FRIEDRICHS EXTENSION FOR NONCONVEX VARIATIONAL PROBLEM

by

Ioan R.IONESCU and Ioan ROSCA

September, 1988

⁷⁾ Department of Mathematics, National Institut for Scientific and Technical Creation, Bd. Păcii 220,79622 Bucharest, Romania.

University of Bucharest, Faculty of Mathematics Str. Academiei 14, 70109 Bucharest, Romania.

FRIEDRICHS EXTENSIONS FOR NONCONVEX VARIATIONAL PROBLEMS

Ioan R. IONESCU

Department of Mathematics, INCREST, B-dul Pacii 220 79622 Bucharest, Romania

Ioan ROSCA

Department of Mathematics, University of Bucharest, Str. Academiei 14, 70109 Bucharest, Romania

<u>Key words and phrases</u>: subgradient maping, generalized solution, Friedrichs extension, K-variational problem.

1. INTRODUCTION

It is well-known that many differential equations satisfy so-called minimum principles, namely they lead to the problem of finding a minimum for a certain functional or a family of functionals.

Let us consider X to be a real topological linear space, X* its dual and a family of functionals $(F_f)_{f \in X^*}$, $F_f: X \to (-\infty, +\infty]$ which can be written as

(1.1)
$$F_f(v) = g(v) - \langle f, v \rangle$$

where $g: X \to (-\infty, +\infty]$ is a proper function. For a given $f \in X^*$ the

minimum problem for F_f

- (1.2) find ueX such that $F_f(u) \leq F_f(v)$ for all veX is equivalent with the nonlinear equation
- (1.3) find ueX such that fe∂g(u)

where $\partial g(u) = \{h \in X^*/g(v) - g(u) \ge \langle h, v - u \rangle$ (\forall v \in X\} is the subdifferential of g at u.

If X is a reflexive real Banach space and g is a convex, coercive, lower semicontinuous function then $F_{\mathbf{f}}$ is bounded from below and it exists a minimum point for F_f hence equation (1.3) has at least a solution for all $f \in X^*$. If X is a Banach space and g is a convex, coercive functional which is not lower semicontinuous then problems (1.2) or (1.3) may not have a solution. But if g is an uniform convex functional then all minimizing sequences for F_{f} have the same limit which is called the Sobolev solution of equation (1.3). In the papers of Ionescu [4], Ionescu, Rosca, Sofonea [6], Dinca, Mateescu [2] a variational characterization for the Sobolev solution is given, namely there exists $\tilde{g}:X \to (-\infty, +\infty]$ such that $\partial \tilde{g}$ extends ∂g (i.e. $D(\partial g) c D(\partial \tilde{g}) \partial \tilde{g}(x) = \partial g(x)$ for all $x \in D(\partial g)$) and for all $f \in X^*$ u is the Sobolev solution of equation (1.3) iff $f \in \partial \tilde{g}(u)$. Let A:D(A)CX→X* be a dense defined, symmetric and positive definite linear operator. If we put D(g) = D(A), $g(v) = \frac{1}{2} < Av$, v > avthen A=ag. In the paper of Ionescu, Rosca [5] it is proved that the Friedrichs extension \widetilde{A} of A is exactly $\partial \widetilde{g}$. By the analogy with the linear case we can consider $\partial \tilde{g}$ as the Friedrichs extension of ∂g in the general nonlinear case.

The object of this paper is to study in a similar mode

equation (1.3) when X is a topological linear space and g may not be a convex functional. For this kind of framework it is necessary to extend the concept of Sobolev solution; more precisely we say that u is a generalized solution for equation (1.3) if there exists a minimizing sequence for F_f which is converging to u. To be more specific we consider a very simple example with a non convex function g.

EXAMPLE 1.1. Let g:R>R be given by

$$(1.4) \quad g(x) = \begin{cases} x^2 & \text{for } x \in (-\infty, 0) \\ x^2 + 1 & \text{for } x \in [0, +\infty) \end{cases}$$

It is easy to see that g is not lower semicontinuous in x=0, $D(\partial g)=(-\infty,0)\cup[1,+\infty)$, $\partial g(x)=\{2x\}$ and $R(\partial g)=(-\infty,0)\cup[2,+\infty)$. If $f \in R(\partial g)$ then equation (1.3) has an unique classical solution. If $f \in (0,2)$ then all minimizing sequences for F_f have x=0 as a limit, hence x=0 is a Sobolev solution for (1.3) though equation (1.3) has no classical solution. If f=2 then $f \in \partial g(1)$, that is x=1 is a classical solution but x=1 is not a Sobolev solution because $x_n=-1/n$ is a minimizing sequence for F_f which has not x=1 as a limit. Moreover x=0 is a generalized solution for equation (3) but neither a classical nor a Sobolev solution. Let us consider $g: R \to R$ to be the lower semicontinuous envelope of g given by

(1.5)
$$\overline{g}(x) = \begin{cases} x^2 & \text{for } x \in (-\infty, 0] \\ x^2 + 1 & \text{for } x \in (0, +\infty) \end{cases}$$

We remark that $D(\partial \overline{g}) = (-\infty, 0] \cup [1, +\infty)$, $\partial \overline{g}(x) = 2x$ for $x \neq 0$ and $\partial \overline{g}(0) = [0, 2]$. Moreover $R(\partial \overline{g}) = R$ and for all $f \in R$ we have that $f \in \partial \overline{g}(u)$ iff u is the generalized solution of equation (1.3).

Hence we have obtained a variational characterization of the generalized solutions. Let us remark that $\partial \overline{g}$ is not a maximal monotone operator, hence we cannot construct a convex function \overline{g} such that $\partial \overline{g} \equiv \partial \overline{g}$ i.e. we cannot have a variational characterization of the generalized solutions with a convex function when g is not convex.

In section 2 the definition of the generalized τ -solution and secventialy generalized τ -solution for equation (1.3) in a linear topological space X with the topology denoted by τ , are introduced. Two functions \overline{g} and \widetilde{g} are constructed in order to give the variational characterization of the generalized τ -solutions and secventialy generalized τ -solutions respectively (Theorems 2.1 and 2.2). The link between this two extensions is given (Theorem 2.3). A particular but useful case in which this two extentions coincide is given (Theorem 2.4). The influence of the topology τ in this construction is studied (Theorem 2.5). In the last part of this section the convex case in a Banach space for the strong and the weak topology is considered (Theorem 2.6).

