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1. INTRODUCTION

It is well-known that many differential equations satis-
fy so-called minimum principles, namely they lead to the problem
of finding a minimum for a certain functional or a family of
functionals.

Let us consider X to be a real topological linear space,
X* its dual and a family of functionals (Ff)fex*ij=X+(_w' +§]

which can be written as
(1.1) Ff(v)-=g(v)—<f,v>

" where g:X> (-, +§] is aproper function. For a given feX* the



minimum problem for Ff

(1.2) find ueX such that Ff(u)éFf(v) for alll weX is

eéuivalent with the nonlinear equation
(1.3) find ueX such that feag(u)

where Bg(u)={heX*/g(v)—g(u)z<h,v-ﬁ> (¥) veX} is the subdif-
ferential of ‘giat u.

If X is a reflexive real Banach space and g is a convex,
coércive, lower semicontinuous function then Ff is bounded
from below and it exists a minimum peint for Fe hence equation
(1.3) has at least a solution for all fex*. TIf X is a Banach
space and g is a convex, coercive functional which is not
lower semicontinuous then problems (1.2) or (1.3) may not have
a solution. But if g is an uniformvconvex functional then all
minimizing sequences for Ff‘have the same limit which is called
the Sobolev solution of equation (1.3). In the papers of s
Ionescu [4], Ionescu, Rosca, Sofonea [6], Dinca, Mateescu [2]}
a variational characterization for the Sobolev solution is
given, namely theére exists g:X>(-», +«] such that 3g extends
9g (i.e. D(3g)cD(dg) 3g(x)=3g(x) for all xeD(3g)) and for all
fexX* u is the Sobolev solution of equation (1.3) iff £ € 3g(u).
Let A:D(A)CX+X* be a dense defined, symmetric and positive
definite linear operator. If we put D(g)=D(A),g(v)=%<Av,v>
then A=3g. In the paper of Ionescu, Rosca [5] it is proved
that the Friedrichs extension'z’of A is exactly 83: By the
analogy with the linear case we can'consider 8§ as the
Friedrichs extension of 3g in the general nonlinear case.

The object of this paper is to study in a similar mode



equétion (1.3) when X is a topological linear space and g may
not be a convex functional. Fdr'this kind of framework it is
necessary to extend the concept of Sobolev solution; more
precisely we say that u is.a generalized solution for equation
(1.3) if there exists a minimizing sequence for Ff which is
converging to u. To be more specific we consider a very simple

example with a non convex function g.

EXAMPLE 1.1. Let g:R>R be given by

2

: X for x€(-«,0)
(1.4) - gixl=1
x #1  for xe[b, +)

It is easy to see that g is not lower semicontinuous in x=0,
D(3g)=(-=,0)u [i,+=), 3g(x)={2x} and R(3g)=(~»,0)U[2,+=). If
feR(dg) then equation (1.3) mas an unique classical solution.
If £€(0,2) then all minimizing sequences for Fe have XfO as

a limit, hence x=0 is a Sobolev solution for (1.3) though
equation (1.3) has no classical solution. If f£f=2 then fedg(1),
that is x=1 is a classical solution but x=1 is not a Sobolev
solution because xn=-1/n is a minimizing sequence for Ff which
has not xX=1 as a limit. Moreover x=0 is .a generalized solution
for equation (3) but neither a classical nor a Sobolev solution.
Let us consider g:R>R to be the lower semicontinuous envelope
of g given by

i for xe(-=,0]

x2+1 for x&(0,+®)
We remark that D (3g)=(-«,0] b’D,+m), 3g(x)=2x for x#0 and

33(0)=[b,2]. Moreover R(3g)=R and for all féR we have that

£€dg(u) iff u is the generalized solution of equation (1.3).



Hence we have obtained a‘variatiohal characterization of the
generalized solutions. Let us femark that 3g is not a maximal
monotone operator, hence we cannot construct a convex functibn
E sucht that 86583 i.e. we cannot have a variational characte-
rization of the generalized solutions with a convex function
when g is not convex.

