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TNTROruCTTON AND STATEMEIfI OF MATN RESULTS

Rational homotopy theory assoctates to l-connected local ly f lni te
complexes X two (fcUann-Hilton dual") types of graded algebras €E invariants
whlch w111 be sinulteneousg treated ln this paper, namely Ht(x;e) and
0t*(Qx)&a. rn whet fol lows we sha1l denote by g* a graded algebra over

an arbitrsry characterlst lc zero f ield k, which is supposed to be of f lni te
t t l "  (d lmo#(0o,Vn) ;  Bt  w111 be e i ther  graded connutat ive and l -connected
(Bo = k and 81 = o) or a graded Lle algebre, whieh is also supposed to
be l-connected (Bo = o).,2*x wir. I  stand either ror gi l (x;t)  or for
0r*(ft.x]Ek. Alaong other thl'gs, rationar honotopy theory ( tr6l, hgJ )

provldes, for k = Q, the existenee of a canonlcal x which rearlzes any
glven e)F (r.".8xx = A*), nanery the so-carled forroal (g* = H*) or
pofornal (3*= 0-r*ol space assoclated to l* (""e sogr [re]1, and also
provides an algebralc parametr lzat ioh of spaces withln At (1.e. speeesywith

3*v = A*) '  Much attent ion has been paid to the study of the (co)fornatl ty
of spaces and of the comesponding intrinsic property for algebrae: g* iu
seid to be lntrlnsicelly (coEormal lf it 1s reallzed by exactly one a-
honotopy type (nanely by the (eo)formal ore) -  see for exanple [rg],  lel  ,

I ,  Czechoslovakla
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t r ] ,  [ rz ] ,  [zo] ,  [ rz l  , [gJ, [ r rJ , [z ] , [ re1 , [ ro]e. . .  var lous other  approxlnat lons
to (eo)formsl l ty have also been coFsidered. We shal l  focus here on the

topologlcelly meanlngful and algebralcally tractable property of
(co)spherlcal generat lon. Glven X, consider the rat lonal Hurewiez hono-

:  norphisn h,  0 [x(Ox)& a--> 
"d*r (x ;Q)  

.  As l t  ls  wel l  known,  rm(h)  c  pH*

( P H } r = p r 1 n i t 1 v e s o f t h e h o n o 1 o g l c o a 1 g e b r a ) a n d | a i l x , f i * ] c k e r ( h )

( [6- l*,0' i , f  J = derlved loop honotopy Lie algebra), the lnclusiorsbeing

strlct 1n generar. v/e shalr say that X is gpherlcally (cospheriqarry)

generated if the flrst (eecond) inclusion ls an equallty. It ls also welt
known that the (co)fornallty of x lnpIlee the (o)spherlcal generation

prnpertyr wlthout belng ln general equlvalent to lt. gne nay thus conslder
the correspondlng lntrlnslc property for algebras: B*is sald to be

lntr lnsiceLly (co)spherlcal ly generatec i f  any X withln g* ts (co)spherl-

ca1ly generated (co in the case Bf = graded Lie aIgeu"" # l .

Varlous classes of exanples of lntrinsically (co)formal algebras have

been exhlblted. The nost suitable approach to thls problen turned out to

be the use of defornation theory ( in the splr i t  of [rJ, [rr ])  -  see for

exerople [g ]  ,  [ r ] ,  [ rzJ , [zoJ, [? ] ,  f9 ]  , . . .  The ncet  genera l  eharacter lzat ions

of the lntrlnslc (co)forrnality property for an algebra B+ (nt = graded

cornmutat ive elgebra Htor B*= graded Lle algebra #l have been formulated

es rlgldity theorems, naneLy as an equlvalence (under certain addlt' lonal
assumptions) between the lntrlnsic property and the vanlshlng of
a defornatlon-theoretlc lt1 group assoclated to Btl two polnts are to be
stressed here: first that the l1near condltlon HI = O always lmplies
the intrinslc property, without being in general squlvalent to ltr EDd
second that the relevant ttl ls part of a classLcal cohomofogy theory
agsoclated to the graded aIgeb"" # (the same as in the classical exarnples

of defornation theory F],  h71).

As we are golng to fornulate our results 1n elassical cohonology theory

ternsr w€ pause a llttle for reca1llng the deflnltlons and maklng sone

notationel conventlons. 
.Let 

then gt Ue a graded algebra as before



and Iet tlt be a (left) graded B*-nodule. If B* = H* (conmutatlve algebra

ease) we shal l  conslder the (bigraded) Harr lson cohomolo&y Harr*t*{H,ol;

as deflned ln [ZO] and regrade 1t by defining

] rH ,u l  
=  Ha" r1*J+1 '1 (H,M) ,  fo r  1 ,  j  )  0 ,  1+ ;  )  o .,-

it
f f  . B T  =

cal  L le

a n d P =

*
L' (graded Lie algebra

cohomology  HntP(L ,M)  =

t o t a i  d e g r e e ,  s e g  € . g .

case) we shal} consider the bigraded classl-

t*{ io(k,M) (where n = resotut ion degree

[Zf] I ancl regrade it by deflnlng

Hlr l ,u l  =  g1+;+1, - i - l (L ,M) ,  for  1 ,J  )  o ,  i+ j  >  o .

The exanples of natural B-nodules which arLse ln connectlon with our
deforruatlon theory are: Btas a left p*-nodule, the g*-subnodule of de-
composables of Bt, to be denoted uy otg (DB = B*.8*, lf B.t = Ht DB = [ere]
l f  Bt = #), the quotient B*-module of lndeconposables of B*, to be denoted
by Q{B = gVl*e, and flnally Bf-modules of the forn M* = N)n (for some
n and some Bt-nodule N*)

our polnt of vtew 1n thls paper, whlch hae been begun in [r+], will be
the ekeletal oner nanely to conslder both the lntrlnslc propertles and
the deformation theory not only for g* but for al1 skeLeta of e\ in
a oysternatlc rvay. we thus deflne, for ar\y n, the n-skeleton of BX, by

Just t'unceting above degree n, and denota it by e*(n) = e6>n; it wlr_1

be a quotlent algebra of B*. r f  BN =A*(x) then Bt(r,)  =g*(x(n)),  where

X(n) denotes the n-skeleton of a nlnirnal CW-deconposit lon of X ( ln the

case€*'= xX), respectlvely the n-th postnlkov stage of x ( in the case

.8* = fi1J?.). Flnally let us say that gX ls skeletally lntrlnslcally

(co)formal (respectlvely. (co)spherlcalry generated) i f  ar l  skeleta e*(n)

have the correspondlng lntrinslc property. We may now stete our skeletaf

r"esults. The maln connon featur.e ls that certaln llnear condltlons,
expresslble ln terms of classlcal graded algebra cohomolog;r, whlch ln
general are only sufficient for the exlstence of the intrlnslc propertles,

becone also necessary in the skeLetal fianework.



?heoren A. The followlng conditlons are equivarent
(f) e)h 1s skeletally lntrlnslcally (co)formal

. ' l( 1 r )  H j r ( n (n ) , 8 (n ) )  =  0 ,  f o r  anyn

The proof ls to be found ln proposition 2.1

exenple exp)"alnlng the naln dlfference between

whlch ls due to condlt ion ( iv) above).Agaln l t

vanishing of n],atnrOnl lmpl les the lntr lnslc (co)-spherical generat ion

of B, but ls not 1n general equlvalent to l t  (see I.9 and 1.10). Ore nay

also f ind a general (nonl lnear) characterLzation of nonskeletal lntr lnsic

spherlcal generat lon ln hoposlt lon 1.8.

Our last two results are related to the gap between (co)fornallty

(111) The natura]  rnap Hlr(B(n),Bn(n) ) - - -+ u|r fe(n) ,8(n)  )  ls  zer 'g,
for any n.| ,  . . ,

The proof will be glven ln Proposition 2.2. We ought to polnt out't

that lf Hi., (nrn1 = o then B nust be lntrlnslcally (co)fo:nmal and that)L

the converse does not hold in general (see the remarks of 1.5).  rn sec-

tlon L we also offer two (nonskeletal) characterlzations of the intrfuislc
(co)forurallty of B: a generral (but nonllnear) one j;r proposition 1.1 and
a l lnear one in Proposlt ion 1.1 (under the addlt ional assunptlon that \
dtnUB<oo ) ' Wlth the sane trypothesis, we show that the gap between the
lntrinsic formallty of B and of BEoE, where E fs the algebralc
closure of k, is measured by an lnteresting rationality property of the
veriety of structure constents for the deformation theory of B, 1n
Pnopos l t i on  L4  (see  a l so  1 .5 ) .

