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INTRODUCTION AND STATEMENT OF MAIN RESULTS

Retional homotopy theory associates to l-connected locally finite
complexes X two (Eckmann-Hilton dual) types of graded algebras as invariants
which will be simultaneously treated in this paper, namely H*(X;Q) and
OT*(.QX)®Q. In what follows we shall denote by sk o graded algebra over
an arbitrary chesracteristic zero field k, which is‘supposed to be of finite
type (dikan<oo ,Vn); B* wil1 be either graded commutative and l-connecteq
B° = end B! = 0) or a graded Lie algebra; which is also supbosed to
be l-connected (B° = O).E*X will stand either for H*(X;k) or for
ﬂ%(ﬁ.}_(_)@k. Among other things, rational homotopy theory (fed, hgl)
provides, for k = @, the existence of a.c,anonical X whiéh realizes any
given o¥ (i.e.B*X = A*),_namely the ‘so-called formal (B¥ = H*) or
coformal (~8*= VL)) space associated to A% (gee eegs [12]), and also
provides an algebraic parametrizstion of spaces within A"E (i.e.spaces Ywith
.B*Y = A*). Much attention has been paid to the study of the (co)formality

of spaces and of the corresponding intrinsic property for algebras: B:’§ is

said to be intrinsically (cofformal if it is realized by exactly one -

homotopy type (namely by the (co)formal ore) - see for example [19] - [6] ;



[}, o), 2ok, 2k, [o] [asl, [21, [is] (a0l ... ¥erteus other rprvoximaticn,
to (co)formality have also been considered. We shall focus here on the
topologically'meaningful and algeb;aically tractable property of
(co)spherical generation. Given X, consider the rational Hurewicz homo-
‘morphism h: 0y (Lx)@ Q———>H*+1(X;Q)_. As it is well known, Im(h)C PH 4
(PH*.= primitives of the homology coalgebra) and ﬁﬁ*,ﬁT*]C:ker(h)

( [ﬂ* ; UT*] = derived loop homotopy Lie algebra), the inclusions being

- strict in general. We shall say that X is spherically (cospherically)

generated if the first (second) inclusion is an equality. It is also well
known that the (co)formality of X implies the (co )spherical generation
property, without being in general equivélent to it. One may thus consider
the corresponding'intrinsic property for algebras: B*is said to be
intrinsically (co)spherically genefafed if any X within B*E{§ (co)spheri-

cally generated (co in the case BY = graded Lie algebra ﬁ*).

Various classes of examples of intrinsically (co)formal algebras have
beeh exhibited. The most suitable approach'to this problem turned out to
be the use of deformation theory (in the spirit of [3], ﬁ3]) - see for
example [6],[1],[17],[203,[7],[9],... The most general characterizations
of the intrinsic (co)formality property for an algebra B¥ (B* = gréded
commutative s&lgebra H*Eor B¥ = graded Lie algebra ﬁf) have been formulated
as rigidity theorems, nemely as an equivalence (under certain additional
assumptions) between the intrinsic property and thé'vaniéhing of
a deformation-theoretic Hl group associated to B*; two pointé are to be
stressed here: first that the linear condition Hl = 0 e&always implies
the intrinsic property, without being in general equivalent to it, and
second that the relevant Hl is part of a classical cohomology theory
associated to the graded algebra 5# (the same as in the classical examples
of deformation theory [3],[13]).

: As we are going to fbrmdlate our results in classical cohomology theory
= terms, we pause a little for fecalling the definitions and making some

notational conventions. Let then BX be a graded algebra as before
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and let M* be a (left) greded B*:—module.‘lf B* = H* (cdmmutative algebra

case) we shall consider the (bigraded) Harrison cohomology Harr*’*(H M)

as defined in [20] and regrade it by defmlng

1+§+1,1

o (H,M) Harr (H, M) for 4,330, i+3> 0,

J
1r BX - L* (graded Lie algebra case) we shall consider the bigraded classi-

cal Lie cohomology Hn’p(L M) = Ext{}ip(k M) (where n = resolution degree

and p = totel degree, see e.g. [21]) and regrade it by defining
'HJ-(L,M) = gt =l ) for 1,530, 145> 0.

The exsmples of natural B-inodules which arise in connection with our
deformation theory are: Bk as a left B*-module,' the B*-submodule of de-
composables of B¥, to be denoted by 0*8 (1B = B*.B* , if B¥ = 5% g = [B,B]
if Bilﬁ L ), the quotient B*-module of indecomposables of B’ﬁ, to be denoted
by Q¥B = B*/D*B and finally B*—modules of the form M* = N> (for some
n and some B*-module N*) :

Our point of view in this paper, which has been begun in [14], will be
the skeletal one, namely to consider both the intrinsic properties and
the deformation theory not only for B* but for all skeleta of B*,- in

a systematic way. We thus define, for any n, the n-skeleton of B* ; by

Just truncating above degree n, and denote it by B*(n) = B/B>n; it will
be a quotient algebra of B¥, 1r ¥ =~2*(X) then B*(n) =~B*(X(n)), where
X(n) denotes the n-skeleton of a minimal Cw-decomposn-mn of X .(in the

case.a H¥), respectively the n-th Postnikov stage of X (in the case

= (T(,k.Q). Finally let us say that B)‘E is skeletally intrinsically

(co)formal (respectively.(co)spherically generated) if all skeleta B¥(n)

have the corresponding intrinsiec property. We may now state our skeletal
results. The main common feature is that certain linear conditions,
expressible in terms of classical graded algebra cohomology, which in

general are only sufficient for the existence of the intrinsic properties,

~ become also necessary in the skeletal framework.



Theorem A, Thé following conditions are equivalent
(1) B* ig skeletally intrinsically (co)formal
(ii) H l(B(n) B(n)) = 0, for any n
(1ii) The natural map Hil(B(n),Bn(n))-——9-H;l(B(n),B(n)) is zero,

for any n.

The proof will be given in Prop081t10n 2.2. We ought to point out
‘that it Hl (B,B) = O then B must be intrinsically (ce)formal and that
the converse does not hold in general (see the remarks of 15,5). In Sec=
tion_l we also offer two (nonskeletal) characterizations of the intrinsic
(co)formality of B: a general (but nonlinear) one in Proposition 1.1 and
a linear one in Proposition 1.3 (under the additional assumption that
dim B<oo ). With the same hypothesis, we show that the gap between the
intrinsic formality of B and of B(&kf, where k is the algebraic
closure of k, is measured by an interesting rationality pron;rty of the
veriety of structure constants for the deformation theory of B, in

Proposition 1.4 (see also 1.5).

