.1) as
el
Ni(x) = g g(x,y)f(y)dy, x€R",
d

with fe’fgb(R ) such that supp f is compact. It is known that Nf is bounded and continuous.

~

Lemma 5.4.
There exists a constant C > 0 such that

I NI"f[l <Cryfli,neN,
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for any fé"éc(Rd"i) with supp f ¢ B'(r) = {xGRd-{ :{x] <r}.

Proof

Estimating g(x,y) < kjx' - y'|2'd we get
' lNJ"f(x)[ <cligfi S ly| 2“"dy'th(nyd)dy'd,
B(r)
which leads to the inequality in the statement.
Lemma 5.5.
There is a constant C > 0 such that

IogNa"t | < cif, 1€ R, nen.

Proof

: &) =
The function J™f has compact support and posseggs a bounded derivative with respect

to xd. Therefore DdNJnf exists. In order to estimate it we first write
NI"i(x,s) = kﬁf(x’ + y’)nh(nyd)(l Y| 2, |s - ydf 2)(z'd)/zdy'dyd.

We have to evaluate NJnf(x',s) = NJnf(x',t). Then from the identity (5.3) we deduce

o) d 2,(2-d)/2 g di 2,(2-d)/2
I1E e s -y D2y 2, g0 9 20202
SW-2fs - tfsfs e t- 2oy 2y 20 D
: d . d :
withu= fs - y9 Vit-y | - The integral

I=S y 282y ey
rd-1

is finite and we have
S 1Yl z-d(l'y'i 2 & uz)-.ldy' = u—ll.

Since‘ s+t- 2ydl < 2u, from the above considerations we get
[ N3"t0c,5) - N3"s6e,00] < 20 - 2))s = 1) 1 1),

This inequality leads to ‘DdNJnflﬁ 2(d - 2110, éompleting the proof.
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Lemma 5. 6.
LetE= xeRY: x| < l)]xd] < 1}, There exists a constant C > 0 such that
IDut0 | < cijuf, xeE, Wi <4, x%¢(-1,0),

for any function uéf 2('Igl-) which is harmonic in E and satisfies the conditions

ulx',4) = u(x',-4) = 0 if |x'| < 1.

Proof.

We define a function v, which extends u to the set E' = {xéRd sl e, xde' (-3,3)} ;

as follows
v(x',xd) = u(x',xd), if xdé [-1,1],
v(x',xd) = »-u(x',2 = xd), if xdé (1,3)
v(x',xd) = ~ulx', =2 = xd), if xdé(—B,‘—l).

Obviously v is continuous and computing left and right derivatives at a point (x',1) we see
that de exists and is continuous in E'. Since u = 0 on the set{ xé;Rd wlxt <l xd = 1]— , We
have Diu =0, Diju =0 on this sgt, for i,j <d -~ 1. Thisrshows that the derivatives Diu, Diju
exist and are continuous in E', for i,j <d -1. Then we see that DdDiV is also continuos in E'.
From the -relatiénAu =0 we deduce Dddu(x',l): 0, which leads to the existence and
continuity of Dddv in E'. We conclude that ve“é"z(E'). Now we chooée a domain D with
boundary of classfzmisuch that {x &R <5 lxd{ <IYeDbeES

The ineq}uality from the statement of the lemma follows from the estimate (1.10) applied to
D. The lemma is proved . |

The last three lemmas are needed in proving the following result, which will be

essential in the future.

Lemma 5.7.
There exists a constant C > 0 such that

iDduz™j <cufy, t€€°RY L), nen.
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Proof

We choose a function (fetfc(Rd'i) such that gf(x') =4 if |x'| <4 and P &) =0 if
|x'} >2. Then for a given point x€D, we write x = (x',xd) and define I(y") :L(.'/(y' - x'),
| _

