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FEEDBACK, ITERATION AND REPETITION

Virgi l-Emil Cdzdneseu bnd Gheorghe $tefdnescu '::

.

In order to get an algebraic theory of eomputation one needs an axiomatic looping

operation. This may be Kleeners repetition (ef. [6], for example), Elgotrs iteration [?] or

feedback [11.12,3]. The proper acyelie context for repetit ion seenrs to be a matrix theory

(such a theory is equivalent wiilr the theory of matriees over a semiring [8]), for iteratiotl

an algebraic theory in the sense of Lawvere and for feedback a (synrmetrie) str iet

monoidal category in the sense af Maclane [10].

The equational axioms for the looping operation are not easily eodified. A regular

algebra ef. Conway t6l is a structure which satisf ies al l  the identit ies (writ ten in terms of

union, eomposit ion, repetit ion and constants 0, 1) which are valid in the algebra of regular

events. The theory of matrices over a regular algebra is a matrix theory, but the axioms

for repetition are yet unknown (by authorsr knowledge). trris algebra is intended as a

model for t5e input-output behaviour of nondeterminist ie eomputation.

An iteration i lreory ef. Bloonr, Elgot and Wright-[1] is a structure which satisf ies al l

the identit ies (writ ten in terms of tupl ing, composit ion, i teration and constants 1", 0u, xp

which are valid in the theory of regular trees. The axionratization.for i teration t l teories

wasrfcirncl by Esik (see tgl). An iteration theory is an alge6raie theory in whieh an iteration

operation is given fulf i l ing some axionrs. This algebra is intenclecl as a model for the input

behaviour of determinist ic computation (we use the name "input behaviour" instead of t l te

name'rstrong beltaviouri l  used by Eigot).

A bif low is a strueture whieh satisf ies al l  the identit ies (writ ten in terms of

separated sutn, eomposit ion, feedback and eonstants Iu, Yu,U) wlt ich are val id in t l te

algebra of f lowchart sehemes. An axiontatization for bif lows is given in [12'3] '  A



biflow is a symmetric strict monoidal eategory in whieh-a feedback operation is given

fulfi l ing some axioms. This model is more related with the algorithms themselves than

with their behaviours

It is well known that we lrave some natural inclusions

monoidal eategories
'' 

matrix theories g algebraic theories € (syrnmetric) striet

and the inclusions are striet. It is also known that

matrix theories g
of regular algebras

iteration tlieories

over matrix theories

biflows
\-

over matrix theories

and

iteration theories g. biflows over algebraie theories.

(It seems iikely tltat one ean prove that the above inelusions are strict - this was proved

by Esik for the Iatter one.)

The aim of this paper is to give another passing between iterations and feedbaeks

than that previously given in [5]. Via this passing the axioms of i teration in an axionratie

systern for algebraie theories with iterate (- biflows over algebraic theori6s) are

translated in terms of feedbaek one-by-one.

lVheti we combine the present passing with the known passing iterations -repetit ions

[tq] we get an easy an<l natural passing between feedbacks, i terations and repetit ions. This

is used to give eertain axiomatic systems for bif lows.over algebraie or matrix theories.

More importantly, this passing is used in the coneluded renrarks to ernphesize some new

advantages of the use of feedback over the use of iteration or repetition than tltose

init ial ly given in [12].

BIFLOWS AND BIFLOWS OVER ALGEBRAIC AND MATRIX THEORIES

We assunre the reader is familiar with the caleulus of symmetric strict monoidal

categories (cf. [10,4], for exanrple), algebiaic theories (ef. 17,4J, for example) and matrix

theories (cf .  [8,4],  for example).
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Let us consider a cat€gory (T,',I^) having as objects the elernents of a frronoid" a '

( M , . + , \ ) . r n a t i s t h e c o m p o s i t i o n s a t i s f i e s '

81 (fe)h = f(gh) B Z  I " f = f = f l ' .

The applieation of a function f in a point x is written xf, while

f:A$B and g:B4C is writ ten in the diagramatie order f.g (or fg).

A eategory as above is a strict monoidal eategory (sme, for

+ : T(a,b) x T(c,d) -+,T(a+e,b+d) is given fulfiling the axioms

8 4  l l * f = f = f + I l

88 Wr,\ = Iu

An smc T is an algebraic theory

given fulfiling the axioms

the eomposite of

short) if a sum

B5 t"1to = Ia*b

BO (f+gXu+v) = fu+gv

for u 5u 5", a' €) b' -!,c'.