In section 2 the definition of the generalized T-Solution
and secventialy generalized t-solution for equation‘(1.3) in a
linear topological space X with the topology denoted by 1, are
introduced. Two functions g and g are constructed in order to
give the variational characterization of the generalized
t-solutions and secventialy generalized t-solutions respecti-
vely (Theorems 2.1 and 2.2).‘The link between this two exten-
sions is given (Theorem 2.3). A particular but useful case in
which this two extentions coincide is given (Theorem 2.4). dhe
infiuence of the topology t in this consfruction is studied
(Theorem 2.5). In the last part of this section the convex case
in a Banach space for the strong and the weak topelogy 1s con=
sidered - (Theorem 2.6 . '

In Section 3 we introduce the V-cercivity condition (a
possible extension in a linear topological space of the coer-
civity condition used in anormed space) in order to obtain
the existence of the (secvential) generalized t-solution i.e.
the surjectivity of 3g (3g respectively) (Theorem 3.1).

In section 4 the Sobolev t-solutions are studied in a

locally convex space. In order to obtain the existence of the

Sobolev t-solution (Theorem 4.1 and 4.2) the t—-uniform conve-
xity condition (which is similar to the usual one used in

normed space) is supposed.



In section 5 the K-variational problems are recalled from
Ionescu, Rosca, Sofonea [6]. Since we consider that it is not
so evident how the main results from [6] can be obtained using
the theorems of the present paper we briefly indicate some

tricks.

2. THE VARIATIONAL CHARACTERIZATION OF THE

GENERALIZED SOLUTIONS

Let X be a real linear topological space with the topo-
logy denoted by t which satisfies Hausdorff's axiom of separa-
tion and let X* be its dual. We consider g:X+(-m,+§]a proper
functional (i.e. D(g)={xeX| g(x)<+x}#@) which is bounded from
bellow by an afine function (i.e. there exists x*X*, a€R such
that g(x)2a+<x*,x> for all xeX). Let us construct the family
of functionals (Ff)fex* gi&en by (1.1) agd let d:x*+[}w,+m) be
given by '

(2.1) d(f)=inf Ff(v) for all - EeXk.
veX ‘

One can’easely see that -d is the polar of g usely denoted by
g*.

We can also remark that fedg(u) iff Ff(u)=d(f).

DEFINTTION 2.1. i) We say that u is a generalized (g.)

t-solution of the equation f€3g(x) iff there exists a generalized

sequence (ua)aeA such that ua+u and Ff(ua)+d(f) 5

ii) We say that u is a secvential generalized (s.g.)
t-solution of the equation fe€d3g(x) iff there exists a sequence

(un)neN such that un+u and Ff(un)+d(f) -



REMARK 2.1. Every s.g. T1-solution is a g. t-solution and

if 1 is metrizable then the two above definitions are equivalent.
However, in general, a g.t-solution is not a s.g.t-solution

which can be see in the following example

EXAMPLE 2.1. Let (X,|| ||) be an infinite dimensional

Banach space and 1=0(X,X*). If we consider g(x)=exp(-||x||) one
can see.that the equation ex*eag(x) has no s.g.t-solutions but
all u¢X are g.t-solutions.

The following theorem states that if g is the lower semi-
continuous envelope of g, then 3g extends 3g such that all
g.T-solutions.of equation feédg(x) are classical solutions for

fedg(x) and conversely.

THEOREM 2.1. If g:X+>(-o,+o] is given by

(2.2) g(x)=lim g(y)= sup inf g(y)
X VGUE(X) yeVv

then we have:

i) g<g, D(g)cD(g), D(3g)cD(3g) and for all ueD(3g)
we have g(u)=g(u) and 3g(u)=9g(u).
ii) for all fex*, fedg(u) iff u is a g.r-seolution of the

equation f€dg(x).