Y€ RO psra given £¢¢ c)(Rd_‘i) we have

u3"t = uau) + I - DE).
~ The function 3™ - Df) vanishes in the set {yéD11 B 4'} , and hence UJ™({ - D)
is harmonic in this set. Applying Lemma 5.6 we get
| pdua™ - no)| < cljua™ - noj< c i,

with a constant C which do not depend on x.
In order to estimate the derivative of UJ™If) we extend this function to
D':[yéRd: [yd[ < 3}. Namely we put , -
uly) = UTPany), if y% [-4,4],
uly) = -U3™any,2 - y9), if ydea,3),
uly) = -UI)y',-2 - yY), if y9e (3,-1).
The function h in thé deﬁnitioﬁ of ;3" iS such that '“; = d(supp h, R\ (-4,1)) > 0. Therefore
UJn(lf}, is harmonic near the boundary of D, As in the proof of Lemma 5.6 we deduce that u
is harmonic in the set {yé€ Rd: iydl € (1 -&,1+3)}. On the other hand NI™(lf) - ua")

is harmonic in Dl’ and hence NJn(lf)—u is harmonic in the set

D1-+5. ={ye Rd: '\ydl <l +T} . From the estimate (1.10), applied with respect to the set
D1+F , we get
[D 4N - u)(x)\ < ClINa"af) - u[ < UNI"apil + fuIhanl< cligy.

The last ineq@ity from above follows from Lemma 5.4 and Lemma 5.3. Moreover applying

Lemma 5.5 we get il DdNJn(lf)Il < Clifl, which combined with the preceding estiamte gives

lushuneo] < eyl

The constant C obtained here do not depend on x. Thus the proof is complete.
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Now let us put DP ={x€Rd: ]xd{ <P} and denote by uP the potential kernel of

Brownian motion in D, . From the last lemma we deduce the following corollary.

B
Corollary 5.8

There exists a constant C such that
elindide )R

D UB 3" < Cl 1y,

d-'l)’

* for each fe"@o(R f%é (0,1Jand n > i/{s :

Proof

For t>0 we denote by F, the map Ft(x) = tx. So )for B € (O.l],the map F, applies

P

diffeomorphically D1 on D,3 . We are going to prove the following relation

*) URf- [32(U4(m=P ) e Fﬁ_l, fe‘@c(D[3 )i |

Obviously it suffices to prove this relation with fé\é:“(DP ). For such a function f we put
u=UP{. We know that uef2+d(DP ), u vanishes on the boundary and fAu=-f. Then -
u c;Fﬁ 6f2+°‘(D‘), this  function vanishes on the boundary of D, and
14 (u oFP ) :-@zf oFﬁ . The unicity of the Poisson problem implies ue FP = FZUl(fo F‘B )
which proves relation ().

fi€€ (Rd-l) and n > 4/p ,then supp R DP . Applying relation (x) we get
() UPI"t = p2UN@EMO F Do F .
e

We observe that
il FF (x) = £(B x)n h(np ) p ity 0Fp )(x),

where I is defined similar to Jn, Namely the functih h'(t) = £ h(at) has the properties
listed at (5.6) and 3" is defined with respect to this function. Now we should note that in the
preceding lemmas the constants obtained in the estimates do not depend on the function h.

Therefore we can apply. Lemma 5.3 and obtain

I Wia™eE, N <cite

p B

I =cyif,
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which implies the first inequality asserted by the corollary, on account of (xx). Then from

Lemma 5.7 we have

[l Ddtﬂ(:l'“(fc F, )l <Clif.

P

Since in generall we have DyueF P P'I(Ddu) bFP s from this inequality and (%) we

get the secopnd inequality of the corollary. The proof is complete. ,

*

* *

Now we are going to state the main result of this section. First we fix some notation.

dd

Assume that L is an operator of the form (l1.2) such that ¢ =50 and a" "= 1/2. If Be (0,11

we denote by gf'3 the Green function associated with L in D, ={ xe Rd: ]xdl <BY.

£
Besides we denote L = 3+ A and g‘P will be the Green function associated‘with ‘t in DP :
Green potentials associated with g (reép.gP) will be noted G.g (resp. ‘E}'{j ). Identifying the
hyperplane -Lxé’Rd : xd =0} with Rd_JI we have a Lebesgue measure (d-1 dimensional) in
this hyperplane, which will be denoted by p. Any function féa%(Rd_i) may be viewed as a
function in this hyperplane so that the measure f-p is well defined. The main result of this

section is the following lemma.

