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1. Introduction

In this paper we discuss the appréximation of the
optimal packaging prob]em, which was first studied in [2].

Welconsider f1=.]0, b[x]O,][ , a domain in R2, and
c>0, 0¢a<b are real numbers., We define:

Uad={“€W]’”<0,1): agugb; '] ¢ C}’
.Q(ec)={(x],x2)éﬂ; xzé]O,lf, O.<x]<a((x2)},
P(&)={(x],x2); x=ex,), xze[O,l]},

K ()={ven, QU vr ¥ ae. N},
where ‘PGHZ(Q.),Y €0 on [ =30 and in [a,b]x[O,]] :

Let ulx)e K(e®) be the solution of the variational

inequality

() (!)grad u(x)grad(v-u(x))20, Wve K(x)

which describes the equilibrium position of the membrane ) ()
in contact with the obstacle f given by y=T(x],x2) and clamped

-on ) (x),

Formally, u(x) satisfies:



-Bu ()20 in (e,
u ()2 in (x),
(1) i
Du () (u-¥) =0 inJl(e),
u(e€) =0 indfl(ex) ,

We denote by z&K)={xefoJ; u&t)(x)=?(x)} the coinci-
dence set of (1,1),

The optimal packaging problem from [2] consists in
minimizing the area ofJf)(x) such that the contact reg{on z ()
contains a fixed subset D oilin [7] we used the variational
inequality technique for the numerical so]ufion of this problem.
Here we propose a different and simpler method, which is to be
hoped to be'app]icable in other optimal design problems too.

We fix our attention on the simpler, but important,
problem of the search of an admissible pair, That is, we want

to solve

(1.2 Hiobmize Jlu(tx)-f‘z
D _

subject to (1.1) and for « €U__. -
: If the optimal packaging problem hés'admissible pairs

e(éUad, u(=) given by (1,11) and satisfying the state constraint
z(u(=))DD, then these are optimal for the problem (1.2) with op-
timal value zero and conversely,

The idea of our approach has a geometric nature. I f
e, U is an optima} pair for (1.2), then we consider the surfa-
ce y=3(x],x2) and we extend it to t(x],xz) defined on the who-
le fl.r

LE U, U are sufficiently regular then we may suppose

W as the solution of a similar variational inequality in the

fixed domain )



ar

(1.3) -B% +/§(U—‘f’)30 in 11
'J/l-‘ =W,

where w=0 on "N 3 LL(X) and 02w2¥on P \3UK). Here (> s a maxi-
ma | moﬁotone graph in RxR of the form

0 r30,
(1.4) ﬁ(r)= J-e, 0] r=0,

g otherwise,

We also remark that the solution of (1.1) satisfies
u(®)>0 a,e. infNl(x) (this may be obtained by taking v=u®(x) in
(13090, Thérefore, for ahy °<€Uad, we have u(«)}p a.e, in
E=[b,%]x[0,q o LS p}operty is not necessarily satisfied by
the solution of (1.3) and we have to impose it separately.

Converse]y,Aif U320 in E and E/P =w, since wg0 on
b x [0,ﬂ , then ﬁ(x],x2)=0 defines some "curve"A in [a,b] X
x[O,]] and we ébtain a domain £ Cflon which 'G=t|'/z satisfies
(1.1) and U/BZ =0. However, it is possible that A *Uad'

But, it is wellknown that this definition of U, s

d
required in order to have enough compactness to get existence
in the problem: (1.2), So, it is not prompted by a physical ar-
gument involved in the problem and we renounce it.

The above discussion motivates the introduction of

the following boundary control problem:
Aomian 2
(p) Minimize J [u-v]|
D ;
subject to

(1.3)  -Bu+plu-7)30 el



(s ulp =
(1.6) u30 a.e., in E, .
Gl ) w€w={v€L2( Bl V¥Q on " NJE,

02v2Y¥ on 3l s QE}.

This approach in optimal design problems is different
from those considered, for instance, in [6] and it has the ad-
vantage of simplicity. Boundary control problems via Dirichlet
conditions without state constraints are studied in [1] under
additional compactness assumptions on W aﬁd in [h] for a.- dif=
-ferent type of nonlinear term in the state equation,

In the sequef we investigate the problem (P) and its
solution wifl be interpréted as a minimiier in a certain class

for the problem (1.2).