Theorem B. The assertions below are equivalent
(i) B* is skeletally infrinsically (co)spherically generated
(13) H>1(B(n) @B(n)) = 0, for any n
(1ii) The natural map H>l(B(n) QnB(n))-——%BH)l(B(n) QB(n)) is zero,
for any n ]

(iv) Hil(B’QB) = 0,

‘The proof is to be found in Proposition 2.3 {eee allso 4 for an
example explaining the main difference between the two skeletal properties,
which is due to condition (iv) above). Again it has to be noted that the
vanishing of Hél(B,QB) implies the intrinsic (cg)-spherical generation
of B, but is not in general equivelent to it (see 1.9 and 1.10). Ome may
also find‘a general (nonlineaf) chafacterizafion of nonskeletal intrinsic

~ spherical generation in Proposition 1.8.

Our last two results are related to the gap between (co)formality



ahd (co)spherical genératibn (see also [2]).

Theorem C. We have the equivalences :
(1) BY is skeletally intrinsically'(co)formal
(1i) B¥ is skeletally intrinsically (co)spherieally generated
and the natural map Hl 1(B(n),DB(n))—> Hzl(B(n) B(n)) is zero,
for any n » e
(1i1) B*‘is skeletally,intrinsiéally (co)spherically generated and the
natural map Hil(B(n),DnB(n))~———>H§1(B(h),B(n)) is zero, fpr
any n. ' '
Proof: see Proposition 2.5. Supposing that B* is intrinsically (cb)spheri-
celly generated, a‘classical (ncnskeletal) rigidity theorem correswonding
to the equiwvzlence of (i) and (i1i) above reads: if in addition H (B DB)
= O then the intrinsic (co)formallty of B is equivalent to the vanishing
of Hzl(B,DB)-——%>H?l(B,B) - see 1l.12, 1.13. Another variant is contained

in the statement below (whose proof is given in 1,11 and 1.12),

Proposition D. Suppose that H 1(B DB)-—4>}H'(B B) is zero. Given X with
2*x) = B*, X is (co)formal if end only if X is (co)spherically generated.

~ The paper is divided into two sections, the second one being devoted
te the skeletal properties. Both_parts are written in the language of
deformation theory, and consequently all t0pological statements are proven
in greater generality. The deformation theoretic framework is set up in

the first section.

This paper may be regarded as the (weighted) sum of the unpublished
[14] enda [8]: the skeletal point of view of [14] plus the suitable
deformation theoretic framework of f8] = the present major double revision.
Both euthors ere grateful to the natural circumstances (i.e. the relatively
short distance between Bucharest and Prague) which made mail §00peration :

work satisfactorily;



1, GENERAL RIGIDITY THEOREMS

/

: Rafional homotopy theory offers the possibility of faifhfully translating

| ’questions from the homotopy category to a differential graded algebravsetting
([16],[19]). In particular, given a graded Q-algebra B as in the introduction,
- 1t can be realized as the cohomology (loop space homotopy) algebra of a space;
moreover, the central problem of classifying homotopy types with prescribed
cohomology (homotopy) algebra has been recognized to admit a succesful re-
formulation in deformation theoretic terms (l6],[l],[17],fZO],[?],...),
This.léter setting haé, among other things, the following useful features:

it gan'be described for an arbitrary charecteristiic zero coefficient field k and,under
suitable finiteness restrictions on B, the methods of algebraic geometry

are gvailable over the algebraic closure k ({3],[13]); rationality propefties

" - may be deduced from the unipotence‘of the linear groups which_are in genersl

involved here ([19], [11], [12], [6]).

We are thus going to describe first a convenient deformation theoretic
framework. The most natural and suiteble fof our purposes may be formulated
‘in terms of bigraded Lie algebras of derivations dl?], see also [8],[9]);
in particular it will allow ﬁs to treat simultaneously the graded algebra
and Lie algebra cases in a perfect Eckmam-Hilton dual manner. We shall next
translate the properties of (co)formality and spherical generation from geo-
metry to algebfa and formulate several general results related to the
characterization of the éorreSponding intrinsic properties, in the classical
form of rigidity theorems. As we have already mentioned the general ideas
are (implicitly) present in the litersture; consequently our proofs will be
merely sketchy. . :

Let Zi be a bigraded k-vector space and denote by A: = FZ the free
(bi)-graded commutative or graded Lie algebra (with respect to the upper
aegree) on Z; the bigrading on'A is multiplicétively induced by the one on Z.

We shall suppose moreover that

(1) elthes zi? E 0o zﬁ? 10

(II) ‘dimkzl;‘éoo , for any n.



Aiéo let d; be a graded algebra derivation of A which is bihomogeneous of
"bidegree (1,1). Denote by Der}(A) the k-veétor space of bihomogeneous graded
- algebrs derivetions of A of bidegree (A gy Ude &)y Der:é naturally becomes
& bigraded Lie algebra, with bracket given by the graded commutator of deri-
: Vation.s. Finally supposé that fdlvdl] = 0 (or equivalently d2 = 0)s Define

1

a bigraded subalgebrs E CDGP* by E;j = Deri+J (4,320, 343> 0). Notice

" that d, € EO and that D = [dl,(*)] turns X into & cochain complex, which
splits as E* @L « The resulting cohomology will be denoted by *E(E) H>1
- will play g key role in our deformation theory. :

We now describe the two main examples coming from geometry, If B* i
a graded glgebra H;k a@s in the introduction then (FZ dl) is essentially
Quillen sx, construction on the dual coalgebra #H with zero differential
([16], see also [21]), To be more precise set e #5‘ H and Z‘E f = X :
_ Notice that the differential dl is quadratic when restricted to the free
generators and is essentially constructed as the dual of the algebra multi-
. plication of H. If B¥ is & graded Lie algebra IFas in the introduction then
(FZ,d ) is essentially the Koszul-Quillen construction b of the cochain algebr:
on L with trivial differential ([16], see also f2l]). To be more precise set
: z* J&LZL and Zi = Zf, then notice that dl will again be quadratic being
essentielly the dual of the Lie multiplication on L. The corresponding clasgsi-
cal cohomologies will be denoted by H;E(B,B) (but recall the reindexing con-
ventions from the introduction !). We note that we have in fact a bigraded
isomorphism Hi(E) = H?é(B,B); for B = H this easily follows from [20], [171;
for B = L it can be proved by similar (even easier) methods, namely by
- & tedious but straightforward direct computation, which we omit,
The underlying deformation théory has dl+E>{l as affine support; the per-

Jt 1

‘turbations will be denoted by p -: n+ Pn€ Dery = E- o The variety of

structure constants will be denoted by M (MCdl+E>l), it is given by the
deformation equation ([13],[17]1) fdl+p,d +p] = 0. It contains the distinguished

point dje Cénsider next the group Aut of graded algebra automorphisms of AX
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énd the subgroup G of (lower) filtration nbhdecréasing elements ge€ Aut