In Section 3 we introduce the V-cercivity condition (a possible extension in a linear topological space of the coercivity condition used in a normed space) in order to obtain the existence of the (secvential) generalized τ -solution i.e. the surjectivity of $\partial \overline{g}$ ($\partial \widetilde{g}$ respectively) (Theorem 3.1).

In section 4 the Sobolev τ -solutions are studied in a locally convex space. In order to obtain the existence of the Sobolev τ -solution (Theorem 4.1 and 4.2) the τ -uniform convexity condition (which is similar to the usual one used in normed space) is supposed.

In section 5 the K-variational problems are recalled from Ionescu, Rosca, Sofonea [6]. Since we consider that it is not so evident how the main results from [6] can be obtained using the theorems of the present paper we briefly indicate some tricks.

2. THE VARIATIONAL CHARACTERIZATION OF THE GENERALIZED SOLUTIONS

Let X be a real linear topological space with the topology denoted by τ which satisfies Hausdorff's axiom of separation and let X* be its dual. We consider $g: X \mapsto (-\infty, +\infty]$ a proper functional (i.e. $D(g) = \{x \in X \mid g(x) < +\infty\} \neq \emptyset$) which is bounded from bellow by an afine function (i.e. there exists $x \notin X *$, $a \in R$ such that $g(x) \ge a + < x *$, x > for all $x \in X$). Let us construct the family of functionals $(F_f)_{f \in X} *$ given by (1.1) and let $d: X * \to [-\infty, +\infty)$ be given by

(2.1)
$$d(f) = \inf_{v \in X} F_f(v)$$
 for all $f \in X^*$.

One can easely see that -d is the polar of g usely denoted by g^* .

We can also remark that $f \in \partial g(u)$ iff $F_f(u) = d(f)$.

DEFINITION 2.1. i) We say that u is a generalized (g.) τ -solution of the equation $f \in \partial g(x)$ iff there exists a generalized sequence $(u_{\alpha})_{\alpha \in A}$ such that $u_{\alpha} \to u$ and $F_f(u_{\alpha}) \to d(f)$.

ii) We say that u is a secvential generalized (s.g.) $\tau\text{-solution of the equation }f\varepsilon \partial g(x) \text{ iff there exists a sequence}$ $(u_n)_{n\in N} \text{ such that } u_n^{\to u} \text{ and } F_f(u_n)^{\to d}(f) \text{ .}$

REMARK 2.1. Every s.g. τ -solution is a g. τ -solution and if τ is metrizable then the two above definitions are equivalent. However, in general, a g. τ -solution is not a s.g. τ -solution which can be see in the following example

EXAMPLE 2.1. Let $(X, |\cdot| |\cdot|)$ be an infinite dimensional Banach space and $\tau = \sigma(X, X^*)$. If we consider $g(x) = \exp(-|\cdot|x|\cdot|)$ one can see that the equation $\theta_{X^*} \in \partial g(x)$ has no s.g. τ -solutions but all $u \in X$ are $g.\tau$ -solutions.

The following theorem states that if \overline{g} is the lower semi-continuous envelope of g, then $\partial \overline{g}$ extends ∂g such that all $g.\tau$ -solutions of equation $f \in \partial g(x)$ are classical solutions for $f \in \partial \overline{g}(x)$ and conversely.

THEOREM 2.1. If $\overline{g}:X\rightarrow (-\infty,+\infty]$ is given by

(2.2)
$$\overline{g}(x) = \underline{\lim}_{y \to x} g(y) = \sup_{v \in \mathcal{V}_{T}} \inf_{(x)} g(y)$$

then we have:

- i) $\overline{g} \le g$, $D(g) \subset D(\overline{g})$, $D(\partial g) \subset D(\partial \overline{g})$ and for all $u \in D(\partial g)$ we have $g(u) = \overline{g}(u)$ and $\partial g(u) = \partial \overline{g}(u)$.
- ii) for all $f \in X^*$, $f \in \partial \overline{g}(u)$ iff u is a $g \cdot \tau$ -solution of the equation $f \in \partial g(x)$.

COROLLARY 2.1. Let $u \in D(\partial g)$. Then for all $f \in X^*$ u is a classical solution of the equation $f \in \partial g(x)$ (i.e. $f \in \partial g(u)$) iff u is a $g \cdot \tau$ -solution of the equation $f \in \partial g(x)$.

For all feX* let us denote by.

(2.3)
$$\overline{F}_f(v) = \overline{g}(v) - \langle f, v \rangle$$
 for all $v \in X$

and let $\overline{d}: X^* \rightarrow [-\infty, +\infty)$ be given by

(2.4)
$$\overline{d}(f) = \inf_{v \in X} \overline{F}_{f}(v) = -\overline{g}*(f)$$
 for all $f \in X*$

The following lemma will be useful in the proof of Theorem 2.1.

- LEMMA 2.1. i) For all v&X there exists a generalized sequence $(v_{\alpha})_{\alpha \in A}$ such that $v_{\alpha} \rightarrow v$ and $g(v_{\alpha}) \rightarrow \overline{g}(v)$.
 - ii) for all $f \in X^*$ we have

(2.5) $d(f) = \overline{d}(f)$

Proof. If $v \not\in D(\overline{g})$ then $\overline{g}(v) = g(v) = +\infty$ and we can put $V_{\alpha} = v$. It is well known (see for instance Laurent [7]p. 332 or Ekland Temam [3 p. 10]) that $Ep(\overline{g}) = \overline{Ep(g)}$ where Ep(g) is the epigraph of g i.e. $Ep(g) = \{(x,a)/g(x) \le a\}$. If $v \in D(g)$ then $(u,\overline{g}(u)) \in Ep(\overline{g}) = \overline{Ep(g)}$ hence there exists $(v_{\alpha},a_{\alpha})_{\alpha \in A} \in Ep(g)$ such that $v_{\alpha} \ne v$ in X and $a_{\alpha} \ne \overline{g}(u)$ in R. From the inequalities $\overline{g}(v_{\alpha}) \le g(v_{\alpha}) \le a_{\alpha}$ we deduce $\overline{g}(v) \le \underline{\lim} \overline{g}(v_{\alpha}) \le \underline{\lim} g(v_{\alpha}) \le \underline{\lim}$