COROLLARY. 2.1 Let uebD{dg)..Then for all fex* u is a

classical solution of the equation féag(x) (i.e. fedg(u)) iff
u is a g.t-solution of the equation fe€dg(x).

For all feX* let us denote by.

(2.3) Fe(v)=g(v)-<£,v> for all veX



and let d:X*+[-»,+®) be given by

(2.4) d(£)=inf F_(v)=-g*(f) for all ' feX*
: vex T -

The following lemma will be useful in the proof of Theorem 2.1

LEMMA 2.1. i) For all veX there exists a generalized
sequence (V ) _» such that v _+ v and g(Va)+§(v).

ii) for all feX* we have

(2.5) d(£)=d(£)

Proof. If v¢D(g) then g(v)=g(v)=+ and we can put v _=v .
It is well known (see for instance Laurent [7]p. 332 or Ekland
Temam f3 B 1Q]) that Ep(g)=Ep(g) where Ep(g) is the epigraph
of g i.e. Eplg)={(x,a)/g(x)sa}. If veD(g) then (u,g(u))€Ep(g)=
=Ep (g) hence there exists (Va'aa)aeK;Ep(g) such that v >V in X

and aa4§(u) in R. From the inequalities E(va)ég(va)éaa we deduce

g(v)<lim g(va)éllm g(va)glim g(va)éllm aaég(v) hence g(va)+g(v).

Proof of Theorem 2.1. i) Let u€D(3g) and fedg(u). From

Lemma 2.1 we get ﬁf(u)éFf(u),d(f)=a(f)§ff(u) hence Ff(u)=ff(u)=
=3 (f) i.e. g(u)=g(u) and fedg(u). We have just proved that
'hb(ag)CD(BE) and for all ueD(3g) we have g(u)=g(u), dg(u)cdg(u).
In order to prove that BE(ﬁ)Cag(u) for ueD(3g) let us consider
hedg (u) . From d(h)=d (h)=g(u)-<h,u>=g(u)-<h,u> we deduce
d(h)=F, (u) hence hedg(u).

ii) Let ueD(3g) and fedg(u). From Lemma 2.1 we deduce
that there exists (ua)aeA a generalized sequence such that
g(ua)+§(u) and u ~>u. Hence we have Ff(va)+ff(u)=5(f)=d(f) e

u is a g.t-solution of the equation fedg(x). Conversely let




u ~u and Fg(u,)»d(£) hence g(ua)+d(f)+<f,u>=3(f)+<f,u>. Using
the lower semicontinuity of g we get g(u)<lim g(ua)=a(f)+<f,u>

hence F(u)=d (£) i.e. £€3g(u).

‘The following theorem gives a variational characterization

of s.g.t-solutions similar to Theorem 2.1.

THEOREM 2.2. There exists §:X+(—m, +¥asuch that

i) §§g, D(BgﬂcD(Bé) and for all ueD(9g) we have §(u)=g(u)

and 85(u)=ag(u).

ii) For all feX* we have that féagku) iff uw ls a s.0.17-50=

lution of the equation feédg(x).

COROLILARY 2.2. Let u Dlbg).. Then for all £ X&, 1 vig a

classical solution of the equation £ Bé(x) (i.e. £ Bé(u)) iff

u is a s.g.t-solution of the equation £ 9g(x).

Proof of Theorem 2.2. Let S be the set of all s.g.1-so-

lutions

(2.6) S={uex; (F) £ x*, () (u ) _£X such that u >u and

| Ff(un)+d(f)}
and let §:X+(—M,+§] be given by

: - g(v) if vesS
(207) ¢ agilfv)=

giv) . if wvgs.

We denote by (Ef)fex* the following family of functional

(2.8) ﬁf(v)=§(v)—<f,v> for all vex



and !let a:x*+[Lw,+w) be given by

(2.9) d(f)=inf F
veX

f(v)=—§*(f) for all fex*

The proof of Theorem 2.2 follows the same way as the proof of

Theorem 2.1 using instead of Lemma 2.1 the following lemma.