Lemma 5.9.
There exists a constant C > 0 such that

6fy -Gl scp’ati g« plitny,

for any féfz(Rd—{) and g€ 0,11

Proof

We denote by Vp the potential kernel of an L-diffusion in Dp,It is given by the

following relation

o e
D, P

). Let h be a function satisfying the conditions (5.6) and fe‘g’z(Rd-i

for f69+(D ). Then

P
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2% E‘é 2(Rd) and if n >F =l we have supp 35e D, By Lemma 5.10 from below we have

g
vBIM - uPIM-ve@ -THub M.

Since Jnfc—‘@ Z(D‘; ), the function uP 1" belongs at least to the classf 2(D ) and the

P

following relations hold

p, uP " = uP a™py, DijUP e = u? Pt
for each i,j < d - 1. Therefore we can;m write

vPa" - uP e vP vy,

where

g =Z (aij-fgii/é')uﬁJ“Di.f+Z blUB I™D.£
i,j<d-1 b Kl :

v =5 (9:2%p ui™.t . 9D UPIM:
LT de 8

We have used here the fact that add = 4/2. Applying Corollary 5.8 we get
fiu i <Cell 1l
v <€ ‘\fh'
Further, using Lemma 5.11 from below, we obtain
‘ n P 4N 2,
lIve 37 - uP 3] < cp it LRIl
Now, in order to prove the deired inequality, it suffices to check that
s 2 L
VP "t —G £,00 and UP 300 — G f{‘“ (x)
as n—>w0, for each xer . This can be done applying Lemma 1.25, the hypotheses of which
are verified by a straightferward computation based on the estimate (1.13). The proof is
complete.
Lemma 5.10

29
1f VP and UP are the kernels appearing the proof of the preceding lemma, then the
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following equality holds
vei-uPt-vP@-Tuly,

for any f € '\5&(13?) )

Proof

: w2+ L ~ : _
First we observe that UPf €t and hence the operator L - L can be applied to this

function. The right hand side of the equality in the statement may be written as

—~

vBLUPt - vPTUPL

Since U is the solution of the Poisson probelm, we have TUP f = -f and so we can see that
the last term in the above expression becomes VP £. Now let us denote by u the first term,
i.e. u=VPLUP. This function also may be viewed as the solution of the Poisson problem,
so that Lu=-LUPf. The function u + UB{ vanishes on the boundary of Dp and is
L-harmonic. The maximum principle implies u+ UPf=0, which shows that

YRPLUPE - -UPf The proof is complete.
Lemma 5.11.

There existsa constant C > 0 such that

RUWBCP%‘WﬂUSCpafﬁmAl

Proof
Let u(x) = exp sy exp(-axd). We have
Lu(x) = a(a add(x) + bd(x)) expaxd + a(aadd(x) - bd(x))exp(—axd).

We choose the constant a so that a > | bd“ /inf{add(x) s X € Rd} . Then there is a constant

k>0 such- that Lu(x) >k, for any xéDJ. Further, for a given p¢ (0,4], we put

v(x) = 2P 4 e - ux). Obviously v(x) =0, if x&2 DP and the function f(x) = -Lv(x)

v

satisfies f > k. From relation (1.9) we get v = V[*f. Then we can write

vPickvP =kl
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An elementary estimate shows that v(x)SeaP+e-aP-2§C(22, with a constant

1

independent of g Therefore we have ||[VB[=[V? 4] <Ck~ PZ.‘ The inequality with UP is

similar.The proof is complete.

Lemma 5.12

Let p:Dl-—‘> R be an excessive function with respect to an L-diffusion in D4.
Suppose that p is bounded and PDE p = p, for some € €(0,1). Then there exists fé"é'?D{),

f > 0 such that V'If is bounded and p < V{f.

Proof

. The function v defined in the proof of the preceding lemma, in the case R = 1, can be
written as v = V4f. On the other hand it is easy to see that v(x) > plaad o 2f ot 0,
fro any x¢& DL. . If we choose a constant b such that bv > p on the set D, we will have bv > p

in D-l' Thus the function bf will possess the required properties.
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6. Potentials Supported by Small Sets

Lemma 6,1,

Let X be a standard procéss with state space E,
Let A=(At) be an additive functional such that its poten-
tial u(x)=EX(QJ is finite for each x¢E. Suppose that K

is a closed set which supports A in the sense that A =0,

T
a.s. with T=TK. Assume that D is an open set such that B CD

and p is an excessive function such that
u(x)—PE\Du(x)+PE\Dp(x)$p(x),
for each xeK. Then the following inequality holds

u(x)sp(x), x€E.