-Theorren B. The assertlons below are equivalent
(1) B* ls skeLetally intrlnslcal\y (co )spherically generated

1(11)  H i r  (B(n) ,Qts (n) )  -  O,  fo r  any  n?/L

(111) t t re naturat  ̂ an H]1(B(n),Qb(n))-+n]rrn(n)  rQB(n) )  1s zere,
for ar5'n

(1v) H]rte,ol) = o.

(see a lso 2.4 for  an

the two skeletal propertles,

has to be noted that tire



5

and (co)spherlcal generat lbn (see aleo [2J).

Iheoren C. We have the equivalences

(l)  gt te sketetal ly intr inslcal ly (co)fornal

(fl) gt ls skel-etally lntrinslcally (co)spherical]y generated

for
^ft
p

and, the natural  *p 4,r (B(n),nB(n) ) - - - i  u | r teCn) rB(n) )  is  zero,

(1r l  )

any n

ls skeletally intrinsically (co )spherically genersted and the

natural *"n n|1(B(n) ,Db(n) ) -----+H]rtn(n) ,B(n) ) ls zero, for

€|ny n.

Proof: see Pnoposlt lan 2.5. Supposlng that e* ts intr lnslcal ly (co)spheri-

cal ly generated, a classlcal (nonskeletal) r igidl ty theorem corresirondlng

to the equive lence of  (1)  and (11)  above reads:  1 f  in  addl t ron Hfr (Brm)

= o then the intrinslc (co )fornality of n* is equlvalent to tn" ii"ishlng
- ' l ' r

of  Hi f  (B 'DB)- -+Hi(B 'B)  -  e€a 1. I2 ,  I . I7 .  Arrother  var lant  1s conta lned

1n the statement below (whose proof is glven 1n l . lJ and r. lz).

Proposlt lon D. suppose that H]rfarDB) --+ 
{r,u,ul 

is zer.e. Glven x wlth

E*Cxl = B*, X 1e (co)formar if  and onlJ rt i  rs (co)sp5.r1ca11y generated.

The paper ls dtrvlded lnto two eections, the second, one belng devoted

to the skeletal propertles. Both parts are wrl.tten ln the language of

defornatlon theory, and consequently all topoJ-ogical staternents are proven

ln gpeater generality. The deformatlon theoretlc framework ls set up in

the f l rs t  sect ion.

this paper nay be regerded as the (weighted) sun of the unpublished

[r+] and [a] t the skeretal polnt of view of h+] plus the eultable

deformatlon theoretlc franework of [g] = the present najor double revlslon.

Both authors are gretef lr l  to the natural clrcumstances ( l .e. the relat lvely

short dietance between Bucharest and hague) which rnade rnall cooperation

work sat lsfac tor1ly.
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1, GENERAL RIGIDITY THBORXMS
I

Ratlonal homotopy theory offers the possibtllty of fatthfully translatlng

questtons frons the horootopy category to a differentlal graded algebra set,ting

f [ fOl , l f9 i ) .  rn  par t lcu lar ,  g iven a graded Q-a lgebra B as in  the Lnt roduct lon,

,  Lt can be real i .zed as the cohomology ( loop space hornotopy) algebra of a space;

t loreover, the central problen of classifyirrg honotopy types with prescri-bed

cohonology (honotopy) algebra has been recognlzed to adnlt a sueeesful re-

fornulatlon 1n deforroation theoretlc terms C_[6], lrl, [rZJ , [zo1 , [z] , .. . ) .

Tbls later eetting has, anong other thlngs, the foLloiving useful features:

lt can be described for an arbltrary characteristic zsscoefflcjentf5eld ie andrunder

suiteble f inl teness restr lct ions on B, the nethods of algebralc geometry

are avai lab le  over  the a lgebra lc  c losure E f [ : ] r [ f f ] ) ;  ra t ional l ty  proper t ies

ney be deduceo from the unipotenee of the }lnear groups which-are ln general

lnvolved here t [rg] , [u.] , [rz] , [o] ).
^ 

We are thus golng to descrlbe f l rst a convenLent deforroatlon theoret ic

franework. The most natural arrd sultable for our purposes ruay be fornulated

tn ter.ms of blgraded L1e algebras of derivat lons t [rZ],  see also [a],  lgl l ;

ln partlcular lt will allow us to treat slnultaneously the graded algebre

and Lle algebra cases 1n a perfect Ecknsn-llilton dual nanner, We shall next

translate the propert ies of (co)formall ty and spherlcal generat lon from geo-

rnetry to algebra and fornulate severaL general results reLated to the

characterlzat lon of the conespondlng lntr lnslc propert les, 1n the classlcal

forn of rlgidlty theorems. As we have already nentloned the general ldeas

are (funpllcltly) present ln the llteraturel consequently our proofs w1U be

nerely sketehy.
*

I€t ZI, be a bigraded k-vector space and denote by AI = VZ the free

(Uf1-*""ded eonrnutative or graded Lle algebra (w1th respect to the upper

degree) on Z; the blgradlng on A ls mult lp l lcat lvely induced by the one on Z.

_l/[e shal1 suppose moreover that

(I) either zSo = o or z\;o = o' K t
( I I )  d inkz l (oo,  for  ar ly  n .

0
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Arso let d, be a graded algebra derlvatlon of A whrch ls blhonogeneous of

,  b ldegree (1,1) .  Denote uv ner ] (a)  the k-vector  space ofb lhomogeneous graded
"  a lgebra der lvet lons of  A of  b ldegree (1, j )  (1rJ€ Z ) .  O." f  natura l ly  becomes

a bigraded Lie algebra, wlth'bracket given by the graded comnnutator of deri-
vat ions. Final ly suppose that 

l : rrur:  
= e (or equlvalent ly ui  = o).  Deflne

a bisraded subalgebra t t  
Snerf l  

bv e] = Derf+5 (r ,3)0, i+J)o).  Not ice
that dr€ E], and that o I la,, r ]l to'iu rI ;;: a-cochain complex, which
eprlts 

" {, 
= 0 }rf. The resultlng cohornoJogr wili- be denoted o, ,Irrl; H}r

w111 play a key role in our defornation theory.

we now descrlbe the two nain exanples conlng fron geonetry. rf g* is
a graded algeura g* as ln the lntroductlon then (rzrar) ts essentlally
Quillen'" d construction on the dual coalgebra $u 

"rtr, 
zero dlfferentlal

(h6l '  Eee arso [er]r.  ro be more preclse set tv* =$g-h ana , l  = rt  = 
":*._ Notlce that the differentlsl d, ls quadratle when restrlcted to the free

generators and ls essentlally constructed as the dual of the argebra nulti-
' plleatlon of H. If Bt ls a graded Lie algebra Ltas in the lntroduction then

(FZrdt) le essential ly the Koszul-Qul l1en construct ion E of the cochain algebrr
on twi th  t r lv la l  d l f ferent la l  ( [16] ,  aee a lso lz r l l .  To be nore prec lse set
zf =$tr,t"na ,I = ,1, then notlce that d, wt'r.r agaln be quadratlc, belng
essential ly t le dual of the Lle nult lpl icat ion on L. The cogeepondlng classi-
ca1 cohonologles w111 be denoted by H{rn,el (but recarl. the relndexlng con-
ventlons, fron the lntroduct ion ! ). we note that we have ln fact a bigraded
lsonorphren Hf(o) = Hf(n.e); for B = H thls easily follows fron fzo1,lrzl;
for. B = L 1t L U" OIrt"U by simllar--(even easler) methods, nanely by
a tedloue but straightforward dlrect computatlon, which we omlt.

The underlylng deformatlon theory has aa+E], ae afflne supportl the per_
' turbations wlrl be denoted bv p = 

fn., oiu 
'*a= 

"*-r-. 
Th" urrr"ty or

structure constents wltt be denotJ?'; r".ur.i]r l, 1t is glven by the
.a"torution equatlon ttrf]rfri l) [aa*p,dt+p] = o. rt containe the dlstlnguiehed
polnt dl. Conslder next the group Aut of graded algebra autorcrphlsms of AX
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and the subgroup G of (lower) rutratlon nondecreaslrrg elements g € Aut
le^ , g- (AT ) c {*n , V n, 1) - wlth the property that Bg cormutes with

( f o e o  g  = )

n),O " rr  L

" dl' The norial subgroup G, of G is deflned by the condltlon 6o = ld. These
both l lnear algebralc groups ( lnf lnl te dinenslonal ln general,  as wel l  as

tht,"ttffr letr 
|), 

the later belrrg unipotent. rf q. r: (n> o) then
exp(ql =2-: ' (r /nt)qn nakes senee and i t  ls an elememyp. 