(deee g ;%_)_-(;gn, gn(At)CAﬁm, VYn,i)-with the property that gy commutes with
"dl’ The norﬁal subgroup Gl of G is defined by the condition 8o = 1d. These
are both linear algebraic groups (infinite dimensional in general,'as well as
‘the affine variety M), the later being unipotent, If a€EX (n> 0) then

éxp(q) =§E:j(1ﬂm!)qm makes sense and it is an element of G, . Finally G mor-
phically gggs on E and on M, by conjugation, For deteils, see [17], also (sl
Bl 4300 notics the: ie dim Z<00 (for example if dim B<o0 ) then everything
happens in the realm of honest finite~dimensional algebraic geometry (as in
[13]) and is moreover defined over k. There is however a word of caution:
usually one also considers the component Eg = {qGZDerg;fdl,q] =’O}. We choose
not to ineclude it here, because'it does not affect at all the picture of M as
&g Gl—space, in which we are primarily interested, for topological reasons
which will soon appear; on the other hand it also doeg not affect Hil(E),
5i.e. the most important part of linearized deformation theory,
When k = Q and the deformation theory comes (as explained before) from

B = H (resp.,L), the connection with topology is provided by the following
results ([7], resp.[1]): the set of rational homotopy types X with H*(X;Q)'g
= H*‘(resp. OT*Il(X)QQQ = L*) is in bijection with the orbit space M/G;

& space X is formal (coformal) if and only if its orbit equals G.d; = Gy -4, .
At this point is worth mentioning that the equality G.d, = Gl’dl is vélid in
. geheral. This is due to the easily seen fact that G is generated by G1
together with the stabilizer of d;. _ ' ‘

Consequently we shall start in general with (FZ,dl), construct g deforma-

tion theory for dl as explained above, and make the following obvious defi-
nitions: a point m = dl+p<EM will be calléd formal if G.m = G.dl (dl will be

called the canonical formal point); d; will be called intrinsically formal

if M =~G.dl.
For any n )1, consider the set of integrable elements
eDerl.=El-[d+ + + + + )
71 -{pml n+l = “n ? S1"PRa3tPnapte ., 89 tPp gt ot }
n - : i .
for some Pn+i€Derp s, 1) 2



Expanding the bracket we deduce that [dl’I;] = 0, Consequently we may con-;'

 sider the set of integrable cohomology classes, denoted by IHrllc H}I(E),

obtained as the image of IIJ; by the natural projection of Zi(E) onto Hxlz(E)‘

Here is our first characterization of intrinsic formelity.

1.1, Propos:.tion. dq is in'trinsically formal if and only if IH {O}

for any n)l.

Proof. Suppose that dy is intrinsically formal and let m = dl+pn+1+pn+2+"’

3 - 1
€M, i.e. l'pn+l] i
gem = dy. We may then use the argument of [1],p.24 (see also [9],p.202) to

modify g so as to have g = l+gn+gn+l+"' and consequently gne Derngg.

o We know that there exists g = l+g1+... €Gl such that

Expand gn = d;8 to d;+p, +l+gndl+"’ d,+d,8 +..., hence [pn-rl] = O and
= {o}. :
Conversely start with m = dl+p2+p3+... €M and inductively suppose that

= 0, hence that p__- € Il, end consequently p ., = [dl,qn]

Py T P3 Seee= Pp i
for some q € Eg; for the point exp(-q ).m we then have that P, = Pz oo
D O, and induction may go on., Finally note that the sequence
exp(-qn)...exp(-ql) converges to a well-defined element gEG [8] and that
g.m = dy; therefore M = G,.d;) and 4; is intrinsically formal.
If XxCK is a field extension we get (FZ dl)® K and a deformation theory

for dl® Kes

l.2. Corollery. If 4 @K is intrinsically formal then d_1 is intrinsically

formal.

Proofe If m '= dl+pn+l+pn+2+‘" € M(k) then obviously m®KE€ M(K) and the

intrinsic formality of d,®K implies that [p_, ®K] = 0 in H @K, hence

n+l
: [pn+1] = 0 in H;, by lineaf algebra.

We should point out that the reai point in our corollary is that we do not
“either impose additional finiteness conditions as in [12] or pass from the
finite dimehsional to the general case by a pro-algebraic groups argument as
in [11] , but rather give a direct convergence argument , to be compared with

the one in [6]. However, our characterization hes a serious drawback: it is

1 2 A AR LA AT 3
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nonlinear and hard to check, } ‘

We are going now to try a linearization. In order to be able to use some
_simple geometric arguments we shall suppose that dim Z<oO'. We shall next
consider the (Zariski) tangent spaces at d, to G;.d; and M, We note that we
‘have B%l(E)CT l(G .d ) (which is in fact an equality, see [5]) and T, (M)C
'CZ 1(E) 113] We define the normal cohomology by Nl dl(M)/Bil(E).lIt .

a linear k-subspace of H>1(E)

1.3. Proposition. Suppose that dimZ < 00 . Then dl®K is intrinsically formel

for any extension kCK if and only if N‘;‘l = 0.

Proof., Let us assume first that Ni‘l = 0 and k = k. The same argument as in
the proof of the rigidity theorem of [13] may then be used to deduce that
Gl’dl = G.dl is (Zariski) open in M. We next invoke a homogeneily argument,

* s

as in [1]. Define a l-parameter subgroup of G by letting tc k  act on AJ. as

j-1 2 L
-t .id. It follows that ‘t.(dl+p2+p3+...) d1+tp2+t

P3tess, hence G.d, CG.m
(Zariski closure) for any m& M, We infer that M = Ged; and 4, is intrinsi-
cally formal. If kCK is an arbitrary extension the condition N;>,L1 = 0 (which
is independent on the ground field) gives that dl®K is intrinsically formal,

'heﬁce dl‘®K is intrinsically formsl, by the previous corollgry. For the con-

verse implication it will plainly be enough to suppose that k = k and that
O, To this end we shall

d; is intrinsically formal and deduce that N;fl
consider the orbit map f:Gl-—)M, given by f(g)

of dl and the unipotence of Gl imply that it is a dominant morphism between

i

g.dl. The intrinsic formality

irreducible varieties, therefore its differential is sur,jective on a Zai'iski
open nenvoid subset of Gl ([5]). Using a translation if necessary it follows
that did(f) is surjective .and this readily implies that T, (M)C B;Ll(E), hence
7 ) g l 7

N:;l = 0, as desired. |
The above result suggests that the vanishing of Nll is related to ratio-

nality properties of the variety of structure constants M. Our next rigidity

result makes this guess a little more precise.
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1.4. Proposition. Suppose that dimkz'<oo,