Proof.
We introduce the stopping times T=TK, S=TE\D ’
R1=T &+ soeT, Rn+l=R1+Rnweh4 n=lpd. s TEog s easy to see
= 0
that Rn+l Rn+Rl-ekn, and hence
Rn‘Rn+1+T°eRr;< B
From the equality X(Rn+T°eh )=XT°9h r 1t follows
£y n :
that X(Rn+T°eR &K if Rn+T°9h'<°°’ Similarly X(Rn)EE\D if
n n
R << . These show that lim R »§. Therefore u(x)=lim Ex(A(Rn)),
» n n

because A =A§; by definition of an additive functional of X.

Thus the lemma follows once we have Proved  that
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(6.1) E"(A(R))¢p(x), xEE.

Now we are going toiprove this relation by induc-

tion. Let us suppose it is true with n. In order to check it

Ve

with ntl, we first write

A (Rn+l )=A (Rn)oeRl+A (Rl )= (A'ﬁ(Rn) °eS+AS)oeT.

Then, using (6.1) with n, we obtain

X

x S e X : =
E ‘A(Rn)ies)—E'(m (A(Rn))éE (p(X(S)))—PE\Dp(X).

On the other hand we have EX(AS)=u(x)—P Du(x), and hence

c

we -can deduce

X (T)

E*(aR_, )= E T a® eocra))s

n+l S

€ B B @I F . culi¥ D).

Since XTGK ik T<ao, we can use the inequality in
the hypothesis of the lemma and deduce that the last term is
dominated by Ex(p(XT))4p(x), because p is excessive. So we

have proved relation (6.1) with n+l, completing the proof.

Lemma 6.2,

Let L. be an operator of ‘the form (1:2) in Rd,

dy3,such that ¢=0, Then there exist €)1 and r30 such that

‘

ug(1-c“s flu-P_4 ulfl ,
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. 2 ‘
for each aeRd, 0<t<r,0<5lcc-a—§ and u of the form u(x)=

=E*(As), with A an additive functional supported by B(a,dt) in

the sense that AT=O, AaSei for T=TB(q,§t)'

2 (We remark that &< 1, because

(6 d <1, and hence B(a,yt)CT B(a,t)).

Proof

We take C>1 and >0 so that the inequalities (1.13)

and (1.14) are satisfied. Now let aeRd be fixed and put U(t)=

={x€Rd:g(x,aD45k. From (1.13) we deduce that U(Ctz_d)CB(a,t)

—ltZ—d

for any t>0 and from (1.14) we obtain B(a,t) < U(C }odE

~ t<r, Therefore we have

-

B(a,3t)C U(c'1 (St)z'd) cu(ct d)C Bita, t),

2-d_ .2

_provided ¥ © >C° and t<r. Then we put-

q(x)=g (x,a)AC” 1 (3t) 274

so that we have

(6.2) clee)lqw, xeB(a,0),
(6.3) : q(x)gCtz—d - xéRd\B(a,t).

We inted to apply the preceding lemma and therefore denote

D=B(a ,t) and K=B(a,¥ t). From relation (6.3) we have
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B agct?™9
R \D

which leads to

- 2-d 2-d
glel-p . glapeT'd 0B
] R A\D

- 2-4
for-each x€K. The number b=C ' -C is strictly positive.

Putting p=td—2b—lq)we have

p(x)—PRd Dp(x);l, xeK.
\

Thus, if u is as in the statement, we can write
u(x)=P . ulxlglju-P 4 ulflp(x)-P 5 p(x))
R \D RO

R'\D D

for each x¢K. Now we may applv Lemma 6.1 and get

u ¢ j\u-pP .d ul{p.