ss .L ts an etement of Gr. Finally G nor_
phicel ly a6ts on E and on M, by conjr:gat lon. For deta11s, eee [rz],  also [gl ,
lgl ' Also notlce that if d j%zt * (for exanple 13 6rnoB (0o ) tnen everythlng

l::::tt 1n.tn" 
realm of honest flnlte-dlnensional algeb:ralc geouetrxr (as in

[r'Jl ano ls Eoreover defined over k' There is howeve]r a word of cautlonr
usual$ one also conslders the conponent uB = [oeo""!;farrrJ - oJ. t,te choose
not ts include lt here, because 1t does not affect at all the plcture of M asg cl-spacet in which we are primarily interested, for topologtrcar reasons
wbich w111 soon appeari  on the other hand i t  also does not aff""t  i {r(u),=L'€o 

the nost important part of l lnearized defornatlon theory.
. Hhen k = Q end the defoznatlon theory eomeg (ae explalned before) fron
B = H (resp'L), the eonnection wlth topology 1e provided by the followlng
rresults (t7J, resp'[r ]) l  the set of rat ional honotopy typee X wlth g*(xie) =
= H{ (reep' o[1f l(x)&e = L*) 1s in bi ject lon wlth tn" o"urt space In/c;
a spaee x ls fornal (cofozual) 1f and only if lts orblt equals G,dl =. G1.d1.
At thls polnt ls worth nentionlng that the equal l ty G.dl = G1.d, ls val ld in
generar' Thle ls due to the easily seen fect that G ls generated bv G,
together with the stabi l lzer of dr.

Consequently we shall start ln general wlth (trZrdl), construct a deforr'B_
tion theory for dt as explalned above, and nake the folIowlng obvlous defl-
nl t lons I  e polnt n = dr+p €M w111 be calred fornal- l f  G,& = G.dl (a, wl1t be
9a11ed the canonlcal fo"na] poilt); dr w111 be ca'led j!@r fornal
t f  M - 6.d1

- For a'y n )t, considen the aet of lntegrable elemente

eo""f i*t  = Ei ;  [dr*pn+1+pn+2+,.. ,dr+pn+r\+e+...J = ol
for Bome no*i€Derj*1, t). z j.

= 
{ 

on*tri



r,

bracket we deduce that far, l ]1 = o. Consequently we nay con-
't 'l

of lnteglable cohomology classqe, denoted by J}(CH:(E),

If dl8 K tu lntrLnslca11y fornal then d, ls lntrlnslcally

Expandlng the

slder the set

proof. I f  n = d1+pp+1+ps42+...  €M(k) then obvlously rn&t<€M(K) and the

Lntrl-nslc fornallty of drQ K implles that [pr,*f& K] = O in H[m f , hence

[nn*f = o in I*, bv linear argebra.

We should polnt out that the real polnt ln our corollarry ls that we do not

elther impose addltlona1 ftnttehess conditlons as Ln [fZl or pass fron the

-flnlte dfunensional to the general case by a pro-algebralc groups argument as

1n [ff], but rather glve a dlrect convergence argunent , to be cornpared with

the one 1n [g].  However, our characterlzat lon hes a serlous drawbacki l t  le

obtalned ae the lnage or r] by the naturaL proJection of zlfn) onto Hltul.

Here ls our first characterlzatlon of intrlnslc formality.

: I.1. Propositlon: dr ls intrlnslcally fornal if and only lf IHf = lO],

for arly n )r1

Prroof. Suppose that dt 1s lntr1nslcalIy fornal end let n = d1+Pp+f+pp12+...

gMr i .€. [no*f aoi.  We know that there exlste g = 1+g1*.. .  €Gl such that

g.B = dr. We nay then use the argunent of ff] tp.24 (see aleo [g] ,p ,2a2) to

rnodl{y g so as to have g = 1+8n+8rr*1+,.. and consequent\y Sr,e pgrf;=Eo.

Bxpand B'III = dr8 to d1+Pn+1+8rrd1+... = dr+d1grr*."., henee h"-il = O and
' l  

1 1rni = LoJ.
Converse\y start wlth n = dl+P Z*Pr*... € ![ ancl lnductive]y suppsse that

^p2 
= p7 =.. .= pn = o, hence that pn+1€ t*,  and consequently pn+1 = farrcnl

for  some qna E3;  for  the po int  exp, -an) .m we then have that  PZ = g5 =. . .

{  . . .= pp+l -  O, and lnductlon nay go on. F1na1ly note that the sequence

exp(-qr , ) . . ,exp(-qr )  converges to  a  wel l -def lned e lenent  g€Gt  fA]  and that

g.n; d1i therefore M = Gl.d, and da 1s lntr lnsical ly forrnal.

I f  kCK 1s a f ield extension we get (FZ,d1)&Of and a deformatlon theory

at8 x.

I .2 .  Coro l lerv .

fornal.  . .  -
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nonllnear and hard to check.

We are 
'golng 

now to try a llnearlzatlon. fn order to be able to uEe some

simple geometr ic arguments we shalI  suppose that dinOZ(0O. We shal l  next

consider the (Zariski) tangent spaces at dt to GI.d, and M. We note that we

:have e|r fn l  arur-(Gt.dr)  (whieh is  1n fact  an equal i tyr  see f : l l  and rd ' (&l)C

Cr|rr6\ [rr]. w" define the nornal cohonorosy uv dr = ,urru)zB]r(E).*rt is

a l inear k-subspace of H|rtn),  
&

L.r.  Proposlt lon. Suppose that dir f  (  oo. lhen dl8K ls lntr lnsicalIy formal

for any extenslon kCK if and onfy 1f

Proof. Let ue assume flrst that I*-,
f iL

the pruof of the rtgldtty theoren of [ffJ nay then be used to deduce that

Gl,dl = G.d, le (Zarigki) open in M" We next lnvoke a houiogen@r argumentn

a6 in [r]. Deflne a l-parameter subgroup of G by lettlng t € kt act on aj as

, )  = dr+tP2 *t?pr*.. .  ,  hence G.dl C G;6

(Zarlski closure ) for ar\y n € M. t//e lnfer that M = G"dl and dl ls intrlnsi-

,ca l ly  formal .  I f  kcK ls  an arb l t rary  extenelon the condi t lon N] t  =  Q (which

ls lndependent on the ground f leld) glvee that dl8K ls lntr inslcal ly forrnal,

hence aiEf fo lntrlnsically for.naI, by the prevlous corollary. For the con-

verse inpllcatlon lt w111 pJ.alnly be enough to snppsse that k = E and thst

dl is lntrlnslcally fornal and deduce tlrat *>ff = O. To thie end we shall

gonsider the orblt nap f:Gr--+M, glven Uy f(g) = g.dr. The lntrlnsic formallty

of d, and- the unlpotence of G, lnply that 1t 1s a dondnant norphlsn between

lrreduclble varletiee, therefore lts differentlal ie surjectlve on a Zarlskl

open Donvold subset of G, f  I  l ] ) .  Ustog .  translat lon l f  necessarv l t ' fol lowe

that dld(f)  ie surjeet lve end this readl ly lnpl lee that Td. (M)Ce]-rful ,  hence
'l "1 ?'

I$t = Or as desired

The above result suggesta that the vanishing of nl., 1e related to ratlo-
/, J-

nality propertles of the varlety of structure constants M. Our next rlgldlty

result mekee thle guess a l1tt1e more preclee.

. J
">r,

=

= 0 .

O and k = E. The sa&e argument as Ln
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1.4,  Foposl t ion.  Suppose that  dfurkz (oo,
'l

(f) If lt if = o then the k-ratlonal polnts of M are

(i l )  I f  the k-rat ional polnte of M-are dense in M(E')

cally fornal if and only ff njf = O.

hoof. We shal"I treat (1) and (11) slnultaneous\y. Taking lnto account

the precedlng proposltion it will be enough to assume thet 4t 
= O 1n (i) anci

that d, le lntrinsically fornal ln (1i). Both these assumptlons lnply that

M(k) = G'(k).dlr  at the Ievel of k-rat ional polnts. this ln turn funpl les that

have already

dense  ln  M(E) .

then d, ls intr lnsl-

cl(E).dt€fr(T). To see thls we look at the orbit  nsp f :Gr--+M we

consldered ln the precedlrrg proof. We have Gl(E).dl = f(cr(E')1 = f  ( c l ( k )  )

(Gr is an afflne space belng a unlpotent groue) gry)-I = cp{ = M6.
1

But  i rn j i  =  o  we know that  M(E)  = GI(E) .a ,  and our  c la lm ln  (1)  fo l lows.  On

the other hand tiie assunptlons nade 1n (1r) tuply that M(E) = frTl'f = TQficfF,

:hence the orbit  norphism le donlnant. We nay then deduce tbat t) t ,  = O as j .n

the prev iouo proof ,  and we are done.