Proof of Theorem 2.1. i) Let $u \in D(\partial g)$ and $f \in \partial g(u)$. From Lemma 2.1 we get $\overline{F}_f(u) \leq F_f(u)$, $d(f) = \overline{d}(f) \leq \overline{F}_f(u)$ hence $F_f(u) = \overline{F}_f(u) = \overline{d}(f)$ i.e. $g(u) = \overline{g}(u)$ and $f \in \partial \overline{g}(u)$. We have just proved that $D(\partial g) \in D(\partial \overline{g})$ and for all $u \in D(\partial g)$ we have $g(u) = \overline{g}(u)$, $\partial g(u) \in \partial \overline{g}(u)$. In order to prove that $\partial \overline{g}(u) \in \partial g(u)$ for $u \in D(\partial g)$ let us consider $h \in \partial \overline{g}(u)$. From $d(h) = \overline{d}(h) = \overline{g}(u) - \langle h, u \rangle = g(u) - \langle h, u \rangle$ we deduce $d(h) = F_h(u)$ hence $h \in \partial g(u)$.

ii) Let $u\in D(\partial\overline{g})$ and $f\in\partial\overline{g}(u)$. From Lemma 2.1 we deduce that there exists $(u_{\alpha})_{\alpha\in A}$ a generalized sequence such that $g(u_{\alpha})\to\overline{g}(u)$ and $u_{\alpha}\to u$. Hence we have $F_f(v_{\alpha})\to\overline{F}_f(u)=\overline{d}(f)=d(f)$ i.e. u is a g.t-solution of the equation $f\in\partial g(x)$. Conversely let

 $u_{\alpha} \rightarrow u$ and $F_f(u_{\alpha}) \rightarrow d(f)$ hence $g(u_{\alpha}) \rightarrow d(f) + \langle f, u \rangle = \overline{d}(f) + \langle f, u \rangle$. Using the lower semicontinuity of \overline{g} we get $\overline{g}(u) \leq \underline{\lim} g(u_{\alpha}) = \overline{d}(f) + \langle f, u \rangle$ hence $\overline{F}_f(u) = \overline{d}(f)$ i.e. $f \in \partial \overline{g}(u)$.

The following theorem gives a variational characterization of s.g. τ -solutions similar to Theorem 2.1.

THEOREM 2.2. There exists $\tilde{g}:X \rightarrow (-\infty, +\infty]$ such that

- i) $\tilde{g} \le g$, $D(\partial g) \subset D(\partial \tilde{g})$ and for all $u \in D(\partial g)$ we have $\tilde{g}(u) = g(u)$ and $\partial \tilde{g}(u) = \partial g(u)$.
- ii) For all $f \in X^*$ we have that $f \in \partial \widetilde{g}(u)$ iff u is a s.g. τ -so-lution of the equation $f \in \partial g(x)$.

COROLLARY 2.2. Let u D(∂g). Then for all f X*, u is a classical solution of the equation f $\partial g(x)$ (i.e. f $\partial g(u)$) iff u is a s.g. τ -solution of the equation f $\partial g(x)$.

Proof of Theorem 2.2. Let S be the set of all s.g.τ-solutions

(2.6) $S=\{u \in X; (\mathfrak{F}) \text{ f } X^*, (\mathfrak{F}) \text{ } (u_n)_{n \in \mathbb{N}} \in X \text{ such that } u_n^{\to} u \text{ and } F_f(u_n)^{\to} d(f)\}$

and let $\tilde{g}: X \rightarrow (-\infty, +\infty]$ be given by

(2.7)
$$\tilde{g}(v) = \begin{cases} \overline{g}(v) & \text{if } v \in S \\ g(v) & \text{if } v \notin S. \end{cases}$$

We denote by $(\tilde{F}_f)_{f \in X^*}$ the following family of functional (2.8) $\tilde{F}_f(v) = \tilde{g}(v) - \langle f, v \rangle$ for all $v \in X$ and let $\tilde{d}: X^* \rightarrow [-\infty, +\infty)$ be given by

(2.9)
$$\tilde{d}(f) = \inf_{v \in X} \tilde{f}(v) = -\tilde{g}^*(f)$$
 for all $f \in X^*$

The proof of Theorem 2.2 follows the same way as the proof of Theorem 2.1 using instead of Lemma 2.1 the following lemma.

LEMMA 2.2. i) For all $v \in X$ there exists a sequence $(v_n)_{n \in N}$ such that $v_n \to v$ and $g(v_n) \to g(v)$.

ii) For all $f \in X^*$ we have $d(f) = \tilde{d}(f)$.

<u>Proof.</u> If $v \notin S$ then we put $v_n \equiv v$ and if $v \in S$ then there exists $f \in X^*$ and $(v_n)_{n \in N}$ such $v_n \rightarrow v$ and $F_f(v_n) \rightarrow d(f)$ hence $g(v_n) \rightarrow d(f) + \langle f, u \rangle = = \overline{d}(f) + \langle f, u \rangle \leq \overline{g}(u) = \widetilde{g}(u)$ we deduce $g(v_n) \rightarrow \widetilde{g}(u)$.

The link between ∂g and ∂g (i.e. between the s.g. τ -solutions and g. τ -solution) is given in the following theorem

THEOREM 2.3. $\overline{g} \le g \le g$, $D(\partial \overline{g}) \subset D(\partial \overline{g})$ and for all $u \in D(\partial \overline{g})$ we have $\overline{g}(u) = \overline{g}(u)$ and $\partial \overline{g}(u) = \partial \overline{g}(u)$.

COROLLARY 2.3. If u is a g.t-solution of the equation $f \epsilon \partial g(x)$ and it is also a s.g.t-solution of the equation $h \epsilon \partial g(x)$ then u is a s.g.t-solution of the equation $f \epsilon \partial g(x)$.

