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FEEDBACK, ITERATION AND REPETITION
Virgil-Emil C&zanescu and Gheorghe §tefénescu

o in 6rder to get an algebpaic theory of éomputation oﬁe needs an axiomatic looping
ép‘epation. This may be Kleene's repe'tition (cf. [6], for example), Elgot's iteration [7] or
- feedback [11,12,3]. The proper acyeclic context for 'repetition seems to be a matrix theory
(such a theory is equivalent with the theory of matrices over a semiring [8]), for iteration
an algebraic theory in the sense of Lawvere and for feedback a (symmetric) strict
monoidal category in the sense af MacLane [10]. '

The equational axiomsfor the looping‘ operation are not easily codified. A regular
algebra cf. Conway [6] is a structure which satisfies all the identities (written in terms of
union, composition, repetition and constants 0, 1) which are valid in the algebra of regular
events. The theory of matrices over a regular algebra is a matrix theory, but the axioms
for repetition are yet unknown (by authors' knowledge). This algebra is intended as a

model for the input-output behaviour of nondeterministic com putation.

An iteration theory cf. Bloom, Elgot and Wright_[1] is a structure which satisfies all

the identities (written in terms of tupling, composition, iteration and constants Ia’ Oa’ x?
which are valid in the theory of regular trees. The axiomatization.for iteration theories
was=feiind by Esik (see [9]). An iteration theory is an algebraie tﬁeory in which an iteration
operation is given fulfiling some axioms. This algebra is intended as a model for the input
béhaviour of deterministic computation (we use the name "input behaviour"‘ instead of :cl1e
name "str ong behaviour" used by Elgot).

A biflow is a structure which satisfies all the identities (written in terms of
separated sum, composition, feedback and constants I \{* b which are valid in the

.algebra of flowchart schemes. An axiomatization for biflows is given in [12,3) A



biflow is a symmetric strict monoidal category in which-a feedback operation is given

fulfiling some axioms. This model is more related with the algorithms themselves than

" with their behaviours.

It is well known that we have some natural inclusions
" matrix theories < algebraic theories € (symmetric) strict monoidal categories

" and the inclusions are striet. It is also known that

matrix theories c iteration theories c biflows

of regular algebras ~ over matrix theories  over matrix theories
and

iteration theories < biflows over algebraic theories. -

(It seems likely that one can prove that the above inclusions are striet - this was proved
- by Esik for the latter one.)

The aim of this paper is to give another passing between iterations and feedbacks
than that previously given in [5]. Via this passing the axioms of iteration in an axiomatic
éystem for algebraic theories with iterate (= biflows over algebraic theoriés) are
translated in terms of feedback one;by—one.

| When we combine the present passing with the known passing iterations -repetitions
[14] we get an easy and natural passing between feedbacks, iterations and repetitions. This
is used to give certain axiomatic systems for biflows -over algebraic or matrix theories.
More importantly, this passing is used in the concluded remarks to emphesize some new
advantages of the use of feedback over the use of iteration or repetition than those

initially given in [12].
BIFLOWS AND BIFLOWS OVER ALGEBRAIC AND MATRIX THEORIES
We assume the reader is familiar with the calculus of symmetric strict monoidal

categories (ef. [10,4], for example), algebraic theories (cf. [7,4], for example) and matrix

theories (cf. [8,4], for example).



Let us consider a category (T,-,Ia) having as objects the elements of a monoid

+,\). That is the composition satisfies

Bl (fgh = f(gh) B2 Li=f=1,
The application of a funetion f in a point x is written xf, while the composite of

f:A—Band g:B—>C is writtén in the diagramatic order f-g (or fg).

A category as above is a strict monoidal ecategory (sme, for short) if a sum

+ : T(a,b) X T(c,d) =>~T(a+e,b+d) is given fulfiling the axioms

B3 (f+g)+h = f+(g+h) B Lt =l
‘B4 L= = 4l B6  (f+g)(u+v) = fu+gv
" f

for a—>b E»c, a'-’&a b' Y_>c'.

An sme T is a symmetric strict monoidal category (ssme, for short) if some

constants O bE T(a+b,b+a) are given fulfiling the axioms
s . 9 5 3

BT el B9 Yo bre = Wa ptledlp i, o)
B8 Yapla BIG ARG o 1 T

~

for f:a—>b, g:c—>d.