LEMMA 2.2. i) For all veX there exists a sequence (Vn)neN

such that ity and g(vn)+§(v).

ii) For all fex* we have d(f)=d(f).

Proof. If v¢S then we put v =v and if veS then there exists

* " o s
fex* and (Vn)né such iy and Ff(vn)+d(f) hence g(vn)+d(f)+<f,u>—

N
-3 (£) +<f,u>. From the inequalities g(u)=g(u)<lim §(v_)slim g(v )=

=H(f)+<f,u>§§(u)=§(u) we deduce g(vn)+§(u).

The link between 3g and 3g (i.e. between the s.g.t-solu-

tions and g.t-solution) is given in the following theorem::

THEOREM 2.3. g<gsg, D(Bé)CD(BE) and for all ueD(aé) we

have g(u)=g(u) and 3g(u)=93g(u).

COROELARY 2.3. IFf u is a g.t=selution of the equatien

fedg(x) and it is also a s.g.t-solution of the equation hedg(x)

then u is a s.g.t-solution of the equation fé€a3g(x).

Proof of Theorem 2.3. From Theorem 2.2 one can easilydeduce

that S=D (39)cD (3g) and for all ueD(dg) we have g(u)=g(u),
3g(u)cdg (u). Let now fedg(u) for ueD(3g). From lemma 2.1 and

2.2. we deduce that é(f)=a(f)=ﬁf(u)=§f(u) i.e. fedg(u).



REMARK 2.2. If T is metrizable.dne can deduce from

Remark 2.1 and Theorems 2.1, 2.2, 2.3 that a§=a§, but in general
the equality does not hold (see for instance Example 2.1 where
g=0 and ;ég). However the following theorem gives sufficient
conditions (in a particular choise of 1) in order to have the

equality.

THEOREM 2.4. Let (X,|| ||) be a reflexive Banach space and

T=0(X;X*) be the weak topology of X. 'If lim g(x)=+w for
| |x| |>+= then 3g=3g, ex*éR(BE) (i.e. for all feXx* we have that
u is a g.o(X;X*)-solution of the equation fedgix) iFE u is a

s.g.0(X,X*)-solution of the equation fedg(x)).

Proof. Let us prove, for the beginning, that for all veX

there exists (Vn) such that v -v and g(vn)+§(v). Tf Y{D(E)

neN
then g(u)=g(u)=+w and we choose v =v. Let veD(g), r>0 and
I=(g(v)-r, g(v)+r)cR, B=XxIcXxR. Ha&ing in mind that (V,ESV))&
Ep(9) =Ep (g) we deduce that (v,g(v))EEp (g)NB.Let us prove now
that Ep(g)NB is bounded in XxR. Indeed if there exists
(wn,bn)EEp(g)ﬂB such that ![wnll++w'we deduce that g(wn)++§

but g(wn)ébn§§(v)+r<+oo hence Ep(g)NB is bounded in XxR which is
reflexive. We can use a result of Browder [ﬁ, p. 81] to deduce
that there exists (vn,an)éEp(g)nB such that v =v and an+§(v).
From the inequalities g(v)slim E(vn)élig g(vn)éiza g(v )<lim a =
=g (v) we obtain g(vn)+§(v).

Let consider now ueD(3g) and f€dg(u). From the first part

). .cX-such that u.-=u and
n’' neN n

of the proof we can constrﬁct (u
g(un)+§(u). Since Ff(un)+?f(u)=3(f)£d(f) we deduce that u is
a s.g.d(X;X*)—solution of the equation f£€9g(x). We can use

Theorem 2.2 to obtain that ueD (3g) . Hence we get D (33)CD (3g) and



from Theorem 2.3 we deduce 3g=3g.