(1) If N:)Ll = O then the k-rational points of M are dense in M(E).
/4
(ii) If the k-rational points of M are dense in M(k) then dy is intrinsi-
cally formal if and only if Nil = 0,

Proof. We shall treat (i) and (ii) simultaneously. Taking into account

- the precedihg proposition it will be enough to assume that Nél =0 in (i) and
that d, is intrinsically formal in (ii). Both these assumptions imply:that
M(k) = Gl(k)’dl’ at the level of k-rational pointse. This in turn implies that
GI(E).dlEEETET. To see this we look at the orbit mep f:G,—>M we have already

considered in the preceding proof., We have Gl(E)'dl = f(Gl(E)) = £(G; (k)

(G, is an affine space being a unipotent group)ggf(Gl(k)) = Gl(k).dl = Witk),

But ii‘Nil = 0 we know that M(K) = 6,(¥).d; and our claim in (i) follows. On
Y |

the other hand the assumptions made in (ii) imply that M(k) = M(k) = f(Gl(kT),

~hence the orbit morphism is dominant. We may then deduce that N}l = 0 as in

the previous proof, and we are done.
1.5. Remarks. Consider the following finite complex [1]
ps mOeDh el 223, 23 :
.X = SCVSdVS \/Sa VSb Uw
obteined from a wedge of spheres by attaching a 28-ce11 along

W= [814 14] [825 5] LSzB 5], and a modified version, namely

5 28

¥.= o vs5vs VS 4\/523\/823%8

where ‘t [814 14] [814 14 -f[.Sz3 2] [823 5]

Concerning the'relatlonship between the rigidity results given by Propo-
‘sition 1.1 on one hand, Propositions 1.3 and 1.4 on the other hand and usual

rigldity theorems, we note that we have in general ;x:IHn(ZN 1 (E) but
n>l
the inclusion& are strict. For the deformation theory of H*(X k) it can be
1

computed that dim H>l = 2 and thet M(k) = {a,}, for any k, hence N, = 0; the
reason is thet in general the ideal generated by the components of the defor-
metion equatinn is not radical, and this makes (in general) the obstruction

.N%l = 0 hord to check. Starting with H*(Y;k), it can be verified‘that_thia
/4 ; _ . =
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12

- icirs i intrineienlly fanual fov k = Q b R, but no more if k = k. This
shows that the inclusion X IHICNy) is in general strict and that the
“intrinsic formality propergslis not independent of the extension of scalars.
A1l these indicate that the best linear approximation to intrinsic formality
his the classical one, namely H l(E) Traditionally it is shown that H)l(E) =0
‘iseﬂsosanecessary condition for intrinsic formality by addltionally assuning
that H>2(E) =0 (the role of this extra assumption being to provide the
equallty ;?<1Hi N%l = H>l’ see the next section for another class of
assumptiongfihlch do the same job). There are however examples, as simple as

¥ (s3v s3vs3), where H>1(E) = 0 but H>2(E) # 0, which show that this choice
of extra assumption is not the most natursl one - to be compared to the
situation in our Proposition 1.4. v

We move now to the properties of (co)spherical generation. For meking the

_relevant definitions we are going to suppose that Zk Z in our deformstion

theoretic framework (as in the main two examples coming from topology) and

set Z = Ker(dllz).

1.6, Definition. m = d;+p €M will be said to be spherically generated if for

eny x €72 there exists y'€(FZ)?2 such that (d1+p)(x+y) =0,
Ve

Geometrically (FZ,d.+p) will represent a minimal differential graded Lie
algebra or commutative algebra, and (FZ)>2 will be a graded (dl+p)-stable
‘ideal. Denoting by h:H*(FZ,dl+p)-%>ZK the morphism naturally induced by thev
pro jection FZ—%>FZ/(FZ)22 = 2, it is well-known that it essentially represents
the Hurewicz morphism or its dual (modulo some reindexing of the degrees). On
the other hand, it is also immediaté to see that we always have the inclusion
In hCZ and that the spherical generation property in our Definition 1.6 is
equivalent to Im h = Z, Taking into account that when B = H we can identify
Z with the primitives of the dual coalgebra 3H and when B = L. we can identify
»_Z with ?#QL; one sees that tne property stated in Definition 1.6 is equivalent

to the property of (co)sphericel generation steted in the introduction.

Let us notice that in generel if g€G and m €M then m is spherically gene-

|
|
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rated iff g.m is spherically generated (since g may be regarded as an iso-
morphi_sm betweeh (FZ,m) and (FZ,g.m) commuting with h and dl) and also that
_plainly if Ker(mIZ)Z)Ker(dlIZ) then m is sphericélly generated. We thus see
that the formality implies the spherical.generation. We point out that the

“converse does not hold in general ( see e.g. [15] ).

l.7. Definition. dl is said to be intrinsically spherically generated if any

m€M is spherically generated.

Obviously the intrinsic formelity implies the intrinsic spherical gene-
ration. However there are intrinsically spherically generated examples which
are not intrinsically formal [15]. :

The following constructions turn out to be useful for the characterizsation
of the intrinsic spherical generation., Set E = {d GE; dlZ = o0}. This is a bi-

: graded Lie subnlgebra of“Ei and dl€ ﬁﬁ, consequently _E-;twill also be a sub-
_complex of (E}Z,D). Put M = Mﬂ(dl@"gl).

1.8. Proposition, dl is intrinsically spherically generated if and enly if

the natural map 'M——>M/Gl is onto.,

Proof. If for any m€M theI:e exists g €G; such that g.m€ M, we know that
g.mf'Z = O, hence g.m is spherically generated, therefore m will be spherically
genérated and dq will be intrinsically spherically generated. Conversely,
given m € M we use its spherical generétion property and construct an element
gt Gl as follows: we write 2 = Z @ C and define a graded algebra automorphism
g of FZ by describing its restriction to the free algebra generators, namely
gx = x, for x€C, and gx = x+y, for x€ Z", where yé(FZ)§2 and m(x+y) = O.
Since go = Hd-, gEGl. By construction gul.m €M, so the converse implication

is also established.

;1;9. Proposition. If Hil(E/E) = O then d, is intrinsically spherically gene-
/ .
rated.