Proof of Theorem 2.3. From Theorem 2.2 one can easily deduce that $S=D(\partial \widetilde{g}) \subset D(\partial \overline{g})$ and for all $u \in D(\partial \widetilde{g})$ we have $\overline{g}(u) = \widetilde{g}(u)$, $\partial \widetilde{g}(u) \subset \partial \overline{g}(u)$. Let now $f \in \partial \overline{g}(u)$ for $u \in D(\partial \widetilde{g})$. From lemma 2.1 and 2.2. we deduce that $\widetilde{d}(f) = \overline{d}(f) = \overline{f}(u) = \widetilde{f}(u)$ i.e. $f \in \partial \widetilde{g}(u)$.

REMARK 2.2. If τ is metrizable one can deduce from Remark 2.1 and Theorems 2.1, 2.2, 2.3 that $\partial \overline{g} = \partial \overline{g}$, but in general the equality does not hold (see for instance Example 2.1 where $\overline{g} \equiv 0$ and $g \equiv g$). However the following theorem gives sufficient conditions (in a particular choise of τ) in order to have the equality.

THEOREM 2.4. Let $(X, |\cdot|)$ be a reflexive Banach space and $\tau = \sigma(X; X^*)$ be the weak topology of X. If $\lim_{x \to \infty} g(x) = \infty$ for $|\cdot|_{X}| \to \infty$ then $\partial g = \partial g$, $\theta_{X^*} \in R(\partial g)$ (i.e. for all $f \in X^*$ we have that u is a $g \cdot \sigma(X; X^*)$ -solution of the equation $f \in \partial g(x)$ iff u is a $g \cdot \sigma(X, X^*)$ -solution of the equation $f \in \partial g(x)$).

Proof. Let us prove, for the beginning, that for all veX there exists $(v_n)_{n \in \mathbb{N}}$ such that $v_n \rightarrow v$ and $g(v_n) \rightarrow \overline{g}(v)$. If $v \not\in \mathbb{D}(\overline{g})$ then $g(u) = \overline{g}(u) = +\infty$ and we choose $v_n = v$. Let $v \in \mathbb{D}(\overline{g})$, r > 0 and $I = (\overline{g}(v) - r)_{n \in \mathbb{N}}$, $P = X \times I \subset X \times R$. Having in mind that $(v, \overline{g}(v)) \in \mathbb{E}(\overline{g}) = \overline{E}(\overline{g})$ we deduce that $(v, \overline{g}(v)) \in \overline{E}(\overline{g}) \cap \mathbb{B}$. Let us prove now that $P = (g) \cap \mathbb{B}$ is bounded in $P = (g) \cap \mathbb{B}$. Let us prove now that $P = (g) \cap \mathbb{B}$ is bounded in $P = (g) \cap \mathbb{B}$. Let us prove now that $P = (g) \cap \mathbb{B}$ is bounded in $P = (g) \cap \mathbb{B}$. Let us prove now that $P = (g) \cap \mathbb{B}$ is bounded in $P = (g) \cap \mathbb{B}$. Let us prove now that $P = (g) \cap \mathbb{B}$ is bounded in $P = (g) \cap \mathbb{B}$. Let us prove now that $P = (g) \cap \mathbb{B}$ is bounded in $P = (g) \cap \mathbb{B}$. Let us prove now that $P = (g) \cap \mathbb{B}$ is bounded in $P = (g) \cap \mathbb{B}$. Let us prove now that $P = (g) \cap \mathbb{B}$ is bounded in $P = (g) \cap \mathbb{B}$. Let us prove now that $P = (g) \cap \mathbb{B}$ is bounded in $P = (g) \cap \mathbb{B}$. Let us prove now that $P = (g) \cap \mathbb{B}$ is bounded in $P = (g) \cap \mathbb{B}$. Let us prove now that $P = (g) \cap \mathbb{B}$ is bounded in $P = (g) \cap \mathbb{B}$. Let us prove now that $P = (g) \cap \mathbb{B}$ is bounded in $P = (g) \cap \mathbb{B}$. Let us prove now that $P = (g) \cap \mathbb{B}$ is bounded in $P = (g) \cap \mathbb{B}$. Let us prove now that $P = (g) \cap \mathbb{B}$ is bounded in $P = (g) \cap \mathbb{B}$. Let us prove now that $P = (g) \cap \mathbb{B}$ is bounded in $P = (g) \cap \mathbb{B}$. Let $P = (g) \cap \mathbb{B}$ is bounded in $P = (g) \cap \mathbb{B}$. Let $P = (g) \cap \mathbb{B}$ is bounded in $P = (g) \cap \mathbb{B}$. Let $P = (g) \cap \mathbb{B}$ is bounded in $P = (g) \cap \mathbb{B}$. Let $P = (g) \cap \mathbb{B}$ is bounded in $P = (g) \cap \mathbb{B}$. Let $P = (g) \cap \mathbb{B}$ is bounded in $P = (g) \cap \mathbb{B}$. Let $P = (g) \cap \mathbb{B}$ is bounded in \mathbb{B} . Let $P = (g) \cap \mathbb{B}$ is bounded in \mathbb{B} . Let $P = (g) \cap \mathbb{B}$ is bounded in \mathbb{B} . Let $P = (g) \cap \mathbb{B}$ is bounded in \mathbb{B} . Let $P = (g) \cap \mathbb{B}$ is bounded in \mathbb{B} . Let $P = (g) \cap \mathbb{B}$ is bounded in \mathbb{B} . Let $P = (g) \cap \mathbb{B}$ is bounded in \mathbb{B} . Let P =

Let consider now $u \in D(\partial \overline{g})$ and $f \in \partial \overline{g}(u)$. From the first part of the proof we can construct $(u_n)_{n \in \mathbb{N}} \subset X$ such that $u_n = u$ and $g(u_n) \to \overline{g}(u)$. Since $F_f(u_n) \to \overline{F}_f(u) = \overline{d}(f) = d(f)$ we deduce that u is a s.g. $\sigma(X,X^*)$ -solution of the equation $f \in \partial g(X)$. We can use Theorem 2.2 to obtain that $u \in D(\partial \overline{g})$. Hence we get $D(\partial \overline{g}) \subset D(\partial \overline{g})$ and

from Theorem 2.3 we deduce $\partial \overline{g} = \partial \overline{g}$.