I.5. Renarks. Conslder the fol lowing f1nlte eonplex t f l

x = s3v r3r stavs3lvsilu,.r e2s

obteined from a wedge of epheres by attachlng a 28-ce}l along

o = [s]4,sla1"[ui ' ,s]1*fsfr ' ,s!1r and a roodirred version, nanely

x = s3vslvslavslavsflv s37v+e28

where f, = ftlo,slal* [t]o,t]ol.[t:',sf 1. [r3',r3].
Concerning the relationshlp between the rlgldity results glven by Propo-

'eLtton 
1.1 on one hand, hoposlt tons 1.7 and 1.4 on the other hand. and usual

\ , /  
' l  

_ - 1  ^  
' l

r lgidlty theorems, we note that we.have ln genenal 
A$*a*iraH;l(E) 

uut

the lnelueions are str ict .  For the deformat lon theory of  H^(X;k) l t  can be
1 1 1  

' l

conputed thet afm Hy]f = 2 and that [ ' l (k) = tdfJ, for any k, hence Ni,  = O; the

:eason 1s that ln general the ldeal generated, by the components of the defor-

nation equatlon 1e not rad1cal,  and thls nakes ( ln general) the obstruct lon
. r  *
* i ,  = O hrrd to check. Start lng with H-(Ygk), 1t can be verl f led that thls
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algebra ls lntrlnslcally fornal for k = Q or lR, but no nore lf k = E. Thls
ehows that the lnclusion X.tt*C*1.l is in genenat str lct and that the

n) l  
r r  tL' lntr lnslc formall ty property ls not lndependent of the extenslon of scalars.

AII  these indlcate that the best l inear epprox.tnnatlon to lntr lnslc forual i ty
ls the classical one' namely H|tfnl .  i t radit lonarly i t  ls ehown that H|rtnl=o
is also enecessary conditlon fon lntrinsic formality by additlonally assurclng

)
that Hl^(l)=o (ttre role of thls extra assumptlon beipg to pnovlde the'/tc

equality Xt{ = 
4, 

= nt>ri see the next sectlon for another ctass ofn)"1
sssttrnPtlons which do the sane iob). There are hswever exanpleo, as siruple as
l t t (s lvs,Vsl i  - -1 'E)  = o hrrr  Hz)), where nfrrnl = 0 but ulrw / o, wtr-ich show that thls choice
of extra.assumptlon 1s not the nost natural oDB - to be conpared to the

sltuat lon in our Fruposlt ion 1.4.

We move now to the propert les of (co)spherlcal generat l-on. For naking the

- relevant def lnl t lons we are golng to suppose thet Z*, = ZL in our defornatlon

theoretlc frannework (as tn the nain two examples conlrrg from topologl) and
s e t  Z  =  K e r ( d l l z ) "

1 .5.  Def ln i t lon.  ur  =  d l *p€M w111 be sa id  to  be spher ica l ly  generateg l f  for
en.y x e* tnere exlsts y e (n)f ,  such that (ar+p) (x+y) = O.

Geonetrically (trz,dt+p) wll1 represent a nlnj.mal differentlal greded Lte
algeb'a or conmutat ive algebm, and (n)r, ,  w111 Le a graded (ar+p;-stable

ldeal. Denotlng by h:Uttl 'Zrdl*p)+Z( the norphlsn naturally induced by the
proJectlon rz-+YZ/(w)|rz = z, lt ls weLl-knovn that lt essentlal-\y represents
the Hurewtcz norphlsm or 1ts dual (nodulo some relndexLng.of the degreeo). On
the 'other hand, it le also Jmmsflfule to see that we always have the ineluslon
In hCZ and that the spherieal generation property ln our Deftnltlon 1.6 ls

equlvalent to In h =V. Taklng lnto account that when B = H we carr identlfy
l r

Z wlth the prlnitlves of the dual coalgebra *iU ana when B = L we can ldent1fy

- Z wlth #Ql, one sees that the property etated tn Definl t ton L.6 is equlvalent

to the property of (co)spherlcal- generat lon steted in the introduction.

Let us notlce that ln general i f  geG and m €M then m ls spherlcal ly gene-
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rated lff g.m is spherlcally generated (slnce g nay be regarded as an les-

norphlsm between (FZrm) and (Mrg.m) commutlrrg wlth h and dr) and also that

p la in i ry  1 f  Ker  (n lz)3Ker(d] lZ)  then m is  spher lca l ly  generated,  We thus see

that the formallty lnplles the spherlcal generation. We polnt out that the

converse does not  ho ld  1n genera l  (  see €.g.  f f i ]  ) .

I .7. Deflnl t lon. d, is said to be lntr insical lu s_pherleaL\r generated i f  any

n € M ls spherlcally generated.

Obvlously the lntrilsic fornallty lmplles the lntrinsic spherleaf gene-

ratlon. However there are lntrlnsically'spherically generated examples which

are not lntrtnslca]Iy fornal [ f : ] .

The foUovring constructions turn out to be useflr1 for the characterj.zation

of  the ln t r lns lc  spher lca l  generat lon.  Set  E = fa  en ;  a lZ = o] .  Th ls  is  a  b t -
_*

grqded Lle subnlgebre of E[ ano dt€ E't ,  consequently {* i t t  also be a sub-

- c o m p l e x  o f  { n [ , n ) .  t u t  M  =  M A ( d ' + E j t ) .

1.8, Pnrposit lon, d, ls lntr lnslcal ly spherical ly generated i f  and enly t f

the natural map T|-->M/C' is onto

Proof ,  I f  for  anJ i  m€M tnere ex ls ts  g  €G,  such that  g .m€fr ,  we lsrow that

g,^17 = O, hence g.m ie spherical ly generated, therefore n wl l I  be spherlcal ly

generated and dI w1l l  be lntr lnsical ly spherlcalfy geherated. Conversely,

glven n € M we use .1ts opherlcal generatlon property and construct an elernent

g€Gt as fol lows: we wrl te Z =Z Q C and deflne a graded algebra automorphisn

g of rZ by descrlb jng lte restrictlon to the free algebra generators, narnely

gx = x ,  for  x€C,  and gx = x+Jr  for  x€Zn,  where y  €$Z) f "  ano rn(x+y)  = 0,

slnee g9 = id, s€Gt. By construct ion e-1.^e fr ,  ;  the lonuuruu lrnpl icat lon

ls  a lso estab l lshed.

.1.9, Prrposit ion. I f  Hlf(8,6) = O then d, is intr inslcal ly spherlcal ly Bene-
4 L

ra ted

"  Proof .  Star t  w l th  ne M,  [  =  d l *p2* . . . *pn+prr+ l+. . .  We wi l l  show that  the

Gr -o rb l t  o f  M  con ta ins  a  po ln twhose  a l l  pe r tu rba t lonu  p2 tp ' t . . . l l e  l n  Fand

then use the p'eedlng result to conclude that dl 1" lntrlnslcally spherlcally



ji,. -..,,,,r:'-.;!,i:.*,tuihiit r+ -;l

1\

generated, In what fol"lows the ldea of prcof 1s taken fron tg] (see aleo

[rZ] ) .  Assune lnductively that pzr.. . ,pn €8. RecaLl that [r ,r l  = O, look

at the honogeneous part of degree n+2 of this equality, remember that F

is a Lie subalgebra of E and conclude that pn+l represents a cycle of
- 1  ^ - . O  0  r i . .

rc/D;, n)t L. Consequently there exists qn€. E; = lsri(aft) such that
.  l '  . ' rpn+l + [Cnraa] e l .  Up to degree n+1, we have the equal i ty exp(Qrr),n =

= d1*p,*.o.+Pn*pn+l+fAr.ra1l,  where exp(Qrr) € Gr. Induction goes wel l  olr  ancl

flnelly passlng to the l1nit as ln the proof of Proposition l".J we flnd the

deslred elennent of Gr'

1 .10"  Benarks.