- Proof. Start with m€M, m = d1+p2+,,,+pn+pn+l+,,, We will show that the
Gl—or_bit of M contains a point whose all'perturbations p2,p3,... lie in E and

then use the preceding result to conclude that dy is intrinsically sphérically
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generated. In what follows the idea of proof is taken'from (8] (see also
[17]). Assume inductively that p2,...,pn(E§. Recall that [m,m] = 0, look
‘ at the homogeneous part of degree n+2 of this equality, remember that E
is a Lie subalgebra of E and conclude that Prsl represents & cycle of
(E/E)i, n l. Consequently there exists qnékES = Derg(ﬁi) such that
.pn+l * [qn,d£}€?§. Up to degree n+l, we have the equality exp(qn).m =

= dl+p2+...+pn+pn+l+[qn,dl], where éxp(qn)GZGl. Induction goes well on and-
finelly passing to the limit as in the proof of Proposition l.1 we find the
'deéired element of Gl'

1,10. Remarks. Hi(E/E) is computable directly from the initisl data

(FZ,d,) es

H}(E/E) - Homi(H"f(Fz,d ),Hjﬁjﬂ'(pz,dl)), Yo,

where Homi denotes the k-~linear homomorphisms which are homogeneous of upper
degree i. This may be seen as follows. Up to_reindexing the degrees (Ei,D)
is nothing else but the bigraded complex of the derivations of the bigraded
 (free) differential algebra (FZ,dl) into itself., Going back to the defini-
tion of E it is immediate to see that the bigraded complex ((E/E)},D) is
given by the bihomogeneous derivations of the bigraded (free) différential
algebra (FZ,0), which is a bigraded differential subalgebra of (F2,d4,), into
(FZ,dl),'which is considered as a bigraded differentisl module over (Ff,O)
- in the natural waye. This immediately gives that HigE/E) = HomifZ,H(FZ,dl)).
Our stated formuls follows &t once, by noticing that Z*ﬁ HTXFZ,dl) and bj
properly reindexing. It is alsc worth mentioning that the space
Homl(HT(FZ,dl),Hfz(FZ,dl)) naturally appears as the target space of an
obstruction theory for the spherical genefation propertyQ

When dealing with the deformation theory of a graded alge bra B*Q(BK = H*
or L*) the method of proving.that Hi(E) = 'Hi(B;B) also gives that
HigE/E) =,H§8B,QB) (by simply observing that Z = 4%QB, modulo a shift of
the degrees), We also mention that one has HikFZ,dl) = HiﬂB,k), vhere k is
considered as a trivial B-module, Fihally we remark that the vanishing of
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'H>1(E/’) is not in general a necesqary condition for intrinsic spherical
generation (sezhowever the next section). This may be seen by inspecting the
already mentioned Félix example; in this example H*(X‘k) is intrinsically

formal (hence spherically generated) for any k, but
Hom (H*(Fz,d s H* (FZ,d;)) # 0 ([1], p.40-41; the computation of H'*(Fz dy)

is carried out in terms of Sullivan models, but the trenslation to Quillen

models can be easily done, see e.g. [21]).

Our next two results explore the gap between the properties of formality

and spherical generatione.

1,11, Propesition. Assume that Hil(i)—e>Hii(E) is zero. Then the formal

points of M coincide with the spherically generated points of M.

Proof. let m = dl+p2+...+pn+pn+l+... be a spherically genereted point of
M. We have to show that. the Gl-orbit of m contains a point with p2=p3=,,,=o,
We inductively assume that we have found a point in Gl.m which has
p2=...=pn=0 (and of course which is again spherically generated)., We are

going to use this last property to deduce that pn+l€’Ei

mod Bﬁ(E); since we

already know that p_, € Z%(E) (use [m,m] = O) the assumption that H;Ll(b)——a
1 e 1 :

-_>H>l(E) is zero forces Dar 0 mod Bn(E). The rest of the proof follows

exactly as in Proposition 1.1, Spherical generation implies, for any x(i?h,

the existence of y = y2+y3+...,5H_E(FZ)?, with the-property that
(dl4pn+l+.Q.)(x+y2+y3+...) = 0. Looking at the homogeneous component of
degree n+2, we see that dlyn+l+pn+lx = 0. Making linearly our choice for y,
.we find an upper degree zere linear map qnzz-—>(FZ)n+l with the property

that p |Z + a = O, Extend to a derivation g E;EO and notice that
n+1 9 n n

1%
pﬁ+l:+ [dl,qn]Efﬁi as claimed. Our proof is thus completed.

1.12. Remark., Let B* be & greded algebra as in the introduction and con-
sider the associated defbrmation theory, as explained befofe. As we have
already mentioned, it is not hard to identify Hi(E) with HifB,B). In fact
one may identify the'map'Hifﬁ)-€>H§(E) appearing in the above proposition
with the map Hi(B,DB)-—}Hfé(B,B) naturally induced by the inclusion o.f the

B~submodule of decomposablés, DBC>B. Thus Proposition 1.11 fully gives the
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proof of Proposition D of the introduction, It also leads to the following

rigidity theorem.

1.13, Proposition. Suppose that d, is intrinsically spherically generated.

If Hl (E)—%}Hl (E) is zero then dl is intrinsically formal. Suppose in addi-
tion that H>2(E) = 0O, Then dl is intrinsically formal if and only it

)1(E)—%I51(E):s ZEero .,

Proof. Assuming that dl is intrinsically spherically generated and
Hil(§)~€>H;1(E) is zero we infer that d, is intrinsically formal by using
Proposition 1.11. Conversely assume thet dq is intrinsically formal and
H;Z(E) = 0, Startwith a D-cocycle pnG.Zi(E),xnzld We will use the
assumption that H§2(E) = 0 to show that P, 1s integrable; to be more precise
we will show the existence of Ph411e e (pn+1€'En+1) with the property that
d,+ pn+pn+l «..€ M, From this fact it may be deduced, exactly as in the proof
of Proposition 1.1, that pn€ Bn(E) (dl being intrinsically formal). As far
as our integrebility claim is concerned, set m = Doty teee, miEEE% and
m, = d;. The condition [m,m] = 0 is eyuivalent with the following set of

0
homogeneous conditions:

_ g
(%;) ~2[a, ,m.] =%[m‘j,mif_‘j1, 151,

'Inductively suppose that myyese,my ; have been constructed (1>n) with the
" property that (ﬂé),...,(%& ) hold and m Sess=m, 4 =0, m, = Pp. The right
hand side of the equality (%i) is then an element m(l)E.E . If we show that
it ds in fact a D-cocycle then H>2(E) = 0 implies that (%&) may be solved

0 1
the Jacobi identity. Looking at the homogeneous component of degree i of

fpr my, and we are done. Set m’ = m . +m Feeotm, 1 then {m ,[m ,I ]}=-O, by

this equality, recall theat [m',m'] has trivial homogeneous components in
degrees (i (by induction) and that the homogeneous component of degree i of
[m',m'] equals m(i), and consequently infer that Edl,m(iﬂ = 0, This was all

we needed to continue the inductioh. The proof of the proposition is Compkﬁe.