Bg fa,b+e = (S,o*l"Xto+g,o)

Bto (f+s) \Po,o = yi,.{B*f)

. for f:a-)b, gicld. 
:

i f  some eonstants Oue T(\a) and V"€ T(a+a,a) are

An sme T is a syinmetrie strict monoidal eategory (ssme, for short) if some

e o n s t a n t s V , 5 € t { a + b , b + a ) a r e g i v e n f u l f i l i n g t l t e a x i o m s . ]

(  ,  )  :  T(a,c)xT(b,c)-+ T(a+b,e)

introdueed as follows

813 V"f = (f+f)Vb

Bt4 la+b = (Ia+ob+a+Ib)va*b

defined as above, a tupling

some eonstants (a,b,c)€f(b,a+b+c)

811

BL2

0 r  = [ r

0 .  f  =  0
L a

T,

and

operation

may be

(f,g) = (f+g)Vo

An algebraic theory may equivalently be introduced as .a category T as above in

whieh a tupling ( , ) and some constants (a,b,c) are given fulfiling the axioms

1 " " ,  
t  

l

'  ' , .
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In a such defined algebraic theory the sum .of f:a+b and g:c+d is

(f(.).,b,d), g(b,d,\)) and V^ = (l^,I^). We mention that every algebraie theory is an ssmc,a  a ' &
rl

' , . 4 4 ,

where V^ . = ((b,a,D, (X,bra)).
I  a .D

An algebraic theory T is a matrix theory if some constants

A"€ T(a,a+a) are given fulfiling tlte axioms 
: 

.

I  € T(a.N and
9 - ' '

lf'gl = Au(f+g)

In a matrix theory T we may also define a

. and some constants 0".b€T(a,b) as follows

'  
f  Ug =Au(f+g)VO

either <[f.g].[h, i ]>

For given a,b,e and d every j€T(a+b,c+d)

with f,g,h and i as above.

Let us eonsider

1A b 
= A"(f+f)

Au*o0u*ob*a*Ib) = Ia*b

[a,b,c] = Iu*I"*l=

union operation U: T(a,b) xT(a,b)-*T(a,b)

n - l n
"arb 

-  *atb

815

816

rx= II

rru= {

81?

818

In a rnatrix theory T, defined as above, a target-tupling [, ]: T(a,b)xT(a,c)*)T(a,b+c)

and some constants [a,b,c]€T(a+b+e,b) may be introdueed as follows

andF'matrix building operation wlrieh maps f:a-re, 
ng:a-;d, 

h:b)c and i:b?d in

l-r -J
I I ? le ttu*o,c+d) defined as being
L 1 '  t J

or [<f,h),(g,i)1. :

may be written in a unique way as j - fr sl
Lh iJ

t lre fol lowing axiomatic systems F1-2, I l-4 and Rl-3.
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F l t

ELz

F 1 l

Fle

F 1 .
: o

F 1
ô

F1r

. A ,

Suppose a feedback operatlon fo:T(a+bra+c)-+ t(Urc) is glven. :

f 
t\"u," = Iu FZr 4a(yu,"{lu + f)) = f

,fbf "r = ft*bf 
: ' 

EZz {bf"r = {.'+bf
s

tu*o(Y",u*t.) i (yo,u+to)) :6b+a, FZg f t*b(tuu,b*I.) f (ryo,"+to)) = tb*af

({ar)g=4.a1f1r.+g))

g( tar) = ,|a((Ia + g)f) F2s '1acf,s) = g<,[.4(f,I"+0"),I")

f " f * * = ' 1 a 1 f + g )

A B ,  -  t'f' Ia = Itr

( f ( v "+ IoDt= f t t

A morfism y:a -+ b is called f -fqnctoria! if for every f:a+c -+ a+d and g:b+c:| b+d

the equality f(y + Id) = 0 + Ic)g implies f "f = fbg.

Suppose an. iteration operation t:T(ara+b) ->T(arb) ls gi-ven.