R «D
2=d
Since ¢ =C_182_dt2_d, we get |plj= C 5 vl
=(l—C28d_2)—l and the preceding inequélity leads to the ine-

quality asserted by the lemma.
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7. The Case of a Hypersurface

To treat the case.of a hypersurface we shall transform
a neighbourhood of a piece of surface by a diffeomorphism into
Ia neighbourhood of a piece of a hyperplane. So locally we reduce
the problem to that studied in Section 3. Therefore if one wants
only local results the surface may be arbitrary. However we in-
tend to prove global results, particularlly an L2—estimate ana-
“logous to (3.2) and (3.5). For this reason we restrict our atten:
tion to the case of a compact hypersurface. First we recall some
elementary facts from differential geometry. =

Let f€83+q(Rd-l) and set K={X€Rd:xd=f(x')}. We define

H: Rd_lxR-deby

(7:1) - Hly, 8)=(y,£(y)+dn(y),

where n(y) is the upper normal vector to the hipersurface K at

the p01nt (y,£(y)). This normal vector is expressed by

: d-1
nl(y)=-Dif(y)(1+ ?Ei(Djf(y))z)—l/z -
. d-1 ;
nd(y)=(1+ = (p,£(y))2)"1/2 :

jel

The map H is. of classf?2+q. The following lemma is known by
geometers., Though we are unable to give a precise reference,

we omit the proof,

Lemma 7.1
Sl e

Let ¥ be a constant such that



=T
= e
> o em¥g f . vgert
i,j=1 :
Then the following relations hold

(7.2)  |E@y, 8-y, 0] =1t] , yerd™l, ter

(7.3 la(y, t)-B@=,0]>t, v,z 1, y#z, |el<t ™t
Now let us compute the differential of H:

I+tN i
dH=

-o.s

d d d

D %+tDln ,...,Dd_l{+th_ln Aol

where the matrix N has the components Din), d,58d=1. It fol-
-lows that we can choose B> 0 such that dH(y,t) is non-singular
for each ngd—l, provided that \ti<P.

From the above lemma we deduce that H is injective

d—lx(—r-l,f_l). Therefore if we suppose that the

number 8 is choosen such that.pss‘-l, then H is a diffeomor-

a-1

on the strip R

phism from D =R x(—?,P) onto the open set E=H(D,). Moreover

F

we havé
=61 — d. d =5 <~ C ~ 3
(7.4) {x€E:d(x,RK)=t}=HM{xéerR":|x | =€}), 0< ,_\.r .

Let us denote by F=H_1:E-vD . We may consider that
% 2+d : :
F 1s of class€ , eventually changeing f to be smaller.
Since FdoH(y,t)=t, the partial derivatives of the left side

term at the point (y,0) will be



(DiFd)oH(y,0)+(DdFd)oH(y,O)Dif(y)=0, igd-1,

d - :
= (D,FM)eH(y,0)n" (y)=1,
i=1

From these relations it follows
d o = '
(7450 (DiF JoH (7 @r=n=(v), i=l,;..esd.
Now let us recall the formula of the "area" on the hjpersurface

K. It is a measure supported by K wich we will denote by o

If ue@L(K), then the integral with respect to /M 1s known to

be
a1 2.1/
Su(x)/t(dx)= o uly, Ely) ) (63 (D e (v) ] ) dy.
o 1
R i=1
K
Denoting by JH the determinant of the matrix dH we may
write

(7.6) Su(x)/"(dx)=5 uoH(y,O)]]’H(y,O)l dy.
d-1
R s

Further we are going to describe the transport of
an L-diffusion by a diffeomorphism. Let us suppose that L is an
operator of the form (1.2) with =0 in Rd(dZB). Suppose that E
and D are open sets in Rd and F:E~~D is . a difFfeomerphism ontoe
2+ ; o
D of classf? .. Let u:D->R possess second order derivatives.