2, Existence for (P)

Due to the low regularity properties of wéLz(F), we
define a solution of (1,3)-(1.5) by transposition, as in Lions-
Magenes [5] » Ch.ll. We say that uEH]/Z(fD is e solution of
the variational inequality (].3)-(i.5)—if there fs y € LZUQ),

YGP(U' ¥Y) a.e.fl, such that

(2.:1) | - !uA‘l’+f¥_Y= - [wejﬁl )
n T} r

for all YEHZ (), ¥=0 on [,

We have

Theorem- 2,1, If weLZ(P), then there is a unique

= S—

fueHj/z(Iﬂ soliution of  (1.,3)=(1,5)1n the sense 6f (2.1).




Proof

Assume first existence and prove uniqueness., Let

1 /7

u,,u, €H () be two solutions of (1.3)-(1.5) and Y"]e/;(u]—‘f),

X'zf'/;(uz'-‘f’),‘ )f'], X’?_GLVZ‘(.{U. We have

(2.2) - (u-u)a¥+ [ (g;-Y,)Y = o,
oo n

Then v=u,-u, is a solution by transposition of

-Av‘=f2-f] infl,
v =0 B

and since y,- X']éLz(n.), we get veHzmn Hl(ﬂ). With W=v in
(2.2), by the monotonicity of  , we infer v=0,

The existence may be obtained as follows: let
wnéHB/z(f'), Woe» woin L?(f‘). Then (1.3)-(1.5) has a unique so-
lution unéHZ(ﬂ), corresponding to W by Th.2:5, Kinderlehrer
and Stampacchia [3], pelil3. As w>,‘f’/r, we may assume that
> wr, , Otherwise, let ¢néH2(n) be uich e ¢n/r. = wn.'

W
n<

Then en=sup(¢n,‘{’)€H]m3, 9n>,‘f’ and we may suppose GnéHz(ﬂ),
an‘f, by using a mollifier, By the properties of the sup(.,.),

8 is bounded :in H! () and 8 /a2w strongly in L2,

n

Now, assume that in (1,3) {r s replaced by f,, the
Yosida approximation ofAﬂ, . Obviously pt(un-?)éH;(ﬂ) beeali -
wn>,"f’. Multiplying (1.3) by Pg(un_Y)’ integrating by parts and
usiﬁg the monotonicity of frg+ We see thaik {pa(un-‘f’)} is. boun-.
ded in Lz.(n) by a constant ‘independent of ¢ and n. Letting

¢ - 0 we have {/L(un-‘?)} bounded in Lz(n). The properties of

the Dirichlet map give {uh} bounded in H1/2(m. We may pass



to the limit in (2.1) and finish the proof.

Theorem 2,2, There is at least one optimal pair

[u*, w*]en'2@0x L2(0) of (p).

e

Let wnew be a minimizing sequence, Clearly {wn} is
bounded in Lz(f‘) and {un} is bounded in H]/z(ﬂ). So u_ =u
strongly in Lz(ﬂ.), wo = w weakly in Lz(f'), It (un-‘f’)"’ A= %)
weakly in L) Snd e may pass to the limit in (2,1}

The pair[u,w] satisfies: u30 a,e. inE. . weW and it is

admissible for (P), so it is optimal, We denote it [u*,w*].

3. Penalization and regularization of (P)

Let X and§ be the characterlstic Functions of b,
E Ini 0} and X i' be their C(Q) approximation. We may re-
quire that { } {§ } are bounded in. L7 (), X£>,0, 5.6),0,
Xtﬂx’gg—’ﬂ strongly i-n Lp(ﬂ), 1&p & 00, A ‘

We denote J; 20 siuch that

I)g §| 2dx =0

for € -0 and we define the penalized probl-em‘

S 2 ] -\ 2
(Pi) Minimize {f)(elu-?l dx + 7—- If‘i(u Yodxo
n tn

Subject to (]-3), (105); (107)0
The existence of optimal pairs [ue, wfl for (Pf.)

may be established as in“section 2,

SR RE SR T
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Theorem 3.1. We-haye

(3.1) wi-yw weakly in Lz(r‘),.
B2 b strongly ‘in Lz(fD,

3

where [U{Wl is an optimal pair for (P).

Proof

Obviously {wi} is bounded in LZ(F) and, on a subse-

L

quence, we may assume that w, - W weakly in LZ(P), W EW,

Multiplying (1.3) by pghu:Y)éH;(fn, integrating by

parts and using the inequality

[ Pl p a0 2] plu,-n?
n jo]

we get

jgrad(ue—‘f’)grad {;e(ui-‘f)Jr;/;t(ui-‘P)zf —JA‘f pt(ue—‘l’h).
n : n qh

Then | pt(ut-‘f)} 5 bounded th L2 Aol arguing

as in the proof of Th,2.,1, we see that {/s(ui-?)} is bounded

in L (L) and {u } is bounded in H]/ZU\), ug

L UU Passnng to the limit in (2,1), we get that U is the so-

lution of (1.3), (1.5) corresponding to w.