,r; rcrt,ro> = st

(f(g + I"))t = f<(gf)t,t"> 12z ( f ( v "+ Io ) ) t= f t t

g ( f ( g + I " ) ) t = ( g f ) t

for f:a->b+c, g:b*a

( f ( t u + s ) ) t = t t g

( 0 " + f ; t = 1

<f,g>t = <ft<h,I">,h>

where h = (gcft,tb+g))t

( l"u,uf( Wu,u*Ie))t = \"", gft
. + +

( f+gc ) r  =  f r+0c

I2r

rzq

where n = (g<ft,to*c))t

( f ( I " + g ) ) t = f t g

I3r

I3e

.  
l3g

13q

I l t

lrz

.  for f :a*b+co g:b-ta

+ +
I l g  ( f ( I u + S ) ) ' = f r g

l \

( o u + I u ) t = I

(f,g)t = <ft<h,I">,h)

R1t  ( fUg)*  =  ( f *g ) * f *

Rlz (fg)* = tu U f(gf)*g

(V",uf (\ru,"+t"))t = \"",bft

R2t f*  = I"  Uff  +

3 &

R2z (f  Ugln = (f*g)*f*

R2t (fg)*r = f(gf)*

14t

14z

14g

14i-

A morphism y:a b is called t-functorial if for every f:a)a+e and g:b)b+c the

equatity f(y + t"; = yg irnplies ft = ygt. 
\ /
\ . /

Suppose a  repet i t ion  opera t ion  * :T(ara) " ) .T (ara)



:f

gwhf u

whf *

w = (hf  +gU i ) *

every f:a9 a and g:b) b the equali ty

\.\|
j i , , '  , "

R3r ou,u*

I f*t, 
I
L r r

- t- r a

l'.:l f* r*g*l

f 
, where

w J

*-functorial if for

Proposit ion 8.1 of Appendix B in

in the presenee of 12, and l3r-n.

R3g ([u,uf f"b,u)* = l"u,5f 
*!'b,u'

A morfism y:a 4 b is called

t .  -  !  ' r  r *  *I y = y g l m p i l e s l  y = y g .

. A biflow is by definition an ssme in whicl'r a feedbaek is given fulfiling the axioms

Flt-2. A bif low over an algebraic theory (resp. over a matrix theory) is an algebraic

theory (resp. a matrix tneory) eonsidered with the natural structure of ssmc in which a

feedback is given fulf i l ing the axionrs F1t_2.

As a corolary of the theorems in this paper we note that in an algebraic theory

(resp.  in  a matr ix  theory)  the ax iomat ie  systems F1,  F2,  I l ,12,13 and 14 ( resp.  F1,  FZ,  11,

l2r13,14, Rl, R2 and R3) are equivalent.

Proposit ion. In an algebraic theory the axiomatie systems I1-4 are equivalent.

Proof. I t  is known from nrif .  tgt that 14.,-o is equivalent with 12r, I4Z-gand I2n. As
l - +

14, follows fronr 13, and I3n we get that 13 (==) 14 holG.

Note that I3, is a particular ease of I2r. By the^
--at' o 

-

Stefanescu [fg] tne axiorn 13, is equivalent with l2r_,

Hence 12 (==) 13.

It is easy to see .that I1 (==) 12. Indeed, IIZ for S = Ia gives I2r; moreover,

g(f(g + I"))t = (uy Irr) gf<(gf)t, I") = (by lzr) (sf)t, henee LLr==> 12r. conversely,

I21 + t2B -=) I lZi indeed, (f(g + I"))t = (by I2r) f(g + l";111(g + Io))t, I"> =

fcg(f(g * Ic))t, I") = (bv r2r) f<(gf)t, r"). E



ITERATIONS AND FEEDBACKS IN ALGEBRAIC THEORIES
/

t ' \

T

Let T be an algebraic theory and lt(f) (resp. Fd(T)) the set of all iterations (resp.

feedbacks) defined on T. We define two applications

0(: Fd(T)-+ It(T) and
7

as follows

p: r t(r)+Fd(r)

O +d maps f€T(a,a+b) in fa<f, I" + 0o);

t (t p )u maps f = 1f. r,f, r)eT(a+b,a+e) 
(with f ,:a--+ a+c and f ,:b + a+c)

+
i n  f  ̂ ( f  -  I . l  > .

z  L ' c

(total ly defined) bi jeetive

Let Fdr(T) (resp. Fdi(T)) 'be the subset of al l  the feedbacks in Fd(T) that obey the axiorns

F1e_O (resp. F2r) and Itr(T) th6 subset of al l  the i terations in It(T) that obey the axiorn

I3n. Finally, let us consider the restr ict ionr (r: Fdr(T)+Itr(T), Fr:{tr(t)+Fdr(T),

o{,: Fd,(T)+it (T) and p, :  I t .(T)+Fdi(T) indqced bV d, and p.