THEOREM 2.5. Let us consider two topologies on X denoted by τ_1 and τ_2 such that $\tau_1 \le \tau_2$ and $X^* = X^*_{\tau_1} = X^*_{\tau_2}$. We denote by \overline{g}^i , \widetilde{g}^i , i=1,2 the functions constructed in theorems 2.1 and 2.2 for $\tau = \tau_1$. Then we have

- i) $\overline{g}^1 \le \overline{g}^2$, $D(\partial \overline{g}^2) CD(\partial \overline{g}^1)$, $\partial \overline{g}^1(u) = \partial \overline{g}^2(u)$ for all $u \in D(\partial \overline{g}^2)$.
- ii) $\ddot{g}^1 \leq \ddot{g}^2$, $D(\partial \ddot{g}^2) \subset D(\partial \ddot{g}^2)$, $\partial \ddot{g}^1(u) = \partial \ddot{g}^2(u)$ for all $u \in D(\partial \ddot{g}^2)$.

COROLLARY 2.4. i) If u is a g. τ_2 -solution (s.g. τ_2 -solution) then u is a g. τ_1 -solution (s.g. τ_1 -solution) of the equation $f \in \partial g(x)$.

ii) If u is a g. τ_1 -solution (s.g. τ_1 -solution) of the equation fedg(x) it is also a g. τ_2 -solution (s.g. τ_2 -solution) of the equation hedg(x) then u is a g. τ_2 -solution (s.g. τ_2 -solution) of the equation fedg(x).

REMARK 2.3. In general $\overline{g}^1 < \overline{g}^2$ and $D(\partial \overline{g}^2)$ $D(\partial \overline{g}^1)$. This can be seen in example 2.1 for $\tau_1 = \sigma(X, X^*)$ and $\tau_2 = norm$ topology in which we have $\overline{g}^1 \equiv 0$, $\overline{g}^2 \equiv g$, $D(\partial \overline{g}^1) = \{\theta_X\}$ and $D(\partial \overline{g}^2) = \emptyset$.

Proof of Theorem 2.5. $\overline{g}^1 \le \overline{g}^2$ by construction and since S_2CS_1 (S_i is given by (2.6) by replacing τ with τ_i , i=1,2) we get $\overline{g}^1 \le \overline{g}^2$. From Corollary 2.4 i) which is obvious and theorem 2.1 we deduce that $D(\partial \overline{g}^2) \subset D(\partial \overline{g}^1)$ and for all $u \in D(\partial \overline{g}^2)$ we have $\partial \overline{g}^2(u) \subset \partial \overline{g}^1(u)$. Let now $u \in D(\partial \overline{g}^2)$, $h \in \partial \overline{g}^1(u) \cap \partial \overline{g}^2(u)$ and $f \in \partial \overline{g}^1(u)$. Using lemma 2.1 ii) we get $\overline{g}^1(u) = d(h) + \langle h, u \rangle = \overline{g}^2(u)$ and since $\overline{g}^1(u) = d(f) + \langle f, u \rangle$ we obtain $\overline{g}^2(u) = d(f) + \langle f, u \rangle$ i.e. $f \in \partial \overline{g}^2(u)$. In order to prouve (ii) the same technique can be used.

Let $(X, |\cdot|)$ be a Banach space and we denote by s the norm topology and by w the weak, $\sigma(X, X^*)$, topology of X. Let \overline{g}^S , \tilde{g}^S and \overline{g}^W , \tilde{g}^W be the function constructed above for τ =s and τ =w respectively. Then we have the following theorem

THEOREM 2.6. If g is convex then

- i) $\overline{g}^{W} = \overline{g}^{S}$, $\tilde{g}^{W} = \tilde{g}^{S}$ and \overline{g}^{S} is convex
- ii) $\partial \overline{g}^{W} \equiv \partial \overline{g}^{S} \equiv \partial \overline{g}^{S} \equiv \partial \overline{g}^{W}$ is a maximal monotone operator.

<u>Proof.</u> i) Since g is convex we deduce that $\mathrm{Ep}(g)$ is a convex set hence $\mathrm{Ep}(\overline{g}^S) = \overline{\mathrm{Ep}(g)}^S = \overline{\mathrm{Ep}(g)}^W = \mathrm{Ep}(\overline{g}^W)$ i.e. $\overline{g}^S = \overline{g}^W$ is convex. Let S_S and S_W be given by (2.6) for $\tau = s$ and $\tau = w$ respectively. It is obvious that $S_S \subset S_W$ and in order to prove that $S_S \subset S_W$ one can use the Mazur lemma and the convexity of F_f . Since $S_W = S_S$ from (2.7) we deduce that $\widetilde{g}^W = \widetilde{g}^S$.

ii) Using remark 2.2 we get $\partial \tilde{g}^S \equiv \partial \overline{g}^S$ and from theorems 2.3 and 2.5 we have $\partial \overline{g}^S = \partial \tilde{g}^S$ $\partial \tilde{g}^W$ $\partial \overline{g}^W = \partial \overline{g}^S$.

REMARK 2.3. The fact that $\partial g^W \equiv \partial \overline{g}^S \equiv \partial \widetilde{g}^W$ (i.e. the (s.)g. strong and weak solutions coincides) is important in applications. Indeed the V-coercivity condition (see the next section) with V a precompact set which assures the existence of the generalized solution is working in the weak topology (since $B(\theta,1)$ is compact for X a reflexive space). From the above equalities we have that if a g. weak solution exists then it is a strong one, hence we have strongly converging minimizing sequences. In the next we give an example in which g is not convex but however the above equalities hold.