THEOREM 2.5. Let us consider two topologies on X denoted

by ©..and ‘1 such that T .57, and X*-X* =X* . We denote by Ei, 51,
1 2 =2 Ty T

i=1,2 the functions constructed in theorems 2.1 and 2.2 for
T5T,. Then we have

132, D(55%)eD(35'), 95 (u)=39° (u) for all ueD(3g2).

i) g =9

11) 9592, D(352)cD (39%), 39 (u)=3g% (u) for all ueD(33°).

COROLLARY: 2.4. i) If u dis.a g.7 —soluntien:(stg.t

2 2

then u is a g.T1-solution (s.g.r1-solution) of the equation

fedg(x).
i) If wis a g.11-solution (s.g.r1—solution) of the

equation féBg(X)el% is also a g.Tz—solution (s.g.TZ—solution)

of the equation hedg(x) then u is a g.rz—solution (s.g.rz—solution)

of the equation fé€d3g(x).

2

REMARK 2.3. In general §1§§ and D(SEZ) D(é§1). This can.

be seen in example 2.1 for T1=O(X,X*) and T,=NoIm topology in

Gt e b e 0 Ezzg,n(a§1)={ex} and D (35%)=@.

Proof of Theorem 2.5. 51252 by construction and since

5,CS,

get §1§§2. From Corollary 2.4 i) which is obvious and theorem

(Si is given by (2.6) by replacing Tt with Tys i=1,2) we

2.1 we deduce that D(332)cD(dg') and for all ueD(3g2) we have

Ty

aaz(u)C3§1(u), Let now ueD(BEz),h%§1(u)n8§2(u) and f€3g
Using lemma 2.1 ii) we get 51(u)=d(h)+<h,u>=§2(u) and since
g (u)=d(£) +<£,u> we obtain g2(u)=d(f)+<f,u> i.e. £€3g°(u). In

order to prouve (ii) the same technique can be used.

-solution)
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Let (X,|| ||) be a Banach space and we denote by s the
norm topology and by w the weak, ¢(X,X*), topology of X. Let
95 g7 and Y, G Beithe rurction constricted abebe For T=s

and t=w respectively. Then we have the following theorem

THEOREM 2.6. If g is convex then

i) g7=g°, 5w5§s and g° is convex

1i) 397=93°239°25¢" is a maximal monotone operator.

Proof. i) Since g is convex we deduce that Ep(g) is a

convex set hence Ep(g°)=Ep(g) =Ep(g) "=Ep(g") i.e. go=g is
convex. Let SS and Sw be given by (2.6) for t=s and’T=w res-
pectively. It is obvious . that Ss<:Sw and in order to prove that
Sé:SS one can use the Mazur lemma and the convexity of Ff.
Since Sw=Ss from (2.7) we deduce that &wzé .

ii) Using remark 2.2 we get 8555865 and from theorems 2.3

and 2.5 we have 33°=3g" 33" 3g"=3g°.

REMARK 2.3. The fact that 39"259239°z3g" (i.e. the (s.)q.

strong and weak solutions coincides) is important in applica-
tions. Indeed the V-coercivity condition (see the next section)'
with V a precompact set which assures the existence of the
generalized solution is working in the weak topology (since
B(6,1) is compact for X a reflexive space). From the above
equalitiés we have that if a g. weak solution exists then it is
a strong one hence we have strongly converging minimizing se-
quences. In the next we give an example in which g is not

convex but however the above equalities hold .
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EXAMPLE 2.2. Let Q=(0,m), X=Hl(Q) and g:X»R be given by

g(V)=é|valzdx+I¢(v(x))dx where ¢ is given by (1.4). It is not
Q

so difficult to prove that Ew(v)=§s(v)=f|Vv!2(x)dx+f$(v(x))dx
: : Q Q

where ¢ is given by (1.4). Using theorem 2.4 we get that

S =og"=aa =00" .