( f2 ,0 ,  )  as

HJrrzEl  =  HomlrHf  t rz ,dr ) , r | * ; * r ( rz ,dr ) ) ,  V i , i ,

where Hotl  denotes the k- l inear homonorphlsms which are homogeneous of upper

degree t. This rnay be 6een as follows. Up to reindexlng the degrees (n{rol

is nothirrg else but the bigraded conplex of the derivat lons of the bigraded

(free) ol f ferential  algebra (rZ,dt) lnto l tsetf .  Goi lg baek to the defini-

t ion of E l t  ls i rnrnedlate to see that the bfuraded complex f  tn,zsl[ ,n) ls

given by the bihonogeneous derivatlons of the bigraded (free) differentlal

algebra t frrU, whlch ls a blgraded dlf ferentlal  subalgebra of ( trzrdl),  lnto

( lZrdl)r  whlch is consldered as a bigraded dif ferential  nodul-e over { l%rO)

ln the natural walr This lnrnedlately glvee that u[CfZnl = uorl(Z r l(m,dl)),

Or:r stated formula follows at once, by notlclng that Z{= Hf Fzrd.) and by

pr.operly relndexlng. It ls also worth mentionlng that the space
r r L ' L

Hom'(Hl(rzrdf ) ,H;(Iz,df ))  natural ly appears as the target Bpace of an

obstructlon theory fo:: the spherical generation property,

\{hen deal lng with the deformation theory of a graded al& bra eX (gX = i{X

or l*t  the nethod of provtng that H{tr l  = uftarB) arso glves that

n{fnZfl  = Hf(e,qe) (by stroply observlng that Z = *qB, nodu}o & shif t  of

t l :e  degrees) ,  l i le  a lso ment lon that  one has uf , t rz ,ar )  =  i i { {e , t ) ,  uhere k  is

consldered as a trlvlal B-nodule. Flnally we remark that the vanlshing of

ff{fErel is conputable dlrectly fron the inltlal data
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H|rttrel  ls not ln general a necessary condlt ion for lntr lnslc spherlcal

generat ion (seehowever the next eect lon). Thls roay be seen by lnspectlng the

already nentloned Fdl ix exarnplel in thle exanple HX{X;t) is lntr lnslcal ly

formal (hence spherical ly generated) for any k, but

Ho^l tu f f  rz ,d t ) ,n} r tFZ,dr ) )  /  o  t [ rJ  p .40-41;  the computat lon of  u [ t rz ,or l

ls carr ied out in terrns of Sul l ivan urodels, but the transLation to Qult l .en

nodels can be easi ly done, see €cg. fzr]  I  c

Our next two results explore the gap between the properties of formallty

and spherlcal generation.

1.11. Propoelt lon. Assune that Hl., tnl--+Hl-, Cnl ls zero' Then
' , 'L ) . -

polnte of M coinclde wlth the spherically generated points of

pnoof, Let n = dI*p2*.. . . fprr*pn+1+..,  be a spherical ly generated point of

M.  We have to  show that  the Gr-orb l t  o f  m conte ins a po lnt  wi th  P2=P7=. . .=0n

We lnductively assume that we have found a polnt 1n Gr.m whlch has

pZ=. . .=pn=O (and of  course which is  again spher ica l ly  generated) .  YIe are

going to use thls last property to deduee that pn+lt  El moo e](n);  since we

already know that pn+t€ Z*(E) (use f tr*]  = O) t fre assumptlon that Hl j(E')  -->

-+r{rfnl  is zero forces pn+1 = o nod e}tnl .  The rest of the proof fol lows

exact\y as ln Proposl t ion 1.1.  Spher lcal  generat ion lnpl ies,  for  any x €Zh,
. h

the ex le tence of  y  = t t * t r * . . . ,  Y l  a  $z) i ,  w l th  the"proper ty  that
, -  ,  

'  
\ /  I(d1+pn+1*.  . .  )  (x+Jz+V 

,* , . . )  
= 0.  Iooklng at  the homogeneous component of

degree n+2r we see that dlYnn'*pn+lx = O. Maklrrg l inear\y our cholce for y,

we flnd an upper degree zerrl l lnear nap Qn zZ->(FZ)n+1 wlth the property
n

that pn+llZ * dlQo = O. Dxtend Qn !o a derlvatlott Qn€Ei and notlce thst
F I - ]

Pn*l * ldlrarrJ € E* as c1a1!0ed" Orr prrrof is thus completed.

L12" Remark, tet Bt be a gradedalgebra as ln the lntroduction and con-

slder the assoclated deformatlon t l ieory, ae explalned. before. As we have

already nentloned, l t  ls not hard to ldentl fy H{(E) wlth t f} f  n,n).  In fact

:  one nsy identl fy the rnap uff f l -+H{fr l  appeorlng ln the above proposit ion

with the nap 4,t ,DB)-->H[tt , t)  natural ly lnduced by the inc]usion of the

B-subnodule of deconposables, DBc.)B. Thus Proposltlon 1.]1 fullJ gives the

fornalthe

M .



pxtoof of Proposlt ion D of

r lgldl ty theorem.

1.1r. Proposit ion. Suppoee

tt 4rrEl+r/rl(E) ie zero

tion that uLrtn> = O. Then
1  -  ' t '

H;r (E) -+ 
5r 

(E) 1s zer. .

lrb
: ,

the lntroductlonn rt arso leade to the fo11owlng

Proof. Assuming that d, is lntrinsically .spherically generated and

H|tf f l+H]rt fnl  is zero we infer that d, 1s lntr insical ly forrnat by using

Proposit lon 1,11. Conversely assune thert d, is intr insical ly formal and

n(r f f ' l  =  Q.  s tar twl th  a  D-cocyc le  nne z l tE l  ,  n) ,  I .  tVe wiLt  use thet1

that  dt  ls  lntr insical ly spher ical ly generated.

then da ls intr lnslcal ly fornal .  Suppose 1n addi_

dt is intrinsically formal lf and only if

assumption thatHT1'JJ = O to show that prr ls integrablel to be nore preclse

we wi l l  show the ex is tence of  pn*r_ r . . . ,  (pn+i€E**r )  wi th  the proper ty  that

ro = dl '  The condi t ion f rn,ml = O is equivalent wi th the fo l ]owing set of
homogeneous condi t ions :

1-1
(#:) -z far,rrl = [tr i ,ri _,1 ,

J = I e - r r

Induct lve ly  suppose that  r l , . . . rg1_l  have

proper ty  that  (X, )  r  " . . ,  ( {y_1)  } io td  and m,

hand slde of the equal l ty fXf) t :  then an element n(i)(  U?r. I f  we show that

l t  ls ln fact a D-cocycle tnen nl,r fh = O lmplies that (y:) may be sotved

fo r  n '  and  we  a re  done .  Se t  m '=  n0+m1+. . .+n i_ f1  then  f r ' r [ r ' r r l ] =  O ,  by

the Jacobi identlty. loo.klng at the homogeneous component of degree 1 of

th is  equal i ty ,  reca l l  thet  [ t ' , t ' ]  has t r lv ia l  homogeneous components  in

degrees ( i  (Uy induction) and that the hornogeneous component of degree 1 of
f r t l

L t ' , t ' J  equa ls  m( i ) ,  and  consequen t l y  i n fe r  tha t  f a r , r f i l  =  0 .  Th ls  was  a1 l

we needed to continue the inductlon. The proof of the proposlt j .on is compl-ete.

1.14. Remerk. The proof of the usual r lgidl ty theorem "1r r" lntr lnslcal ly
fonmal  i f  end only  l f  H ' l (E)  = 0,  ln  the pr€sence of  the condl t ion 

$a(n)  
=O, '

dL*Pn*Pn+1+.. .  € M. lnom this

of  Proposi t lon 1. I ,  that  ln€

as our  in tegrebl l i ty  c la lm 1s

fac t  l t  nay  be
1

B; (E )  (4 ,  be ins

concerned,  set

deduced,  exact ly  as in  the proof

lntr lnslcal ly formal).  As far

m = mo+m1.1 ., . 1 nr € Erl anA

t )  t .

been constructed

3 c  r  r =  [ n - 1  =  0 ,

( i ) n )  w l t h  t h e

Dn = pnn The rlght
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is s pgrt icular case of the. above proof obtained just by sett lng E = E.

1.15, .Example: wedges of spheres and produets of Ei lenberg-l l laclane spaces.

We wil l  br lef ly exanine the slnplest case occuring j l  our deformation theory,

narnelJ d, = O, Topological ly this neans elgebras B* = H{ o" L* wlth tr tvial

nult ipl icat ion (e.g. the cohomoJogy of wedges of spheres or the loop homo-

topy of products of .011-enberg-Iriaci,ane spaces). l.et us observe that in this

partlo.ular c&se (df = 0) all the properties we have consldere , nanely the

lntr insic formali ty, the lntr lnslc spherical generat ion, H].. '  tn) = 0,
.?+

1  F .  
' l

H;I@/E) = o, are equivalent,  belng ln fact equivalent to , i ,  = 0. f t  wi l l -

p).alnly suff lce to see that the lntr insic spherical generat ion inpl les the

lntr lnslc formall ty ( t fr- ts fol lovrs innedlately fron Proposit ion 1.8, since

ln our case g = {aj ) and that in turn the lntrinsic fornality inplies that
'l 1

8i.., = O. fndeedr supposing that Ei-' / 0 we can find a nonzero llnear rnap
/zL 

r 'r  
'*  

r

Qn:zn , (nz) i l ] ,  n)rr .  v /e extend i t  to a der ivat ion arr€ e j  uy set t lng
h

enlz" = 0 for  h /  m. The fact  that  ZX= Z, readi ly impl les that  tAnrCnl = q

. for  degree reasons. Therefore qn€Mr Qn/d,  and consequent ly dl=O is not

intr insical ly formal,  s ince ln our case G,dL = dr. .  Y/e f lnal ly rnent lon that

the condi t ion * . . ,  = O nay be expl ic i te ly t ranslated lnto an ar i thnet lc con-
4 L

dit ion lnvol-v ing the sequence of  the degrees of  the elements of  a k-basls of

zN. . ''

2. SKEI,ETAL PROPERTIES

This sect ion is rnaln\y devoted to the proof of  theorens ArB and C of  the

lntroduction. Vie are golng flrst to translate thelr staternents lnto the

language of  defornat lon theory.  To this end, l t  w111 be convenlent to re-

forrnulate the condi t ions we have lmposed on ( IZrd')  jx  the prevlous sect lon,

tn the following way, ,*. witl be a bigraded k-vector space with the proper-

t i e s :

( r ) ' f = o
(r I )  dimuzf l  (6,  for any rn

NudzuY6b



( n r )  z *  =  z L .