An sme T is an algebraic theory if some constants 0 & T(M\a) and V€ T(ata,a) are

given fulfiling the axioms

3 .YB.171 Oy =1y : B13 .V f=(f+»f)V

B12 Okf = Oa . B14 I (I +0 +I )V

b+a b’ "atb

In an algebraic theory T, defined as above, a tupling operation
<,>:T(a,e)xT(b,c) = T(a+b,e) and some constants <a,b,c>€ T(b,atb+c) may be

introduced as follows
<f,g> = (f+g)Vc | <a,b,e> = 0_+1, +0 ..

An algebraic theory may equivalently be introduced as a category T as above in

which a tupling <, > and some constants <a,b,c> are given fulfiling the axioms



T1 T(X,a) contains a unique element, denoted Oa;
T2 <Na, N> = e T3  <a,b,e> <d,a+b+c,e> = <d+a,b,c+e;
T4 for every f&T(a,e) and geT(b,e) the morphism <f,g> is the unique

h€T(a+b,c) such that <\,a,b> h = f and <a,b,A> h = g.

~In a such defined algebraic theory the sum of f:a—>b and gi:c->d is

‘<f<)«,b,d>, g<b,d,\>> and Va = <Ia’1a>' We mention that every algebraic theory is an ssme,

g

where \V = <<b,a,\>, <\,b,a>>.
bl

An algebraic theory T is a matrix theory if some constants _.LaéT(a,N and

A T(a,a+a) are given fulfiling the axioms

B15 __L>\= I) ; ; © B17 fAb=Aa(f+f)
Sl B8 A . (l +0, STY=1

In a matrix theory T, defined as above, a target-tupling [, ]: T(a,b) X T(a,c) ~>T(a,b+c)
and some constants [a,b,c]€ T(a+b+c,b) may be introduced as follows

[f.g] = /\a(f+g) [a,b,c] =L dbed,

In a matrix theor/y T we may also define a union operation U: T(a,b) xT(a,b) =% T(a,b)

. and some constants Oa be T(a,b) as follows

e = Aa(f+g)vb Oa,b 5 ‘LaOb

and™T=matrix building operation which maps f:a-c, Qg:a—}d, h:b>ec¢ and icb—>d in
[a %}6 T(a+b,c+d) defined as being :
either <[f,gl.[h,i]> or [Kf,h>,<g,i>].
= - : - : - e
For given a,b,c and d every je&T(a+b,c+d) may be written in a unique way as j = o

with f,g,h and i as above.

Let us consider the following axiomatic systems F1-2, [1-4 and R1-3.



Suppose a feedback operation AT (a+b,a+c) => T(b,c) is given,

a8 = : : a X
EL; & Va,a=ta : 2 (V:a,a(la et
By, 00y Ho. RO -y
- $ >
atb - sbta a+b ' _ abta
By N ) E Gy T A7 W2 £ G R Gy
: Q. _xa a _ A8 e
F1, 4 1)g = £, + ) ey (f+0d)—Tf+od.
A, _ Al _ a o a
_F1, g n = i) ‘ F2, 17<f,g> = g<A <RI +0 >0 >
Fl, A8t + g= A3t + g) _ : for f:a-> ate, g:b->ate
iy a . : B
Bl § L =L

A morfism y:a->b is called #-functorial if for every f:a+c - a+d and g:b+c > b+d
the equality f(y + Id) =y + Ic)g implies £2¢ - rfbg,

Suppose an iteration operation T:T(a,a+b) —>T(a,b) is given,

ik (1 )T T - Bowlpsart =
i, (g+1 )" =1enti> 12, (=1t = M

for f:a—>b+ec, g:b—>a 123 gf(g + Ic))* = (gf)1L
I, (f([a + g))Jr = ng ’ ‘ : for f:a->b+c, g:b—>a