1.14. Remerk, The proof of the usual rigidity theorem "d1 is intrinsically
formal if and only if H>1(E) = 0, in the presence of the condition >2(E)-—O"
v
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is » perticular case of the above proof obtained just by setting E = E.

1.15, Example: wedges of Spheres.and products of Eilenberg-MacLane spaceé."
We will briefly examine the simplest case occuring in our deformation theory,
nemely dl = 0, Topologically this meané algebras ]3)lé =‘H*‘dr L*‘with trivial
multiplication (e.g. the cohomology of wedges of spheres or the loop homo- :
topy of products of Eilenberg-MaclLane spaces). Let us observe that in this
particular case (d; = 0) all the properties we have considere , nemely the
intrinsic formality, the intrinsic spherical generation, H>1(E) = 0,

&1 = 0. Tt will

>1(E/—) = 0, are equivalent, being in fact equivalent to E
plainly suffice to see that the intrinsic spherical generation implies the
intrinsic formality (this follows immediately from Proposition 1.8, since

in our case M = {dl}) and that in turn the intrinsic formality implies that

E%l = 0. Indeed, supposing that E%l'# O we can find a nonzero linear map
7
Qg 22 (FZ)m:%, nyl. We extend it to a derivation qnélE; by setting

anZ = 0 for b 7 m, The fact that Zy = Z, readily implies that [qn,qn]

for degree reasons. Therefore q &M, q 73, and consequently d,=0 is not
intrinsicelly formal, since in our case G.d; = dl’ We finally mention that
the condition E;I = 0 may be explicitely trenslated into an arithmetic con-
dition involving the sequence of the degrees of the elements of a k-basis of

i

2. SKELETAL PROPERTIES

This section is mainly devoted to the proof of theorems A,B and C of the
introductlon. VWe are going first to translate their statements into the
language of deformation theory. To this end, it will be convenient to re-
formulate the conditions we have imposed on (FZ,dl) in the previous section,

in the following way: Zikwill,be a bigraded k-vector space with the proper-

tles:

(1) zip .

(11) dimkzgl( ¢ 00, for any m

Med? ¢ §6>
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(IID) 2y = Z,.

¥Z will denote the free graded (by upper degree) Lie algebra or commutativé
algebra on 7X and d; will be a graded -(with respect to the upper degree)
algebra derivetion of FZ, which 1s honogeneous of degree 1 with respect to
the lower graduation and homogeneous of degree ¥1 (more precisely deg d1 =
= -1 in the free Lie and deg d, = 41 in the free commutative algebra case)
with respect to the upper graduation, and which has the property that
[dl’di] = 0. (This is consistent both with dur condifions in Section 1 and
the situation coming from the deformation theory for an algebra B*; ¥ - gk
or L*. It Z<O # 0 in our 0ld setting then just rzlabel Z° as 2™ and notice
that positive upper degree derivations become negative, and so onJ

We shall denote by an the bigraded subspace of Zi given by Z‘<n = <1>zm.
Property (I) implies that r(z¢™) will ve a bigraded differential suba?égbra
of FZ, which will obviously satisfy all the conditions imposed on (FZ,dl).
We shall denote it by (F¥Z,d.)(n) and meke the convention to label by (.)(n)

all its associated objects.

2,1. Definition, The bigraded differential algebra (FZ,dl)(n) =

= (F(z¢"),d, IF(zt")) will be called the n-skeleton of (FZ,d;). We will say
that dl is skeletally intrinsically formal (spherically generated) if dl(n)

is intrinsically formal (spherically generated), for any n.

Notice that if B}k is a graded algebra and B(n) is its n-skeleton (as defi-
ned in the introduction) then the defofmation theofy of B(n) is given by
; (Fz;dl)(n), modulo an obvious shift of the dimension ne.
. Finally we shall meke one more assumption on (¥Z,d,)
(1IV) if deg dy = +1 then Zl = 0,
(it is a harmless usual l-connectivity assumption; anyway it holds fof the

% _ ¥

examples comming from topology and will help us to treat the cases B
o ok

and B simultaneously).
The key inductive step in what follows is provided by the following exact

sequence'of bigraded differential spaces, which relates the deformation

theories of dq(n) and dl(n4l):
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) 0 Ki(n)-———) E;’i(ml)-—?—-éEi(n) s

Pty 4o Pz

Here r is defined by restricting the derivations of F(Z

(if deg d, = -1, remember that we are dealing with nonpositive upper degree

derivations, so the restriction is obviously possible; if deg dl'= ) Use

Zl = 0 and & little counting degrees argument to see that the restriction to

£
F(Z*n) leaves this subalgebra invariant). The restriction map r is clear ly
onto, tokes d,(n+l) to d;(n) and plainly is a Lie algebra map, hence also

a chein map.

When things éome from an algebra B it is not hard to see that the map

- Induced at the cohomological level, HiK(n)—;>HiE(n+l)'coincides, if BX = H*

with the map HX(B(n+2) BM 2(n+2))—9H*(B(n+2) ;Bln+2) ), and iF gk gt with

the map HiﬂB(n),B (n))~—>H§(B n),B(n)), where both these last two maps are

naturally induced by the inclusion of the top dimensional homogeneous

component of B(m), Bm(m)C:;B(m), viewed as a B(m)-module map.

With these preliminaries, Theorem A will be a consequence of the following

2.2, Proposition. The assertions below are equivalent

(ie) d; is skeletally intrinsically formal

(a4 H lE(n) = 0, for any n
(1ii) The map Hl K(n)—4>H>lE(n+l) is zero, for any n.

Proof. Given Proposition 1.1, it will be enough to show that (iii)=>(ii)
and (1)=Xii). The proof of (iii)=»(ii) goes by induction, uses the long

exact cohomology sequence associated to (1) and starts by observing that

e)

nonzero homogeneous components of Z*. The same remark mey be used to start

the induction in the proof of (i)=>(ii). Suppose then that ;lE(n) 0 and.

that d (n+1) is intrinsically formal. We are going to prove that HllE(n+l)-

one even hes E%l(n) = 0 for ni!no, where n_ is the minimal degree of the

= ;\lHJ(n+l and then use Proposltlon 1.1 again to conclude that H>l(n+1) Qs
Jzl

To " show HlE(n+l)C.IH (n+1), for any j3 1, it will be enough to prove that

any D-cocycle qjé ZJK(n) is integrable when viewed as sn element of E?(n+1)

(use again the cohomology sequence of (1)). On the bther hand, given
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q.E Kl(n) we know that it is given by a'degree *1 linear map Z€n+1

<ntl

-)(F(z )) ;41 Which is zero on 2", by fhe definitdon of Kin). tiioe

plainly 4y (Zn*l)(.F( ), it follows that qg = 0 and that the conditions
fdl+qj,d +qj] =0 and[dl,qj] = 0 are equivalent. Thus fhe elements of
_ZJK(h) are integrable in Eﬁ(n+i). Our proof is complete.