Thén one has
A
(7T) L(uoF)=(Lu)oF,

where
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AT g dy
L=2_ @ Di.+f:b D;
i,j=1 I =

L
ad=Pe oy D F D Fl)eF ",
p,g=1 » .
A i =
bi=(rrl)or!
Aid A o
The coefficients alj, bi are of class € (D). The fact
that L is defined only in the set D should not produce any trou-
' : 2+ : .
ble. For example, if D has boundary of class'¢ we can extend
L in a neighbourhood of.s'by symmetry with respect to the boun-
dary. Then an extension to Rd may obviously be done such that L
is of the form (1.2). If D has not a smooth boundarv we may
restriect ouriattention to a smaller set with boundaryv of desirec
type.
Let us consider-a process X=(an€J%,Xt,e£,PX) which is
an'L—diffusion in E. Then we can construct another process
A A A
_x=(.o.,n//;,.~/£ ,Xt,ﬁt,Px) as follows
A o
(71.8) X =FoX , DP"=p , X€D
t t
o o o : : B
It is easy to see that X is an L-diffusion in Dy 15 Vo is the
A N
potential kernel of X and VP is the potential kernel of X,

then for each uGE&(D) we have
An
(7<9) : VE(uOF)=(V u)oF,

E A
The corresponding Green functions g™ and gD are related by the

following formula, which follows from the preceding one

(7.10) 826, y) =g ¢ x), Py |FE )|, x,veo.
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Now we state the main result of this paper.

Theorem 7.2

- Let L be an operator of the form (1.2) in Rd(d)3) such
i p2tX i .
that ai]e‘é’ (Rd),ble‘@l+“(Rd) v 2351, v wu @ and 20, Let K be

ol
a compact hypersurface of class\(33+ in Rd and set

a(x)=22§%: aij(x)ni(x)nj(x), X€éK,
i,j=1
where ni(x), i=l,...,d are the components of a unit vector nor-
mal to the surface K at the point x. Let/u; be the measure "sur-
face area" on K and set A =a.fb. Assume that X is an L-diffusion
in Rd and A® is the functional defined by (2.1) for each g€ 0.

Then there exists a CAF, A, such that

€
(Z511) lim sup |A _-A |=0, a.s.,
£=0 tltt['
€71.12) Ex(szplﬁi—At‘2)1/%§C£l/4(ln l/E)l/z, xeRd,ee(O,EO),

where 60 is a constant independent of x. The functional A is

determined by the following relation

(7. 13) Ef (fad = S g(x,y)a(dy), x€ R,
K
The proof of this theorem will be similar to that of
Theorem 3.1 once we have established an estimate for Nu—GRH 7
where u(x)=EX(AE°). As in the case  of Theorem 3.3, the diffi-
eult point is just this estimate. The éstimate will be obtained
by several lemmas and, at a certain point, we use the analogous

estimate obtained in the proof of Theorem 3.3.
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Now let X be an arbitrary point of K. The discussion
in the first part of this section shows that we may choose an
open neighbourhood B of xé and a diffeomorphism F:B—ﬁ>% onto a
ball g={xéRd:)xL<F} such that F(x )=0, F (K B)={xeB:x%=0% and

B

F(§{xeB:d (x,K)= &3)=£xéB:]xd|=£} ‘ E</Q .

A
The last relation follows from (7.4). We denote by L
A
the operator defined by (7.7) in B. We fix an L-diffusion in

Rd and denote by i.the restriciton of X to B. Then we transport

— A
X by F according to formula (7.8), obtaining in B a process

A
which we denote by X. If t«T a ), the functional Ai@u) coin-
R7\B

a ;

cide with the corresponding functional Ai considered with res-
N : A A g

pect to X relative to K={xéB:x =0%. In the proof of Theorem

3.3 we observed that the potential u is bounded (in a strip).

Thus we conclude that the function

(7.14) 5% (af (p o ), uem
_ RO\B

is bounded. This allows us to a deduce the following lemma.

Lemma 7.3

If ¢ is small, the function u is bounded.