12, (ta, +ent =1

13, (0 +1)T=1 - L il
s, <tg>l = <tTant >n> 14, <t,g>T = <tent o>

where h = (g<fT’Ib+c>)T where h = (g<f7t,lb+c>)Jr

B Gt gt 4y (O pfW 20T =t

13, (ta +g)t=1g 14, (t+0 )T =1t+o,

A morphism y:a-»b is called +-functorial if for every f:a—»a+c and g:b->b+tc the

equality f(y + Ic) = yg implies ik = ygT‘ /

Suppose a repetition operation *:T(a,a)w—)‘f(a,a) is~given,—

R ()=t 1t = R2, i =Ianf*
R1, (fg9)*=1 U fgN*g » R2, (fUg)*= ("""
R2. (fg)*f = f(gh)”

3



s
R31 Oa’a = Ia
: g1” f*gwhf U £*  f*gw
R3, L - , where w = (hf*gyi)*
e bn g ‘ whf* W

* %
“ R33 (\ra,bfV'b,a) Y;l,bf \rb,a’

A morfism y:a->b is called *-functorial if for every f:a->a and g:b- b the equality

fy = yg implies f*y = yg*.

. A biflow is by definition an ssme in which a feedback is given fulfiling the axioms

F11_7. A biflow over an algebraic theory (resp. over a matrix theory) is an algebraic

~ theory (resp. a matrix theory) considered with the natural structure of ssme in which a

feedback is given fulfiling the axioms F11_7.

Asa corolary of the theorems in this paper we note that in an algebraic theory
(resp. in a matrix theory) the axiomatic systems F1, F2, I1, 12, I3 and 14 (resp. F1, F2, I1,

12, 13, 14, R1, R2 and R3) are equivalent.
Proposition. In an algebraic theory the axiomatic systems I1-4 are equivalent. -

14 and I12,. As

is equivalent with 121, 9-3 4

Proof. It is known from Esik [9] that Lo

I41 follows from 131 and 134 we get that I3 <==> 14 holds.

ote that 133 is a particular case of 123. By the, Proposition B.1 of Appendix B in

4 %

Stefanescu [13] the axiom I3, is equivalent with 122_3 in the presence of 12, and I3,_,.
Hence 12 <==> I3. :

; moreover,

It is easy to see -that Il <==>12. Indeed, I1, for g=Ia gives 12

2 i
g(f(g + Ic))J'r = (by 112) gf<(gf)T, 1= (by I21) (gf)T, hence  Il, ==>12,.  Conversely,

121 +123

fglfg + I, 1> = by 12)) 1D, 1> @

==> 11,5 indeed, (g + 10T = by 12)) £g + 1 )<(tg + 1 )T, 1 > =



" ITERATIONS AND FEEDBACKS IN ALGEBRAIC THEORIES
Let T be an algebraic theory and It(T) (resp. FA(T)) the set of all iterations (resp.

.- feedbacks) defined on T. We define two applications
- s FA(T)—> It(T) and g,:lt(T)—}Fd(T)
as follows
© 4o maps f€T(a,atb) in 43I, I, +0.>;
| a . VtH L ; - t
e (+ F,) maps f= <f1,f2>e T(a+b,a+c) (with fl.a—-) a+c and fz.b—>a+c) in f2<f1 ,Ic>.

Let Fd (T) (resp. Fd.(T)) be the subset of all the feedbacks in Fd(T) that obey the axioms
Fl, ¢ (resp. F25) and Itr(T) the subset of all the iterations in It(T) that obey the axiom
134. Finally, let us consider the restrictions «, Fdr(T)~—>ItP(T), F’r :«Itr(T)—>FdP(T),
o, 2 Fdi(T)—,>It_(T) and g. : ItA(T)—> Fdi(T) induced by « and ﬁ

Theorem. a) The restrictions o Pi’ °(r‘ and Br are (totally defined) bijective
functions. Moreover o(i is the converse of f;i and o(r of (3[,.

b) For k[4], + satisfied 14, iff tp satisfies F2

Kk
¢) For ke (3], t satisfies 13, iff {p satisfies F1

K
7’ .
d) y is t-functorial iff y is Th -functorial.