Theorem. a) The restrictions di, Fr, d, and p, are

functions. Nloreover (, is the eonverse of Fi and d. of Pr.

b) For k€[4] ,  f  sat isf ied I4k i f f  1p sat isf ies F2n.

c) For k€[3] ,  f  sat isf ies I3O i f f  1p sat isf ies Fln.
/

d) y is f-functorial iff y is tp -funetoriat.

proof. a) Note that t= tp satisfies F25; indeed, g(fa<f,Iu+0b>, Ib>

= g((la+0b1<ft.t '>, IO) = g(ft,t ' t = 4a<f,g>. Consequently F1 is totatly defined. Obviously

t  = tpd .  For the converse, note that  (  fdp)a maps <f l , f '>€T(a+b,a+e) (wi th f r :a*a+c

and fr :b+a+c) in f r (44<f1, Ia+oc>, I" ) .  Flenee f= ' ldF for 4enor(r) .

For the second restriction, note that f satisfies I34 iff t p, denoted f , satisfies F1n.

Indeed, t satisfies Fln iff for every f = (f 
,,fr) : a+b) a+e (with f ,:a)a+c and

fr :b+a+e) and g:c*d ( taf)g = f r<fr t , I ">g = f r ( f r tg,B) is equal  to

tatr0u*s)) ='la<f 
,ttu+g). f ,(1"+B)) 

= f ,0u+g)((f ,( lu+s))t, to> = fz((f r(la+g))t, 
g).



" .! ri;ffi"*;!;-;

B
Consequently i f  l  satisf ies I3n, then t satisf ies F1n and if  f  satisf ies Fl4, then by using

I"*0" for f 
Z above we eonclude that t satisf ies I3+. Henee we have a bi jective

correspondenee between It*(T) and the subset of at l  the'feedbacks in Fd(T) that satisfy

F2, + F1n. The eonclusion fol lows if  we show that F2, + Fln (==) F1+_0. Note that:

F2,  ==;  F l r ;  indeed,  i f  f  =  ( f r r f r ) :a+b+ a+c (wi i l r  f r :a*a+c and f r :b*a+c)  and

g:d -) b, then 4"{{lu*gx) = f a<f 
r gf z) 

= (by F2r) gf z(fa<f 'Ia+0c>, Ic>
= (bv F2r) g fa<f ' fr ;  = g taf;

F2S * F14 ==) F1U; indeed, i f  f  = (fr , fr) :a+b-> a+c (with fr :a9a+c and fr:b)a+c)

and g:d-)e, then f a(f * g) = ta<fr+0", fr+g) - (by

F2rXf ,+g)('[a<f ,*0",I6+0s+e>, Ie+e) = (by Ftn)(f ,+g)<ta<f4,t"+0">+0", I"*")
= 1fr+gX<fa<f1,Ia+0c>,t", * Iu) = fr(,f 'a<f1,Ia+0c>,r., * s = (by Fzr) t!+ g.

Fl+_O ==) F25i indeed, i f  f :a-)a+e and g:b+a+c, then ,6a<f,g>

=fa[0a*g)(<f,Iu+0"> + IeXIa+vc)] = (by F14_6) s(fa<f.tu+0.) * Ie)ve = g<{a<f,Ia+0c>, Ic>.

b) Let 4 and f be sueh that f= tp. The equivalence in the ease k = t holds sinee for

f:b+" (1" + f)t = fu<0u*f, Iu*0") = ta(fa,a(Ia+f)).

For k = 2, note that i f  f :a-+a+b+e, g:bla+b+e and i:d)a+b+e, then ta+b(f,g, i)

= i<<f,g>t,I"> and fbf "<r,g,i> = 4b1<g,i><ft,Io*")) = tb<g<ft,Igas>, i<f+,I6as>>
- i(f+,Ig1gr<h,Ic) = i<<ft(r.I"), lr), Io), where n = (g<ft,Iu*c))1. Consequengy f satisfies

FZZif f  f  sat isf ies I4r .

For k = 3, note that if f = (f ' fr) : b+a+e + b+a+d (wii lr .f,:b+a->b+a+d

fr:cap1a+d), then ^ a+b((\'a,b+IcX(f6,*+I6)) = fu*P(Vu.uf r(fo.u*Id), fz(tb.a

= f z( yb,u*Io)<( yu,uf t(yo,u+to))T, to> = f2( fb,"( t1i.uf t 
(\-u,u+Io))f, to>

and

+Io))

un:
-' 

4rb+at = frcf ,t,io). sinee 11'u,u y'b,u = Ia+b it follows ir,ut la, a==1 F23.