3. THE EXISTENCE OF THE GENERALIZED SOLUTIONS

In reflexive Banach spaces the usual coercivity condition
lim g(x)/||x]|]|=+= for ||x]||+e assures the existence of the
S.g.0(X,X*)-solutions. In this section we give a possible
generalization of this condition in a linear topological space
in order to obtain the existence of the g.T—-solutions
(s.g.T-solutions) (i.e. the surjectivity of the extension
35 (33)) - " _

Let X be a real linear topological space with the topology
denoted by T which satisfies Hausdorff's axiom of separation X*

its dual and let V be a subset of X.

DEFINITION 3.1. We say that g is V-coercive if D(g)clnv
n20

and lim inf g(v)/n=+» where Wn=(n+1)V\nV and WO=V.

veWw o

REMARK 3.1. It is easy to see that if X is a normed space
and g(x)/||x||>+= for ||x||++~ then g is B(0,1)-coercive.
(B0 =0/ x| |=s2]).

The main result of this section is the following theorem

THEOREM 3.1. Let g be a V-coercive function.
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i) If V is a precompact set then for all feX* there exists
at least one g.t-solution of the equation fedg(x) i.e. R(3g)=X*.

ii) If V is a secvential precompact’set then for all feX*
there exists at least one s.g;T;solution of the equation fejg(x)

i.e. R(33)=R(39)=X*.

COROLLARY 3.1. Let (X,|| ||) be a Banach space and

lim g(x)/||x||=+= when ||x]||+=.
» i)‘If X is a reflexive space then for all feX* there

exists at least one s.g.g(X,X*)-solution (i.e. R(3§)=R(a§)=x*).

ii) If X is the dual of a normed space Z and t=0(X,Z) is
the topology on X then for all feX*=Z there exists at least one
g.t-solution of the equation fedg(x) (i.e. R(3g)=X*). Moreover
1E2 is separable then for all feX*=Z there exists at least one
s.g.1-solution of the equation fe€3g(x) (i.e. R(a§)=X*).

In order to prove theorem 3.1 the following lemma will

be an useful tool.

LEMMA 3.1. Let g be a V-coercive function and feX*. If

sup|<f,v>|<+= then for all aeR there exists keN such that

vev
: k

Fe (a)={x/Ff(x)§a}CiL;]OWi.

Proof. Let us suppose that for all kéN there exists

GFé
Vet e

k
(a) such that v ¢( JW.. Since Fé(a)CD(g)cl JW_ there
e . nso >

hence vk=(nk+1)wk with wkeV. ofias

exists nka such that vkgwn

: k
we denote by Af=32$|<f,v>| then we have azFf(vk)zg(vk)~(nk+1)Af;

zn inf g(v)/n -(1+l—)A | and passing to the limit we obtain
k k n £ :
veW k
Ny

ax+o, contradiction.




Proof of Theorem 3.1. i) ﬁet fexX* and let (vn) be a

n20

minimizing sequence for Ff. If we put a>d(f) then there exists

<
n, such that (u ) ch;F;(a). Using now lemma 3.1 we get that

nn
o
(Vn)n>n belongs to a precompact set hence there exists a ge-
5 7o)
neralized subsequence (ua)aeA of (un)ngn and ueX such that

(@)

ua+u i.e. u is a g.t-solution of the equation fedg(x).

ii) can be proved in a similar manner.

4. SOBOLEV T-SOLUTIONS

In this section X will be a locally convex, secventialy
complete space with the topology T generated by the family

of seminorms (pa)aeA'

DEFINITION 4.1. We say that u is a Sobolev (S.) t-solution

of the equation fedg(x) if all minimizing sequences for Ff

converge to u.