Proof. a) - ‘Note . that 4=+ satisfies F2 indeed, g<1~a<f,l +0. >, 1 >
Proof. B a

5° b7 b
= g((Ia+0b)<fT,Ib>, Ib> = g<fT,Ib> = 'Fa<f,g>. Consequently Bi is totally defined. Obviously
t = 1p« . For the converse, note that ('N(F,)a maps <f1,f2>6 T(a+b,a+e) (with flza-'>a+c
: a 2
and fZ:b-—)a+c) in f2<¢ <f1,Ia+Oc>, 1,>. Hence s ’N(FS for ’T‘€Fdi(T).
For the second restriction, note that t+ satisfies 134 iff ¢ g , denoted 1, satisfies F14.

Indeed, 4 satisfies F1, iff for every f=<f1,f2>:a+b—‘;.a+c (with flza—->a+c and

4

s : ey = 4 - t ;
f:b ->a+c) and gie=>d 4 f)g =f,<0 A e fo<f, 'g,g> is' ' equal . ‘to

AR ) = A7<E (1, ), £, 40> = f2(1a+g)<(f1(1a+g)_)f, 1 = £,<(0, 0+, o>



= i<<tg>T1>  and POR8f g > = 4 (<g,i><f”,1b+c>) = pPegett

i

Consequently if + satisfies 134, then 4 satisfies F14 and if 4 satisfies F14, then by using

Ia+0 for f2 above we conclude that + satisfies I3

2 Hence we have a bijective

"
correspondence between Itr(T) and the subset of all the feedbacks in Fd(T) that satisfy

F25.+ F14. The conclusion follows if we show that F2_ + F1, <==> F1

5 00 4-6°
F25 ==> F15; indeed, if f = <f1,f2>:a+b-—> a+e (with fl:a—>a+c and fz:b+a+c) and

Note that:

X a sl = a
g:d-s b, then 0 (L *e)) =4 <f,,8f,> = (by F2,) gf <4 <EL+0 >, 10
= (by F2 )g'f‘a<f fo> = g 2o,
F25 + Fl4 ==} F16; indeed, if f = <f1,f2>:a+b—> ate (with f1:a~—>a+c and f2:b—>a+c)
and g:d—>e, then £8(f + g) ='f*a<f 0, f o TE2 = (by
a :
F25)(f2+g)<’l‘ <f1+0e,1a+oc+e>, Ic+e> = (by F1 )(f +g)<’}~ <4,I +0 >+0e Ic+e>
- a - a =
= g )AL R0 >0 > + 1) = £ <AKE L 40 >0 > + g = (by F2.) M+ g,
F14-6 ==> F25; indeed, if f:a->a+tc and g:b->ate, then ’I‘a<f,g>
- A2 2 a = a
=4 [(Ia+g)(<f,1a+00> + Ic)(la+Vc)] = (by F14_6) g4 <f,Ia+Oc> H Ic)Vc =g<A <f,Ia+Oc>, 1>
b) Let 4 and t be such that 4= TF. . The equivalence in the case k = 1 holds since for
fib>c (0, + B = #co_¢1,1.40 > = LR AR )
For k 2, note that if f:a—atb+e, g:b->a+b+c and i:d->a+b+c, then ‘f‘a it ,g,1>

b+> 1<f I

el e : s + + e
= iKf ,Ib+c><h,Ic> = i<L«f <h,Ic>,h>, Ic>, where h = (g<f .’Ib+c>) 5 Consequently F satisfies

FZ2 iff + satisfies 142.

For k=3, note that if f$<f1,f2> : btat+te = b+ta+d (with £ :b+a~—>b+a+d and

: atb - Aath
fyre>btatd), then A W LGy 1)) o e bf1<v~b o Lgh Loy, 41
. , t - 5
- = 500 2 100, bl (W, o 1) 1 = fo<¥y alVa, bt \b,a”d» » Iq2 .
y b+a : : e ;
P78 = £t T - Since v |y, =1, it follows that 14, <==> F2,.

For k =4, note that thé axioms F24 and I44 may be written as 1\a(f(la+c+0d))

_ 8 o+ : ;
= (4 f)(Ic+0d) and (_f(Ia+b+Oc)) —f(Ib+0c), respectively. Now the equivalence

‘F24 <==> 144 directly follows from the above proof of the equivalence F1, <==> 134.