.. For k = 4, note that thd axioms F2n.and I4n may be rvritten as ,fa(f(tu*"+oo))

= (taf)0"*Od; and (f(Ia+b+0c))t = ft(to*0e), respeetively. Now the equivalence

F2n (==) I4n directly follows frotn the above proof of the equivalence F1n a==> I34.

TIre proof of c) is eovered by the above proof of b).
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and fr :e+a+d) and g = <81,82):b+c+b+d (wi th gl :b+b+d and gr:e+b+6; are such t l tat

f(y + 1o; = (y + Ic)g. Then fr(y+Id) = ys1 and fr(v+Io) = s2. By the f-functoriality of y

,rt  = vgrt.Hence t"f = fr<frt, lo> = f2(yglt,Io) = fr(y+Io)<grt, lo> = gr(Brt,Id) =tbg.

Conversely, suppose that y:a)b is f -functorial and f:a) a+c and g:b*b+c are suelr

that f(y+I") = yg. Then <f,I"+0"Xy+1") = (f(y+I"1, y+Oc) = (yg,Y+0c) = (y+Iu)(g,y+0"). By

the {-functoriality of y 4a<f,I"*0o> = 4b<g,y*0c>. As {a<f,I"+O") = (I"+0";1tt,t">=flno

,[b(g,y*o") = (y+0cXgi,I") = ygt tlre result foilows. I

F1,  F2 ' ,  I I ,12,13 and 14 are
. 

Corollary. In an algebraic theory the axiomatie systems

equivaient. I

REPETITIONS, ITERATIONS AND FEEDBACKS IN [,IATRIX TFIEORIES

Let T be a matrix theory and Rp(T)

the applieations in [13]

U:  I t (T))Rp(T)  and

defined as follows

I t0" maps .f €T(a,a) in [f,I"Jt;

O *Z maps f = [f ' f rJ€ T(a,a+b) (with f r:a) a and fr:a+ b) in

Finally, let us eonsider tlte restrietions V, : Itr(T)-)npitl and Z,

by U and Z.

tfru set of all repetitions defined on T. lVe use

z : Rp(t)+It(T)

ti tr'

:  Rp(T)-+Itr(T) induced

Theorern. a) The restrictions fi* and Z, are (totatty defined) bijeetive functions.

Moreover, V* is the converse of ?r.

b) For k€ [3], * satisf ies R3O iff  *L satisf ies I3n.

e) For ke[3], * satisf ies RZn ' i f f  * z satisf ies I2n.
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d) For k€[2], * satisfies R1n iff *z satisfies l ln.

e) y is *-functoriat i f f y is *Z -funetorial.

Proof. a) Note that *2, denoted f, satisfies I3n; indeed, if f = [f ' frJ:a+a+b (with

fr :a+a and fr :a+b) and g:b+c, then

1 is totally defined. Obviously * =

(f(tu+g))t = [f'f ,BJt 
= tf frs = ftg. consequently

*ac. For the converse note that tC'Z maps

f = [fr,fr l = [f l,Ia](Ia+f z)eT(a,a+b) 
(with fr:a+a and f.rza-+b) in lfr,Iultfr. Hen"e t = tuu

b) Let 1 and * be such that t =*7..The equivalenee in the.ease k= t holds since

(0"+1")t = [oa,a,Ia]t = o",l Iu = o",l

Let k=2, note that  i f  f  = [ f l , f , , fg] :  a*a+b+c (wi th f r :a+ a,  f  ,za+b and fr :a+e)

and E = lgy8.,l53l : U+a+b+c (with g1:b) a, gz:b-)b and gr:b+e), then

<r,s>t= f1t 
r_z 

!lt = i:t :r l 
. 

[t1l""o h:=(s(rt,ro*")t=-  
Lsr  s2 gs j  lg t  ezJ I  leJ

I 
tl,t, ti tr'J _- ( tsr 92 s3J I 
; ;  

z -L t l , t=terr l  
rzusz srr l  rrusglt = w(err l  rrusr) '  where

L o  r o  )

w = (srf l  f  ,vo.r)*,  henee

<rt<h,r^),h) = fri 
rrn u ri rrl = lti rrwrrrl u rl :l tr-l f 

trl
\ r \ " ' r c " r r l  

L  h  J  L  *s r r l  w  )  l r rJ '

Consequently, if * satisfies R3, tlren f satisfies I3Z. If f satisfies I3r. then applying

f 
tt tr l 

f 
tr l = It i rrwg'rl u rl r i r2wl l tr l

[ * ,  r r J  l * r J  I  * e r r l  w  J l . * r J

for f, = Ia, BB = 0b," and f, = OO,u, gg = Ib we get R3r.