REMARK 4.1. It is easy to see that if u is a S.t-solution

then w is a s.g.r-seolution and it is unigue (no other g.T—éolu—
tion exists). As we can see in Example 1.1 the converse is false.
The following example points out the influence of the

choise of the topology t in the definition of S.t-solution

o]

EXAMPLE 4.1. Let X=£2, g:X+»R given by g(v)= Z %vi+h(v)
n=1
where h(v)=0 if ||v]||$1 and h(v)=[[v|[2—1 1 | [wf 1. one can

prove that u=ex is the S.O(X,X*)-solution of the equation

ex*éag(x) but it is not a Sobolev strong solution (the sequence
D : R . .

x =(8;);,7 is a minimizing one but, since o [, = convgrges

not to ex).



If X is a normed space then it is knoWn that the coercivity
and the uniform convexity of g are sufficient conditions for
the existence of the Sobolev solutions in the norm topology
(see Vainberg [9], Ionescu, Rosca, Sofonea [6], Dinca, Mateescu
[2]). In order to give sufficient conditions for the exiétence
of Sobolev t-solutions we give the fbllowing definition of the
uniform convexity in a localy convex space, similar to the

usual one in a normed space (see Zalinescu [10]).

DEFINITION 4.2. We say that g is a t-uniformly convex

function on the set BeX if for all aeA, e>0, there exists §>0
such that for all u,veB and A€(0,1) if Ag(u)+(1=A)g(v)-g(ru+(1-))V)<

<o (1=)): then pa(u—v)<e.

EXAMPLE 4.2. Let us consider X=22, g:X->R given by

e}

= 12
g(v)= Z an
n=1

. One can prove that g is ¢(X,X*)-uniformly convex

on all bounded sets but as can be seen in Vainberg [Q] g is

not uniformly convex in the norm topology.

REMARK 4.2. The t-uniform convexity of g on a set B given

in Definition 4.2 is equivalent with the following one: for
7 rall oaéA there exists mgdu={m:R++R+/ m is increasing and lower

semicontinuous with m(0)=0} such that
(4.1) Ag (u) + (1=A) g (v)-g(ru+ (1=21) V) 2A (1—A)ma(pa(u-V))

for all A€(0,1) and u,veB. In order to prove this statement one

can use the same techniques as in Rosca [8] or in Zalinescu [103.

THEOREM 4.1. If g is t-uniformly convex on X then

i) g is t-uniformly convex on X and 9g is one to one




(i.e. ag(x1)nag(x2)=¢ for x1#x2).
. 1i) If d(f)>-~ then there exists an unique S.t-solution of

the équation f€dg(x).

COROLLARY 4.1. If g is t-uniformly convex on X then for all

feX* we have that u is a S.t-solution of the equation fedg(x)

iff u is a s.g.T?solution iff u is a g.t-solution iff fe3g(u).

f T e
Proof of Theorem 4.1 (i) Let u,veX and‘(va)aéc, (VB)BéD

such that u +u, v
“ 0. 8

We consider F=CxD with y1=(a1,81)§yz=(a2,82) for a1§a2 and B1§82.

+v and g(va)4§(u), g(VB)+§(v)‘(see Lemma 2.1).

Let (u§)yeF and (v\'()Y
(v,)

be two subsequences of (ua) and

eF QEA

respectively given by ula B)=u 7 Ve =v . Passing to
& 14

BeD o (z,B) B

B

the limit in the inequality
Ag(ul)+ (1=A)g(v')z2 Au'+ (1=A) v ) +A (1= i 1=y !
gl Y) ( )a( Y) gl uY ( ) Y) (. x)ma(pa(uY vY))

and having in mind that lim g(kv;+(1—x)v;)z§(xu+(1-A)V) we get
4.1. The injectivity of 3g is a direct concequence of the strict
convexity of g.

ii) Let (un)ne be a minimizing sequence for Ff. From 4.1

N
we have

1 1 1 1
zma(pa(un—um))gEFf(un)+§Ff(um)_Ff(E(un+vm))§

<P (0 )=a (£)) +5 (F L (w)=d (£))

and since Ff(un)+d(f) we deduce that (un)n>1 is a Cauchy sequence
hence there exists uéX such that u, u. Let now (vn)n>1 be another
minimizing sequence for Ff. Using the same technique one can

prove that there exists veX such that V. Ve In this way we obtain

{X\I@ é x:;/ % 64 i(/ U
/




that u and v are s.g.t-solutions of the equation fé&3g(x) hence
fedg(u) and £&3g(v). But dg is one to one hence u=v is the
unique‘Sobolev T-solution.