4

The proof of c) is covered by the above proof of b).




d) Suppose that y:a->b is -t—functorial and f = <f1,.f2>:a‘+c - a+d (with f1:a~>a+d
and fzzc» a+d) and g = <g:gy>ibte > b+d (with g,:b->b+d and gzzc—->b+d) are such that
f(y + Id) = (y + Ic)g. Then fl(yﬂd) =yg, and fz(y+1d) =g, By the T—functo.riality of y

f o ac _ 1 = trsy= ' t = i —4b
£,7=yg, ' Hence £°f = £,<f, 11> = f,<yg, 11> = 1,1 )<e; T 1> = g8, L1 = 1e:

Conversely, suppose that y:a—>b is #-functorial and f:a-> a+c and g:b—>b+c are such
that f(y+Ic) = yg. Then <f,Ia+Oc>(y+Ic) = <f(y+Ic), yHO > = Syo vkl > = (y+Ia)<g,y+Oc>. By

2 S a _4b a . + ik
the 4-functoriality of y A4 <f,Ia+0c> =4 <g,y+0c>. As 4 <f,Ia+0c> = (Ia+0c)<f ,Ic>-fand

f‘b<g,y+‘0c> = (y+0c)<gT,Ic> = ngr the result follows. [

Corollary. In an algebraic theory the axiomatic systems F1, F2, I1, 12, I3 and I4 are

equivalent. ]

REPETITIONS, ITERATIONS AND FEEDBACKS IN MATRIX THEORIES
Let T be a matrix theory and Rp(T) the set of all repetitions defined on T. We use

the applications in [13]
¢: I(T->Rp(T) and Z : Rp(T) =>It(T)
defined as follows

® ¢ maps f€T(a,a)in [f,Ia]T;

® *T mapsf-= [fl,fz]e T(a,‘a+b\) (with flza—> a and f2:a—-> b) in f; fz.

a

Finally, let us consider the restrictions ¢, : Itr(T)—‘:-Rp(T) and Z,: Rp(T)-Htr(T) induced

by ¢ and T.

Theorem. a) The restrictions T, and T, are (totally defined) bijective functions. .

Moreover, O’r is the converse of "Lr.
b) For ke [3], * satisfies R3k iff *7 satisfies 13,.

c) For k€[3], * satisfies R2, .iff * 7 satisfies 12, .



d) For ke [2], * satisfies R1, iff *<¢ satisfies 11,.
e) y is *-functorial iff y is *7 -functorial.
Proof. a) Note that *7, denoted f, satisfies I,34; indeeq, if f = [fl,f2]:a->a+b (wit.h
flza—%a and fzza——>b) and g:b-c, then (1‘(Ia+g))T = [fl,fzg']Jr = f; fog = ng. Consequently
T is totally defined. Obviously * = *7q. For the converse note that {477 maps
% = = . ¢ : . + o
,f {f_l’f2] [fl,Ia](Ia+f2)e T(a,a+b) (with fl.a->a and fz.a«-> b) in [flb,Ia] fz. Hence + = 10t
. for €It (T). '

b) Let + and * be such that + = *z. The equivalence in the,‘case k = 1 holds since

]T=0 s *

S F
(0a+la) =10 a;a.a - a8

JA
: a,a’ a
Let k = 2, note that if f = [fl’fZ’f3] : a—>a+b+e (with fl:a—>a, fz:a—>b and f3:a >c)

and g=[gl,g2,g3]:b->a+b+c (with g;:b>a, g,b—>b and g3:b->,-c), then

e cpl L T
<f,g>'r = 1 2 3 = 1 2 3 i\ and h:= (g(ff’lb*-c))-r =
€1 8y B3, €1 82 g3

ES *

fl fZ f1 f3 : . . " -
: 0 I
[

w= (glf"l‘ fZUgZ)*, hence

* * * % % «
e GBI Db U T
| 5 3 ngfii W g3 ,

Consequently, if * satisfies R32 then 1 satisfies 132. If 1 satisfies 132. then applying

f.of g * % * *

1 2] { 3] s [flfzwglflu £ flfzw] [f:;}
%

g, 89 g3 wg fy w g3

for f3 = Ia’ gy = Ob,a and f3 = Ob,a’ gq = Ib we get R32.
For k =3, note that if f = [f-l,fZ]:b+a—> b+a+e (with fl:b+a—>b+a and f2:b+k: ->c),
T i *
then (Vg b0, 2" = g b1 Vh,a0 Vaofal = Wa,bl1Vh,a) Vi bl and
T = % i = i —
Y‘:a,bf = Y‘é,bfl f2' Slnge vlb,aYVa,b = Ib+a it follows that R33< >I33.

c) Let + and * be such that + = *Z. For k = 1, note that if f = [fl,fZ] : a->atb (with

f,:a>a and fy:a>b), then f' = £} f, and s s o 0 SoME, SR B BT JE . Hence

2

R21<==>I21.