Proof.
A
For a podint xoéK we choose B,F and B as above. Then
we take r>0 such that B(xo,r)C.B. In the proof of Lemma 6.2
we saw that there exist de& (0,1) and a bounded excessive func-

tion p such that
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P(x)-P , plx)21, xEB(xd,sr).
RNB(x,r) f oty :
We set K'=KNB(x ,8r) and A"=S (x )dAe ‘Since X s
B’ £ [o,ﬂlK' o o
arbitrary a compacity argument reduces the boundedness of u
to the boundedness of the function u’ defined by u’(x)=EX(A;°),

xeRd. To prove that u’ is bounded we first remark that the func-

tion v defined by
v (x)=E* (a}), xeBix v -

W{/at. R=1 4 +1s bounded, because it is dominated bv the
R \B(ro,r)

fﬁnction of (7.14). Further we will obtain that u’ is bounded
by the same method as in the proof of Lemma 6.1, So we put

Q=TK, y R;=04R06. 'R

0 2 ne1 TR TR 2E,

Al

Then we have Rn # e a.s. We choose a constant C>0 such that

v+2£$C(p-PRp) on K’ and assert that uﬁgCP. This last estimate
follows from

(7.15) B (A (R))gCp(x), x€RY, n=1,2,...

Now we are going to prove relation (7.15) by induction. From

Lemma 2.3 we get
A’ (Rn+l)gA' (Rn)oer(Rl)+A' (Rl)+ € ; d.5.
~ Since G-(Rl)=G(R)0-9(Q) and A’ (Rl)SA’ (R)2©(Q)+ €, we deduce

A’ (R

n+1)$A7 (R))oBpe 8 +A" (R)0O(Q)+2E, a.s.,
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and hence

EX(A'(Rn+l))$EX(EX(Q)(A'(Rn)oe43)+A'(R))+2s).

If we suppose that relation (7.15) holds with n, we de-

duce

E¥ (A’ (R)06-(R) )¢CP.p (x), xeR,

Combining this with the preceding relation we obtain

X iy X :
E™(A (Rn+l))sE (CPRp(xQ)+v(xQ)+2a) <

—

< E*(Cp(X,))<Cp (x),

which is relation (7.15) for n+l., The lemma is proved.
: A
Now we choose a number ¥ ¢(0,p) and set 0=

1.~

= A A
={x€Rd: jx1<#F, O=F ~(0). We have OcB and 0c B. The next

step in the proof of Theorem 7.2 is the following lemma.

Lemma 7.4.

There exist C>0 and EO>O such that

RN\

I} u-? 4 u—G?"(CJEln Lie . &€ (O,Eo)-
o

- Proof

Let R=T and set v(x)=EX(AE). By Lemma 2.3 we have
; Rd\O : : 2

u-€gv+P ugy, which implies

]u—PRﬁ—v |< &
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Now with respect to the process X in B we set R=T§\6 ‘

AX A¢ A A - :
é(x)=Ex(A€(R)). Then obviously v (x)=v(F 1(x)) for each xe€0.

£ A
Obviously we may assume PS 1 so that BCDl.
A
We also assume that L is extended to an operator of
' d . A A
the form (1.2) in R- with c=0, We denote by X an L-diffusion
: A
in D, and by@e the functional given by (2.1) relative to Q
' AN a4 g A Ay Ry
with respect to K—ixéR :x =0}, Further we set u(x)—E (A
A A /\ /\ 2\
X€D, and v(x)-E (A (R)), xEO, with R TD‘\O Then we have

.

/’\‘
~EA

£
<2>
n
m

/\
A
Since the restrlctlon of X to B has thﬁ same transition

function as X they have identical hitting distributions. The
functions Y and v both are represented in termsof hitting distri-
butibns by means of a formula analogous to (3.7’). Therefore

A A
we have v=v, and hence

A A
P

' A
(7.16) | u-Pu- (a- %u)oFL( o

Further we apply estimation (3,13) and we get

- _ .
,ﬁ — .G%\[gc\leln 1/€, for ge (0,£),

A
where ﬁ(dx)=2add

- A
(=%, 0)d=x’, and Gé is the Green potential associa-
s A AN
ted with the Green function g~ of L in D,.

From this inequality we immediately get
4 AR
(7.17) u—Pﬁu—a lsc eln 1/

; % _
Let us look now at the measure A and its Green poten-

tial, By relation (7.5) we have
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y | _
a4y, 0) =Z:lapq (v, 000 (7" (v, 0095 L (v, 00) =1/2 a6 L (v,0),
P.,9=

where @& is the function defined in the statement of the theorem.