For k = 3, note that if f = lfrr,frJ:b+a* b+a+c (with fr:b+a+b+a and fr:b+'c+c)'

then (y;,of(tJ"o,a*Ic))t = tq,uf rWu,", %,bfzlt 
= (\"u,otr\l'0,")* E,ufz and

Y"",uft = Y!,ufi fr. since Wu,"Y"u,o = Ib*u it follows that R3r(=->I33'

c) Let t  and * be such that f  = *7.For k = 1, note that i f  f  = l fr , fr l  :  a*a+b (with

fr:a-|a and fr :a+b), then ft  = f i  f ,  and f<ft , to> = fr f t*frUfz = (fr fr*Ula)fz. Henee

R2r(==)I2r.



t4
.  j .  For k = 2r note that  i f  f  = [ f , , f ' f rJ:

I '

.then ftt = ffl rz, ri rutt = (f I ftr f r*rs
Henee R2.(==) I2.2 2 .

R2,(==)I2, .

d) The case k = 1 is covered by c). For k = 2, note that if f = [fr,frJ : a)b+c (with

'^ fr:a+b and fr:ale) and g:b->a, then (f(g+t");f = [f 1g,f21t = (f 
,g)*f, and 

{

4

f  <(gf  )1, I")  = [ f ' f r i  <(sf  , )*gfr , t " ,  
= f r (sfr)*gf  zUf z= 

( Iuu f r (sfr)*s) f r .  Henee

Rlr(==)I l r .  
' :

e)  Suppose that y:a*b is *- functor ia l  and f  = l f ' f rJ:  a+a+b (wi th f r :a-)a and

fr :a*e) and g = [g1,BZ]:  b+b+e (wi th gr:b+b and gr:b+e) are sueh that ( f (y+t" ;  = n*.

Then fry = VS1 and f, = VSZ. By the *-functoriality of y ff V = ygi . Consequently,

ygt = ygi gz = fi !82= rf r, = rt. converseiy, suppose that y:a)b is 1-functorial and

f:a* a and g:b+ b are such that fy = yg. Then [f,y](y+I') = [fy,V] = [yg,y] = y[g,I ' l , lrenee

l f ,y l t  = y lg lu l t .Therefore f*y = yg*.  E

f  , r :a )c,  f r r :b -)a and

. Corollary. a) The restrictionr d.v, and zrP, are (totally defined) bijective

functions. Nloreover orV, is the eonverse of zrPr.

b) For k€[3] ,  *  sat isf ies R3n i f f  *zp sat isf ies F1n.

Note that the conrposites trVand zp work as follows z

- f f  r  J
O fo(ry nraps f€T(a,a) in f"l 

'  'a 
| .

l tu ou,uJ

O (*zp)a maps f  = f t t  l r l€r(a+b,a+c) (wiur frr :a)a,
L-rzr tzz) ' l

' "  f . r r tb lc)  in fZf f t f  - f . tZV f .Zz.  \
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c) y is *-funetorial iff y is *zF-funetorial' E

Corollary. In a matrix theory the axiomatie systems

R3 are equivalent. M

tz
; ^

F1 ,  F2 ,  11 ,  12 ,  13 ,  14 ,  R l ,  R2  and

'CONCLUDED REMARKS

Ilere we give some advantages of the use of feedback over the use of iteration or

repetit ion

First, the proper acyclie context for the use of feedback is a sylnmetrie strict

monoidal eategory, for iteration an algebraie theory and for repetition a matrix theory'

Henee feedbaek may be used in a more general eontext than iteration or repetit ion'

Seeond, in the context of matrix theories there is a bi jeetion between iterations that

obey the axiom 13* and repetit ions. Henee iteration is better than repetit ion sinee it

displays sorne properties of tlre looping operation whieh are ltiddened by repetition'

Analogously, in the eontext of algebraic theories there is a bijection between feedbacks

ilrat obey i lre axiom F2, and iterations. Hence feedbaek is better t l tan i teration (resp'

repetition) since it dispiays some properties of the looping operation wliich are hiddened

by iteration (resp. repetit ion). Natural ly, the proofs in terms of feedbaeks are longer'

Finally, ler us note that some properties are easier to express in terms of feedback'

e.g. the property expressed by the'rmatrix formula" R3, or by the "pair ing axiom'r I3, is

4

expressed in terms of feedbaek as F1t.
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