M

For k = 2, note that if f = [fl’fz’f:%] : a->a+a+b (with fi:a-—) a, f2:a+a and f3:a——> b),

. Mo o py b +_ %
ithen.  (l=pptri 00 £11C RO A and BV LN (e UL e D)0

- Hence R2,<==>12

2 2.

- For k=3, note that if f=[f,,f,]:a->bte (with f,:a—>b and f,:a ->c) and g:b-—)a,r -
then g(f(g+Ic))T = gl’_flg,le]L = g(flg)*f2 and (gf)'r = v[gfl,ng]T = (gfl)*gfz. Hence
R2 ' - '

{==>IZ 3°

d) The case k = 1 is covered by e). For k=2 note that if f = [fl’f2] : a=>b+c (with

: : . t_ '
fl.a—)b and fz.a->c) and g:b-—>a, then (f(gﬂc)) = [flg,_lef - (f1g)*f2 o
' 1t = * : s * s *
f <(gf ) A = [fl’fZ] <(gf1) gfyl > = fl(gfl) gf,ul, = (IaU fl(gfl) g)fz. Hence
R12<==>112.

e) Suppose that y:a-»b is *—funétorial and:f = [fl,le :a->at+b (with f1:a~—>a and
fz:a—> e¢) and g = [gl,gzl : b—> b+e (with gl:b—éb and gzzb—>c) are such that (f(y+Ic) = yg.
Then fly =yg, and fZ = yg,- By the *-functoriality of y f;‘ y =ygI . Consequently,
ygTL = yg; g9 = fr ygq = f; fz = fT, Conversely, suppose that y:a—»b is t-functorial and
f:a—»>a and §:b—>b are such that fy = yg. Then [f,y](y+1b) = [fy,y] = [yg,y]l = y[g,lb], hence

[f:Y]T = y[g,'Ib]T. Therefore f¥y=yg*. .|

Note that the composites x¥ and ZF, work as follows:

0

a  -a

. . f
® foo maps feT(a,a) in '1‘a[ g ]
. I ’
a

:b-»a and

f f
a = 12 : : :
0 (*zp)” maps f= {fll ; ]QT(§+b,a+c) (with £, :a=>a, f12.a e, le
i f o f2 S :
- -fzz.b—>c) ingiff 12Y f99°

24711

Corollary. a) The restrictions o, and T @ are (totally defined) bijective :.,
functions. Moreover ocr v’r is the converse of err'

b) For k&[3], * satisfies R3k iff *‘C? satisfies Flk.




¢) y is *-functorial iff y is *zg—functoria'l. H

Corollary. In a matrix theery the axiomatic systems F1, F2, I1, 12, I3, 1'4, R1l, R2 and

:.R3 are equivalent. g
‘CONCLUDED REMARKS

Here we give some advantages of the use of feedback over the use of iteration or
repetition.

First, the proper acyclic context for the use of feedba{tck is a symmetric strict
monoidal category, for iteration an algebraic theory and for repetition a matrix theory.
Hence feedback may be used in a more general context than iteration or repetition.

. Second, in the context of matrix theories there is a bijection between ;terations that
obey the axiom 134 and repetitions. Hence iteration is better than repetition since it
displays some properties of the looping operation which are hiddened by repetition.
Analogously, in the context of algebraic theories there is a bijection between feedbacks
that obey the axiom F?.5 and iterations. Hence feedback is better than iteration (resp
repetition) since it displays some properties of the looping operatlon which are hiddened
by iteration (resp. repetition). Naturally, the proofs in terms of feedbacks are longer.

Finally, ler us note that some properties are easier to express in terms of feedback,
e.g. the property expressed by the "matrix formula" R32 or by the "pairing axiom" 132 is

4

. expressed in terms of feedback as Fl2
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