In what follows we will need & more precise comparison between the de-
formation theory of dltn) and of d,(n+1). This will be accomplished by the
use of the following commutative diagram of bigraded differsntisl spaces,

with exact rows and colums, which enlarges the short exact sequence (1)

0 O =0
e |

O-——~>K§n)-———}E#nﬂ)—-——%E&n)-——v>o

(2) O Kj‘(n) —5>EX(n+1) -————>E%(n)
X * K

oyl M i

0~ K{ln) —3 (B/E)R(n+1) %(E/E);f

| | J

0 0 0]

>0

(n)

The middle row is just the exact sequence (1), The other exact rows are
constructed by simply observing that Z(n+l) = E(n) @)—n+l and consequenfly
that the restriction map r sends the subcomplex E%Kn+l) onto the subcomplex
E¥(n)o The exactness of all collums readily follows.

Let us also remark that the morphisms induced in cohomoiogy by the left
half of the above diagram may be identified, when the diagrem comes from the
deformation theory of a graded algeﬁra BX _(B¥K = H*'or gh - sk) with {he

 _diagram below

H;E(B(m),DmB(m)) ' >H(B(m), DB(m) )
R >¢Bmt ) SHXB(m) B(m))
(3 * m;, m) 4 * ’
B (m) VR >
¥(B(m),Q B(m)) Hy(B(m) ,0B(m))

where the maps are induced by the various natural morphisms between the




B(m)-modules which are involved, as explained in the introduction, and m

equals n+111, where the plus (respectively minus) sign occurs in the case

B = H (respeetively B = L).
The following proposition will imply Theorem B.

2.%., Proposition. The assertions below are equivalent

(1) d, is skeletally intrinsically spherically generated
(ii) H;l(&/ﬂ)(n) @, for ahiy n :
(1ii) The map HﬁlK(n)——%>H>l(E/E)(n+l) is zero, for any n
i
(iv) H}l(L/E> =

Proof. Given Proposition 1.9, it will be enough to show that (iii)=>(ii),
(1)=>(11) and (11X (iv). The proof of the first two implications goes
paralelly to the one given in Proposition 2.2. The inductive prood of
(1i11)=>(ii) starts as in Proposition 2.2 and continues with “the aid of the
long cohomology sequence of the bottom row of diagram (2). To prove
(1)=>(i1), inductively assume H;l(E/E)(n) = 0 and also that dl(n+l) is
intrinsically spherically generated. It will suffice to show that Hilﬁ(n)
-—%IBIKE/P)(n+l) is the zero map. To do this we first notice that the left
column of the diagram (2) may be obtained from the exact sequence of k-vector
spaces

G Zn+l-—___;> anl______;'zn+l/2n+l______4} 0

by applying the functor Hoﬁi(.,(F(Z$n+l),dl)) and reindexing (this is =
direct conseguence of the definitions, plus the fact that q(Zn+l)C;F(Z{nf,
for any q<:E¥(n+l) which involves an easy degree argument and uses, if

deg d; = 1, the condition (IV)). As a conseyuence, we see that the long
exact cohomology sequence of the léft column of (2) splits into short

exact sequences, in particular the map HilK(n)~+>Hélg(n) is onto. We will
now make use of the assumptioh on the spherical generation property and de-
duce that H>1K(n)——4>H>lK(n) is also onto, thus finishing the proof of our
implicatlon° If pi. GEDerJl (n+l) (j=22) is a D=-cocycle of Kl 1(n), we know

(as seen in the proof of Proposition 2.2) that dl+pj€M(n+l). Since dl(n+l)




is intrinsically SpheriCally generated we may find k-linear maps

(d1+P; )(ql+q2 $oou) = Beon 7

hy 1, with the property that q; = inclusion and

o Look ét the homogeneous component of degree
j+1 and deduce that Pj ‘mh Ly d1a4 = O, Extend then qj to Zn+1, regard it

as an element of ho l(n) and conclude that Ryt [al,q (n), as desired.
We are thus left w1th the proof of the eguivelence (11)623(1v) We recall
from the previous section (see 1.10) that we have H>1(E/E)

Hom'l(Z * (F2,d;)), and similarly for H>1(E/”)<n) It follows that the

o
vanishing of H;l(b/_) is equivalent with Hom"l(Z(n) H>2(FZ d;)) = 0, for
any n. Observe that Zin) = 7 ana consequently Hom (Z(n) H>2 )) =

Hom (Z(n), ig"l(FZ dl))° If deg dy = -1, it is immediate to see that the
natural map Hj(F( \n),dl)-—>H§tFZ,dl) is an isomorphism for any j n-l. If
deg dl = +1, it is equally easy to see that Hgl(F(Z<n) )—%}Hjl(FZ dy ) ds
an isomorphism for any Jj{ntle Therefore in both cases we have an isomor-
phien Hom~Y (Z (n) H;g o Hom (Z(n), Hgn Lm0 D) -

Hom (Z(n) Hf‘(F( ) dy )) = H>1(E/Z)(n), whlch finally gives the equi-

valence of (ii) and (iv) in our statement and ends the proof of Proposition

2¢3e

. Examples. We first come baék to Example 1.15, nsmely to the case dl:0°
We assert that we can add the properties of ckeletsl intrinsic formality and
of skeletsl intrins ic sherical generation to the list of equivalent prOpertES
of dl given there. To see that both two skeletal properties are equivalent
to H>1(E/E = 0, just note that all skeleta of (FZ dl) will still satisfy
: dl(n) = 0, and then combine EXample 1.15 and Proposition 2.3,
Assuming dime‘(oo, all generally valid implications between the four

intrinsic properties we have considered are indicated below

skeletal intrinsic
. éﬁ?;;f formality \t::3
skeletal intrinsic

intrinsic

formality spherical generation
X intrinsie spherical“ZZf§§> _

generation
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Indeed, we may on one hand come back to the Félix example ([2]), which we
have aiready discussed in 1,10, to-see an example of a finlte dimensional

graded commutative k-algebra H%'which ig intrinsically formal but not

skeletally intrinsically spherically generatede.