@

THEOREM 4.2. If g is t-uniformly convex on all bounded

sets and g is V-coercive with V a bounded set then for all
fex* the equation fe€dg(x) has a unique Sobolev t-solution

(i.e. R(39)=R(3g)=X*).

Proof. Let (uﬁ)

Looq be a minimizing sequence for Ff. Since

g is V-coercive with V a bounded set we can use Lemma 3.1 in

order to prove that (vn)n>1 belongs to a bounded set. We can

—

use now the same techniqué like in the proof of Theorem 4.1 ii)

to deduce that (u_)

Al is a Cauchy sequence hence there exists

uéeX such that u ~u. Let now (vn)n>1 be another minimizing
sequence for Ff. From the first part of the proof we obtain

that there exists veX such that v Ve We consider (wn)n>1 given
by Wontlo i W =V Since (wn)nz1 is still a minimizing sequence

for Ff we deduce that (wn)nz1

Sobolev t-solution of the equation fe€3g(x).

is Cauchy,hence u=v is the unique

5. K-VARIATIONAL PROBLEMS

Let (X,]]| ||) be a real Banach space and K:D(k)CX+X be a
linear closed operator. Let g:X+(—w,+w] be a proper function
with D(g)CD(K) and P:D(P)CX+2X* be a multivalued nonlinear ope-
rétor. We‘recall from Ionescu, Rosca, Sofonea EB] the following

definition.

DEFINITION 5.1. The pair (P,g) is called a K-variational

problem (K-v.p.) if for all fe€x* we have ueD(P) and fePu iff




Gf(u)ng(v) for all veX, where

(5.1) Gf(V)=g(v)—<f,Kv> for all veX.

Let (z,||] ||]|) be DI(K) endowed with the graph norm of K
(i.e. lllul||2=|lul|2+llKu|[2) which is a Banach space. Since

K:Z2+X is bounded we can consider K*:X*»>Z* the adjoint of K. One
can easely remark that (P,g) is a K-v.p. iff D(P)={uex/

() fex* such that K*fedg(u)} and P=K*-18g where the subgradient
in considered in Z and K*-1 is .a multivalued operator. Let now
construct g and g'as in section 2 for T=the norm topology in Z.
since 3g=3g extends dg we have that §=K*-18§ extends P and

(P,9) is a K-v.p. If we examine now the K-uniform cghvexity
imposed on g in]r6] we see that it is exactly the uniform con-
vexity of g with respect to Z. Hence from Theorem 4.1 i) we get
that g is also K-uniformly convex. If we use the same argument

as in Lemma 7 of [6] we deduce that if lim g(x)/]||Kx||=+e

when ||Kx||>+> then for all fex* we have inf G (x)=inf F (v) =
» £ KEE
veéX velZ

=d (K*f)>-». We can use now Theorem 4.1 ii) to obtain that all
minimizing sequence for Gf;-FK*f are convergent in Z at the'same
limit called in YB] the K-generalized éolution of the equation
fePx which is the Sobolev strong (in Z) solution of the
equation K*fedg(x).

We have just proved the following theorem which is the

main result of [6].

THEOREM 5.1. Let (P,g) be a k=v.p. with g a K-uniformly

convex function and lim g(x)/||Kx||=+~ when ||Rx||>+>. Then
there exists (P,g) another K-v.p. with g a K-uniformly convex

function such that




i) P extends P
1i)  foxr all fex+s u is thé K-generalized solution of the
equation £€Px iff u D(P) and feBu
iii) for all feX* there exists an unique K-generalized

solution (i.e. P is one to one and R(P)=X*)
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