Let [u,w] be any admissible pair for the problem (P).

Then it is also admissible for (P,) and we have

¢

Land .
— u strongly in



o

By the Sobolev imbedding theorem, as ILCZRZ, we infer

el el LA nd ) Zet i) then

] ]

— e e Lo e il ¢
b e - 4% 4{1{“ f' _rsz_ ‘
<l w0
£ n
Then (3.3) implies that - [ﬁ (= boundea so
tnt’ -

Janrin fe ()2 - o,
£0 £t
E n
The pair [?;,‘\;J'] is therefore admissible for the problem

(P) and passing to the limit in (3.3), we get

J15-¥12 ¢ fiu-v?
D D
for any other admissible pair [u,w]. This shows that [ﬁ,iﬂ is
an optimal pair and finishes the proof,
In order to get better differentiabi]ity properties,
we introduce the regu]arizatién of the problem (PS) with parame-

ter AN>0:

(Pl ) Minimize{ J

X ju-elfe = Fe (u)?
e Lo J¢

1
e o't
subject to

(3.4) - Butp,(u-P=0 in N1,

sand (1.5), Gl 7).



Above‘fsxis the Yosida approximation of{3 . In appli-

cations, we shall also take a smoothing of £

Proposition 3.2, Let [ut, w:l be an optimal pair for
(é:). Then, as A0, we have ‘

(35¢5) w: - w, weakly L),

(3.6) u)e‘ = u, strongly in L2y

where [ua, we] is_an optimal pair for (Pf).-

Proof

As {w: } is bounded in LZ(F) we may assume (3.5) on
a subsequence again denoted wz (¢ is fixed here). We may prove,
as before, that {u:} is bounded in H]/z(ﬂ) and {{5)( :-‘{’)}
is bounded in LZ() with respect to A>0 and we get (3.6).

For the moment, the pair [wi,-ui] which appears in

(3.5, (3 6) is only admissible for (Pt)' To see that it is op-

timal, we remark that

i leu -v|%s

L !{q,_ % 9 elioh vt

a
A2

MQ""& "'nq\! Pk

P

iwhiere u” s the solution of (3.,4), (1.5), corresponding to
some fixed;@éw.

By the same argument as usual, we infer that s
strongly in LZ(CD, with u the solution of (1,3), (1.5) corres-
ponding to wéW,

Letting A= 0 in (3.7) we end the proof.



A e
Remark, The same statement is valid when s is repla-

ced by {5)‘, its regularization, defined as follows
oo = &
p= [ pr-p(de,
= o0
where |4 is a Friedrichs mollifier,

L. An algofithm

We use a gradient algorithm to solve the problem (ﬁt )
Let 8:L2(M) = L%(fl)denote the correspondence w —>u de-

fined by (3.4), (1.5) and u=8(w), uﬁfO(w+}AV), VGLZ(P).

Prdpositionrb.]; The mapping 8 is hateaux differentia-

ble and r=w8(w)v satisfies
(4,1) -Br+ V()?‘(u-‘f) r=0 in £,
(14.2) f/P = V.

Proof

We have

-du+ {s"(u- ¥ )=0,

-Auyj p)‘(u’:‘t’) =0,

u«1=w, UF/F=W+PV’

“which should be understood in the sense of (2.1).

Let vn€H3ﬁ2(F), v, =y v strongly in LZ(P) and
u,-u ! '

!A-

=9(w+rvn), Zoi= —t— . Then

0
© ;

(4.3) - [ z0ar+ | Y-- v, H
: J P> A P A non



S

for any ¥ eHz(ﬂ)f\ Hi(ﬂ). By Th.2.5 of Stampacchia and Kinder-
lehrer [3], palila Z;GH"Z([)_H) and satisfies
A=) - B (u-¥)
rl.

-62;4 = =0 in{l,

-
= z"-/[‘ = Vn.

We denote by SnéHz(ﬂ.) the solution of -as =0,

2 Noan n 2 1
Sn/r‘.—vn and t»—zp S - Then trLéH ()N Ho(_ﬂ_) and we have

N/ n by
(uD=9) ~ Mu-
i -At;+ p UF’Y [S(u ?) .