On the other hand one may use homogeneocusly generated graded algebras BX i

|

(see [15] for the case B = H) to produce skeletally intrinsically spheri-
cally generated examples which are not intrinsically formal. We say that B
ies homogeneously generated if it is generated as an algebra by some homo-
gencous component B , Plainly all skeleta of B*'Wlll share the same property.‘
We claim that if B is homogeneously generated then it-is skeletally
intrinsically spherically generated. To see the vanishing of

°l %‘ % (FZ,d )), use the assumption on the homogeneous generation of B
to deduce that Z equals the minimal degree non zero homogeneous component

o Z*

We finally remark that the main dlfference between theorems A and B
consists in the different skeletal behaviour of H*%B B) and H*éB a8,
'shall indicate an example of a finite dimensional k-algebra B¥ with the
property that H>l(B B) = 0. but.pot . all H%l (B(n),B(n)) are zero. Set BX =
= H%((S ><(S \/523))\/8 si) ([l, p.26) . Then H)l(B ,B) = 0 (the computation
Hl (E) is carried out in [11 in terms of Sullivan models, but this does
not affect the result, see [17] [20] (}11 or better try a direct - and
easier - computation in terms of Quillen models). Observe next that B(14),=
- kv s’ystik) is not intrinsically formel. "

We finally take care of Theorem e

2.5, Proposition. Suppose that dy is skeletally intrinsically spherically

generated Then the following assertions are equivalent
(1) 4, is skeletally intrinsically formal.
(1i) The map H>1(E)(n)~4>H)l(E)(n) is zero, for any ne
(i1i) The map Hzl(K)(n)—4éH>l(E)(n+l) is zero, for any n.

Proof. Plen of the proof: (i):@;(il)~§>(ili):§>(i). Given Proposition 2.2,

V



24

we only have to prove the last implication, This in turn will be ah imme-
diate'consequence of Propositions 2.2 and 2.3, by a standard inductive
argument which uses the various long exact cohomology sequences arising
from the rows and columns of diagram (2). We may as usual inductively
suppose that H>1E(n) = 0 and try to obtain HZ E(n+l) = O by showing that
the map H>1K(n)—%yH>l E(n+l) is zero. This will follow at once, if we are
able to show that H>1K(n)_4>H>lK(n) is onto, from our hypotheses made in
(;11). This last assertion will follow in turn from H21K(n) = 0. To obtaln~:
this vanishing property we will more generally show that the bottom row of
diagram (2) is a split short exact sequence of bigraded differential spaces
(and then use the skeletally intrinsic spherical generation assumption to
deduce H;l(E/E)(n+l) = 0, hence Hilﬁ(n) = 0), As far ag the splitting

. property is concerned, we have an obvious bigraded k-linear -splitting s,
E*(n+l)f:§ftE%(n), defined for qfiE%(n) by sq[Zgn = q and squn+l = 0 (note
however that it will not be in general compatlble with the differentials),
Since plainly sh%5n)C:E§fn+l) we will have an induced bigraded k~linear
splitting, also denoted by s, (E/ﬁdiﬂn+l)%m§;.(E/P)%(n)e Pieck qé&Eiﬁn) and
compute r(ﬂ[d ,q] - {dl,sq] ) = [dl,q] u[d ,rsQ] = 0 (since plainly r is

|~n+1

a Lie algebra map); we also have (s[dl,q] {hl,sql) = 0, by constructin

which shows that s[dl,q]«[é sd](ﬁE%kn+l) and thus that the induced splitting
on E/E is also a chain map, as desired, and concludes the proof of our
proposition. We finally mention that it is the natural occurence of the
condition "Hilﬁ —> H;lE is zero" in the study of the gap between intrinsic

spherical generation and intrinsic formality which we really want to

emphasize here (compare with Proposition 1.11)

2.6, Example: complete intersections. Let us say that d is a complete
intersection if ﬁ*é(FZ d, ) = 0. It follows then that a4 is skeletally

intrinsically formal. Indeed, we may show that H>1K(n) = 0, for any n, and

then use Prop081t10n 2.2(1ii). As we have rome koo before H)lK(n)

( <n+1 F(Zgn+l) dl)) (ZSn+l * 5(F2,4;)), see the proof

>2




of Proposition 2.3, and we are done. 4s far as the terminology is concerned
let us remark that when we are dealing with the deformation theory of a

X

graded commutative algebra BK = H" it coincides with the traditional one
(as it may be seen by translating the condition on Hfé(FZ,dl) into the
language of bigraded Halperin-Stasheff dga models [6], see [2l] and also
[2])» As classical exemples we may quote HX(G/ng), where KCG is an equal

rank pair of compact comnected Lie groups. If Bt

, the property of dl
of being a complete intersection is equivalent to gl dim lu§2, This may be
seen by observing that (FZé,dl) is nothing else but the graded Koszul

- construction of the cochains on L, which may then be used (see [21]) to
compute 4%Torg5%(k,k) = Hf(FZ,dl), for any ne. A nice class of geometric
exzmples is provided by the m-dimensional compact closed manifolds M" which |
are n-connected (n)1) and of the dimension m{ 3n+2. We assert that
GT%(fIM)Qbk is a complete interséction, unless H%(M;k) is a truncated
polynomial algebra of the form k[x]/(xB), with deg x = even. Indeed, set

MY = M\\ipointk and notice that M % M'Ue", If H*(M;k) is not a monogenic
algebra then we know (see [4]) that the attaching of the m-cell ™ gives
rise to a "perfect murder"vand consequently Torgg’(k,k)m—>Torgg(k,k) is

an isomorphism, where UL"—> UL is the universal¢enveloping alé;bra map
induced by the inclusion of M* into M by applying the UTe £L0.)@ k functor,
It will then be enough to show that gl dim L'( 2. We will actually show that
L’ is free; this in turn will be a consequence of the fact that H%(M';k) is
both intrinsically formal and with trivial multiplication, and thus M mst
be rationally equivalent to a wedge of spheres., Notice then first that the
inclusion of M'vinto M induces an homology isomorphism up to dimension m-1
and second that H)/mM' =.0; it follows that i is intrinsically formal,
being both n-connected (as soon as M is so) and trivial in dimensions > Zn+l
(as follows from our assumption m { 3n+2) - see [6], On the other hand the
homological n—connectivitykof M’ forces H+M';H+M' to be concentrated in

degrees},2n+2, while Poincaré duality on M implies that H)m”nM' = 0
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recalling that m{ 3n+2, we infer that H'y’ H+M' = 0, thus finishing the
discussion of the cohomologically non-monogenic case. In the remaining
caseé it is immediate to.see that elther M is fationally equivalent to Sm,
and 0Ty (AM)®k is then plainly a complete intersection, or H*%M;k) =

= k[x]/(xj), in which case it is equally easy to see that Uﬂ%(flM)QQk is
finite dimensional abelian and not even intrinsically cospherlcally genes=
rated. We finally point out that with ocur hypotheses (the non cohomological
monogenity excluded) H*(M;k) will always be also skeletally intrinsically
formal (for the proper skeleta of 1% Jjust use again the criterion furni=-

shed by [6] and for H%M itself add the results related to the presence of
Poincaré duality of [18] or [10]).
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