EXAMPLE 2.2. Let $\Omega = (0,\pi)$, $X = H_O^1(\Omega)$ and $g: X \to R$ be given by $g(v) = \int_{\Omega} |\nabla v_x|^2 dx + \int_{\Omega} \phi(v(x)) dx$ where ϕ is given by (1.4). It is not so difficult to prove that $\overline{g}^W(v) = \overline{g}^S(v) = \int_{\Omega} |\nabla v|^2 (x) dx + \int_{\Omega} \phi(v(x)) dx$ where $\overline{\phi}$ is given by (1.4). Using theorem 2.4 we get that $\partial \overline{g}^W \equiv \partial \overline{g}^W \equiv \partial \overline{g}^S \equiv \partial \overline{g}^S$.

3. THE EXISTENCE OF THE GENERALIZED SOLUTIONS

In reflexive Banach spaces the usual coercivity condition $\lim_{x \to \infty} g(x)/||x|| = +\infty \text{ for } ||x|| \to \infty \text{ assures the existence of the s.g.} \sigma(X,X^*) - \text{solutions. In this section we give a possible generalization of this condition in a linear topological space in order to obtain the existence of the g.t-solutions <math display="block">(s.g.t-\text{solutions}) \text{ (i.e. the surjectivity of the extension } \partial \overline{g}(\partial \widetilde{g})).$

Let X be a real linear topological space with the topology denoted by τ which satisfies Hausdorff's axiom of separation, X^* its dual and let V be a subset of X.

DEFINITION 3.1. We say that g is V-coercive if $D(g)\subset\bigcup_{n\geq 0}nV$ and lim inf $g(v)/n=+\infty$ where $W_n=(n+1)V\setminus nV$ and $W_0=V$. $v\in W_n$

REMARK 3.1. It is easy to see that if X is a normed space and $g(x)/||x||\to +\infty$ for $||x||\to +\infty$ then g is B(0,1)-coercive. $(B(0,1)=\{x/||x||\le 1\}).$

The main result of this section is the following theorem THEOREM 3.1. Let g be a V-coercive function.

- i) If V is a precompact set then for all $f \in X^*$ there exists at least one $g \cdot \tau$ -solution of the equation $f \in \partial g(x)$ i.e. $R(\partial \overline{g}) = X^*$.
- ii) If V is a secvential precompact set then for all $f \in X^*$ there exists at least one s.g._T-solution of the equation $f \in \partial g(x)$ i.e. $R(\partial g) = R(\partial g) = X^*$.

COROLLARY 3.1. Let $(X, |\cdot|)$ be a Banach space and $\lim g(x)/||x|| = +\infty$ when $||x|| \to \infty$.

- i) If X is a reflexive space then for all $f \in X^*$ there exists at least one s.g. $\sigma(X,X^*)$ -solution (i.e. $R(\partial \overline{g}) = R(\partial \overline{g}) = X^*$).
- ii) If X is the dual of a normed space Z and $\tau = \sigma(X,Z)$ is the topology on X then for all $f \in X * \equiv Z$ there exists at least one g. τ -solution of the equation $f \in \partial g(x)$ (i.e. $R(\partial \overline{g}) = X *$). Moreover if Z is separable then for all $f \in X * = Z$ there exists at least one s.g. τ -solution of the equation $f \in \partial g(x)$ (i.e. $R(\partial \widetilde{g}) = X *$).

In order to prove theorem 3.1 the following lemma will be an useful tool.

LEMMA 3.1. Let g be a V-coercive function and feX*. If $\sup |<f,v>|<+\infty \text{ then for all acR there exists keN such that } v \in V$ $\mathbf{F}_{\mathbf{f}}^{\leq} \text{ (a)} = \{x/\mathbf{F}_{\mathbf{f}}(x) \leq \mathbf{a}\} \subset \bigcup_{i=0}^{k} \mathbf{W}_{i}.$

Proof. Let us suppose that for all keN there exists $v_k \in F_f^{\leq}(a)$ such that $v_k \notin \bigcup_{i=0}^k \mathbb{W}_i$. Since $F_f^{\leq}(a) \in D(g) \subset \bigcup_{n \geq 0} \mathbb{W}_n$ there exists $n_k \geq k$ such that $v_k \in \mathbb{W}_n$ hence $v_k = (n_k + 1) \mathbb{W}_k$ with $\mathbb{W}_k \in \mathbb{W}$. If we denote by $A_f = \sup_{v \in V} |\langle f, v \rangle|$ then we have $a \geq F_f(v_k) \geq g(v_k) - (n_k + 1) A_f \geq n_k \left[\inf_{v \in \mathbb{W}_n} g(v) / n_k - (1 + \frac{1}{n_k}) A_f \right]$ and passing to the limit we obtain $a \geq +\infty$, contradiction.

Proof of Theorem 3.1. i) Let fex* and let $(v_n)_{n\geq 0}$ be a minimizing sequence for F_f . If we put a>d(f) then there exists n_o such that $(u_n)_{n\geq n_o} \subset F_f^{\leq}(a)$. Using now lemma 3.1 we get that $(v_n)_{n\geq n_o}$ belongs to a precompact set hence there exists a generalized subsequence $(u_\alpha)_{\alpha\in A}$ of $(u_n)_{n\geq n_o}$ and uex such that $u_\alpha \to u$ i.e. u is a g.t-solution of the equation $f \in \partial g(x)$.

ii) can be proved in a similar manner.

4. SOBOLEV T-SOLUTIONS

In this section X will be a locally convex, secventialy complete space with the topology τ generated by the family of seminorms $(p_{\alpha})_{\alpha \in A}$.

<u>DEFINITION 4.1</u>. We say that u is a Sobolev (S.) τ -solution of the equation $f \in \partial g(x)$ if all minimizing sequences for f converge to u.

REMARK 4.1. It is easy to see that if u is a S. τ -solution then u is a s.g- τ -solution and it is unique (no other g. τ -solution exists). As we can see in Example 1.1 the converse is false.

The following example points out the influence of the choise of the topology τ in the definition of S. τ -solution

EXAMPLE 4.1. Let $X=\ell^2$, $g: X \to R$ given by $g(v) = \sum_{n=1}^\infty \frac{1}{n} v_n^2 + h(v)$ where h(v)=0 if $||v|| \le 1$ and $h(v)=||v||^2-1$ if ||v|| > 1. One can prove that $u=\theta_X$ is the S. $\sigma(X,X^*)$ -solution of the equation $\theta_{X^*} \in \partial g(x)$ but it is not a Sobolev strong solution (the sequence $x_n = (\delta_i^n)_{i \ge 1}$ is a minimizing one but, since $||x_n|| = 1$, x_n converges not to θ_X).