IZ w111 denote the free graded (by upper degree) Lie algebra or commutative
gl

a lgebra  on  Z^  and d ,  w i l l  be  a  g raded (w i th  respec t  to  the  upper  degree)

algebra der ivst ion of  FZ, which is honogeneous of  degree 1 wi th respect to

the l -ower graduat ion ancl  horaogeneous of  degree t1 (nore preclseLy deg d,  =

= -f 1n the free Lie and deg dt - +l itr the free cornmutative algebra case )

wi th respect to the upper graduat ion,  and whieh has the property that

F :  r l  1  / \  i / m ! - i ^  ;  ^  ^ ^ * ^ i  ^ + ^ h +  1 - ^ + L  . . . r
[d1ro1J = o.  (Th is  is  cons is tent  both wl th  our  condi t ions Ln Sect ion ]  and

the si tuat ion coroing from the deformation theory for an algebra B*, BK = H*
t '  / a  

h  - n

or Lt .  f f  Z\u /  O ln our old set t ing then just  re label  Zt '  as Z-Ir  gnd not ice

that posl t lve upper degree der ivat ions become negat ive,  and so onJ
(n '+ (n

We shel t  denote by 2""  the bigraded subspace of  zQ given by Z\r t  = 
@r^.

m(n
Property ( I )  impl les that  r (z(n) wl l ]  be a blgraded di f ferent ia l  euUafgeUra

of  YZ,  wh ich  w i l l  obv ious ly  sa t ls f !  a l - l  the  eond i t lons  imposed on  (FZ,d l ) .

W e  s h a l l  d e n o t e  l t  b y  ( r Z , d r ) ( n )  a n d  m a k e  t h e  c o n v e n t i o n  t o  l a b e l  b y  ( . ) ( n )

.a  11  i t s  assoc  ia ted  ob  je  c ts  .

2 , 1 ,  D e f  l n i  t l o n .  T h e

= .  (F (z (n ) , a , l r { z (n )  )
that  d, i s  ske le ta l l y

b ig raded d i f fe ren t la l  a lgebra  ( IZ ,d r )  (n )  =

w111 be  ca l led  the  n-s i re le ton  o f  ( rZ ,a r )  
"  We wl t l  say

intr insical l .y fornal  (spher ieal ly qenerated) f f  4. ,  (n)
J.

ls  intr inslcal ly fornal  (spher lcal ly generated),  for  any n.

Not lce that  i f  g* ts a graded algebra and B(n) ls i ts n-skeleton (as def l -

ned ln. . the introduct ion) then the deformat ion theory of  B(n) ls given by

(fZrAr)  (n) ,  rnodulo an obvious shl f t  of  the dj-menslon rro

.  Final ly we shal l  make one nore assurnpt lon on (U,0. ,  )
"l

(W) i f  deg dl- = +1 then Z- = O.

(1t ts a harmless usual l -connectivl ty aesunption; anyway l t  holds for the

examples comming from topology and w111 help us to treat the cases n* = uS

"  
* * . ,  - *  r  r r  - -  -  - - a - - \

and B '^ '=  ! "  s i l ru l taneous ly ) .

The key induct ive step in what fo l lows ls provlded by the fol lowlng exact

sequence of  b lgraded dl f ferent la l  speces, which relates the deformat lon

t h e o r l e s  o f  d 1 ( n )  a n d  d 1 ( n + 1 ) :
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o -+ rfrn) ---+ n${n*r) r > nfitnl ----] o.

Here r  1s def lned by restr ict lng the der lvat ions of  F12t(n+1, to F(z-(n)

( l f  deg dL = -1,  r 'emember that  we are deal lng wi th nonposi t ive upper degree

der j -va t ions ,  so  the  res t r i c t ion  is  obv ious ly  poss lb le  I  l f  deg  d l -  =  +1r  use

ZI = O and a l l t t le count ing degrees argument to see that the restr lct ion to

f (a (n)  leaves  th ls  suba lgebra  lnvar lan t ) .  The res t r i c t ion  map r  i s  c lear ly

on to ,  take ,  d l (n+ l )  to  d r (n )  and p la in ly  i s  a  L ie  a lgebra  rapr  hence a lso

a  c h " i n  m a p .

When thlngs come from an algebra B lt ls not hard to see that the nqap

lnduced at  the cohomological  level ,  Hfr tn l*#(n+1) colncides,  l f  BX -  ut ,

with the map H[ te(n+2)  ,Bnn2(n+2)  I  +n{ , tn(n+Z) ,B(n+2)  )  ,  and j . f  B{  = l *  w i th
v

the map n[ (e(n) ,Bn(n)  ) -+x{(e(n ) ,8(n)  ) ,  where both these tast  tv ro maps are

natural ly induced by the inclusion of  the top dimenslonaL hoJnogeneous

conponent  o f  i j ( rn ) ,  B t (n )c5e(n) ,  v iewed as  a  B(ur ) -nodu le  map.

With these prelirnlnaries, Theorem A v,,111 be a consequence of the follov;lrrg

2 .2 ,  hopos i t ion"  The aseer t lons  be low are  equ lva len t

( i )  df  1s skeletal l -y lntr lnslcal ly forrnal
'l .'

( i 1 )  H i rE (n )  =  0 ,  f o r  any  n
/t' 't -t

(1ii) rne *o 4,r*{d 
--+u.}rE(n+1) is zero, for arry n.

hpof  .  G iven Propos i t ion  1 .1 ,  i t  w i l l  be  enough to  show tha t  ( i i l ) :+ ( f i )

a n d  ( i ) + 1 1 ) .  T h e  p r u o f  o f  ( i i l ) + ( 1 1 )  g o e s  b y  l n d u c t i o n ,  u s e s  t h e  l o n g

exact cohomologl  sequence assoclated to (1) and starts by observing that

one even i res n| , r (n)  = O for n(no, where no ls the nlnlmal degree of  the

nonzero homogeneous colnponents of Z*. The sane refiark nay be used to start

the  lnduc t ion  in  the  proo f  o f  ( j - )+ ( i l ) .  Suppose then tha t  H. .1 - ,8 (n)  =  O and,
, r -  a

that dr(n+l) is lntr inslcal ly formal. We are golng to prove inut t i r t(n+f) =

= Xt1(n+1)  and then use Proposi t ion 1.1 agbin to  conc lude that  f f ]a(n+f )=o.
j>rl tJ 'r r

To show HjE(n+1)CIH;1n+1)r  for  any i>1,  1 t  w111 be enough to  prove that

any D-cocycle .fr€ zjiC(nl 1s lntegreble when vlewed as an elenent of t](n+r)

(use agaln the cohonologl sequence of (1)).  On the other hand, glven

( 1 )
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I

A, € I{l (n ) , we know that

--) (F(z-(n+l, ) j*r, which

i t

1s

is glven

zero on Z

by
( n

a degree t1 llnear

, by the definl t lon

rop z(n*l---*

o f  K(n  ) .  S ince

the  cond l t ions

e lements  o f

plainty ur(zn+l, c Flzr<t), i t  foU-ows t irat cj = O and that

far*aydl+qJl = o and farro;1 = o are equivalen-L, Thus the
zjr rn)  are lntegrable in n](n+r) .  our proof  is  complete.

fn what fol lows we w111 need a more precise conparison between the de-
format lon theory ofdt (n)  and of  dr (n+I ) .  Th ls  wi l l  be accompl ished by the
use of the fol lovring conmutet ive diagram of blgraded dif ferentlal-  spaces,
wl th  exact  rows and co lums,  which en larges the shor t  exact  sequence (1)

Q )

3 \

0--+-fl") ---+Ef(*.,.) r >'ftL ---*+o
o -* -|| ) -----+rfr*.') --+'tl" ) ----* o
o- -$ ) -+ rn,ofr'+r) r>(86)h(n) ---> o

', ,t Jl
0 o 0

The niddle row is just the exact sequence ( l) .  The other exact rows are
constructed by sinply obserrr-lng that Zb+D _= Vh) @ Zl*] and consequent\r
that the restrlction rnap r sends the subconplex E'$tn*r) onto the subcomplex- *  

-  l s '
E$(n) 

" 
The exactness of all collums readily follows 

"
Let..qs also remark that the morphisms lnduced in cohonologr by the left

half of the above diagran roay be identif led, when the dlagren comes from the

defornat ion theory of  a graded algebra BK (B{ = H{ or 
"x 

= #) wl th the

.diagram below

r [ ,o(n) ,Dne(n)  )  +  r { , r (m) ,  oe(m) )

Hftnt'l ln*r'r l -r{r"r*l le(m) )

Hfre r* lf*'e (n ) ) # ri, r,l*,+e r,l l
maps are lnduced by the various natural morphlsms between the

where the
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B(d-modules which are lnvol,ved, as explalned ln the lntroduction, and m

equals n+111, where the plus (respectively mlnus) sign occurs ln the case

B =  H  ( respee t i ve l y  B  =  L ) ,

The fol lowing proposit ion w111 imply Theorem B,

,2 . ] ,  Proposl t io_n. .