}L

We hultiply (4.4) by tr* , integrate by parts and use

the fact that (5" is. Lipschitzian of constant -;:a'nd monotone:

p (u;—‘f’)- [}\(u-’f)

Then

l”l

A

n
H@” A‘ E2 () ”‘Lz(m

Lien

e 12

A M 20 ({1),\ 2(0)

Since {Sn} is bounded in H]/Z(n.), we ggt that {t:_‘}
is bounded in Hl(ﬂ.) and {z;l} is bounded in H]/Z(m with respect
to n and o We can pass to the lTimit in (4,3) n-=eo, w >0 and

obtéin (h.1),-(4.2).

Remark, We have réH”z(n.).

; : )
We define the adjoint state pi‘éHzm.)n Heo () by



S -

. : e 7 A=
(4.5) Ap£+ V[s)‘(u ¥) p Xe( 5 ?) /g fltue ,
(b o = 0.

"¢
The existence, uniqueness and regularity of é? is

wellknown,

Let us obtain the maximum principle for the problem

(P)j. We have:
1
R A=, 2 s -2
(o7 [ pd- ol J5 Wi file -l — JiuD
n £ Nl n €Sl
SN %
where UP' is the solution of (3,4) with uPG1 w r-we v) for

any VEW,}L)Q. :
We divide by P.in (le 7)) amds Tet ,&-90 ; then, we in-

fer

(4.8) [ (2% (u>-9)- ;,%_-ﬁzut-)ve( W) (vew?) 3 0
t s

for all veéw,
We notice that the adjoint operator vG(w:)*:

Lz(ﬂ),-»Lz(f‘) is given by

; * 9
(b g)isaiaitir)s - SE -,

n

~where p is the solution of (4,5), (4.,6) with the right-hand si-
de equal to fGLZ((D. This may be seen by multiplying in (4.5)

with r=ve(w})2.£eL2(r‘). By (4.1) and (2.1), we have

we (wh) *r,8) =(f,v9(w.2)e) 9 ='J"4P+j"[‘}(“>"?) hRes Jrg-P- -
R(y) W 5 5 P

since péHzﬁl)n Hl([l). This yields (4.9).

e P S R AN W
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i Proposition 4,2, The optimality condi®ions for the

problem (Pt) are given by (3.4), (1.5), (4.5), (4.6) and

' w5
(4.10) [ FEGG-vIz0  Hvew.

r

Obviously, (4,10) is a direct consequence of (4,8)

and (4.9), It may be equivalently rewritten as

o
9P
£ PN
(h-]]) '.a""ﬁ € 93l (Wi) )

where I:LZ(P)J’}-w,+ xJ is the indicator function of W in
L2(m.

In order to apply a usual gradient algorithm, we pena-
"lize the control consfraints wéW by adding to the cost functio-
nal of (P:) a term of the form ]£(W)’ a smooth regularization

of 1(w) (this may be easily done due to the pointwise definition

of W).

P
£

ve all the other notations, All the above results may be reob-

We denote this new problem again by (P)) and we preser-
tained in the same way with the only modification that (4.11)

becomes

b

oF: . »
(4.,12) 3h -‘-‘-Vli (Wi)'

The algorithm is as follows:

Sitep L, Let W be given and set n:=0,
Step 2, Compute u_ from (3l (1 50
$tep 3. Test if the pair [un,wn] is satisfactory.

If YES, then STOP, otherwise GO TO step L.



toL -

Step 4, Compute P, from (4.5), (4.6).
Step 5. Comput®e wn;] by

n

Step 6. n:=n+1 and GO TO step 2.

The test involved in step 3 may compare two consecuti-
ve Iterations and rn from step 5 is a real parameter obtained

via a line search,

Remark. If wneH3/2(P), then we have already mentioned
that unéHz(fl). So the right-hand side in (b=5) §= in H](fD and

the regularity results for (4,5), (4.6) give pAEH3([D. Then

3P,
20 ewd/2m) and, by (4.13), w €W’ R,

n+1
Therefore, if we start the algorithm with a regular
iteration W this regularity is preserved during all the ite-
rations,., So ug is a strong solution of (3.4) and we may consi-
der its restriction to a subdomain to obtain the solution of

the optimal design probem as explained in section I,

Remark. In our simple approach we replace a problem
over. a variable:domain: {which is its greatest difficulty) by g
problem over a fixed domain in a direct manner, without any

supplementary complications,
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