If X is a normed space then it is known that the coercivity and the uniform convexity of g are sufficient conditions for the existence of the Sobolev solutions in the norm topology (see Vainberg [9], Ionescu, Rosca, Sofonea [6], Dinca, Mateescu [2]). In order to give sufficient conditions for the existence of Sobolev τ -solutions we give the following definition of the uniform convexity in a localy convex space, similar to the usual one in a normed space (see Zalinescu [10]).

DEFINITION 4.2. We say that g is a τ -uniformly convex function on the set BcX if for all $\alpha \in A$, $\varepsilon > 0$, there exists $\delta > 0$ such that for all $u, v \in B$ and $\lambda \in (0,1)$ if $\lambda g(u) + (1-\lambda)g(v) - g(\lambda u + (1-\lambda)v) < <\delta\lambda(1-\lambda)$ then $p_{\alpha}(u-v) < \varepsilon$.

EXAMPLE 4.2. Let us consider $X=\ell^2$, $g:X\to R$ given by $g(v) = \sum_{n=1}^{\infty} \frac{1}{n} v_n^2.$ One can prove that g is $\sigma(X,X^*)$ -uniformly convex on all bounded sets but as can be seen in Vainberg [9] g is not uniformly convex in the norm topology.

REMARK 4.2. The τ -uniform convexity of g on a set B given in Definition 4.2 is equivalent with the following one: for all $\alpha \in A$ there exists $m \in \mathcal{M} = \{m: R_+ \to R_+ / \text{ m is increasing and lower semicontinuous with } m(0) = 0\}$ such that

(4.1) $\lambda g(u) + (1-\lambda)g(v) - g(\lambda u + (1-\lambda)v) \ge \lambda (1-\lambda) m_{\alpha}(p_{\alpha}(u-v))$

for all $\lambda \in (0,1)$ and $u,v \in B$. In order to prove this statement one can use the same techniques as in Rosca [8] or in Zalinescu [10].

THEOREM 4.1. If g is τ -uniformly convex on X then

i) \overline{g} is τ -uniformly convex on X and $\partial \overline{g}$ is one to one

(i.e. $\partial g(x_1) \cap \partial g(x_2) = \emptyset$ for $x_1 \neq x_2$).

ii) If $d(f) > -\infty$ then there exists an unique $S._{\tau}$ -solution of the equation $f \in \partial g(x)$.

COROLLARY 4.1. If g is τ -uniformly convex on X then for all fex* we have that u is a S. τ -solution of the equation $f \in \partial g(x)$ iff u is a s.g. τ -solution iff u is a g. τ -solution iff $f \in \partial \overline{g}(u)$.

Proof of Theorem 4.1. (i) Let $u, v \in X$ and $(v_{\alpha})_{\alpha \in C}$, $(v_{\beta})_{\beta \in D}$ such that $u_{\alpha} \downarrow u$, $v_{\beta} \downarrow v$ and $g(v_{\alpha}) \downarrow \overline{g}(u)$, $g(v_{\beta}) \downarrow \overline{g}(v)$ (see Lemma 2.1). We consider F=CxD with $\gamma_1 = (\alpha_1, \beta_1) \le \gamma_2 = (\alpha_2, \beta_2)$ for $\alpha_1 \le \alpha_2$ and $\beta_1 \le \beta_2$. Let $(u_{\gamma}')_{\gamma \in F}$ and $(v_{\gamma}')_{\gamma \in F}$ be two subsequences of $(u_{\alpha})_{\alpha \in A}$ and $(v_{\beta})_{\beta \in D}$ respectively given by $u'_{(\alpha, \beta)} = u_{\alpha}$, $v'_{(\alpha, \beta)} = v_{\beta}$. Passing to the limit in the inequality

$$\lambda g\left(u_{\gamma}^{*}\right) + (1-\lambda) g\left(v_{\gamma}^{*}\right) \geq g\left(\lambda u_{\gamma}^{*} + (1-\lambda) v_{\gamma}^{*}\right) + \lambda \left(1-\lambda\right) m_{\alpha} \left(p_{\alpha}\left(u_{\gamma}^{*} - v_{\gamma}^{*}\right)\right)$$

and having in mind that $\lim_{\gamma \to \infty} g(\lambda v_{\gamma}' + (1-\lambda)v_{\gamma}') \ge \overline{g}(\lambda u + (1-\lambda)v)$ we get 4.1. The injectivity of $\partial \overline{g}$ is a direct concequence of the strict convexity of \overline{g} .

ii) Let $(u_n)_{n \in \mathbb{N}}$ be a minimizing sequence for F_f . From 4.1 we have

$$\frac{1}{4} m_{\alpha} (p_{\alpha} (u_{n} - u_{m})) \leq \frac{1}{2} F_{f} (u_{n}) + \frac{1}{2} F_{f} (u_{m}) - F_{f} (\frac{1}{2} (u_{n} + v_{m})) \leq \frac{1}{4} m_{\alpha} (p_{\alpha} (u_{n} - u_{m})) \leq \frac{1}{4} m_{\alpha} (u_{n} - u_{m})$$

$$\leq \frac{1}{2} (F_f(u_n) - d(f)) + \frac{1}{2} (F_f(u_m) - d(f))$$

and since $F_f(u_n) \to d(f)$ we deduce that $(u_n)_{n \geq 1}$ is a Cauchy sequence hence there exists u $\in X$ such that $u_n \to u$. Let now $(v_n)_{n \geq 1}$ be another minimizing sequence for F_f . Using the same technique one can prove that there exists $v \in X$ such that $v_n \to v$. In this way we obtain

fled 24860

that u and v are s.g. τ -solutions of the equation $f \in \partial g(x)$ hence $f \in \partial \overline{g}(u)$ and $f \in \partial \overline{g}(v)$. But $\partial \overline{g}$ is one to one hence u=v is the unique Sobolev τ -solution.