( 1 )  d ,  1 s

The assert lone below. are equivalent

skeletal ly lntr insical ly spherlcal ly generated

(11) u},r f  a, lE' lCn) -  o,  for any n

(lii) Tire r"n r{rfr(n) --+H\,-rtttfr> (n+l) ts zero , for any n
1( iv) t ir.(tfr) = o.

Proof " Given Proposlt ion 1.9r i t  wi l l  be enougfi  to show that (1i1)$(i i )  r

( l )+( i i )  and (1 i19( iv) .  The proof  o f  the f l rs t  two impl lcat ions goes

para1e1Iy to the one given in Proposlt ion 2.2. The inductive proof of

( i i f )={11)  s tar ts  as in  Proposl t ion 2.2 and cont i r iues wi th- the a id  o f ' the

long eohomology sequence of the bottom row of diagram (2). To prove
1 -

( t ) : ) (11) ,  t rnduct ive ly  assume H;{E,6)(n)  = o and a lso that  dr (n+1)  : -s

intr insieal ly spherlcal ly generated. I t  w111 suff ice to show that i f ] r f i t" l

-+H1. ,  (EE)(n+l )  is  the zero map.  To do th is  we f i rs t  not ice that  the le f t
) t t

eolumn of  the dlagram (2) may be obtalned from the exact sequence of  k-vector

s p s c e s

O -----) **t-----+ zn*l------+, ,n+I2n+1 ---+ o

by applylng the functor uo*[t . ,  (F(f(n*l)  ,dr) )  and reindexirrg (thls is a

dt rect  consequence of  the def in i t ions,  p lus the fact  that  q(Z^*1)  CF(z(n) ,

for ar ly qal{(n+}),  which lnvo1veg an easy degree argument and uses, 1f

deg d, = fr  the condit ion (fV)lo As a conse.luence, we see that the long

exact cohomology sequence of the left  column of Q) spl l ts lnto ohort

exact sequences, in part icular the map t ir*tnl-+H]rfr fn) is onto. we wil l

now nake use of the assunptlon on the spherleal generation property and de-
' r . -  l

duee that Hirx(n)--)t t i rXtn) is also onto, thus f inishing the proof of our
'+r . -l-

lnp3- lcat ion.  I f  p j  €  Der :a(n+f  )  ( i>D i -s  a  D-coeyc le of  
$1(n)  '  we know

(as seen ln  the proof  o f  Proposl t lon 2.2)  that  d fnPJeM(n+l ) .  S lnce dr (n+1)



;i;,ii,.-;,r:,. ,. ,
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ls intrlnslcally spherically generated we mai flnd k-llnear m-aps

qh:Zl+t-*(f(Z'(nol))f ,*t ,  h) 1, wlth the property that Q1 = lnclusion and

(dr*p j ) (Qr+qr+. . . )  =  o  o '  f l *Lo Look at  the homogeneous eomponer" l t  o f  degree

j+1 and deduce that  p i lPn l  *  d ta j  =  o '  Extend then q j - to , 'n* ' ,  regard l t

n  Y -  
o  .on. iuo"  th  r .  

,1ef ]_r f  
n  )  ,  as des i rcd '

as an e lement  o f  x i - t (n l  end conc lude that  R,  + [d1ra '

we are thus re f t  w i th  the proof  o f  the equive lence ( i l )e+( iv) '  we reeaLl
1

f ron the prev lous sect ion (see 1 '10)  that  we have H; I@4E) =

= Hortf ( Z rrtr(rz ,dr) ) , and sirnilarlY ror  Hlr(8,6)(n) .  r t  fo l fows that  the

wi th  Homt l  (2b) , t f r ( rz ,d t ) )  =  o ,  fo r
vanishing of n]t tnlEl ls equivalent

any n. observe that Z$) = Z{n and consequent lJ Hontf  (Zh) ,nA (nz 'dt )  )  =

= Ho**]  nf i l ,4;= ' j rz ,df) )"  I f  deg d,  = -1,  i t  is  lnmeci late to see that  the

natural  run H{(F(Z' t t ) ,d} l ->H{t  YZrd.)  is  an lsonorphisn for  any J(n- f '  I f

des  d ,  =  +1r  i - t  t "  equa l ly  easy  to  see tha t  H i r ( r (Z{ t ) ra t ) - -+Hi r ( rz rd r )  i s

,  8D lsornorphlsm for any j  (  n+1" Therefore in both cases we have an lsomor-

phis, no*i l  tz(n),r!!*t(rz,d]) ) = Ho*rl (Vu) ,Hf?tl(r(z-to) ,a.) ) =

)  = Hort l (Z(n)  ,nfr ( rc#n) ,dr)  )  = t i r (8, ,6)  (n)  '  which f inal_ lv g ives the equl-

valence of  ( i i )  and (1v) 1n our statenent and end's the proof of  Proposi t ion

2 . 5 .

2.4.Examplgs.  we f i ret  Cone back to Exanple 1"15,  parnely to the case dl=o'

we assert that we can add the propert ies of skeletal intr inslc fOrmali ty and

of skeletel lntr insicqherical generat i .on to the l ist  of equivalent propertbs

of d, glven there. To see that both two skeretar propert les are equlvalent

to  H1. ,  Cn,ru l  =  O,  Just  note that  a l l  ske le ta of  ( IZ ,at )  w111 s t l l1  sat is f !
//L

dr(n)  = o,  and then combine Exanple 1.15 and Proposi t ion 2 '3 '

, Assuming dinnZ (oo , aIL generally valid impllcatlolls between the four

lntr inslc propert les we have considered are indicated below

./ . skeletal intri-rrslc \
r / r /  

v a v - v  - J 4

(  foruari tY 
\  skeretar intr lnslc

/ epherlcal generatlon

\  intr inslc spher lca'  Uf 

-r- - -
intrinslc

formalltY

generat lon
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Indeed r we may on .one hand cone back to

have a l ready d iscussed ln  1 .10t  to-see

the Fdllx exanple t [r] I , whlch we

an exanple of a flnlte dlnenslonal

graded commutative k-algebra H* which is intrilsicatly fornal but not

okeleta l ly  in t r lns ica l ly  spher lca l ly  generated '

0n the other hand one nay use bggggeneoueJX Egnerate$ graded algebras BX

(see [1r]  for the ease B = H) to produce skeletal ly intr inslcal ly spherl-

carry generated exampres whieh are not intrinsicatly formar. we say that Bs

ie homogeneously generated if lt is generated as an algebra by some hono-

geneous conponent Bm, phinly all skef eta of B{ w111 share the same property.

Yre claim that if B 1s homogeneously generated then lt is skeletally

intr lnsleal ly spherical ly generated. To see.the vanlshing of

, r -* t l r ;*  , r*  (f lL,r j l  \a , , , ,>2.r2,d1)) ,  use the assunptton on the honogeneous generat ion of  .B

to deduce thet z equals the ninimal degree non zero homogenecus component

of z*'

I ' /e f inally remark that the maln difference between theor"T,1 
::.  

B

conslsts in the di f ferent  skeleta l  behavlour of  I I [ \B 'B) and nl ( t ,QB) 'We

shatl lndicate an exanple of a flnite dimensional k-afgebra Bft with the

property that ulrate,nl = 0 but not al l  H*.., (e(n),8(n) ) are zero" Se! Bd =
i L  

- _

= U*( (S5X (s I4VSz l ) )  vs5 ; t )  t [ r l  ,  p ,26)  "  Then u f r tnnn)  =  Q ( t r re  couaputa t ion
r

of i*. (n) ie carrled out ln frl ln terms of Sullivan models , but this does
/ r L d q

not  a f fect  the resul t ,  see [ fZ ] , [zo] , [z rJ  or  bet ter  t ry  a  d l reet  -  and

easler -  corrputat lon ln terms of Qu1l len nodels)" ObserTre next that B(14)8=

= H*(s5Vs5Vs14;t) ls not lntr lnsleally fornal.