Using relation (7.10) and then (7.6) we get

A :
0 i A
é‘A(F(x))=S §%(r¢x) =) (a2) =
a A
. 0
=Sgc‘(x.F'l (v, 001 3r  (y,0)[ a FL(y,0))a=P0) .
P A

From this relation and the estimétes (7416) and (7.17)
we get the inequalityv asserted by the lemma.
" Now let us look at the functioniu. By Lemma 2.4 we
know that PDu=u for each open set D such that'vchD. Since u
is bounded we can find a function feﬁijd) with compact sup-
port such that Vf)u. In particular u is a natural potential.
By Theorem 1.23 we have a measure¥ supported byvf such that

u=G, . We set ‘,(x’r)le(x,r)'v

Lemma 715

There exist C>0 and 5'6(0,1) such that

Gz, r)<C(x+VELn 1), £€ (0,€),
for each x€0, and r>0 such that\B(x,ﬁ-erZO,mej1€o given by

the prece)¥ding lemma.

Proof;
Let § be given by Lemma 6.2 and set E=B(x,5_lr). By

the prece¥ding lemma we get
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- E
lu=p . uvwe’l¢cYein 1/
Ry 4

Obviously we have GﬁéZG . Then a strightforward computa-

1A
E
tion based on estimation (1.13) shows that the last potential

is bounded by Cr, where C»0 is a constant independent of x and

r. Thus we get

fu-p . ujgC(r+VEIn 1/¢).
RAE

On the other hand we have u-P u:GE;>GE . Applying Lemma
Rd\E 7 "V(x,r) -

6.2 we obtain the desired estimate. The lemma is proved.

Lemma 7.6

There exist C>0 and &o>0 such that
lu-G, [¢CVT (1n 12 ¢ (055

Proof

We are going to show that for each function f62$4?Rd)
with the properties supp f£cO® and 0§fg§1l, there exist C and EO
such that

Goaey le. e Yewran a2

’ Eé(o,&o).
Once we have proved this estimate, the lemma will follow using

a finite family {f.&.’ of functions of this type such that
id1€eT

Y== £V andA=2Z f,.A . The existence of such a finite familv
ter 1 jer 1
is ensured by the fact that both ¥ and 2 have compact supports

and the point X and its neighbourhood O are arbitrary.
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Now let us prove relation (7.18). For each xeRd we

have

Gf;v(x)-Gf.a‘X)= SO g(x,y)f(y)(ﬁ—%)(dy).

It suffices to estimate the above expression on a compact set
5 ,

M such that supp £CM, (en account of Lemma 1.24(a)). We fix

such a compact M, which also is included in 0. Let ro=d(M,CO)

and § furnished by Lemma 7.5. If r<3rO we have

SB(x r)g(X,y)V(dy)s C(r+UE_ln 1) .

As we have already mentioned (in the proof of the preceding

lemma) we have

S g (x,y)A(dy)gcCr.
B(x,r)

3 &0
Now we choose a function foT?:{R)such that 0§ fg1, f(t)=0 if
t£1/2, and $(£)=1 if t31, We set 2 (v)=2(r"1ix-y]) ang this

function will satisfy

0g 1-2_¢<1

g Bix,r)

By the precéeding estimates we get
| § a2, g em won @l¢c e v TR TR .
o ' :

This implies
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6.y (x)-c, (x)1<c<r+\rs1n 1/e)+|S h(y) & -2) (av)|

14

where h(g)=fr(y)g(x,y)f(y)..The function h vanish in the ball

B(x,r/2) and outside M, By Lemma 1.27 we have hfﬁQ(O)

Lemma 1.28 implies

. Then

: ) 0, . x ‘
h e d =i T, °
SO (y) w-2a) (ay) S’O(GV(Y) C:\ (v) )L h(y)dy

By Lemma 7.4 we have il Go-Gc:ns'C V—m On the other

hand, a strightforward computation together with the estlmates

for g(x,y), DY g(x,y) and D g(x v) lead to
IL*hwlecuef, -y,
provided that \x—y];,r/Z. It follows that
S 1t*h(v)] dy ¢ Cln 1/r,
¢
and hence
] $0h<y) »-2) (dy)s cVETR 1/ (1n 1/r).

Putting r=¢ we get estimate (7.18), which completes thée proof

of the lemma,
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