THEOREM 4.2. If g is τ -uniformly convex on all bounded sets and g is V-coercive with V a bounded set then for all $f \in X^*$ the equation $f \in \partial g(x)$ has a unique Sobolev τ -solution (i.e. $R(\partial \overline{g}) = R(\partial \overline{g}) = X^*$).

<u>Proof.</u> Let $(u'_n)_{n\geq 1}$ be a minimizing sequence for F_f . Since g is V-coercive with V a bounded set we can use Lemma 3.1 in order to prove that $(v_n)_{n\geq 1}$ belongs to a bounded set. We can use now the same technique like in the proof of Theorem 4.1 ii) to deduce that $(u_n)_{n\geq 1}$ is a Cauchy sequence hence there exists $u\in X$ such that $u_n \to u$. Let now $(v_n)_{n\geq 1}$ be another minimizing sequence for F_f . From the first part of the proof we obtain that there exists $v\in X$ such that $v_n \to v$. We consider $(w_n)_{n\geq 1}$ given by $w_{2n}=u_n$, $w_{2n+1}=v_n$. Since $(w_n)_{n\geq 1}$ is still a minimizing sequence for F_f we deduce that $(w_n)_{n\geq 1}$ is Cauchy, hence u=v is the unique Sobolev τ -solution of the equation $f\in \partial g(x)$.

5. K-VARIATIONAL PROBLEMS

Let (X, || ||) be a real Banach space and $K:D(k) \subset X \to X$ be a linear closed operator. Let $g: X \to (-\infty, +\infty]$ be a proper function with $D(g) \subset D(K)$ and $P:D(P) \subset X \to 2^{X^*}$ be a multivalued nonlinear operator. We recall from Ionescu, Rosca, Sofonea [6] the following definition.

<u>DEFINITION 5.1.</u> The pair (P,g) is called a K-variational problem (K-v.p.) if for all $f \in X^*$ we have $u \in D(P)$ and $f \in Pu$ iff

 $G_f(u) \leq G_f(v)$ for all $v \in X$, where

(5.1) $G_f(v) = g(v) - \langle f, Kv \rangle$ for all $v \in X$.

Let (Z, | | | | |) be D(K) endowed with the graph norm of K (i.e. $|||u|||^2 = ||u||^2 + ||Ku||^2$) which is a Banach space. Since $K:Z\to X$ is bounded we can consider $K^*:X^*\to Z^*$ the adjoint of K. One can easely remark that (P,g) is a K-v.p. iff $D(P) = \{u \in X/e^{-1}\}$ (3) $f \in X^*$ such that $K^* f \in \partial g(u)$ and $P = K^{*-1} \partial g$ where the subgradient in considered in Z and K*-1 is a multivalued operator. Let now construct \overline{g} and \widetilde{g} as in section 2 for τ =the norm topology in Z. Since $\partial \overline{g} = \partial \overline{g}$ extends ∂g we have that $\overline{P} = K^{*-1} \partial \overline{g}$ extends P and $(\overline{P},\overline{g})$ is a K-v.p. If we examine now the K-uniform convexity imposed on g in [6] we see that it is exactly the uniform convexity of g with respect to Z. Hence from Theorem 4.1 i) we get that g is also K-uniformly convex. If we use the same argument as in Lemma 7 of [6] we deduce that if $\lim g(x)/||Kx||=+\infty$ when $||Kx|| \to +\infty$ then for all $f \in X^*$ we have $\inf_{v \in X} G_f(x) = \inf_{v \in X} F_{K^*f}(v) = 0$ =d(K*f)>- ∞ . We can use now Theorem 4.1 ii) to obtain that all minimizing sequence for $G_{f} = F_{K*f}$ are convergent in Z at the same limit called in [6] the K-generalized solution of the equation fePx which is the Sobolev strong (in Z) solution of the equation $K*f \in \partial g(x)$.

We have just proved the following theorem which is the main result of [6].

THEOREM 5.1. Let (P,g) be a k-v.p. with g a K-uniformly convex function and lim $g(x)/||Kx||=+\infty$ when $||Kx||\to +\infty$. Then there exists $(\overline{P},\overline{g})$ another K-v.p. with \overline{g} a K-uniformly convex function such that

- i) P extends P
- ii) for all $f \in X^*$ u is the K-generalized solution of the equation $f \in Px$ iff u $D(\overline{P})$ and $f \in \overline{P}u$
- iii) for all $f \in X^*$ there exists an unique K-generalized solution (i.e. \overline{P} is one to one and $R(\overline{P}) = X^*$)

REFERENCES

- [1] Browder, F., Nonlinear operators and nonlinear equations in Banach spaces in "Nonlinear Functional Analysis",

 Proc. Sympos. Pure Math., vol. XVIII, Part 2.
- Dinca, G., Mateescu, D., Well set variational problems for multivalued operator equations, Preprint Series in Math. no.39/1987, INCREST-Bucharest.
- [3] Ekland, I., Temam, R., Analyse connexe et problemes variationnels, Dunod, Gautier-Villars, 1974.
- [4] Ionescu, I.R., A variational method for nonlinear operators, Preprint Series in Math. no. 29/1982, INCREST-Bucharest.
- [5] Ionescu, I.R., Rosca, I., A variational proof of Friedrichs theorem, Anal. Univ. Bucharest, XXXII (1984).
- [6] Ionescu, I.R., Rosca, I., Sofonea, M., A variational method for nonlinear multivalued operators, Nonlinear Anal.,

 Theory Methods and Appl., vol. 9, no. 2, (1985).
- [7] Laurent, P.J., Approximation et optimisation, Herman, Paris, 1972.
- [8] Rosca, I., Functional and numerical methods for operatorial equations, Ph. D. Thesis, Univ. of Bucharest, (1978), (in Romanian).

- [9] Vainberg, M.M., Le probleme de la minimisation des fonctionelles non lineaires, Universite de Moscou, 1968 or in Problems in Non-linear Analysis, C.I.M.E. (IV Ciclo, Varena, 1970) Rome, Ed. Cremonese, 1971.
- [10] Zalinescu, C., On uniformly convex functions, J. Math. Anal. and Appl., 95, 2 (1983).