We flnallY take care of Theorem C'

2.5. Propositlon. Suppose that d, is skeletally lntrlnslcally spherlcally

generated " 
Then the following assertions are equlvalent

(1) dt  1s skeletal \y lntr inslcal ly forrnalo

(11) rhe rnap i{.., fE' ] rrEltn)--+nlr(E)(n) is zero, for anv n'

( i i l )  The r"n Hlr(E) (n)-+H;t(E) (n+1) is  zere '  for  anv n '
rrzL t

1" rrr rn)-+u*

proof ,  P lnn  o f  the  proo f  :  (1 )+  ( i i )+ (111)  +( f  ) "  G iven Propos i t lon  2 '2 '
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we only have to prove the last lnpllcatlon. Thls ln turn w111 be an fuure-

d la te consequence of  Proposl t lons -2 .2 and 2"5t  by a s tandard lnduct lve

argument whlch use$ the various long exact cohomology sequences arlslng

from the rows and columrrs of diagram (2). We may as usuaL inductively

suppose that u|-,nfnl = O and try to obtaln tt>r_t(n+l) = O by shorvirrg that
'r 'r' 'l

the nap H{.,1((n)-+HjfB(n+1) 1s zero. This wi l l  fol lor.r  at once, i f  we are
o L r l

able to show that Hi lK(n)--)uirr(nl  is onto, from our hypotheses made jn

( i i l ) .  Th is  last  asser t ion w111 fo l low ln  turn f rom Hl- ,? t r t )  =  0 ,  To obta in
1 L

this venishlng property we wil l  nore general ly show that the bottou row of

diagran Q) is a spl l t  ehort exact sequenee of bigraded dlf ferentlaL spaces

(and then use the skeletal ly tntr lnsic spherical generat ion assunptlon to
. . 1  t n / . - r t  . r \  1  r u  

\  a \  rdeduce wirrtntr l(n+1) = O, hence Hit i((n) = O). As far as the spll t t ing

property is concerned, we have an obvious bigraded k-l inear-spli t t ing s,
- * , ,  - .  r -  * .  ^  - - ^ ' t ( ,  r - ( n  r  n -.b . ;k (n+11<: " * r [ (n ) ,  de f ined fo r  qen ' f (n )  by  sq fz<n =  g  and sq lzn+ l  =  O (no te

I  however  tha t  1 t  w i lL  no t  be  in  genera l  compat ib le  w l th  the  d i f fe ren t la ls ) "

.  Since plalnly 
"Eftn)Crftn+f 

), we w1l-L have an induced blgraded k-t- inear
- *  r .  - v  i l t

spl i t t lng,  a ls  o  denoted by s ,  (u ,6)Qtn+r)€ (E,6)Q(n)  
"  P ick q € ES")  and

compute r (s [o 'a l  -  fa 'uoJ )  =  ld l ,q l  - [u ' rsa]  =  Q (s ince p la in ty  r  1s

a  T , ie  a lgebra  map)1we a l so  have  fu fa 'u l  - [ u r r "q ] ) lP* l  =  o ,  by  cons t ruc t :on

whieh shows that ,[a'q]-far,"c] € Efrn"r) and thus that the lndueed splittlng

on EZE ls also a chaln rnapr as deslred, and conclud,es the proof of our

proposltlon. We finally nention that i.t is the natural occurence of the
' t -  ' l

conditlon "Hi.,E --) Hi..,E 1s zero( in the study of the gap between intrinsie
?.L .>t

spherical generation and lntrlnsic formality whleh we really want to

enphasize here (conpare wi th Proposi t ion 1 '11)

2.6.  Example:  conplete lntersect ions,  l ,et  us say that da ls a compl-ete

in te rsec t ion  l t  { r ( fZ ,Or )  
=  O.  I t  fo l }ows then tha t  d t  l s  ske le ta l l y

) t  
r  

' l

intrinslcally fornal. fndeed, we rD?y show that HjrX(n) = O, for any n, and

? then use Proposi t ion 2"2( l i i ) .  46 we have renarked before f i ) t t< t" l  =

= Hornl(z(n+r,H[rr (z(n*r)  ,dr)  )  = Hort l (z(nnr,H]2(Fz,dl )  )  ,  u""  the proof
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of Proposit lon 2.5r and we ar€ done. Ae far as the ternlnoLogy ls concerned

let us remark that when we are dea]lng with the deformatlon theory of a

gr:aded comroutat lve algebra B( = Ht i t  coincldes with the tradit ional one

(as i t  nay be seen by translat ing the condit lon on nfZ(fZndl_) lnto the

=i language of bigraded Halperin*Stasheff. dga models [O], see irtl and also

,  
[zJ)"  As c laes ica l  exanples we may quote Hx{c l r ; t ) ,  where KCG is  an equal

rank palr of conpact connected Lle groups. I f  g* = #, the property of d,

of belng a courplete lntersect ion is equivalent to g1 dim L<2, Thls nay be

seen by observing that ffZ{,ar) is nothirrg else but the graded Koszul

constmct ion of  the cochains on L,  which may then be used (see iZf ] )  to
J t -  U L  t .  r \  v .

compute f r ror [ " .6(k ,k)  =  i { ( rz ,d I ) ,  for  aDy n.  A n ice c lass of  geonetr ic

examples is provided by the m-djmenslonal  compact elosed nani fo lds Mm which

sre  n-connected  (n )  f  )  and o f  the  d imens j -on  m(  }n+e.  V /e  asser t  tha t

f t4f0l \ , i )@k is a complete lntersect ion,  unless HX(nr; f )  is  a t runcatecl

po lynomia l  a lgebra  o f  the  fo rn  r . [ * ]  /&7) ,  w i th  deg x  =  even"  Indeed,  se t

l I '  = M\lnoir. tJ and notice that n.{ !  r i l 'U ur. rr  u*(rvr;r)  ls not a monogenic

algebra then we know (see [+l l  that the attaching of the n-ce11 en glves

rlse to a "perfect murder" and consequently T"*Yl (krk) -+roru.rf  (k,k) is
-, J lz)

an isonorphlsm, where UL''-) Ut 1s the universal envelopir,g algebra map

lnduced by the incluslon of M' lnto ! l  by appfying the 0' faA(")@k functor"

f t  wi l l  then be enough to show that 91 dtn t ' (  2. We w111 actual ly 'show that

L ' ls  f ree;  th is  ln  turn wi l l  be a consequence of  the fact  that  HX{tU ' ; f )  ls

both lntrlnslcally forraal and with trlvial nultipllcatlon, and thus M" rnust

be rationalty equivalent to a wedge of sphereso Notiee then first that the

lnelusion of M'into M induees an homology lsornorph,ism up to dimension m*I

and second that H>ooM'- 0; i t  fol lows that H*M'ls intr insical ly formal,

be lng l  both n-connected (as soon as M ls  so)  and t r iv la l  1n d imensions) ]n+]

(as fol ]ows fron our assurnptlon n ( 7n+2) - see [O]. On the other hand the

honnological n-connectlvi ty of M' forces H*M';H*M' to be concentrated ln

degrees lzn+2,  whi le  Polncar6 dual l ty  on M lnp l ies that  t )m*n* ' -  Oi
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recal l ing that  rn( Jn+2r w€ lnfer that  H*M'"H+M' = O, 
. thus 

f in lshlng the

dlscussion of  the cr :honiolog1eal ly rron*nonogenlc cese, In the remaln j - r rg

cases  i t  i s  lmmedia te  to  see tha t  e l ther  M is  ra t iona l l y  equ lva len t  to  S t ,

and 0 f6( . f tm)& i<  rs  then p la in ly  a  conp le te  in te rsec t ion ,  o r  ux i t l ; t )  =

:  =  k fx . l  /&7) , ln  wh ich  case i t  i s  e r1ua] ]y  easy  to  see tha t  0 'q  fJ ) - r la )S t  rs

f in i te dinensional  abel ian and not even, lntr lnsical ly cospher lcal ly ge,ne*

rated. V/e finally poi^r' l t out that with our h.ypotheses (the non eohomofoglcal

monogenity excfudedl  Ht(M;k) wi l l  a lways be also skeLetal ty lntr lnsical ly

fornal (for the proper skeleta of lt*u lust use again the crj-terion f,urni*

shed by fO] and for H*M itself add the results related to the presence of

Psj-ncard duality of [rgl or [roJ 10
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